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A B S T R A C T

The concordance probability is an extension of the popular area under the curve (AUC) which is commonly
used to measure the accuracy of a predictive model. It can be extended to the thresholded and weighted
concordance probability which are more appropriate for some applications. The naive way of estimating this
measure requires a quadratic computation time, which is prohibitive for large data sets. We propose a new
algorithm that computes the weighted thresholded concordance probability in linearithmic time, which is
proven and empirically confirmed. This unlocks the possibility of calculating the thresholded concordance
probability in a big data world, and makes it possible to base the fitness function of a machine learning
algorithm on the concordance probability. These applications are successfully illustrated by two real examples
from the insurance sector. The first one focuses on feature selection based on the concordance probability
using a binary particle swarm optimization. In the second application, we use a genetic algorithm to optimize
a loss function based on the concordance probability. Since both of these applications require evaluating the
concordance probability a very high number of times, a huge decrease in computation time is obtained using
our fast algorithm. Moreover, it is shown that the neural network optimized for the concordance probability
with the genetic algorithm outperforms the traditional benchmark methodology, i.e. a classical neural network
optimized for the deviance. The applicability of our fast algorithm extends beyond these illustrations and
unlocks various new uses of the thresholded and weighted concordance probability.
1. Introduction

The concordance probability, also known as the C-index, is a popu-
lar measure for the discriminatory ability of a model. More specifically,
it measures the probability that the order between a comparable pair of
observations is kept, when comparing their predictions obtained by the
model. In case we have a binary response variable 𝑌 , the concordance
probability is equivalent to the probability that a random observation
with response 𝑌 = 0 has a smaller prediction than a random observation
with response 𝑌 = 1 [1]. Hence, in this binary setting, the concordance
probability 𝐶 can be formulated as:

𝐶 = P
(

𝜋(𝑿𝑖) > 𝜋(𝑿𝑗 ) ∣ 𝑌𝑖 = 1, 𝑌𝑗 = 0
)

, (1)

where 𝑿𝑗 represents the explanatory variables corresponding with
observation 𝑗, such that its prediction 𝜋(𝑿𝑗 ) equals P(𝑌𝑗 = 1|𝑿𝒋). This
concordance probability is most commonly estimated by dividing the
number of concordant pairs 𝑁𝑐 by the number of comparable pairs 𝑁 :

∗ Corresponding author at: Department of Mathematics, UAntwerp - imec, Middelheimlaan 1, Antwerp, 2020, Belgium.
E-mail address: Tim.Verdonck@uantwerpen.be (T. Verdonck).

𝐶 =
𝑁𝑐
𝑁

=

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) > 𝜋(𝒙𝑗 ), 𝑦𝑖 = 1, 𝑦𝑗 = 0
)

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) ≠ 𝜋(𝒙𝑗 ), 𝑦𝑖 = 1, 𝑦𝑗 = 0
) , (2)

with 𝑛 the number of observations and 𝐼(⋅) the indicator function.
When the response variable is continuous, the concordance proba-

bility is easily extended as follows:

𝐶 = P
(

𝜋(𝑿𝑖) > 𝜋(𝑿𝑗 ) ∣ 𝑌𝑖 > 𝑌𝑗
)

, (3)

Here, 𝜋(𝑿𝑖) still corresponds to the prediction of 𝑌𝑖, e.g. in case of a lin-
ear model we have that 𝜋(𝑿𝑖) = 𝑋𝑖𝛽 with 𝛽 the model coefficients. An
equivalent definition for 𝐶 is the probability that a random comparable
pair of responses with their predicted values is a concordant pair. Here
we use the fact that two pairs

(

𝜋(𝑿𝑖), 𝑌𝑖
)

and
(

𝜋(𝑿𝑗 ), 𝑌𝑗
)

are concordant
when sgn(𝜋(𝑿𝑖) − 𝜋(𝑿𝑗 )) = sgn(𝑌𝑖 − 𝑌𝑗). It is clear that the closer the
concordance probability is to 1, the better discriminatory ability of the
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model. The natural estimator is

𝐶 =
𝑁𝑐
𝑁

=

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) > 𝜋(𝒙𝑗 ), 𝑦𝑖 > 𝑦𝑗
)

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) ≠ 𝜋(𝒙𝑗 ), 𝑦𝑖 > 𝑦𝑗
) , (4)

It is worth pointing out that ties in both the predictions and the re-
sponses are left out of the computation of the concordance probability.
When there are no ties for the predictions, the concordance probability
in the binary setting coincides with the well-known AUC. Note that the
absence of ties in the predictions is necessary, since the AUC treats them
as comparable pairs [2].

In this continuous setting, a thresholded concordance probability
𝐶(𝜈) can also be considered as introduced by Van Oirbeek et al. [3].
This measure does not consider nearly identical responses, by requiring
that the responses of comparable observations differ at least 𝜈 from
each other:

𝐶(𝜈) = P
(

𝜋(𝑿𝑖) > 𝜋(𝑿𝑗 ) ∣ 𝑌𝑖 − 𝑌𝑗 > 𝜈
)

. (5)

This thresholded concordance probability is very useful in the context
of severity models for insurance pricing as discussed by Ponnet et al.
[4]. Such a severity model is used to predict the cost of an average
claim. Hence, for evaluating such a severity model, we want to make
sure that it can distinguish large from small risks. Moreover, distin-
guishing nearly identical claim sizes has little practical importance in
this setting, which is taken into account by the thresholded concor-
dance probability when 𝜈 > 0. To estimate the concordance probability
in continuous settings, we can use the natural estimator given by

𝐶(𝜈) =
𝑁𝑐
𝑁

=

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) > 𝜋(𝒙𝑗 ), 𝑦𝑖 − 𝑦𝑗 > 𝜈
)

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) ≠ 𝜋(𝒙𝑗 ), 𝑦𝑖 − 𝑦𝑗 > 𝜈
) , (6)

Note that in this case, the number of concordant pairs 𝑁𝑐 and the
number of total pairs 𝑁 only consider those pairs (𝑖, 𝑗) for which
𝑦𝑖 − 𝑦𝑗 > 𝜈.

An extension of the thresholded concordance probability is ob-
tained when each response–prediction pair 𝑖 has a specific weight 𝑤𝑖.
These weights can namely be considered in the weighted thresholded
concordance probability, which is defined as follows:

𝐶𝑤(𝜈) =

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) > 𝜋(𝒙𝑗 ), 𝑦𝑖 − 𝑦𝑗 > 𝜈
)

𝑤𝑖𝑤𝑗

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝐼

(

𝜋(𝒙𝑖) ≠ 𝜋(𝒙𝑗 ), 𝑦𝑖 − 𝑦𝑗 > 𝜈
)

𝑤𝑖𝑤𝑗

. (7)

The most straightforward way of calculating the different concor-
dance probabilities of Eqs. (2), (4), (6) and (7), is by comparing all
𝑛(𝑛 − 1)∕2 pairs of observations, for example in a nested for-loop, and
keep count of the concordant, discordant, and tied pairs. While this is
easy to implement, it clearly comes with a computational complexity
of (𝑛2). This can become prohibitive for large data sets and when
the concordance probability needs to be computed many times, for
example when it is used in the fitness function of an evolutionary
algorithm. In the currently available R packages, the estimation of the
classical concordance probability is implemented in the naive way by
a nested for-loop [5–10]. In this paper we introduce an algorithm for
computing the weighted thresholded concordance probability with time
complexity (𝑛 log(𝑛)). We do this by adapting the well-known merge-
sort algorithm [11] for counting inversions in a vector. We take three
steps. First, we make sure that ties in predictions are adequately dealt
with. Second, we introduce an adjusted merge step of the algorithm to
include a threshold on the responses of comparable pairs to compute
the expression in Eq. (6). Finally, we compute the expression in Eq. (7)
by introducing a second adjustment to the merge step to appropriately
deal with weights.

