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Grammar-Based Cooperative Learning for Evolving
Collective Behaviours in Multi-Agent Systems

Dilini Samarasinghe∗, Michael Barlow, Erandi Lakshika, Kathryn Kasmarik

School of Engineering and IT, University of New South Wales, Canberra, Australia

Abstract

This paper presents a novel grammar-based evolutionary approach which allows
autonomous emergence of heterogeneity in collective behaviours. The approach
adopts a context-free grammar to describe the syntax of evolving rules, which
facilitates an evolutionary algorithm to evolve rule structures without manual
intervention. We propose modifications to the genome structure to address
the requirements of heterogeneity, and two cooperative learning architectures
based on team learning and cooperative coevolution. Experimental evaluations
with four behaviours illustrate that both architectures are successful in evolving
heterogeneous collective behaviours. Both heterogeneous architectures surpass
a homogeneous model in performance for deriving a flocking macro behaviour,
however the homogeneous model is superior for evolving micro behaviours such
as cohesion and alignment. The results infer that by placing the entire set of
agent rules and their syntax under evolutionary control, effective solutions to
complex problems can be evolved when human knowledge and intuition becomes
insufficient.

Keywords:
Grammatical evolution, heterogeneous multi-agent systems, team learning,
cooperative coevolution, swarm intelligence

1. Introduction

Multi-agent systems (MASs) are increasingly being adopted as a viable so-
lution to model, study and understand the real life complexities and nonlinear
interactions of dynamic systems in many application fields.

The multifaceted nature of most of the real world requirements of MASs5

could be addressed by employing heterogeneity to flexibly adopt to dynamic
conditions and face and recover from failures with maximum robustness. Nev-
ertheless, designing heterogeneous MASs is still a challenge that has only been
partially addressed as a result of the related complications. It is particularly
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more challenging than homogeneous systems due to the need of designing each10

individual agent or sub-groups of agents separately such that they cooperatively
act towards a common goal [1, 2]. This requires exploring a substantially di-
verse search space of different rule components, parameters and values which
is a complex, time consuming endeavour. Manually exploring the search space
and designing the behavioural rules is difficult and not feasible, as mere intu-15

ition is insufficient to foresee which combination of individual rules and/or their
components will result in the desired behaviour at the emergent level [3, 4].
Autonomous design techniques that have often been explored as alternatives
to address these challenges are primarily concentrated only on automating the
control of parameters necessary for behavioural rules formulation. They rarely20

explore the capability for automating the design of the structure of the rules that
are being evolved. The rule structures are mostly still either manually designed
[5, 6] or are represented by an artificial neural network (ANN) [7] that hinders
understanding and reverse engineering of the rules for analysis and combination
of individual components for complex heterogeneous behaviour generation [8].25

Grammatical evolution (GE), first proposed in 1998 [9], is a technique which
is intrinsically focused on the structure of the rules being evolved. In contrast
to other automated design techniques, it adopts a context-free grammar (CFG)
in defining the syntax of the evolving behaviours and has the ability to maintain
search space and solution space independent of each other through a separate30

mapping process. This makes GE an ideal candidate approach that can evolve
entire rule structures to explore diverse solutions for complex problem domains
of MASs. As such, this paper investigates GE as a potential solution to sup-
port autonomous emergence of heterogeneity among agents. The content of
this paper further elaborates the challenges in using evolutionary computation35

for evolving heterogeneous behaviours such as the computational cost associ-
ated with the size of the population and premature convergence of solution
spaces. We present two cooperative learning architectures; one based on team
learning (TL) and another based on cooperative coevolution (CCE) [10], using
grammar-based evolution in order to address the said challenges. Experimen-40

tal evaluations are conducted to present a coherent view of the strengths and
weaknesses of each mechanism and a selection criteria for using these methods
for generation of collective multi-agent behaviours.

In a recent study [11, 12] we introduced a GE-based mechanism to synthesise
multi-agent behaviours for a homogeneous system, which is capable of reducing45

human intervention in the rule generation process. In contrast to homogeneous
agents, heterogeneous agent rules can complicate the process of learning as the
search space for rules becomes proportional to the number of agents in the
system increasing the complexity [10]. In this paper, we study how the previous
mechanism could be significantly enhanced to address such complications and50

model heterogeneous behaviours with the following contributions:

1. A GE-based approach for synthesis of heterogeneous multi-agent behavioural
rules is introduced. Unlike the existing mechanisms which require the rule
structure to be pre-defined, this approach can evolve the entire rule struc-
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ture from their atomic components based on a grammar which outlines55

the syntax of rules.

2. A novel encoding mechanism is proposed for GE which can encode multiple
behavioural rules (corresponding to different agents) in a single genome.
This facilitates the representation of rules required for cooperative learn-
ing.60

3. Cooperative learning mechanisms based on two architectures: TL and
CCE, are proposed for implementation of the grammar-based model. These
mechanisms explore means to reduce computational costs associated with
expanding agent group sizes and to avoid the evolution process getting
stuck in sub-optimal solutions.65

4. The effectiveness of the proposed models is analysed based on evolutionary
results in a simulation environment with four behaviours and the results
are also compared against a homogeneous model.

The rest of the paper is organised as follows. The relevant existing liter-
ature is reviewed in Section 2. Section 3 introduces the problem statement70

in relation to heterogeneous MASs, and presents the general framework of the
proposed grammar-based evolutionary approach with the modified genome en-
coding mechanism. It also introduces the cooperative learning mechanisms used
in combination with the grammar-based model. The experimental setups and
evaluations are presented in Section 4 and Section 5, respectively. Section 675

discusses the results and Section 7 concludes the paper with possible future
directions.

2. Related Work

2.1. Evolution of Heterogeneous Multi-Agent Systems

Evolutionary algorithms have often been discussed as an effective approach80

to design MASs [13, 14] and have also been used in heterogeneous contexts lever-
aging behavioural or structural diversity to address more complicated problems.
Heterogeneity has long been explored in the context of evolutionary computing
in fields such as robotics [15, 16], surveillance [17], traffic management [18],
hazardous environments [19], mapping and exploration [20], and construction85

[21]. With the recent advancements in the areas of social networking and data
sharing, evolutionary techniques are also being used in MASs that interact with
such systems for social networking predictions [22]. Motion detection, social
behaviour, and drift detection [23] are other areas that have found interest in
evolutionary techniques coupled with MASs to support dynamic pattern min-90

ing. More recent MASs-based work has also explored evolutionary algorithms
in areas such as game design [24] and graphical simulations [25].

Two cooperative learning architectures: TL and concurrent learning [10],
are discussed in the literature to facilitate the evaluation of interactions among
agents in determining their contributions at the emergent level. Only a single95
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learner is associated with TL which will search and improve all the behavioural
rules of the agents in the system [26]. Hence, multiple agents should be en-
coded in a single genome which will then learn the behaviours of the entire
agent system. It has centralised control over the multi-agent system and lacks
the property of breaking a larger problem into manageable sub problems, thus100

leading a single learner to explore a large solution space. Due to this fact, TL
is generally used with evolution of homogeneous agent systems.

Concurrent learning on the other hand, involves multiple learners working
on different parts of the agent system. Generally, each agent or agent group has
a separate learner to modify their behaviour. CCE is one of the common con-105

current learning mechanisms, where separate populations are used to coevolve
different agents resulting in a solution space with cooperating sub modules. The
evolution is carried out by evaluating each individual for their performance with
the individuals of other populations. This approach reduces the workload of the
learner by decomposing the problem into more manageable sub-problems [27]110

and is typically used with heterogeneous evolution.
These learning architectures have been studied with other reward-based tech-

niques such as reinforcement learning [28] and genetic algorithms [27]. More
recently, Deng et.al [29] have explored an ant colony optimisation algorithm
with cooperative coevolution in a multi-population strategy. In a similar vein,115

a multi-objective bacterial foraging algorithm [30] and distributed combinato-
rial optimisation heuristic approaches [31] have been tested with cooperative
learning architectures to explore their capacity in collective behaviour evolu-
tion. Nevertheless, these architectures have not been experimented with GE
in previous literature. The proposed models cater to this gap by investigating120

modifications to cooperative learning architectures in association with GE in
order to support evolution of heterogeneous multi-agent behaviours.

