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Abstract

Nature is a neverending source of inspiration for technology. Quantum physics

suggests applications toward quantum computing. Swarms’ self-organization

leads to robotic swarm developments. Here, quantum computing is applied to

swarm robotics. We model local interactions with a quantum circuit, testing

it on simulators and quantum computers. To relate local with global behavior,

we develop a block matrix-based model. Diagonal sub-matrices contain infor-

mation on single robots; off-diagonal sub-matrices are the pairwise interaction

terms. Comparing different swarms means comparing different block matrices.

Choosing initial values and computation rules for off-diagonal blocks (with a

particular logic gate), model different behaviors can be modeled. To show the

global-behavior emergence, we propose a specific pairwise-interaction logic gate,

embedding the corresponding quantum circuit in an ant-foraging-inspired algo-

rithm. To implement a first application, we choose the foraging-ant behavior

for its clarity and importance in nature, running experiments with toy swarms

(3 and 10 robots). We consider ants’ individual and collective back-and-forth

movements between the nest and the food source, analyzing the effect of entan-

glement. Our research can help shed light on quantum potentialities for swarms.

The implications of our findings and results concern the future development of
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a decision-making system, based on the advantages of swarms and quantum

computing. While an ant-foraging scenario is chosen as an example of applica-

tion, our study is not focused on optimization. We present a new methodology,

open to non-optimal solutions. Future developments can concern improvements

toward optimization.

Keywords: quantum computing, swarm robotics, search & rescue, logic gates
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1. Introduction

Antoni Gaud́ı, architect and saint, considered Nature as his supreme teacher

and source of inspiration. Science and beauty in nature can also inspire the de-

velopment of refined and autonomous human artifacts such as robots. Robotics

tries to catch structures and mechanisms, including examples of self-organized5

collective behavior in nature, results of the so-called swarm intelligence [1].

The twirling elegance of flocking birds and schooling fish, the architectural

ingenuity of termites [2], locusts grouping [3], the organization of ants are the

input for mathematical modeling [4, 5] and robotic developments [6, 7]. Some

characteristics of natural swarms are caught in human-made artificial swarms,10

such as self-organization, scalability, and decentralization. Computational tech-

niques mimicking behavioral and social patterns in nature can help solve com-

plex tasks [8].

Another source of natural inspiration is given by quantum computing, an

extension of computer science derived from the principles of quantum physics15

[9], of growing importance for artificial intelligence [10]. The main reason is the

extension of quantum computational efficiency to enhance a robotic set-up.

In this article, we develop a mathematical description of the swarm with a

model of nested matrices, and pairwise interactions represented by reversible

logic gates. In particular, we consider an ant-foraging scenario, for its impor-20
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tance in nature and recent robotic applications.4

In particular, we try to connect local and global behavior of a swarm, letting

the global behavior emerge from simple local pairwise interactions. Tthese local

interactions are modeled via a quantum circuit. Then, to test the idea, the

circuit in a nest-food-nest ant scenario is exploited.5 The algorithm can lead25

to a novel decision-making system based on quantum computing. The novelty

of our work is two-fold: first, we define general matrices which can be adapted

to whatever swarm with whichever interaction laws; second, we shape the in-

teraction terms starting from probability-based quantum concepts. We develop

and extend dimensionally the ideas in nuce in [11]. The key technical difficulty30

to overcome is the definition from scratch of a formalism describing both local

and global aspects of the robotic swarm, including a quantum-based approach

to connect the world of robots with the flourishing field of quantum computing.

The article is organized as follows. A brief literature survey is presented in

Section 2, providing the motivations for our research in Section 3. Then, all35

information to reproduce our research are presented in Section 4. Our theoret-

ical approach is presented in Section 5, with nested matrices (subsection 5.1)

and quantum computing (subsection 5.2). We briefly describe our results in

Section 6, presenting our case study, with toy swarms of 3 and 10 robots on the

plane simulating the case of nest-food-nest ant path. We also present a com-40

parison between our method and two optimization approaches, the PSO and

NL-SHADE-RSP algorithms. Section 7 contains a discussion of strengths and

limitations of our strategy and possible developments of this research. In Section

8, our findings are summarized. The Appendix contains the search and rescue

pseudocodes, the quantum codes for pairwise interactions, and an example of45

the nested matrices for a 3-robot swarm.

4See the ant-inspired codes for NASA: https://www.nasa.gov/feature/

students-develop-robotic-code-in-first-swarmathon-challenge
5There are the following steps: starting from the nest, random reshuffle, quantum gate

information exchange, and final points achievement.
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2. Literature survey

2.1. Swarms of robots

Swarms of robots are an example of artificial swarm intelligence. A robotic

swarm is constituted by multiple autonomous and simple robots, collaborating50

to achieve a task that is impossible for single units. Each individual robot in a

swarm is a simple element that can perform only a few simple tasks (in tradi-

tional swarms, which are biologically inspired, there is only one task). Moreover,

the single element does not know the global goal of the swarm but it contributes

to its achievement thanks to self-adaptation, self-regulation, communication,55

and cooperation with the other elements of the swarm [12, 13, 14]. The swarm

behavior is in fact an emerging effect. If the study of nature can be the input

for robotic applications, it can also constitute its target. In fact, robots can be

a benchmark to model and investigate complex phenomena, such as morpho-

genesis in multi-cellular creatures [15]. Medical applications include miniature60

robotic swarms to deliver medications inside the human body [16].