A statistic related to the concordance probability is Kendall’s tau
[12]. For Kendall’s tau, the ‘‘naive’’ implementation also has a (𝑛2)
computational complexity. The cor.fk function of the pcaPP pack-
age [13] implements a faster algorithm which requires (𝑛 log(𝑛)) com-
2

putational cost. The algorithm used for that function is similar in spirit
to our algorithm in that it uses an adaptation of mergesort. However, it
differs from ours in a number of ways. First, it cannot deal with custom
weights. Second, it cannot deal with thresholds on the predictions.
Finally, it counts ties in a different way and cannot readily be used
to compute even the simplest version of the continuous concordance
probability in case of ties. Other packages having a fast implementation
of Kendall’s tau, such as the copula package [14], seem to rely on
the implementation of pcaPP. In summary, there seem to be no fast
implementations of comparable statistics allowing for the computation
of the weighted and thresholded concordance probability.

In Section 2, we discuss how the (weighted) thresholded concor-
dance probability can be computed in quasilinear time. The results of
this section are confirmed by a simulation study which is the topic
of Section 3. We apply the proposed algorithms on two real data
applications in Section 4. Finally, the conclusion is given in Section 5.

2. Computing the concordance probability

In this section, we describe algorithms to compute the concordance
probability in quasilinear time. We will start with the case of a binary
response variable. Then, we will treat the concordance probability
for a continuous response variable. Finally, we will show that the
extension to the weighted thresholded concordance probability can also
be incorporated into our algorithm.

2.1. Binary response

We have pointed out the equivalence between the popular AUC and
𝐶 in case of a binary response variable. The AUC is often approximated
based on the trapezium rule with (𝑛 log(𝑛)) computation time. For
a binary response variable, it can also be computed exactly using
the following procedure. First, the observations are ordered according
to the values of the corresponding predictions (in ascending order),
which takes (𝑛 log(𝑛)) time. Next, the crucial step is to see that every
bservation for which 𝑌 = 0 creates a number of concordant pairs,

which is equal to the number of one observations on its right. Similarly,
each observation for which 𝑌 = 1 creates a number of discordant pairs,
which is equal to the number of zero observations on its right. The
latter can be computed in (𝑛) time, such that we can conclude that
the exact calculation of the AUC can be done in (𝑛 log(𝑛)) time. From
here on, we call this the binary algorithm.

When there are ties however, the AUC and the C-index are no longer
equivalent, yet we would still like to compute the latter very quickly.
That is why several approximations for the concordance probability
were introduced by Van Oirbeek et al. [3], both for the binary and the
continuous setting. However, these are still approximations, and when
using the concordance probability to compare the discriminatory ability
of two models, one prefers the absence of a bias.

We now show that the exact procedure for calculating the AUC in
the binary setting, can be adjusted to appropriately deal with ties to
calculate 𝐶̂ exactly and quickly. We first compute the AUC in (𝑛 log(𝑛))
time. Then, we adjust the resulting number for potential ties in the
predictions as follows. We first count the number of unique ties in the
predictions, in (𝑛) time. Next, on each tie in the predictions together
with its corresponding response, the binary algorithm is applied again
to obtain the number of concordant and discordant pairs that contain
ties in the predictions. Proposition 1 below shows that this can once
again be done in (𝑛 log(𝑛)) time. Once these numbers are known,
the AUC can be corrected for these initially incorrect numbers of
concordant and discordant pairs to obtain the concordance probability
𝐶̂. Ties in the responses are not considered here, since this is not
relevant in the binary setting.

Proposition 1. Let 𝝅 =
(

𝜋(𝑥1),… , 𝜋(𝑥𝑛)
)

be a vector of predictions
and 𝑦 = (𝑦1,… , 𝑦𝑛) a vector of binary responses. We can compute the
concordance probability of Eq. (2) in (𝑛 log(𝑛)) time by adjusting the AUC

for the presence of ties.



Swarm and Evolutionary Computation 78 (2023) 101260J. Ponnet et al.

s
a
p

t
a
𝑐
a
i
f
p
c
T

c
i



2

i
a
c
s
(
f
r

i
c

c
a
e
b
A
s
t
a
𝑥
o

c
t
o
𝑦
𝑛
a
𝑙
d
𝑙

a
a
c

i
c


2

i

t
H
e
o
w
h
S
c
c
i

P
𝑦
o
o

P
a
a
n
t

s
m

Proof. We start of by calculating the AUC in (𝑛 log(𝑛)) time using the
orting procedure outlined above. This yields the number of concordant
nd discordant pairs but does not discard the pairs for which the
redictions are tied.

Suppose we have 𝑘 ties in the vector of 𝑛 predictions 𝝅, and each
ie 𝑗 appears 𝑛𝑗 times. Furthermore, we consider unique observations
s ties of multiplicity 1, such that 𝑛 =

∑𝑘
𝑗=1 𝑛𝑗 . Additionally, denote

𝑗 =
𝑛𝑗
𝑛 so that. ∑𝑘

𝑗=1 𝑐𝑗 = 1 and 𝑐𝑗 > 0 for all 𝑗 = 1,… , 𝑛. Consider now
tie 𝑗 in the predictions of the observations with indices 𝑖1, 𝑖2,… , 𝑖𝑛𝑗 ,

.e. 𝜋(𝑥𝑖1 ) = 𝜋(𝑥𝑖2 ) = ⋯ = 𝜋(𝑥𝑖𝑛𝑗 ). In order to correct the computed AUC
or this tie, we recompute the number of concordant and discordant
airs on these observations and subtract them from the total numbers
omputed on 𝝅. We repeat this procedure for all ties 𝑗 for which 𝑛𝑗 > 1.
his means that for each tie 𝑗, we have to perform an algorithm of
(𝑛𝑗 log(𝑛𝑗 )) time, such that the total computation time has a time
omplexity (

∑𝑘
𝑗=1 𝑛𝑗 log(𝑛𝑗 )). The total complexity to correct for all ties

s thus given by:
( 𝑘
∑

𝑗=1
𝑛𝑗 log(𝑛𝑗 )

)

= 

( 𝑘
∑

𝑗=1
𝑐𝑗𝑛 log(𝑐𝑗𝑛)

)