2.2. Challenges in Evolution of Heterogeneous Multi-Agent Systems

We investigate grammar-based cooperative learning in addressing the fol-
lowing limitations associated with the current evolutionary approaches for het-125

erogeneous MASs:
Human bias in synthesis process: The classic evolutionary approaches
concentrate on automatically generating only the parameters associated with
formulating behavioural rules rather than exploiting means for automating the
generation of the entire rule structure [6, 5]. In a heterogeneous context, it is not130

trivial to determine the aggregated set of local behaviours to result in a desired
global behaviour. The approaches that have explored heterogeneity have in fact
used potential functions and parameters that require heavy manual intervention
[32]. We explore GE as a solution to reduce human bias by evolving the entire
rule structure based on a predefined syntax.135

Limitations on scalability: The cost of computation is generally associated
with the population size [33]. In a typical concurrent learning approach for
heterogeneous systems, individual agents have to be learned separately. The
search space to be explored increases proportionally as the number of agents
increases, thus increasing the complexity of the process causing scalability issues140
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[27]. We explore modifications to the genome structure of GE to represent
multiple agents in a single genome, enabling TL with a single learner to be
incorporated for heterogeneous learning.
Premature convergence of the solution space: Multi population envi-
ronments can suffer from premature convergence to equilibrium states. Rela-145

tive over-generalisation is one of the main causes for co-evolutionary algorithms
to converge towards sub-optimal equilibrium states without reaching for the
optimal solutions [34]. The populations may deceive each other to settle at a
sub-optimal solution in such instances [35]. We investigate extensions to tradi-
tional CCE learning to help the evolutionary process escape from sub-optimal150

solutions.

3. Grammar-Based Evolutionary Approach

This section discusses the proposed grammar-based evolutionary approach
along with the modification introduced to the genome structure and the coop-
erative learning architectures.155

3.1. Problem Statement

Heterogeneous multi-agent systems are naturally distinguished by the be-
havioural and/or morphological diversity of the constituent agents. Morpholog-
ical diversity refers to the structural dissimilarity within agents such as different
actuation and sensing capabilities. In contrast, behavioural diversity allows dif-160

ferent behavioural specialisations within a group of agents [27].
In the context of this paper, we concentrate on achieving behavioural het-

erogeneity through individual specialisation of the agent rules within a group
of morphologically homogeneous agents. We define a heterogeneous multi-agent
system with the tuple H = { Ψ, R, g } where;165

� Ψ = { ψ1, ψ2, .., ψµ; 1<µ } is a set of more than one agent ψ, where µ is
the number of agents.

� R = { r(ψ1), r(ψ2), .., r(ψµ) } is a set of rules r(ψ) that define the agent
behaviours, each associated with a single agent in the system.

� g is the goal state the entire agent system is required to achieve defined170

by the objective function O(g).

The objective O(g) can be achieved by optimising a global fitness function
which defines the criteria for the entire set of agents to reach the goal state as
defined in Function 1;

O(g)⇐ max F (Ψ) (1)

However, since agents follow distinct rules, the contributions of the agents175

towards the final goal can be different. Therefore, in a second approach, the
individual contribution can also be taken into account along with the global
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performance. Function 2 optimises both the global performance as well as the
individual contribution;

O(g)⇐ max F (Ψ) && max

µ∑
i=1

F (ψi) (2)

Given a set Ψ of agents and a goal g, the aim is to optimise the fitness either180

using the Function 1 or Function 2 to achieve the rule set R which resembles
the closest possible behaviour to the goal g.

3.2. General Framework

Computational methods that can tackle optimisation problems (such as re-
inforcement learning, particle swarm optimisation, evolutionary algorithms in-185

cluding genetic algorithms, estimation of distribution algorithms and evolution
strategy algorithms) can often also be used to improve emergent behaviour of
MASs. Nevertheless, these methods can only be used in exploring the space of
states and behaviour parameters of agents [28, 33, 36] rather than the space of
behaviour rule structures. They are limited in their capacity to incorporate the190

structure of a programme in the evolution process. Genetic programming (GP)
[37] has the potential to evolve programme structures, however, has no control
over their syntax. As such, GE can be identified as a more logical alternative
that has the unique ability to utilise a CFG to control and restrict the solution
structures to a desired syntax.195

This approach is increasingly being used in evolving behaviours of single
agent systems [38, 39, 40] as well as homogeneous agent systems [8, 11], due
to its ability to generate syntactically correct solutions through the evolution-
ary process with reduced manual intervention. However, evolution of heteroge-
neous groups of agents has not been explored in a comprehensive manner with200

grammar-based approaches. As such, this paper focuses on allowing autonomous
emergence of heterogeneous rule structures in a cooperative environment where
the individual agents succeed or fail in collaboration. For this, two approaches
for cooperative learning; using a single learner for the entire team (TL) and
using multiple concurrent sub learners (CCE) are explored along with the GE205

model.
In our previous work [11], we proposed a mechanism to evolve emergent ho-

mogeneous behaviours by employing the atomic components of the rule struc-
tures; control structures, parameters, preliminary actions and logical and/or
relational connectives [11]. This structural definition remains true for aggre-210

gated sets of rules as well, since individual rules are combined using logical
connectives to form the aggregation. Figure 1 illustrates the syntax formulation
mechanism.

The aggregated rules can consist of multiple rule components and the pro-
cess is started by initialising the first component. It follows an if-else control215

structure, and the process then selects the condition composed of logical and/or
relational connectives followed by their parameters. The next part leads to the
actions or another if condition (resulting a nested rule). It is then followed
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Figure 1: Syntax followed by the grammar in designing the structure of the behaviour rules.
The flow chart describes the steps that should be taken during the formation of a simple or an
aggregated rule and allows for the combination of several such rules as required, for achieving
complex behaviours.

by the else component, which could again be an action or another if condition
nested within. The process may end there or continue to generate more rule220

components.
The evolutionary process is outlined in Algorithm 1 and Figure 2. The rule

space which consists of the four types of atomic components (control structure,
logical and relational connectives, parameters, and elementary actions) is used
to design the CFG syntax illustrated in Figure 1 (Alg 1: Line 2). The designed225

Algorithm 1 Grammar-based Evolutionary Process

Input: ℜ: Rule Space
Ω: Maximum no. of generations
β: Size of the population
CL: Cooperative learning mechanism (TL/CCE)

Output: Ib: Best individual genome
1: procedure GrammarBasedEvolution(ℜ, β,Ω)
2: ρ← GenerateCFG(ℜ)
3: pop← InitialisePopulation(β, ρ)
4: pop← EvolutionaryAlgorithm(pop, β, ρ,Ω, CL)
5: Ib ← GetMostFitIndiv(pop)
6: return Ib
7: procedure EvolutionaryAlgorithm(pop, β, ρ,Ω, CL)
8: ω ← 0
9: while ω ̸= Ω do

10: EvaluateFitness(pop)
11: while validateAgainstCFG(pop) == false do
12: ParentSelection(pop)
13: GeneticOperations(pop)

14: return pop
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Figure 2: Grammar-based evolutionary mechanism. Followed by the construction of a context-
free grammar based on the rule space, an initial population adhering to the syntax require-
ments is automatically generated. Every individual in this population is then evaluated for
their fitness and parent selection is performed. Offspring are generated by applying crossover
and mutation on selected parents. They are validated against the CFG and if they do not
comply with the syntax requirements the process is repeated with new parents. The evolu-
tionary process is thus continued until the termination criteria is met. The enclosed section
is updated based on the cooperative learning architecture used.

CFG is then used to generate an initial random population of rules which adhere
to the required syntax, which is then fed to the evolutionary algorithm to evolve
the desired behaviours (Alg 1: Line 3). As identified earlier in this section, we
propose two cooperative learning algorithms; TL and CCE, which are presented
in detail under Section 3.4. The algorithm presented here describes the struc-230

ture of the evolutionary process common to both TL and CCE mechanisms
(Alg 1: Lines 7-14). The fitness is calculated for each individual rule in the
population and two parent rules are selected with the highest fitness values to
generate offspring. The offspring generated by applying genetic operations are
then validated against the CFG to ensure they adhere to the required syntax.235

The unique mechanisms adopted by TL and CCE with the process of fitness
evaluation, parent selection, and applying genetic operations are discussed in
the respective Sections.
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3.3. Genome Structure

In GE, the genome is represented as a binary string referred to as a set of240

‘codons’. The codons are consecutive groups of 8 bits each representing an inte-
ger value, and can be mapped to a phenotype with syntactically valid solutions
based on the grammar. Since a genome represents a single rule, representing
each agent separately to retain heterogeneity is computationally expensive, as
the population size increases proportional to the number of agents [41].245

Therefore, a mechanism is required to represent multiple agents in the same
genome so that the cost of exploration during the evolution process would be
minimised. In doing so, we propose the encoding mechanism depicted in Figure
3 with GE to store multiple agents in one structure.