= 

( 𝑘
∑

𝑗=1
𝑐𝑗𝑛

(

log(𝑐𝑗 ) + log(𝑛)
)

)

≤ 

( 𝑘
∑

𝑗=1
𝑐𝑗𝑛 log(𝑛)

)

= 

(

𝑛 log(𝑛)
𝑘
∑

𝑗=1
𝑐𝑗

)

=  (𝑛 log(𝑛))

Hence, the overall time complexity remains (𝑛 log(𝑛)). □

.2. Continuous response

For a continuous response variable, we no longer have two groups
n the observations, which is why the AUC and the previously discussed
lgorithm for 𝐶̂ cannot be used. We propose a new algorithm to
alculate 𝐶̂ exactly and quickly in this setting. Once again, the first
tep consists of ordering the observations based on their predictions
from small to large). Next, the number of discordant pairs necessary
or the concordance probability, equals the number of inversions in the
esponses. An inversion in a vector 𝑎 is defined as a pair of elements
𝑎[𝑖] > 𝑎[𝑗] for which 𝑖 < 𝑗. Similarly, the number of concordant
pairs necessary for the concordance probability, equals the number
of non-inversions in the responses. A non-inversion in a vector 𝑎 is
defined as a pair of elements 𝑎[𝑖] < 𝑎[𝑗] for which 𝑖 < 𝑗. Counting the
number of (non)-inversions in an array, is something that can be done
in (𝑛 log(𝑛)), based on the mergesort algorithm [11,15,16].

Proposition 2. Let 𝝅 =
(

𝜋(𝑥1),… , 𝜋(𝑥𝑛)
)

be a vector of predictions and
𝑦 = (𝑦1,… , 𝑦𝑛) a vector of continuous responses. Using the merge procedure
of Algorithm 1, we can compute the concordance probability of Eq. (4) in
(𝑛 log(𝑛)) time.

Proof. The classical mergesort algorithm is a standard example of a
divide-and-conquer recurrence. The divide step divides the sequence to
be sorted in two subsequences of equal length. The conquer step then
uses mergesort on each of the two subsequences. Finally, the combine
step merges the sorted subsequences in a single sorted sequence. This
algorithm requires (𝑛 log(𝑛)) computation time as a result of the merge
step taking (𝑛) time. More precisely, assume w.l.o.g. that 𝑛 = 2𝑘. The
computation time 𝑇 (𝑛) of the classical mergesort algorithm is given by
the recurrence relation

𝑇 (𝑛) = 2𝑇
( 𝑛) + 𝑛
3

2

where the first term results from the splitting of the sample in 2 and
the latter from the merging step. More generally, we have that

𝑇 (𝑛) = 2𝑇
( 𝑛
2

)

+ (𝑛)

mplies 𝑇 (𝑛) = 𝑛 log(𝑛) through the master theorem for divide-and-
onquer recurrences.

Using this algorithm, counting the number of concordant and dis-
ordant pairs can also be done simultaneously, once the observations
re ordered based on their predictions (from small to large). To this
nd, only the merge function of the mergesort algorithm needs to
e adapted, as can be seen in the pseudo-code of Algorithm 1 in
ppendix A, where we suppose a 0-based indexing. More specifically,
uppose we want to merge the sorted left array 𝑥 of length 𝑛 with
he sorted right array 𝑦 of length 𝑚 in a sorted way. Therefore, we
re comparing the 𝑖th element of 𝑥 with the 𝑗th element of 𝑦. When
[𝑖] is smaller than 𝑦[𝑗], we know that it will also be smaller than all
ther elements of 𝑦 on the right of 𝑦[𝑗], since 𝑦 is a sorted array. Hence,

because of 𝑥 being the left array and 𝑦 the right array, we know that 𝑥[𝑖]
reates 𝑚− 𝑗 concordant pairs. On the other hand, when 𝑦[𝑗] is smaller
han 𝑥[𝑖], we know that it will also be smaller than all other elements
f 𝑥 on the right of 𝑥[𝑖], since 𝑥 is a sorted array. Hence, because of
being the right array and 𝑥 the left array, we know that 𝑦[𝑗] creates
− 𝑖 discordant pairs. Finally, when 𝑥[𝑖] is equal to 𝑦[𝑗], we observed
tie in the responses. In that case, we have to find the smallest index

, larger than 𝑗, such that 𝑦[𝑙] is strictly larger than 𝑦[𝑗]. If this index 𝑙
oes not exist, we know that 𝑥[𝑖] creates 𝑚−𝑗 ties. Otherwise, it creates
− 𝑗 ties and 𝑚 − 𝑙 concordant pairs.

As a result, while merging the left and right array in the mergesort
lgorithm, we can keep track of the number of ties in the responses,
s well as the number of concordant and discordant pairs without
hanging the time complexity of (𝑛 log(𝑛)).

One way of correcting for the presence of ties in the predictions
s using the same procedure as that of Proposition 1. This does not
hange the time complexity of the overall algorithm, which remains
(𝑛 log(𝑛)). □

.3. The weighted thresholded concordance probability

We start by addressing the thresholded concordance probability and
nclude the weighted version afterwards.

The thresholded concordance probability only considers observa-
ions with responses that differ at least a value 𝜈 from each other.
ence, two responses are considered as being a tie when they differ
xactly 𝜈 from each other. For a naive algorithm inspecting all pairs
f predictions, it is trivial to incorporate this threshold 𝜈, but this
ould still yield a computational complexity of (𝑛2). Instead, we
ave modified the merge-step of the mergesort-based algorithm of
ection 2.2 to be able to incorporate this feature without increasing the
omputational complexity. As a result, we can compute the thresholded
oncordance probability in (𝑛 log(𝑛)) time, which is stated and proven
n Proposition 3 below.

roposition 3. Let 𝝅 =
(

𝜋(𝑥1),… , 𝜋(𝑥𝑛)
)

be a vector of predictions and
= (𝑦1,… , 𝑦𝑛) a vector of continuous responses. Using the merge procedure
f Algorithm 2, we can compute the thresholded concordance probability
f Eq. (6) in (𝑛 log(𝑛)) time.

roof. We know already from Proposition 2 that the concordance prob-
bility 𝐶(0) can be estimated in (𝑛 log(𝑛)) time. In order to introduce
threshold on the difference in responses for comparable pairs, we

eed to only change the merge step of the previous algorithm. It is
hus sufficient to make sure that the adjusted merging step requires
(𝑛) time. The pseudo-code of Algorithm 2 in Appendix A, where we

uppose a 0-based indexing, shows the required adjustments to the
erge function.
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More specifically, suppose we want to merge the sorted left array 𝑥
f length 𝑛 with the sorted right array 𝑦 of length 𝑚 to obtain a single
orted array. In doing so, we are comparing the 𝑖th element of 𝑥 with
he 𝑗th element of 𝑦. When 𝑥[𝑖] is smaller than 𝑦[𝑗], we know that it will
lso be smaller than all other elements of 𝑦 on the right of 𝑦[𝑗], since
is a sorted array. Hence, because of 𝑥 being the left array and 𝑦 the

ight array, 𝑥[𝑖] can create concordant pairs. However, since a tie in the
esponses is defined as two responses that differ exactly a value 𝜈 from
ach other, it can also create a number of ties. To define this number of
ies and concordant pairs, we iterate over all elements after 𝑦[𝑗] until
he first one strictly larger than 𝑥[𝑖] + 𝜈 is found and call the index of
his element 𝑗2. While doing so, we also keep track of the number of
lements that form a tie with 𝑥[𝑖]. Hence, the total number of ties can
e updated by adding the latter and moreover, 𝑚− 𝑗2 concordant pairs
re created by 𝑥[𝑖]. On the other hand, when 𝑦[𝑗] is strictly smaller than
[𝑖], we know that it will also be smaller than all other elements of 𝑥
n the right of 𝑥[𝑖], since 𝑥 is a sorted array. Hence, because of 𝑦 being

the right array and 𝑥 the left array, 𝑦[𝑗] can create discordant pairs.
However, since a tie in the responses is defined as two responses that
differ exactly a value 𝜈 from each other, it can also create a number of
ties. To define this number of ties and discordant pairs, we iterate over
all elements after 𝑥[𝑖] until the first one strictly larger than 𝑦[𝑗] + 𝜈 is
found and call the index of this element 𝑖2. While doing so, we also keep
rack of the number of elements that form a tie with 𝑦[𝑗]. Hence, the
otal number of ties can be updated by adding the latter and moreover,
− 𝑖2 discordant pairs are created by 𝑦[𝑗].

Note that 𝑖2 (𝑗2) is updated each time 𝑖 (𝑗) is updated by iterating
over the following larger elements in 𝑥 (𝑦). Hence, keeping track of 𝑖2
(𝑗2) requires (𝑛) time. As a result, while merging the left and right
array in the mergesort algorithm, we can keep track of the number
of ties in the responses, as well as the number of concordant and dis-
cordant pairs without changing the time complexity of (𝑛 log(𝑛)). The
correction for the presence of ties in the predictions does not change
this time complexity, as explained in the proof of Proposition 1. □

Finally, we address the inclusion of weights. The calculation of
𝑤̂(𝜈) would again be trivial in a naive implementation inspecting all

he pairs. By making additional adjustments to the merge-step, we
ave extended the mergesort-based algorithm to be able to calculate
he weighted thresholded concordance probability in linearithmic time.
his is stated and proven in Proposition 4 below, and the pseudo-code
f the adjusted merge-step can be found in Algorithm 3 of Appendix A.

roposition 4. Let 𝝅 =
(

𝜋(𝑥1),… , 𝜋(𝑥𝑛)
)

be a vector of predictions,
𝑦 = (𝑦1,… , 𝑦𝑛) a vector of continuous responses and 𝑤 = (𝑤1,… , 𝑤𝑛) a
vector of weights. Using the merge procedure of Algorithm 3, we can compute
the concordance probability of Eq. (7) in (𝑛 log(𝑛)) time.

roof. We know already from Proposition 3 that the thresholded con-
ordance probability 𝐶(𝜈) can be estimated in (𝑛 log(𝑛)) time. As can
e seen in the pseudo-code of Algorithm 3 in Appendix A, an adaptation
s necessary in the merging step used to estimate 𝐶(𝜈). Building further

on the notations introduced in the Proof of Proposition 3, we first define
𝑤𝑥 (𝑤𝑦) as the weights corresponding to the elements in 𝑥 (𝑦). The sum
of all elements in 𝑤𝑦 is the initial value of the variable 𝑠𝑦. Each time that
the index 𝑗2 is updated, we also update 𝑠𝑦 by subtracting 𝑤𝑦[𝑗2] of it.
In other words, 𝑠𝑦 represents the sum of the weights of all responses in
𝑦 from index 𝑗2 on. Hence, when 𝑥[𝑖] is smaller than 𝑦[𝑗], the weighted
number of concordant pairs is increased with 𝑤𝑥[𝑖]𝑠𝑦. Remember that
while updating 𝑗2, we also kept track of the number of ties with 𝑥[𝑖] in 𝑦.
This time, we will keep track of the sum of the weights of the elements
in 𝑦 that form a tie with 𝑥[𝑖], defined by 𝑡𝑦. Hence, the weighted number
of ties introduced by 𝑥[𝑖] equals 𝑤𝑥[𝑖]𝑡𝑦.

Analogously, initialize 𝑠𝑥 by the sum of all elements in (𝑤𝑥) and
update its value when 𝑖2 is updated, by subtracting 𝑤𝑥[𝑖2] of it. When
4

𝑦[𝑗] is then strictly smaller than 𝑥[𝑖], the weighted number of discordant s
pairs is updated by adding 𝑤𝑦[𝑗]𝑠𝑥. Similarly, 𝑡𝑥 represents the sum of
the weights of the elements in 𝑥 that form a tie with 𝑦[𝑗]. Consequently,
the weighted number of ties introduced by 𝑦[𝑗] equals 𝑤𝑦[𝑗]𝑡𝑥.

Note that 𝑡𝑥 and 𝑠𝑥 (𝑡𝑦 and 𝑠𝑦) are updated each time 𝑖2 (𝑗2) is
updated. Hence, keeping track of these values requires (𝑛) time. As
a result, while merging the left and right array in the mergesort algo-
rithm, we keep track of the weighted number of ties in the responses,
as well as the weighted number of concordant and discordant pairs
without changing the time complexity of (𝑛 log(𝑛)). The correction
for the presence of ties in the predictions does not change this time
complexity, as explained in the proof of Proposition 1. □

3. Simulation study

In this section, we investigate the computational cost to estimate
the concordance probability in a simulation study. The performance is
measured by the run times in R 4.1.1, on a computer with processor
Intel(R) Core(TM) i7-8650U CPU @ 1.90 GHz 2.11 GHz.
First, we focus on the binary setting and simulate 𝑛 values from a
binomial distribution with size 1 and success probability 0.5. These
values are considered as the responses 𝑦 in Eq. (2). Similarly, we take
𝑛 random samples from a uniform distribution between 0 and 1, that
serve as the predictions. On these 𝑛 pairs of responses and predictions,
the concordance probability is calculated by both the naive and the
binary algorithm as discussed in Section 2. We repeat this process
100 times and store the computation times. For each sample size 𝑛 ∈
102, 103, 104, 105}, the results are shown in Fig. 1. It is clear that the

binary algorithm estimates the concordance probability faster than the
naive one. For 𝑛 = 102, the proposed algorithm is about a factor 2
faster than the naive algorithm. For larger sample sizes, however, the
difference between the computation times of both approaches is much
larger. For 𝑛 = 105 for example, the computation times of the naive and
proposed methods differ by a factor 104.

A similar simulation study for the continuous setting is set up, where
𝑛 responses are sampled from a standard normal distribution. The cor-
responding predictions equal the responses with an error term, which
is also sampled from the standard normal distribution. For these 𝑛 pairs
of responses and predictions, the concordance probability is calculated
by both the naive and the mergesort-based algorithm as discussed in
Section 2. Once again, we define pairs with the same prediction as
incomparable and moreover, we set 𝜈 on zero. The entire procedure
is repeated 100 times and for each sample size 𝑛 ∈ {102, 103, 104, 105},
the computation times are shown in Fig. 2.