Figure 3: Proposed encoding mechanism for genomes. A genome consisting of m codons can
represent a population of k rules (k ≤ m). Each rule is interpreted starting from the ith codon
(i ∈ [1,k ]).

This proposed genome structure is unique because it can record all char-250

acteristics of multiple agents in a single structure while maintaining their het-
erogeneity. Other evolutionary techniques such as genetic algorithms employ
encoding mechanisms which represent multiple variables of a single agent in a
single genome. However, they are not capable of representing multiple variables
of all agents in one structure without scaling proportionately to the number of255

agents. This is because the search space and solution space are not independent
of each other unlike GE. In contrast, the proposed genome structure uses the
same representation of codons, but since they are read in different combinations,
they map to entirely different solutions resulting in different agent rules.

In the original GE approach, the genome is mapped to the phenome through260

the mapping function illustrated in Figure 4. The function is applied on the
corresponding integer value of the codon based on a specified grammar. Multiple
rules each starting from the consecutive codon are generated through the same
mapping function with the proposed mechanism. For example, in Figure 4,
there are 4 codons [2 4 3 1] and the genome represents two rules, starting from265

the 1st [2 4 3 1] and 2nd [4 3 1 2] codon respectively 1.
This mechanism ensures that each agent, although using the same genome,

represents different rules based on their respective codon sequence. The only
necessary condition is that the number of codons should exceed or be equal

1A description of the syntax and production rules of the grammar used; a detailed illus-
tration of the mapping process with an example rule; and a sensitivity analysis for genetic
parameters, is available in supplementary files.
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Figure 4: Example mapping of genotype to phenotype. The genome consists of 4 codons
representing 2 rules each interpreted starting from the 1st and 2nd codon. They map to (* X
Y) and (+ Y Y) respectively, which are two different rules constructed from the same original
genome.

to the number of agents that it represents. We adopt the presented genome270

representation in both TL and CCE contexts for evolution.

3.4. Proposed Cooperative Learning Mechanisms

Traditional coevolutionary algorithms for heterogeneous behaviour genera-
tion are limited by scalability and premature convergence issues discussed in
Section 2. No single solution could be identified with our investigations that275

can address both limitations, and as such, both TL and CCE approaches are in-
vestigated as means to address each problem. TL, combined with the proposed
genome structure is recognised as a solution to scalability. Since the entire team
can be represented in a single genome, only the genome size is increased with
the number of agents, which is less computationally expensive than an increas-280

ing population size. The modifications proposed through the extended CCE
algorithm are capable of addressing premature convergence issues of traditional
CCE. The details of the mechanisms presented here will allow a designer to
make decisions on the respective algorithm to choose based on affordable com-
putational resources and expected level of performance.285

Team Learning
The aforementioned genome encoding mechanism is used to represent all

agents of a team in a single genome for TL. In the proposed approach for
heterogeneous systems, the population for evolutionary process is composed of290

multiple such solutions for global behaviour represented in individual genomes.
The evolutionary algorithm is as given in Figure 5.

Algorithm 2 describes the learning procedure. The population is initialised
with multiple genomes, each representing a solution of a different multi-agent
group (Alg 2: Line 2). During each generation, the genomes are evaluated295
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Figure 5: Proposed team learning mechanism. Each team of agents in the population is
separately evaluated for their global fitness and parent selection is performed. The next
offspring are generated by applying genetic operators on the selected parents. Each offspring
generated is validated against the CFG and the process is repeated with new parents if they
do not comply with syntax requirements. The evolutionary process is continued until it meets
the termination condition.

separately for emergent group behaviour with a global fitness measure (Alg 2:
Lines 5-6). We adopt steady state replacement (SSR) [42], where the offspring of
the selected parents replace the least fit individuals of the last iteration. Hence,
based on the fitness values, parent selection is performed on the population
(Alg 2: Line 11) and genetic operations are applied on the two best solutions300

identified to generate offspring. The selected parents are first applied with one-
point crossover (Alg 2: Line 13). As such, a point on both parents is picked
randomly and the genome portions from that point are swapped between the
two parents. Single point mutation is then applied on the offspring to further
facilitate global search of the solution space (Alg 2: Lines 15-16). The final305

offspring solutions generated are then mapped against the CFG to validate that
they adhere to the expected syntax (Alg 2: Line 17). If the new offspring cannot
map to a syntactically correct solution, parent selection and genetic operations
will be recurrently performed until they become valid.

A maximum number of loops is used to address the unlikely event when310

a valid offspring cannot be generated after sufficient number of trials (Alg 2:
Lines 18-20). When this number is reached, the last generated invalid offspring
is placed in the population. During the subsequent fitness evaluation iteration,
this offspring receives the worst fitness possible and therefore, it gets replaced
immediately afterwards in the next generation. However, this situation is quite315

rare in practice (was not observed during any of the experimental runs for this
study) as there exists a large number of possible codon modifications with parent
selections and genetic operators that are capable of generating a valid offspring
within a few trials.

Once the offspring is generated, the two least fit individuals from the pop-320

ulation are selected which will be replaced with offspring (Alg 2: Lines 21-24).
Once the evolutionary process is repeated for a desired number of generations
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Algorithm 2 Team Learning

Input: ρ: Set of CFG production rules
β: Size of the population
Ω: Maximum no. of generations
ℓ: Maximum no. of loops

Output: Ib: Best individual genome
1: procedure TeamLearning(ρ, β,Ω)
2: pop← InitialisePopulation(β, ρ)
3: ω ← 0
4: while ω ̸= Ω do
5: for i ∈ pop do
6: EvaluateFitness(i)

7: cM1, cM2 ← null
8: valid← false
9: loops++

10: while valid == false do
11: parents← ParentSelection(pop)
12: for p1, p2 ∈ parents do
13: children← Crossover(p1, p2)
14: for c1, c2 ∈ children do
15: cM1 ←Mutate(c1, probmut)
16: cM2 ←Mutate(c2, probmut)

17: if MapCFG(ρ, cM1) == true AND MapCFG(ρ, cM2) == true
then

18: valid← true
19: else if loops == ℓ then
20: valid← true
21: IW ← GetTwoWorstFitIndivs(pop)
22: for IW1, IW2 ∈ IW do
23: IW1 ← ReplaceIndiv(IW1, cM1)
24: IW2 ← ReplaceIndiv(IW2, cM2)

25: Ib ← GetMostFitIndiv(pop)
26: ω ++

27: return Ib

and the termination criteria is met, the algorithm returns the best individual
solution of the population (Alg 2: Lines 25-27).