Just as in the binary setting, the naive way to estimate the concor-
dance probability is much slower than the one based on the mergesort
algorithm. The difference is even more pronounced however. For 𝑛 =
100 we obtain a difference in computation times of a factor 4. For
𝑛 = 105, we see once more that the fast algorithm has a computation
time that is about 104 times as small as the naive algorithm. Finally, we
also numerically verified Propositions 1–3 that state that the (thresh-
olded) concordance probability can be estimated in linearithmic time
in the binary and continuous setting. For both settings, we create the
responses and the predictions in the same way as before. Moreover,
we also consider the extreme sample sizes 106 and 107. Finally, in the
continuous setting, we estimate both 𝐶 and 𝐶(0.5). We consider each
iscussed situation 100 times and keep track of the computation times,
hich are shown in Fig. 3. The straight line in both sub figures clearly

onfirms that the computation time for the concordance probability
s in both settings of size (𝑛 log(𝑛)). The fact that the computation
imes for the sample size 100 seem slightly too high, can be explained
y computational overhead which plays a diminishing role for larger

ample sizes.
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Fig. 1. Computation times of the naive and the binary algorithm to estimate the concordance probability in the binary setting for different sample sizes 𝑛.

Fig. 2. Computation times of the naive and the mergesort-based algorithm to estimate the concordance probability in the continuous setting for different sample sizes 𝑛.
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Fig. 3. Computation times of the binary and the mergesort-based algorithm of the concordance probability for different sample sizes 𝑛. The (dashed) line is an estimate of the
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. Real data applications

In this section, we illustrate two potential applications of the
ergesort-based algorithm to compute the (thresholded) (weighted)

oncordance probability. The first one focuses on feature selection
ased on the concordance probability, whereas the second one focuses
n the parameter estimation of a model such that the concordance
robability is optimized. Both examples focus on a real data set from
he insurance sector.

.1. Feature selection

For the first example, we focus on the data set pg16trainpol
rom the R-package CASdatasets on CRAN [17]. This data set was
sed during the pricing game of the French institute of Actuaries in
016. It contains 87,226 policies for private motor insurance of which
heir exposure as well as their number of claims is given. Most of
he policies experienced no claim, 4.5% had one claim and only 0.3%
ad two or more claims. Moreover, there are 13 other variables that
ere also considered and discussed in detail by Ponnet et al. [4],
.g. the geographical area and the vehicle power. These variables are
ll categorized and their bar plots are shown in Fig. B.1 in Appendix B,
ogether with their interpretations. Note that the majority of categorical
evels are unknown due to the fact that they have been anonymized
or confidentiality reasons. Due to the anonymization, we cannot fully
nterpret the final model.

The goal is to find, out of these 13 variables, the most relevant
redictors to estimate the number of claims. Instead of considering
ach of the 8,192 possible models by an exhaustive search, we use
faster binary particle swarm optimization (BPSO) algorithm that is

ntroduced by Kennedy and Eberhart [18] and further discussed in
etail by Qasim and Algamal [19],Mirjalili and Lewis [20],Khare and
angnekar [21]. Intuitively, each particle of the swarm is a binary
ector of length 13, in which each element represents whether the
orresponding predictor variable is selected (1) or not (0). For each
article, the number of claims is estimated by a Poisson model with the
orresponding selected variables 𝒙̃ as predictors and an offset equal to
he logarithm of the exposure. This is a standard approach in insurance
laims modelling [22], where we denote the predicted number of
laims for observation 𝑖 by 𝜋(𝒙̃𝑖). We keep track of the model that
esulted in the highest value for the fitness function for each particle
eparately. Moreover, we also record the global best model, which is
he model resulting in the highest value for the fitness function over
ll particles in the swarm. Finally, each particle is updated based on
6

ts local and the global best model. This entire procedure is repeated
ntil convergence. The specific settings for running the BPSO algorithm
re as follows. We work with a population size of 30 and a maximum
umber of iterations of 100. The population is generated randomly
ith each entry of every particle following a Bernoulli distribution with

uccess probability 0.5. The algorithm stops when no improvement
as been found for 5 iterations. The mutation operator is the one
f [18]: for each entry of the particle is a Bernoulli random variable
ith success probability determined by a sigmoid transformation of the

urrent velocity of that particle entry. The sigmoid ensures that the
robability lies between 0 and 1.

We consider the following fitness function:

(𝜆, 𝒙̃) = 𝐶𝑤,0,1+(𝒙̃) − 𝜆‖𝜷‖1,

with

𝐶𝑤,0,1+(𝒙̃) =

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝑤𝑖𝑤𝑗𝐼

(

𝜋(𝒙̃𝑖) > 𝜋(𝒙̃𝑗 ), 𝑦𝑖 ≥ 1, 𝑦𝑗 = 0
)

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝑤𝑖𝑤𝑗𝐼

(

𝜋(𝒙̃𝑖) ≠ 𝜋(𝒙̃𝑗 ), 𝑦𝑖 ≥ 1, 𝑦𝑗 = 0
) ,

where the weight 𝑤𝑖 corresponds to the exposure of claim 𝑖. Hence,
policies with a smaller duration receive a smaller weight. Furthermore,
𝐶𝑤,0,1+(𝒙̃) represents the ability of the model to discriminate policies
that encountered at least one accident from policies that did not en-
counter accidents. With 𝜆 ∈ R the tuning parameter and 𝜷 the model
coefficients (without intercept), we can see 𝜆‖𝜷‖1 as a sparsity penalty.
More specifically, it is the lasso penalty introduced by Tibshirani [23]
which shrinks the coefficients towards zero.

We randomly split 70% of the data set into a training set, 15% into a
validation set and the remaining 15% forms a test set. On this training
set, we ran the BPSO algorithm for 50 equally spaced values of 𝜆 in
the range [0, 0.2]. Hence, we obtained 50 possible models to predict
the number of claims. For each model, the concordance probability
𝐶𝑤,0,1+(𝒙̃) is calculated on the validation set. Fig. 4 shows the maximal
value of 𝐶𝑤,0,1+(𝒙̃) in function of the number of predictors selected in
the model. It shows us that the full model obtains a similar concordance
probability compared to the one where only 6 predictors are selected:
FleetMgt, FleetSizeCateg, PayFreq, VehiclAge, Deduc and
VehiclPower. This model has a concordance probability of 66.88%
on the test set, which is only 0.36% smaller than the one of the full
model. We thus obtain a model with less than half of the predictors

and with virtually identical out-of-sample performance.
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Fig. 4. The maximal value for 𝐶𝑤,0,1+ in function of the number of predictors in the
odel to predict the number of claims.

.2. Model training on the concordance probability

Rather than using the concordance probability for feature selection,
e can also consider training directly on the concordance probability,

.e. using it as a loss function. This is not trivial, since many regression
stimators require the loss-function to be differentiable. This is why
ifferentiable approximations to the concordance probability have been
roposed [24–27], which can then be used in boosting algorithms such
s XGBoost or LightGBM and in neural networks [28,29].