325

Cooperative Coevolution Learning
Figure 6 demonstrates the evolution procedure with the CCE approach. The

population of solutions is represented by a set of genomes each representing a
sub-population of candidate behaviours for a single agent. The goal for the CCE330

process is to identify the set of best candidate behaviours for the agents that
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can cooperatively act in the given environment. Each candidate behaviour is
evaluated in the presence of other agents during each generation for their capa-
bility to represent the actual agent behaviour. We introduce the term ‘phantom
agent’ (PA) to refer to these candidate behaviours in the sub-population of335

the actual agent. During each generation, the PA which results in the best
global fitness value based on interaction with the best candidates of all other
sub-populations is termed as the ‘representative’ (REP) of that sub-population.
Hence, each sub-population consists of multiple PAs which are candidate solu-
tions for REPs, and the best PA takes the position of REP. During the first340

generation prior to fitness evaluation is begun, a random PA is assigned as the
REP for every sub-population. By the end of first generation after iterating
through every sub-population, all REPs get replaced with their respective best
PA and will continue to be replaced during each generation until the end of the
process.345

Figure 6: Proposed cooperative coevolution mechanism. The initial population consists of a
number of genomes equal to the number of agents in the system. A random PA is selected as
the REP at the first generation. Each PA is evaluated for fitness by interaction with REPs
from other sub-populations. The REPs are updated at the end of the evaluation phase with
the best PA of each sub-population. For the generic CCE approach, the set of genomes are
replaced with a mutated version of the REPs for the next generation. For the extended CCE
approach, mutation is performed on the best PA/REP after all PAs are sorted based on their
local and global fitness values.
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Algorithm 3 further describes the steps of the CCE approach. As discussed
above, each sub-population is assigned with a random PA as their REP for
the first generation (Alg 3: Lines 3-4). During fitness evaluation, each PA
in every sub-population is evaluated for their suitability to be elected as the
REP. To do so, each PA in a sub-population interacts with an elitist community350

composed of current REPs of all other sub-populations (Alg 3: Lines 7-9). The
PA interacts in this community and updates its fitness value based on global
performance of the community. At the end of iterating through all PAs for all

Algorithm 3 Cooperative Coevolution (CCE)

Input: ρ: Set of CFG production rules
β: Size of the population
Ω: Maximum no. of generations

Output: Rb: Best REP set
1: procedure CooperativeCoevolution(ρ, β,Ω)
2: pop← InitialisePopulation(β, ρ)
3: for i ∈ pop do
4: REP i ← a PA randomly chosen initially

5: ω ← 0
6: while ω ̸= Ω do
7: for i ∈ pop do
8: for PAk ∈ i do
9: EvaluateFitness(PAk, REP set −REP i)

10: for i ∈ pop do
11: if Fitness(REP i)>Fitness(PAbest) then
12: REP i ← PAbest

13: for i ∈ pop do
14: loops← 0
15: valid← false
16: while valid == false do
17: if loops > max loops then
18: REP i ← randomly chosen PA
19: loops← 0

20: REPM ←Mutate(REP i, probmut)
21: for PAk ∈ i do
22: if MapCFG(ρ, k) == false then
23: loops++
24: break
25: valid← true
26: Rb ← GetRepresentativeSet(pop)
27: ω ++

28: return Rb ▷ addresses a minimisation problem as fitness functions are
minimising functions

14



sub-populations, all existing REPs are updated with the respective best PA of
each sub-population unless the existing REP has a better fitness than the new355

best PA (Alg 3: Lines 10-12). Then, offspring are generated. The REP of every
sub-population is applied with single point mutation to generate the offspring
(Alg 3: Line 13). The offspring is then validated against the CFG to ensure
they adhere to the syntax. If the offspring is invalid, a different mutation point
is chosen, and the process is repeated (Alg 3: Lines 22-25). Similar to TL, a360

maximum number of loops is set to address the rare event that a valid offspring
cannot be generated. In that case, after the set number of loops exceeds, a
randomly chosen PA is applied with mutation to generate the next offspring
(Alg 3: Lines 17-19). However, an overrun of the number of loops was not
observed during any of the experimental runs conducted. Once the REPs are365

updated, the evolutionary process is repeated by evaluating their fitness values
and applying the genetic operations, until the termination criteria is met.

The genome encoding mechanism proposed above is also used here. Within
the genome, the PAs are represented by a different combination of codons, and
each PA’s rule should be interpreted starting from the first codon in a circular370

fashion. In Figure 4, where the genome is [2 4 3 1], the 1st PA is read from the
1st codon [2 4 3 1], and the 2nd PA is read from the 2nd codon [4 3 1 2].

Figure 7 shows the generation of an offspring for an existing genome where
the REP was the third PA. Single point mutation is applied on the REP to
generate new offspring and if it is valid (ensuring that it can be mapped to the375

required number of PAs), it replaces the existing genome. Mutation will be
recurrently performed until a valid offspring is generated.

Figure 7: Example generation of offspring from a representative starting from the 3rd codon.
Single point mutation is performed on this representative and is used to replace the exising
genome for the next generation.

It should also be noted that with the proposed modifications, single point
mutation acts as a mechanism to balance both exploration and exploitation of
the search space at the same time. Applying only mutation without crossover380
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does not result in a local search which varies only a certain attribute while
others remain constant. Rather, this mechanism still facilitates global search.
Considering the example illustrated in Figure 4, if the codon [4] in the genome
[2 4 3 1] was changed to [9], it would impact both rules as they become, [2
9 3 1] and [9 3 1 2] resulting in (* Y Y) and (- Y Y) respectively which are385

both different from their previous rules (* X Y) and (+ Y Y), but still retaining
some characteristics from parents. As such, mutation probability is fixed to 1
in order to guarantee variations in the new offspring, and unlike other evolu-
tionary algorithms it does not amount to a complete random exploration. If the
probability is made less than 1, it would mean that during every iteration, some390

sub-populations may remain the same without any novel offspring as no other
genetic operation is performed on them, which slows the fitness progression of
the overall system.

Extended Cooperative Coevolution Learning395

In a heterogeneous context with a common goal, the agents should improve
the global fitness cooperatively with the REPs from other sub-populations. The
CCE approach looked into improving this fitness, only to discover that the
mechanism is still prone to premature convergence as has been observed in the
literature with other models that use CCE [27, 35].400

To illustrate this issue we explain two objectives that motivate an agent in
a cooperating heterogeneous environment;

� global fitness: the fitness of the global performance achieved by an en-
tire group of agents for a cooperative common goal in the presence of a
particular agent.405

� local-fitness: the individual contribution of a particular agent towards
achieving the expected common goal.

For example in an avoidance task; how best every agent avoids every other
agent is the global fitness, whereas how best a particular agent is avoiding other
agents is that agent’s local fitness.410

In the previous CCE approach, only the global fitness is used as the eval-
uation measure of the PAs. Therefore, the evolutionary algorithm may fail to
recognise certain PAs which are in fact worth reproducing, simply because indi-
vidual contribution of PAs is not measured. If a majority of the team performs
inadequately while a particular PA is behaving significantly better, it still re-415

sults in a poor global fitness value, giving the false impression that the presence
of that particular PA cannot make an impact on improving performance. On
the other hand, a PA performing marginally well in a good team may get a
higher fitness simply because of the contribution of other REPs and not its
own performance. Continuous selection of such PAs as REPs lead the solutions420

towards premature convergence to a local optimal.
To overcome this limitation, the extended CCE version employs local fitness

to determine the best PA that gets selected as the REP, and both local and
global fitness values when generating offspring. We extend the previous CCE
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algorithm by utilising a non-dominated sorting mechanism as presented in Al-425

gorithm 4 for the selection process to rank the list of PAs and the REP of a
particular sub-population. Both local and global fitness values are calculated for
each PA during the evaluation process. The REP update is done as described
in the previous Algorithm 3, but based on the local fitness measure. Parent
selection is improved with the given non-dominated sorting algorithm instead430

of simply choosing the REP. Figure 6 illustrates this modification under the
reproduction component.

Algorithm 4 Sorting of PAs and REP for a Sub Population

Input: L: List of PAs + REP
Output: S ∪D: Sorted list of PAs + REP
1: procedure NonDominatedSort(L)
2: O ← Sort(L)
3: S,D ← null
4: Add(S, first element of O)
5: Remove(O, first element of O)
6: return RecursiveSort(O)

7: procedure RecursiveSort(O)
8: for i ∈ O do
9: for j ∈ S do

10: if i ≺ j then
11: Remove(O, i)
12: Add(D, i)

13: if j ≺ i then
14: Remove(S, j)
15: if S is empty then
16: Add(S, first element of D)

17: if !(i ≺ j) for all j ∈ S then
18: S ← S ∪ i
19: if S is not updated then
20: return S ∪D in order
21: else
22: return RecursiveSort(D)

As described in Algorithm 4, all PAs and the REP of a sub-population are
ranked based on local and global fitness. The algorithm performs a Pareto
ranking [43] such that the best rank will be assigned to the Pareto optimal435

solutions where none of the two objectives are dominated by others. The ranking
priority decreases as the solutions get further away from the most efficient ones.
The PA or the REP ranked first will be considered for the new offspring. If
the new offspring is invalid, mutation will be recurrently performed until a valid
offspring is generated. After a certain number of trials, if a valid offspring cannot440

be generated, the next PA/REP from the ranked list (instead of a random PA
as of the previous CCE approach) is selected to replace the genome.
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In contrast to multi-objective optimisation that uses similar Pareto ranking
procedures, the two objectives here are partially complementary to each other
as the local fitness contributes in calculating the global fitness. Furthermore,445

the goal here is not to find a representative set of Pareto optimal solutions,
rather to rank all solutions based on both objectives, such that their rank can
be utilised in identifying the best PA/REP for offspring generation.