Alternatively, one can take the approach of trying to optimize
non-differentiable loss/fitness function based on the concordance

robability. In that case, one has to resort to algorithms that can deal
ith this non-differentiability. Examples of those are the particle swarm
lgorithm of the previous section, ant colony optimization, genetic
lgorithms and Cuckoo search [30–33]. This approach was also taken
n Kalderstam et al. [34]. Any of these approaches require evaluating
he concordance probability a very high number of times, and this
epresents most of the computational cost of the optimization process.
s a result, a fast computation of the concordance probability is highly
eneficial for this purpose.

We illustrate this on the data of the 2015 pricing game of the
rench institute of Actuaries, which is publicly available under the
ame pg15training in the R-package CASdatasets on CRAN. Our
oal is to predict the number of claims made by the insured based on six
ariables, three continuous and three categorical. The three continuous
ariables are the driver’s age (Age), the population density in the
ity that the driver of the car lives in (Density) and the car value
Value). The three categorical variables are the category of the car
Category), the type of the car (Type) and the job of the car owner
Occupation). These variables have three, six and five categories
espectively, and were one-hot encoded before training the models on
0% of the data. The remaining 30% of the data form the test set. Note
hat more than 70% of the policies had an exposure of 1 and for the
ther variables, the histograms and bar plots are shown in Fig. B.2 in
ppendix B.

We will model the response 𝑌 by

[𝑌 |𝑿 = 𝒙] = 𝑒𝑓 (𝒙)+𝑐

here 𝑐 is an offset given by the logarithm of the exposure, and 𝑓
s a neural network with a single hidden layer of size 2 and a ReLU
ctivation function. Fig. 5 shows the skeleton of the neural network for
single random initialization of the weights.
7

f

Fig. 5. The layout of the neural network. Green indicates positive connections, whereas
red indicates negative connections. The thickness of the connections correspond with
the absolute size of the coefficients.

Typically, this model would be fit using backpropagation on the
deviance corresponding with conditional Poisson models. We would
like to directly optimize the prediction model for the concordance
probability 𝐶𝑤,0,1+. Therefore, we cannot use backpropagation, and we
use a genetic algorithm instead. In particular, we use the ga function
f the R-package ga [35]. The specific setup of this genetic algorithm
s as follows. The population size is set at 30. Instead of using purely
andom starts for the genetic algorithm, we use the initial weights from
raining with a conditional Poisson distribution, with offset equal to
he logarithm of the exposure. This initial training step was done using
he R-package h2o [36]. In addition to these initial weights, we add
9 uniformly random generated starting values. The maximum number
f iterations is fixed at 100. We used a local arithmetic crossover,
ith uniform mutation as the mutation operator. Finally, the selection
rocedure we used is proportional selection after linear scaling of the
itness values.

As both the initial weights for training the neural network and the
enetic algorithm use randomness, we repeat the procedure 100 times,
tarting from a new random initialization of the neural network. The
urpose of repeating the whole procedure 100 times, is to eliminate
he possibility that the performance of the genetic algorithm is due to
poor or lucky random initialization of the neural net.

To illustrate the potential of our approach, we compare the per-
ormance of the classical neural network optimized for the deviance
orresponding with conditional Poisson models, with the performance
f the neural network optimized for the concordance probability with
he genetic algorithm. Fig. 6 shows the performance of the procedures
ver 100 random initializations of the neural network. In the left panel,
e see the performance on training and test data for the classical
eural network, as well as the neural network trained with the genetic
lgorithm. We clearly see that both on training and on test data, the
enetic algorithm yields substantial improvements in the concordance
robability of the resulting model. The right panel of the same fig-
re shows the relative performance improvement. On test data, the
enetic algorithm yields up to 10% improvement in the concordance
robability over the classical neural network, and never worsens the
ut-of-sample concordance probability. The obtained outperformance
s strongly significant with p-values of close to zero for, e.g., a Wilcoxon
ank-sum test. It is clear that directly optimizing for the concordance
robability can be very beneficial if this is the metric of interest. A
ast computation of the concordance probability is indeed vital, as
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Fig. 6. Performance comparison between classical neural network and a neural network trained with a genetic algorithm optimizing directly for the concordance probability is
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the many evaluations of the fitness function make the naive approach
computationally prohibitive.

5. Conclusion

In this article we addressed the efficient computation of the
weighted thresholded concordance probability. This measure repre-
sents the probability of having a concordant pair of responses with
their predictions. The measure optionally incorporates a threshold 𝜈

hich excludes similar observations. It also has the ability of including
eights, so that each pair of a response with its prediction receives
specific weight while calculating the concordance probability. In

he currently available algorithms, the concordance probability is esti-
ated in a quadratic run time. Since this is problematic for large data

ets, we propose a new algorithm based on the mergesort algorithm.
his computes the weighted thresholded concordance probability in

inearithmic time, which is both proven and empirically confirmed.
This faster algorithm unlocks various new applications. We have

llustrated two such use cases on the problem of insurance claims
odelling. The first uses the weighted thresholded concordance prob-

bility to perform variable selection. The second uses it in an objective
unction of a neural network. The applicability of our methods ex-
ends beyond these illustrations, however. As the C-index measures
he quality of the ranking of the predictions, rather than the precise
alues of the predictions, the C-index can be of interest any time the
ain goal is to rank items rather than predict their values. There are
any situations in which ranking is the main goal, and we discuss

hree prominent ones here. An important one is in the context of
ecommender systems. Examples of those are Netflix suggesting movies
o its users or Kindle suggesting new books to buy. In this setting, the
nterest is primarily in which movie or book the user would prefer out
f all possible movies or books, rather than how much the user would
ike the proposed movie or book. Another application is in information
etrieval, where a query of a user prompts the search for the documents
est matching the query. Again, the focus is not on the precise quality
n the match, but rather on the ranking of the different documents.

final example is that of portfolio asset allocation. In a long-short
quity portfolio, the portfolio manager is primarily interested in the
anking of the performances of the equities under considerations rather
han their exact performance. In particular, the top ranks and bottom
anks determine the portfolio, irrespective of their precise performance.
or each of the previously mentioned examples, there are scenarios
here the number of observations (e.g. films to recommend, or files to

etrieve) is very large. In that case, it is useful and potentially required
hat the measure of the quality of the ranking is easy to compute.
herefore, we believe that there are many practical scenarios in which
he fast thresholded and weighted concordance probability can prove
8

F

useful. It is worth noting that the weights and thresholds add additional
flexibility with practical relevance. For example, the weights can give
a subset of observations (clients, document types, equity classes, etc.)
a higher importance in the ranking, prompting the model to prioritize
ranking these items accurately. Additionally, the threshold allows for
ignoring the quality of the rankings of items that are very close to one
another. For example, if two books will be received almost equally well
or two assets will perform nearly the same, it may not be as important
to rank them correctly. Instead, the model could focus on correctly
ranking those books which will be received very differently or those
assets which will perform very differently, since getting such a ranking
wrong would have a much larger impact on the system.

In addition to potential applications in ranking challenges, a faster
algorithm also the benefit that it allows for easier bootstrap-based
inference on the weighted thresholded concordance probability. This is
also a computationally demanding task where speed of calculation is of
vital importance. The alternative which is typically faster, but requires
more strict assumptions, is to work with an asymptotic expression for
the variance of the C-index. A basic one, which can be derived from
Kendall’s tau, is given by 2𝑛+5

18𝑛(𝑛−1) . An alternative and more generally
applicable expression, derived from the results in [37,38], is given
by

∑𝑛
𝑖=1 (𝑁𝑐,𝑖−𝑁𝑑,𝑖)2−2𝑛(𝑛−1)

4𝑛(𝑛−1)(𝑛−2)(𝑛−3) , where 𝑁𝑐,𝑖 and 𝑁𝑑,𝑖 denote the number of
concordant and discordant pairs associated with observation 𝑖. This last
expression can also be computed in (𝑛 log(𝑛)) time.

All the algorithms discussed in this paper are written in R and C++
and are available in the R-package fastConcProb on github.
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Appendix A. Algorithms

Algorithm 1 merge
Input: 𝑦, 𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡, 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡, 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡
Output: Sorted 𝑦 from index 𝑙𝑒𝑓 𝑡 until index 𝑟𝑖𝑔ℎ𝑡, together with updated values for 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 and 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡

𝐿𝑒𝑓𝑡 ← 𝑦[𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒], 𝑅𝑖𝑔ℎ𝑡 ← 𝑦[𝑚𝑖𝑑𝑑𝑙𝑒 + 1, 𝑟𝑖𝑔ℎ𝑡]
𝑛 ← length 𝐿𝑒𝑓𝑡, 𝑚 ← length 𝑅𝑖𝑔ℎ𝑡
𝑖 ← index in 𝐿𝑒𝑓𝑡, initialized at 0
𝑗 ← index in 𝑅𝑖𝑔ℎ𝑡, initialized at 0
𝑘 ← index in 𝑦, initialized at 𝑙𝑒𝑓 𝑡
while 𝑖 < 𝑛 or 𝑗 < 𝑚 do
if 𝐿𝑒𝑓𝑡[𝑖] < 𝑅𝑖𝑔ℎ𝑡[𝑗] then

𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 + (𝑚 − 𝑗)
𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1

else if 𝐿𝑒𝑓𝑡[𝑖] > 𝑅𝑖𝑔ℎ𝑡[𝑗] then
𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 ← 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 + (𝑛 − 𝑖)
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1

else
𝑙 ← 𝑗
while 𝑙 < 𝑚 and 𝑅𝑖𝑔ℎ𝑡[𝑙] == 𝐿𝑒𝑓𝑡[𝑖] do

𝑙 ← 𝑙 + 1
end while
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 + (𝑙 − 𝑗)
𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 + (𝑚 − 𝑙)
𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1

end if
while 𝑖 < 𝑛 do

𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1

end while
while 𝑗 < 𝑚 do
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1

end while
end while
9
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O

Algorithm 2 merge with 𝜈 ≥ 0

Input: 𝑦, 𝜈, 𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡, 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡, 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡
utput: Sorted 𝑦 from index 𝑙𝑒𝑓 𝑡 until index 𝑟𝑖𝑔ℎ𝑡, together with updated values for 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 and 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡

𝐿𝑒𝑓𝑡 ← 𝑦[𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒], 𝑅𝑖𝑔ℎ𝑡 ← 𝑦[𝑚𝑖𝑑𝑑𝑙𝑒 + 1, 𝑟𝑖𝑔ℎ𝑡]

𝑛 ← length 𝐿𝑒𝑓𝑡, 𝑚 ← length 𝑅𝑖𝑔ℎ𝑡
𝑖 ← index in 𝐿𝑒𝑓𝑡, initialized at 0
𝑗 ← index in 𝑅𝑖𝑔ℎ𝑡, initialized at 0
𝑘 ← index in 𝑦, initialized at 𝑙𝑒𝑓 𝑡
𝑖2 ← index in 𝐿𝑒𝑓𝑡 pointing to smallest element that is at least 𝜈 larger than 𝑅𝑖𝑔ℎ𝑡[𝑗], initialized at 0
𝑗2 ←index in 𝑅𝑖𝑔ℎ𝑡 pointing to smallest element that is at least 𝜈 larger than 𝐿𝑒𝑓𝑡[𝑖], initialized at 0
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 0, 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 0

while 𝑖 < 𝑛 or 𝑗 < 𝑚 do
if 𝑖2 < 𝑛 and 𝐿𝑒𝑓𝑡[𝑖2] ≤ 𝑅𝑖𝑔ℎ𝑡[𝑗] + 𝜈 then
if 𝐿𝑒𝑓𝑡[𝑖2] − 𝜈 == 𝑅𝑖𝑔ℎ𝑡[𝑗] then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 + 1
end if
𝑖2 ← 𝑖2 + 1

else if 𝑗2 < 𝑚 and 𝑅𝑖𝑔ℎ𝑡[𝑗2] ≤ 𝐿𝑒𝑓𝑡[𝑖] + 𝜈 then
if 𝑅𝑖𝑔ℎ𝑡[𝑗2] − 𝜈 == 𝐿𝑒𝑓𝑡[𝑖] then
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 + 1

end if
𝑗2 ← 𝑗2 + 1

else if 𝐿𝑒𝑓𝑡[𝑖] < 𝑅𝑖𝑔ℎ𝑡[𝑗] then
𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 + (𝑚 − 𝑗2)
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 + 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡
𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1
if (𝑖 < 𝑛) and (𝐿𝑒𝑓𝑡[𝑖]! = 𝐿𝑒𝑓𝑡[𝑖 − 1]) then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 0
end if

else
𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 ← 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 + (𝑛 − 𝑖2)
if 𝜈 > 0 then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 + 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡
end if
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1
if (𝑗 < 𝑚) and (𝑅𝑖𝑔ℎ𝑡[𝑗]! = 𝑅𝑖𝑔ℎ𝑡[𝑗 − 1]) then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 0
end if

end if
while 𝑖 < 𝑛 do

𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1

end while
while 𝑗 < 𝑚 do
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1

end while
end while
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O

Algorithm 3 merge with 𝜈 ≥ 0 and weights
Input: 𝑦, 𝜈, 𝑤, 𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡, 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡, 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡
utput: Sorted 𝑦 and 𝑤 from index 𝑙𝑒𝑓 𝑡 until index 𝑟𝑖𝑔ℎ𝑡, together with updated values for 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 and 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡

𝐿𝑒𝑓𝑡 ← 𝑦[𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒], 𝑅𝑖𝑔ℎ𝑡 ← 𝑦[𝑚𝑖𝑑𝑑𝑙𝑒 + 1, 𝑟𝑖𝑔ℎ𝑡]
𝑤𝐿𝑒𝑓𝑡 ← 𝑤[𝑙𝑒𝑓 𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒], 𝑤𝑅𝑖𝑔ℎ𝑡 ← 𝑤[𝑚𝑖𝑑𝑑𝑙𝑒 + 1, 𝑟𝑖𝑔ℎ𝑡]