4. Experimental Setup

To study the evolutionary approaches presented, we employ an agent sys-450

tem where the behaviours of bird like autonomous virtual agents (referred to
as boids herein) are evolved to achieve a specified task. The boids model was
first introduced by Reynolds in [44] where he simulated the aggregated flock-
ing behaviour of a homogeneous group of birds by handcrafting 3 steering be-
haviours: alignment, cohesion and avoidance. We define these behaviours under455

micro behaviours, which are behaviours that cannot be further decomposed into
simpler behaviours. The aggregated motion, flocking, is defined as a macro be-
haviour, a behaviour that can only be achieved with an aggregation of several
micro behaviours. Our evaluations particularly concentrate on replacing the
handcrafting approach adopted by Reynolds with the proposed automated ap-460

proaches to evolve these 4 behaviours (alignment, cohesion, avoidance, flocking)
in a heterogeneous context with minimal human intervention in the rule design
process.

A hybrid architecture is utilised in modelling the boids giving them both
deliberative (driven by a common goal) and reactive (interact with neighbours465

and act based on dynamic changes) properties. The perception of boids is based
solely on vision as they sense the neighbourhood based on their vision range,
which is also evolved as a part of their behaviour rule.

4.1. Problem Definition

Given that,470

µ - number of boids
υ - number of phantom agents
ζ - number of rules represented by a single genome
κ - population size

The simulation model consists of a set B of boids (b),475

B = {b1, b2, . . . .., bµ} (3)

For TL, the learning population PTL consists of k individuals each defining
a separate heterogeneous boid set Bi each represented by a single genome GTLi

,

PTL = {GTL1, GTL2, .., GTLκ} (4)
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For CCE approaches, the population PCE consists of µ individuals each
representing a sub population for a single boid in the boid set B which is defined
by a single genome GCEi

,480

PCE = {GCE1, GCE2, .., GCEκ : κ = µ} (5)

A genome GTLi
in TL approach represents rules for all agents (a) in a single

set of agents,
GTLi

= {a1, a2, . . . .., aζ : ζ = µ, ai =̂ bi} (6)

A sub population of phantom agents (pa) corresponding to an agent is rep-
resented by a genome GCEi

in CCE approaches,

GCEi
= {pa1

, pa2
, . . . .., paζ : ζ = υ,GCEi

=̂ bi} (7)

Experiments are conducted to evolve the 4 behaviours; alignment: steering485

in the direction of average heading of neighbours; cohesion: moving closer to
neighbours and navigating as a group; avoidance: avoiding collisions among
agents by maintaining a distance from neighbours; and flocking: their unified
motion as observed in a natural flock.

Quantitative measures are used to evaluate the global fitness of the be-490

haviours as illustrated in Algorithm 5. Alignment is quantified using the order
measure which calculates the absolute average of the normalised velocities of
all boids [45]. The average distance value of the separation between boids is
used to measure cohesion. The avoidance measure from [46] applies the average
separation distance (db) among boids in the inverse logistic function with the495

standard parameters δ > 0, 0 < γ < 1, ψ > 0. The function is modified with
parameter values (δ = 100, γ = 0.99, ψ =1000) determined experimentally to
suit our model. A penalise measure which sets db to ψ, if it is less than or
equal to 500 units is used to encourage boids to avoid collisions. For flock-
ing behaviour, a combination of the above 3 measures with equal weights for500

each component is utilised as the fitness measure. All 4 fitness evaluators are
modified as minimising functions ranging from values 0-1.

For the local fitness measures of a boid associated with the extended CCE ap-
proach, functions are slightly modified to calculate the individual contributions.
The alignment measure calculates the difference in velocity from a particular505

boid to the averaged normalised velocity of group (function in lines 17-18 of
Algorithm 5); the cohesion measure calculates the separation distance of the
particular boid from the team (function in line 4); and the avoidance measure
(function in lines 10-13) calculates the avoidance value of the boid from the
team. The flocking measure uses a combination of the said 3 measures.510

Furthermore, we emphasise that designing of these fitness functions, as well
as selection of the atomic components from which the rule structures are evolved
still involve human intervention. It is not within the scope of this paper to
completely eliminate human bias by addressing all these aspects, but to limit
it as much as possible by concentrating our focus only on the rule structure515

designing process. Extensive research is required in future to address the other
two aspects to completely eliminate bias.
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Algorithm 5 Fitness Functions for the Behavioural Tasks

Input: B:List of boids
µ:Number of boids

Output: FCo: Fitness value for cohesion
FAv: Fitness value for avoidance
FAl: Fitness value for alignment
FFl: Fitness value for flocking

1: procedure FitnessCohesion(B,µ)
2: FCo ← 0
3: for b ∈ B do
4: FCo ← 1

η−1

∑η
j=1 distance(db − dj) : j ̸= b

5: FCo ← Average(FCo, µ)
6: return FCo

7: procedure FitnessAvoidance(B,µ)
8: FAv ← 0
9: for b ∈ B do

10: db ← 1
η−1

∑η
j=1 distance(db − dj) : j ̸= b

11: if db ≤ 500 then
12: db ← ψ

13: FAv ← −1 + 1
1+exp−δ(db−γψ)/ψ

14: FAv ← Average(FAv, µ)
15: return FAv

16: procedure FitnessAlignment(B,µ)
17: FAl ← −1∥

∑η
i=1 vb∥

18: FAl ← Average(FAl, µ)
19: return FAl

20: procedure FitnessFlocking(FCo, FAv, FAl)
21: FFl ← (FCo + FAv + FAl)/3
22: return FFl

4.2. Evolutionary Attributes

Each genome consists of 100 codons of 8 bits. To minimise invalid genomes
and allow sufficient complexity for the rules, an experimentally determined max-520

imum wrapping value of 50 is introduced. Therefore, after 50 wraps if it is
not mapped to an expression of all terminals, codon set is made invalid. The
attributes of the evolutionary set up and the simulation environment for all ex-
periments are as given in Table 1. The attributes of the genetic operations were
fixed after preliminary experiments1.525

4.3. Comparison Models

To further investigate the performance of our model, we conduct two com-
parison analyses. First we compare our GE model in homogeneous versus het-
erogeneous agent contexts. Second we utilise a Particle Swarm Optimisation
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Table 1: Evolutionary Attributes

Attribute TL CCE / Extended CCE

Individual
Individual Size 100 codons of 8 bits 100 codons of 8 bits
Maximum Wrappings 50 50

Evolutionary Algorithm
Population Size 30 30( = boids)
Evolutionary Strategy SSR Coevolution
Parent Selection Tournament (size:5) Tournament (size:5)
Mutation Probability 0.5 1.0
Crossover Yes No
Maximum Generations 1000 1000
Evolutionary Runs 15 15
No. of Phantom Agents N/A 5
No. of Rules in a Genome 30( = boids) 5( = phantom agents)

Simulation Environment
No. of Boids 30 30
World Size 850 x 850 units 850 x 850 units
World Nature Wrap Around Wrap Around
Agent Speed 3 units per tick 3 units per tick

(PSO) model and a behaviour tree-based Genetic Programming (GP) model to530

compare it against state-of-the-art approaches.
PSO [47] is a population based heuristic search technique adopted in opti-

misation problems. However, as discussed in Section 3.2, it cannot incorporate
rule structures, as its goal is to optimise an n dimensional vector based on an op-
timisation formulation. Hence, in the context of MASs, PSO is commonly used535

for optimising parameters and coefficients associated with agent rules. For the
work of this paper, we used the standard boid rules [44] proposed by Reynolds
described earlier in this section as the steering vectors (which are the most ac-
cepted and state-of-the-art handcrafted boid rules used in the domain) and used
a weighted combination of them to derive the movement vector as in Equation540

8:

V⃗ = ϖ1c⃗o+ϖ2a⃗l +ϖ3a⃗v (8)