𝑛 ← length 𝐿𝑒𝑓𝑡, 𝑚 ← length 𝑅𝑖𝑔ℎ𝑡
𝑖 ← index in 𝐿𝑒𝑓𝑡, initialized at 0
𝑗 ← index in 𝑅𝑖𝑔ℎ𝑡, initialized at 0
𝑘 ← index in 𝑦, initialized at 𝑙𝑒𝑓 𝑡
𝑖2 ← index in 𝐿𝑒𝑓𝑡 pointing to smallest element that is at least 𝜈 larger than 𝑅𝑖𝑔ℎ𝑡[𝑗], initialized at 0
𝑗2 ←index in 𝑅𝑖𝑔ℎ𝑡 pointing to smallest element that is at least 𝜈 larger than 𝐿𝑒𝑓𝑡[𝑖], initialized at 0
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 0, 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 0
𝑠𝐿𝑒𝑓𝑡 ←

∑

𝑤𝐿𝑒𝑓𝑡, 𝑠𝑅𝑖𝑔ℎ𝑡 ←
∑

𝑤𝑅𝑖𝑔ℎ𝑡

while 𝑖 < 𝑛 or 𝑗 < 𝑚 do
if 𝑖2 < 𝑛 and 𝐿𝑒𝑓𝑡[𝑖2] ≤ 𝑅𝑖𝑔ℎ𝑡[𝑗] + 𝜈 then
if 𝐿𝑒𝑓𝑡[𝑖2] − 𝜈 == 𝑅𝑖𝑔ℎ𝑡[𝑗] then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 +𝑤𝐿𝑒𝑓𝑡[𝑖2]
end if
𝑠𝐿𝑒𝑓𝑡 = 𝑠𝐿𝑒𝑓𝑡 −𝑤𝐿𝑒𝑓𝑡[𝑖2]
𝑖2 ← 𝑖2 + 1

else if 𝑗2 < 𝑚 and 𝑅𝑖𝑔ℎ𝑡[𝑗2] ≤ 𝐿𝑒𝑓𝑡[𝑖] + 𝜈 then
if 𝑅𝑖𝑔ℎ𝑡[𝑗2] − 𝜈 == 𝐿𝑒𝑓𝑡[𝑖] then
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 +𝑤𝑅𝑖𝑔ℎ𝑡[𝑗2]

end if
𝑠𝑅𝑖𝑔ℎ𝑡 = 𝑠𝑅𝑖𝑔ℎ𝑡 −𝑤𝑅𝑖𝑔ℎ𝑡[𝑗2]
𝑗2 ← 𝑗2 + 1

else if 𝐿𝑒𝑓𝑡[𝑖] < 𝑅𝑖𝑔ℎ𝑡[𝑗] then
𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑛𝑐𝐶𝑜𝑢𝑛𝑡 +𝑤𝐿𝑒𝑓𝑡[𝑖]𝑠𝑅𝑖𝑔ℎ𝑡
𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 +𝑤𝐿𝑒𝑓𝑡[𝑖]𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡
𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑤[𝑘] ← 𝑤𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1
if (𝑖 < 𝑛) and (𝐿𝑒𝑓𝑡[𝑖]! = 𝐿𝑒𝑓𝑡[𝑖 − 1]) then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑖𝑔ℎ𝑡 ← 0
end if

else
𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 ← 𝑖𝑛𝑣𝐶𝑜𝑢𝑛𝑡 +𝑤𝑅𝑖𝑔ℎ𝑡[𝑗]𝑠𝐿𝑒𝑓𝑡
if 𝜈 > 0 then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡 +𝑤𝑅𝑖𝑔ℎ𝑡[𝑗]𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡
end if
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑤[𝑘] ← 𝑤𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1
if (𝑗 < 𝑚) and (𝑅𝑖𝑔ℎ𝑡[𝑗]! = 𝑅𝑖𝑔ℎ𝑡[𝑗 − 1]) then

𝑡𝑖𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑓𝑡 ← 0
end if

end if
while 𝑖 < 𝑛 do

𝑦[𝑘] ← 𝐿𝑒𝑓𝑡[𝑖]
𝑤[𝑘] ← 𝑤𝐿𝑒𝑓𝑡[𝑖]
𝑘 ← 𝑘 + 1
𝑖 ← 𝑖 + 1

end while
while 𝑗 < 𝑚 do
𝑦[𝑘] ← 𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑤[𝑘] ← 𝑤𝑅𝑖𝑔ℎ𝑡[𝑗]
𝑘 ← 𝑘 + 1
𝑗 ← 𝑗 + 1
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end while
end while

Fig. B.1. Bar plots for each considered predictor variable from the data set pg16trainpol to predict the number of claims.
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Fig. B.2. Histograms and bar plots of the considered variables from the data set pg15taining to predict the number of claims.

Table B.1
The selected predictor variables from the data set pg16trainpol, that are used to predict the number of
claims.

Name Interpretation

Year The covering year. Categorical variable with 3 levels
(2011, 2012 and 2013).

VehiclPower The vehicle power. Categorical variable with 11 levels
(P1, P2, . . . , P11).

VehiclAge The vehicle age. Categorical variable with 2 levels
(0 − 5 years, > 5 years).

Deduc The deductible category. Categorical variable with 6 levels (0 euro,
1 − 200 euro, 201 − 300 euro, 301 − 400 euro, 401 − 600 euro,
> 600 euro).

BusinessType The business type. Categorical variable with 8 levels (B1, B2, . . . , B8).
ChannelDist The distribution channel. Categorical variable with 3 levels

(D1, D2, D3).
PolicyAgeCateg The category of the policy age. Categorical variable with 6 levels

(0 − 1 year, 1 − 2 years, 2 − 3 years, 3 − 4 years, 4 − 5 years,
> 5 years).

PolicyCateg The category of the policy. Categorical variable with 4 levels
(C2,C3,C4,C5).

CompanyCreation A dummy indicating if the company has been created.
FleetMgt The fleet management category. Categorical variable with 2 levels

(N, P).
FleetSizeCateg The fleet size category. Categorical variable with 2 levels (S1, S2).
Area The geographical area. Categorical variable with 6 levels

(A1, A2, . . . , A6).
PayFreq The payment frequency.

Categorical variable with 3 levels (quarter, semester, year).
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Table B.2
The selected predictor variable from the data set pg15training, that are used to predict the number of
claims.
Name Interpretation

Age The drivers’ age, expressed in years.
Density The population density (number of inhabitants per square km) in the city

that the driver of the car lives in.
Value The car value in euro.
Type The car type. Categorical variable with 6 levels (A, B, C, D, E, F).
Category The car category. Categorical variable with 3 levels (Small, Medium, Large).
Occupation The occupation of the driver. Categorical variable with 5 levels

(Employed, Housewife, Retired, Self-employed and Unemployed).

Appendix B. Data description

See Tables B.1 and B.2.
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