The coefficients ϖ1, ϖ2 and ϖ3 determine the influence of each steering
behaviour rule and PSO is used to optimise them. We adopt the implementation
in [48] for our analysis. We place 30 particles (= population size of GE model) in
the search space to evaluate the fitness functions in Algorithm 5. Each particle545

iteratively determines its movement in space based on its local best position and
the global best position of all particles, eventually converging towards a position
(a coefficient value in our case) with a better fitness value. The velocity v⃗t+1
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and position s⃗t+1 of the particle at the next iteration are modelled as given in
Equations 9 and 10:550

v⃗t+1 = ωv⃗t + C1R1(p⃗best − s⃗t) + C2R2(g⃗best − s⃗t) (9)

s⃗t+1 = s⃗t + v⃗t+1 (10)

where C1 = 2, C2 = 2 are fixed learning factors. p⃗best and g⃗best are the personal
best position of a particle and the global best of any particle, respectively. The
inertia weight ω is calculated with Equation 11 using the values ωstart = 0.4,
ωend = 0.9 and itertotal = 100 adopted from the implementation of Alaliyat et555

al. [48]:

ω = ωstart −
ωstart − ωend

itertotal
itert (11)

In contrast to PSO, GP is capable of incorporating rule structures within
the evolutionary process. To facilitate a fair comparison, the same components
used for the rule space of the proposed GE model are used for the function
and terminal sets of the GP model. As GP is limited by closure property [49]560

which requires every function to be defined for any combination of arguments
it may encounter, all functions were modified to accept arguments consisting of
any combination of functions and terminals from the set of primitives. The GP
algorithm is as given in Algorithm 6, where the genetic operations are performed
directly on the selected parent rules based on the fitness values determined by565

fitness functions in Algorithm 5.

Algorithm 6 Genetic Programming

Input: F : Set of primitive functions
T : Set of terminals
Ω : Maximum generations

Output: Ib : Best individual program
1: procedure GeneticProgramming(F, T,Ω)
2: pop← InitialisePopulation(F, T )
3: ω ← 0
4: while ω ̸= Ω do
5: for popi ∈ pop do
6: EvaluateFitness(popi)

7: parents← ParentSelection(pop)
8: children← Crossover(pop)
9: children←Mutate(children)

10: pop← UpdateWith(children)
11: Ib ← GetMostFitIndiv(pop)
12: ω ++

13: return Ib
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5. Results

5.1. Evolutionary Results

We first analyse the evolutionary results of the proposed 3 algorithms: TL,
CCE and extended CCE.570

Figures 8 and 9 depict the evolutionary results through 1000 generations for
each of the 4 behaviours. The shaded regions depict the standard deviation of
the results across the number of runs. Statistical evaluations are conducted using
non-parametric Mann-Whitney U test for comparisons involving 2 methods and
Kruskal-Wallis H test for comparisons involving 3 methods, as the sample sizes575

are small and not normally distributed. The statistical significance level is
specified as p = 0.05 and the p values obtained for each comparison are presented
in Table 2. The descriptive analysis with respect to the 3 algorithms is presented
in Table 3 which is evaluated in terms of the variability of the best solutions
achieved after 1000 generations for each of the four beahaviours across 15 runs580

each.

(a) Alignment (b) Avoidance

(c) Cohesion (d) Flocking

Figure 8: Average fitness progression of the population through 1000 generations for the 3
micro behaviours alignment, avoidance, cohesion and the macro behaviour, flocking based on
the 3 proposed methods. The experimental results are averaged across 15 runs and the shaded
areas depict the standard deviation.
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From the results it is evident that all 3 methods are able to consistently
minimise fitness across all 4 behaviours. While the extended CCE approach
achieves best performance with avoidance and cohesion, both TL and extended
CCE approaches indicate statistically similar performance for alignment and585

flocking. The statistical results also demonstrate that the extended CCE ap-
proach performs better than traditional CCE (p <0.001) in all cases, implying
that the modifications applied have significantly improved the performance. In
examining the standard deviation of the best solutions for evolution of each
behaviour, it is evident that all three approaches are capable of generating con-590

sistent solutions as they maintain a low standard deviation (< 0.05) across all
four problems tested. The extended CCE approach maintains the lowest stan-
dard deviation of the 3 algorithms. CCE approach comes next, however the
other statistics proved that the solutions are not near-optimal. Hence, it can
only be concluded that CCE generates consistent solutions which are not sat-595

isfactory. TL has the lowest robustness in comparison to the other two, but
still with a low standard deviation of < 0.036 for all problems giving both sat-

(a) Alignment (b) Avoidance

(c) Cohesion (d) Flocking

Figure 9: Fitness progression of the best solution through 1000 generations for the 3 micro
behaviours alignment, avoidance, cohesion and the macro behaviour, flocking based on the
3 proposed methods. The experimental results are averaged across 15 runs and the shaded
areas depict the standard deviation.
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isfactory and consistent results. In conclusion, both the TL and the extended
CCE approaches exhibit a robust performance within and across problems with
minimal variability among solutions and satisfactory fitness values.600

Table 2: Statistical Results Summary for Fitness Measures

Behaviour Kruskal-Wallis Mann-Whitney
H-test (p-value) U-test (p-value)

Alignment 6.3150e-07
TL - CCE 7.4772e-06
TL - Extended CCE 0.5338
CCE - Extended CCE 3.3918e-06

Avoidance 4.6659e-07
TL - CCE 0.3013
TL - Extended CCE 2.9582e-06
CCE - Extended CCE 7.2818e-06

Cohesion 3.4798e-08
TL - CCE 5.7598e-04
TL - Extended CCE 5.0527e-06
CCE - Extended CCE 3.3918e-06

Flocking 3.7741e-06
TL - CCE 2.7983e-05
TL - Extended CCE 0.3401
CCE - Extended CCE 1.6053e-05

Table 3: Descriptive Analsyis of the Algorithms

Algorithm Behaviour Minimum Maximum Mean Std Dev

TL Alignment 0.0004 0.0338 0.0093 0.0095
Avoidance 0.0244 0.1218 0.0601 0.0354
Cohesion 0.0890 0.1793 0.1390 0.0224
Flocking 0.1697 0.2648 0.2168 0.0302

CCE Alignment 0.0234 0.0763 0.0461 0.0139
Avoidance 6.6613E-16 0.0731 0.0422 0.0208
Cohesion 0.1591 0.2054 0.1722 0.0120
Flocking 0.2518 0.2902 0.2702 0.0115

Extended CCE Alignment 0.0026 0.0108 0.0054 0.0021
Avoidance 0.0000 4.774E-15 7.1794E-16 1.2677E-15
Cohesion 0.0665 0.0970 0.0829 0.0067
Flocking 0.1934 0.2611 0.2291 0.0185
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To further compare the 3 approaches, we analyse the percentage improve-
ment of the best solution across 1000 generations for all 4 behaviours, and the
results are depicted in Figure 10. The extended CCE approach improves the
solution space faster than the other 2 methods in all 4 behaviours and finds the
best solution earlier than them during the evolution process. The traditional605

CCE approach has the poorest performance in this aspect as well, with a slow
progression of the best solution.

Overall, the results suggest that the traditional CCE method is prone to
premature convergence while the modifications introduced with the extended
CCE method successfully overcome this limitation. TL and extended CCE610

methods perform better than the traditional CCE approach, however compar-
ison between the 2 methods suggest that extended CCE finds better solutions
faster than TL. Hence, the extended CCE approach is evidently more successful
considering both performance and degree of improvement.
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Figure 10: Improvement of fitness as a percentage over 1000 generations using the 3 mech-
anisms for the 4 behaviours alignment, avoidance, cohesion and flocking. Experiments were
repeated for 15 runs for each behaviour.
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5.2. Comparison against other Models615

Figure 11 compares the fitness distribution of the best solutions obtained
with the heterogeneous models against those of the homogeneous model.
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Figure 11: Comparison of performance of the best solutions averaged across 15 runs of each
method against the best solutions of the homogeneous model presented in [11]. The bottom
edge, central line and top edge indicate the 25th percentile, median result, and the 75th

percentile, respectively. The extensions of whiskers run up to the extreme results which are
not deemed outliers. The same evolutionary attributes including crossover and mutation rates,
the number of generations, and number of wraps used in the heterogeneous TL model were
used for the homogeneous model used for comparison.

The homogeneous model surpasses the heterogeneous methods generating
better near-optimal solutions for all 3 micro behaviours alignment, avoidance
and cohesion. The traditional CCE model has the worst performance since it620

is prone to converge at sub-optimal solutions. Extended CCE with heteroge-
neous agents follows the homogeneous model closely in overall with the second
best performance. This result is expected, as evolving multiple rules separately
for individual agents such that all agents collaborate in achieving one task is
presumably harder than evolving a single rule applicable for every agent in625

a homogeneous system. Nevertheless, with the macro behaviour flocking, the
performance of heterogeneous methods using TL (p = 0.0037 <0.05) as well as
extended CCE (p = 0.0128 <0.05) significantly exceed that of the homogeneous
model. This observation is significant since it provides evidence to support
future exploration of grammar-based heterogeneous agent systems as a poten-630

tial alternative in designing solutions for more complex tasks for which human
intuition could be deficient.

To further investigate the performance of the proposed GE-based model in
comparison to state-of-the art model that is frequently used in evolving rule
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structures, Figure 12 illustrates the comparison results of GE against PSO and635

GP in a homogeneous context. We compared the results of the 3 methods in a
homogeneous context after 100 generations for all 4 behaviours.

The proposed GE model has a statistically significant improvement in fitness
(p <0.05) across all 4 behaviours compared to the GP model. Further, the
performance of the GE model exceeds that of the PSO model with alignment,640

avoidance and flocking (p <0.05) and is comparable to that of the PSO model
with cohesion (p = 0.4716 >0.05). This shows that in comparison, our proposed
model is capable of surpassing both GP and PSO approaches with the tested
behaviours. As PSO can only be used to optimise the parameters rather than the
rule structures, the difficulty of manually designing appropriate behaviour rule645

structures to address a problem increases with the complexity of the problem.
It limits the potential of the agents to the depth and breadth of intuition of
the designer. On the other hand, although GP can evolve rule structures, it
cannot validate the syntax of the evolved rule structures leading to more invalid
rules. Our model, with the use of a grammatical syntax and a CFG, is evidently650

more successful than these methods reducing human intervention in rule design
process and giving more flexibility to the algorithm to evolve syntactically valid
high performing agent rules.
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Figure 12: Comparison of performance of the best solutions averaged across 15 runs of GE,
GP and PSO in a homogeneous context. The bottom edge, central line and top edge indicate
the 25th percentile, median result, and the 75th percentile, respectively. The extensions of
whiskers run up to the extreme results which are not deemed outliers. Crossover and mutation
rates used in the GP model are the same as those used with GE and the population size and
number of generations are the same across GE, GP and PSO.
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5.3. Computational Complexity

Here we conduct an empirical analysis on the computational complexity655

across space and time, of the 3 algorithms for increasing agent group sizes.
Figure 13 illustrates the execution time and memory usage for the 3 algorithms
for groups of 10, 20, 30 and 50 agents evolved for flocking behaviour.
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Figure 13: Comparison of execution times and memory usage of the 3 methods across 5 runs
for groups of 10, 20, 30 and 50 agents for flocking over 1000 generations. The bottom edge,
central line and top edge indicate the 25th percentile, median result, and the 75th percentile,
respectively. The extensions of whiskers run up to the extreme results which are not deemed
outliers.

The results show that the TL method consumes less time compared to the
other 2 methods and the complexity does not scale as the size of the agent660

group increases. Both CCE methods have significantly longer execution times
and scale exponentially as the number of agents increase. On the other hand,
the memory consumption of TL method is relatively higher than the two CCE
approaches. However, the exponential increase in execution times of the CCE
approaches outweigh the relatively less significant requirement of memory by665

TL as its execution time remains the same for all group sizes. As such, it
can be concluded that the TL approach is the better alternative in terms of
computational complexity out of the 3 approaches.

5.4. Performance Scalability with Number of Agents

To analyse the scalability of the 3 methods with different agent group sizes,670

we compare the performance for flocking behaviour across groups of 10, 20,
30 and 50 agents. Figure 14 illustrates the fitness distribution of the best in-
dividuals across these agent groups. The results suggest that the 3 methods

29



are consistent in their performance across agent groups of increasing size. All
3 methods perform equally well with a group of 10 agents, but as the group675

size increases the TL and extended CCE approach surpass the performance of
the traditional CCE approach. The TL and extended CCE methods show a
statistically similar performance (p >0.05).
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Figure 14: Comparison of performance of the best individuals across 5 runs for flocking
behaviour of each method for groups of 10, 20, 30 and 50 agents. The bottom edge, central line
and top edge indicate the 25th percentile, median result, and the 75th percentile, respectively.
The extensions of whiskers run up to the extreme results which are not deemed outliers.

5.5. Performance Scalability with PAs: Extended CCE

To further explore the extended CCE approach, we assess the scalability680

of the approach based on the number of PAs. The evaluations are conducted
considering the flocking behaviour. While keeping the rest of the parameters and
attributes the same, we vary the number of PAs used for each sub-population
of the evolutionary process.

Figure 15 illustrates a comparison of the fitness distribution of the best so-685

lutions for every run using different numbers of PAs. The statistical results
(Pearson’s r = -0.7100, p = 0.2900 for the number of PAs versus average of
the best fitness values) suggest diminishing returns, as the fitness improvement
with respect to the number of PAs becomes increasingly less significant. The
comparison of the percentage fitness improvement across 1000 generations sug-690

gests that a higher number of PAs can learn the solution faster than with a lesser
number. The results illustrate that the improvement difference is not significant
among 2,3 and 5 phantom agents, but with 10, the evolutionary process consis-
tently improves faster at every stage of the 1000 generations. Furthermore, all
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Figure 15: Scalability with the number of PAs illustrated using flocking behaviour. Left:
Comparison of fitness of the best solutions averaged across 15 experiments for varying number
of PAs. The bottom edge, central line and top edge indicate the 25th percentile, median
result, and the 75th percentile, respectively. The extensions of whiskers run up to the extreme
results which are not deemed outliers. Right: Improvement of fitness as a percentage over 1000
generations averaged across 15 runs for varying number of PAs. The embedded plot compares
the fitness improvement for flocking behaviour of TL approach against that of extended CCE
approach with 10 PAs.

4 versions of PAs outperform the TL approach in terms of percentage fitness695

improvement significantly (p <0.001).
In conclusion, it can be said that performance is proportional to the number

of PAs, however it is less evident as the number increases. Still, better results
can be expected within a fewer number of generations as the number of PAs
increase. Increasing the number of PAs means an increase in the computational700

cost due to the addition of more branches in the solution space to explore.
Therefore, identifying a balance between expected performance and expendable
resources is required.

5.6. Rule Complexity

Figure 16 demonstrates the complexity measured in terms of cyclomatic705

complexity [50] which is a common quantitative metric used to determine the
number of independent paths through a rule or programme, and the number of
individual rules in each aggregated rule for all 4 behaviours.

The rules evolved in the heterogeneous context with all 3 methods are more
complex than those evolved in the homogeneous context, despite solving the710

same tasks and being treated with identical evolutionary attributes. Rules
evolved in the homogeneous environment maintain an average cyclomatic com-
plexity less than 100, and the number of rules in each aggregation average to
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Figure 16: Complexity analysis of the evolved rules with the 3 heterogeneous models and
the homogeneous model across 15 runs for the 4 behaviours alignment (AL), avoidance (AV),
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less than 2. All 3 methods in the heterogeneous environment have higher cyclo-
matic complexities around 100-200 and number of rules within 2-6 in general.715

Interestingly, although extended CCE overcomes premature convergence issues
associated with traditional CCE with better solutions, it does not reflect a pro-
portional increase in complexity of the evolved rules.

Figure 17 compares the variation of cyclomatic complexity in relation to
the fitness for all evolutionary runs over 1000 generations. Each graph should720

be interpreted from right to left starting from the first generations with higher
fitness values (as we experiment on a minimising function) represented in blue,
moving left along the x axis to lower fitness values in the later generations
shifting the colour to yellow in the generations close to 1000. All 15 runs are
plotted in each graph. The comparison results for number of rules in relation725

to fitness also show a similar pattern as shown in Figure 18.
There is not enough evidence to identify a correlation between complexity

and fitness of rules. However, a few interesting observations provide insights
on the strategies used by the methods to explore the search space. The hori-
zontal line formations observed during the last generations of the homogeneous730

model (Figure 17d) reveal that it explores a broader range of rules with diverse
complexity levels at the beginning of the evolution process, and as it converges
to a solution, the population starts exploring only slight variations from the
best solutions. TL (Figure 17a) is quite constraint in its strategy and limits
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Figure 17: Variation of cyclomatic complexity of rule structures in relation to fitness for 15
evolutionary runs with the TL, CCE, extended CCE methods against the homogeneous model
over 1000 generations. The values are averaged across all agents of a group of 30 for each
generation. The individual values are colour coded based on the generation.

its explorations to a closer neighbourhood of complexity. The horizontal paths735

observed from the beginning to end of each run provide evidence for this. The
CCE methods (Figures 17b, 17c), are more relaxed in their strategy and ex-
plore a wide range of solutions. The vertical line formations during the last
generations show that although the REPs converge to a solution and maintain
a steady fitness (hence the x values remain the same forming vertical lines), the740

PAs still keep searching over a broader spectrum (y values move across a wider
range) of solution with diverse complexities.

Similarly, a correlation cannot be observed between the number of rules and
the fitness as shown in Figure 18. However, the homogeneous model explores
a broader range of rules at the beginning of the evolution process, and as it745

converges to a solution, settles for aggregated rules with around 2 individual
rules in general, but go up to 8 rules in some cases. TL, similar to cyclomatic
complexity variations, remain restricted in its strategy and from the beginning
of the evolutionary process, limits its explorations to a closer neighbourhood.
In both the CCE methods, the phantom agents explore varying number of rules750

from 2 - 10 throughout the evolutionary process even after the representatives
have converged to a solution maintaining a steady fitness.
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Figure 18: Variation of number of rules in relation to the fitness of the rule structures for
15 evolutionary runs with the TL, CCE, extended CCE methods against the homogeneous
model over 1000 generations. The values are averaged across all agents of a group of 30 for
each generation. The individual values are colour coded based on the generation.

6. Discussion

This paper described a novel grammar-based cooperative learning approach
to evolve heterogeneous multi-agent behaviours. The method enables autonomous755

emergence of heterogeneity within the agent system with minimised human in-
tervention. A CFG ensures the generation of valid rules based on a syntax while
enabling heterogeneity.

GE has not been a popular choice in conjunction with coevolution in het-
erogeneous contexts due to the limitations associated with representation of760

individuals. The encoding mechanism proposed here for the genomes over-
comes this issue as it provides a way to represent multiple individuals in a
single genome. It can be conveniently translated into sub-populations of in-
dividuals being separately evolved in a CCE approach as well. The proposed
extended CCE approach demonstrated to be the most successful, considering765

the performance and fitness improvement, in evolving heterogeneous multi-agent
behaviours. Further, we presented a TL approach to represent individuals and
evolve heterogeneous behaviours with successful results in contrast to the ex-
isting approaches where TL has mostly been studied in homogeneous contexts
[51, 52].770

Based on the experimental evaluations, the following deductions can be made
with regard to the presented approaches;

1. Grammar-based evolution with both homogeneous and heterogeneous agent
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systems work successfully in autonomous generation of complex behavioural
rules without the need of manual hand crafting of rules.775

2. Our TL mechanism is successful in evolving complex heterogeneous be-
haviours. However, it performs relatively poorly with micro behaviours
compared to a homogeneous model. Nevertheless, TL is a computation-
ally less expensive mechanism as the execution time does not grow with
the number of agents in the system.780

3. Our extended CCE mechanism can overcome the limitations of the tradi-
tional CCE method and demonstrates the best performance out of the 3
mechanisms for heterogeneous MASs and performs nearly optimally as a
homogeneous model for micro behaviours. However, it is computationally
expensive in comparison to TL. The cost increases proportional to the785

number of agents.

4. The comparison of homogeneous and heterogeneous agent systems results
in further evidence to support the claims in literature describing the lim-
itations of homogeneous agent systems with regard to generation of com-
plex behaviours [53, 54], from a GE view point. Our results demonstrate790

that, while the homogeneous agent system is more successful in micro-
behaviours which cannot be further decomposed into simpler rules, the
heterogeneous approach is more advantageous with macro-behaviours as
the complexity of the requirements increase. Both the TL and extended
CCE approaches significantly outperform homogeneous results with macro795

behaviours.

5. Proposed GE model shows potential in overcoming the limitations of PSO
and GP mechanics which are widely adopted in MAS designing by sur-
passing them in performance as tested within a homogenous context.

6. The rule complexity analysis show that the rule structures evolved within800

a heterogeneous context are more complex than those within a homoge-
neous context addressing the same tasks. Furthermore, it shows that the
TL method is more restrictive in its strategy of search space exploration
while the CCE methods explore a wider spectrum of solutions during the
evolutionary process.805

The presented evaluations explored the widely tested domain of boids and
their commonly tested collective behaviours: alignment, avoidance, cohesion,
and flocking. The promising results further support the applicability of the pro-
posed GE-based cooperative evolutionary architectures in real world domains.
There exists a diverse array of real-world requirements for MASs where hetero-810

geneity can be useful in adopting to dynamic conditions. For example, these
results can be easily translated into the behaviour rules of robot/drone systems
working on surveillance and exploration. It is to be expected that an agent sys-
tem performing a surveillance task may face issues such as certain agents losing
sensing abilities due to hardware failures, unforeseen damages to agents causing815
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to lose team members, and dynamic environmental changes that require certain
agents to act flexibly and adopt to the environments. The heterogeneous context
within which the agents were tested in our simulations ensure such difficulties
can be overcome by the agent team due to their ability to adjust the behaviours
dynamically to suit the conditions of the entire team. Robot teams that are820

required to navigate in terrains with obstacles, for example, worker robots that
have to cooperatively stock shelves in large warehouses by navigating through
the space avoiding collisions with each other and shelves, is another example
where these architectures could be used. The navigation paths of the agents
could be evolved such that each agent is optimised to identify the best path to825

reach the shelves in a short time while avoiding collisions as the environment
gets updated based on the positions of other agents. Given the recent advance-
ments in the graphics and visualisations related to games and other animations
which demand high fidelity visualisations and simulations, these architectures
can also be used in designing simulations that closely represent the behaviour830

of real-world agent groups. As the agents can be evolved to cooperatively act in
the environment with appropriate heterogeneous behaviour rules, the fidelity of
the simulations can be increased. Further, as the grammar and the syntax can
be modified to suit any real-world domain and include the respective actions,
the proposed architectures can be directly extended towards any real-world ap-835

plication domain that can benefit from heterogeneous multi-agent interactions
given that a fitness criterion can be defined to evaluate the behaviour rules being
evolved.

7. Conclusion and Future Work

Our GE mechanism is a promising new approach for MASs adopted in real840

world domains with complex task requirements where human intuition becomes
insufficient in determining the separate individual behaviours that can result in
a desired emergent behaviour. The proposed approach models the behavioural
system of all agents by generating individual rules from scratch while using het-
erogeneity to ensure every agent is optimised to achieve a collective task. The845

significance of the approach lies in its ability to autonomously emerge hetero-
geneity within the system targeting a common goal.

We identify 4 major directions that can be pursued in future work. As TL
can overcome limitations associated with cost in heterogeneous MASs, further
analysis is required to understand how the performance could be improved,850

enabling generation of high fidelity behaviours. Next, the extended CCE ap-
proach can be explored to minimise the associated computational cost. As the
complexity is associated with the number of agents and PAs in the system,
these parameters should be further studied to identify a balance between cost
and performance. Third, the proposed model can be applied in multifaceted855

domains where the behaviours require completing several sub-tasks to achieve
the final goal. For example, consider an agent system performing a surveil-
lance task where the agents have to engage in multiple actions such as avoiding
threats, coordinating navigation and locating a target. The current results with
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the grammar-based evolutionary model demonstrates clear potential for achiev-860

ing behaviours corresponding to such complex requirements which need further
evaluations. Finally, although the proposed model is markedly less biased com-
pared to the approaches that do not support rule structure evolution, there does
currently exist bias in selecting the atomic components of the rule space and
construction of fitness functions. Further investigations are required to com-865

pletely eliminate bias. For example, adding another evolutionary layer to the
GE model to automatically generate the fitness functions from another set of
atomic components is an alternative to manual design of fitness functions.
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