In robotic swarms, as well as in natural swarms, individual behavior is gov-

erned by simple rules allowing a few simple actions. The individual element

of the robot must interact with the environment and with its conspecifics to

allow complex behavior to emerge. Communication and interaction with other65

elements of the swarm are key to coordinate and collectively perform a complex

goal. Natural examples include heavy prey transporting, foraging, or massive

and complex structures building.

Intuitively, in swarm robotics a large number of simple embodied agents and

their actions are designed to let a complex collective behavior emerge. Robots70

have to interact between them and with their environment [17].

In robotic swarms, one can distinguish between a micro-level, with individual

behaviors, controls, and pairwise interactions, a macro-level with the global

swarm action [18]. Properties of a swarm include scalability, robustness (the

lack of an individual does not affect the global behavior), self-regulation [13, 12]75

(no external commands are required), and self-awareness [12] (each individual
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knows its own position, speed, and action) [18].

As described by [19], examples of self-organized approaches for swarms of

robots concern spatial organization, navigation, decision making, and miscel-

laneous task. Spatial organization are aggregation, pattern formation, self-80

assembly, object clustering and assembling. Navigation tasks include collec-

tive exploration, coordinated motion, collective transport, collective localiza-

tion. Decision-making tasks are about consensus, task allocation, collective fault

detection, collective perception, synchronization, and group-size regulation. Fi-

nally, miscellaneous tasks concern self-healing, self-reproduction, human-swarm85

interaction. Research on swarm robotics range from the development of cyber-

swarms [20] and swarm specialization into specific tasks [21].

Concerning the software improvements, there are several optimization ap-

proaches to robotic swarms. A notorious example is the application of particle

swarm optimization (PSO) [22] to refine search and rescue robotic missions90

[23, 24], where each particle represents a robot, also in maritime scenarios [25].

Another source of natural inspiration for swarm robotics is evolution. Evo-

lutionary algorithms, and in particular the successful genetic algorithm (GA),

are based on candidate solutions of a problem, and a problem-dependent ob-

jective function [26]. Also differential evolution-based algorithms [27] can be95

considered. The applications of these concepts to robotics leads to evolutionary

robotics [28]. Evolutionary approaches are used to optimize problem-solving

techniques. Other approaches are the aforementioned ant-colony optimization

(ACO) [29, 27], inspired by ants’ collective behavior, and particle swarm opti-

mization (PSO), suggested by birds’ collective flight [22]. According to [30, 31],100

the philosophy of PSO lead to several other bio-inspired optimization methods,

such as GA and ACO. In [32, 33], evolutionary and genetic processes are also

exploited. However, our research does not focus on optimization. We rather in-

vestigate if quantum computing can be applied to model simple, local pairwise

robot interactions, and if a global behavior of swarm can emerge from them.105

Nevertheless, an example of PSO is adapted to our scenario, quantitatively

comparing its outcomes with ours (Table 10), and then of NL-SHADE-RSP
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algorithm [34]. A basic example of PSO is considered for its conceptual im-

portance. Further comparisons, with the aid of machine learning applications,

will be considered for future research, including more recent developments of110

PSO itself [35], and enhancements of ant-inspired algorithms with evolution-

ary approaches [36, 37]. However, while a great part of recent research on

swarm robotics deals with optimization techniques for specific goals and sce-

narios [20], there is another side of the research to be explored, that is, the

definition of a more general approach. As noticed by Nedja et al. [38], sev-115

eral solutions are too problem-specific, and thus a general methodology which

could be adapted to different problems, algorithms, and devices is yet to be

found. In this regard, the matrix-based methodology that is proposed in Sec-

tion 5 might help fill this gap. Our approach tries to model the emerging

swarm behavior from local interactions. Indeed, global-local connections and120

swarm-emergence from simple rules are not trivial. Analogies with physics have

been made, concerning the micro/macroscopic behavior descriptions through

Langevin and Fokker-Planck equations, respectively [18]. However, the increas-

ing complexity of robotic swarms requires a more complex and general treatment

[39]. For all these reasons, robotic swarms are amongst the most challenging125

topics in robotics [40].

In a robotic swarm, the individual does not have a complex objective in its

own. Instead, it acts to reach a higher-level objective. Therefore, one can talk of

force multiplication. The individual in fact feels the environment and its peers,

and communicates with them, while acting individually and autonomously.130

A standard approach to engineering a robot swarm is unthinkable. A swarm

is a complex system that is more than the sum of its components. Thus, to

describe a swarm we should remind that it is a complex system whose parts

interact with each other and their environment [41]. In addition, swarms are

characterized by consensus formation [42] in networks with neighbor-dependent135

synergy and observer effect.6 Therefore, a top-down engineering approach is

6In our approach, we consider information exchange between all elements of the swarm, as
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not feasible. A design methodology suitable for a swarm must analyze the

system and implement the model at the micro-level: the goal of each element,

its capabilities, and the exchange of messages. On the other hand, at the macro

level, one should analyze and implement the “how” producing the behavior140

needed for the swarm’s goal achievement. From a modeling point of view, the

single individual task requires an interaction with the environment, while the

interaction with other elements of the swarm requires a peer communication.

Collective behavior is thus a key word in this research. Finally, concerning

the hardware side, there are examples of research and commercially-available145

robotic swarms suitable for terrestrial [43, 44, 45], aerial [46], aquatic [47, 48],

and outer space [49] motion.

2.2. Quantum computing and its application to biology

To model tasks and communications, we choose to exploit quantum com-

puting [9, 50]. Quantum computing is a branch of computer science based on150

the principles of quantum mechanics. In a nutshell, it is an approach to com-

puter science based on quantum probability amplitudes and reversible gates.

Reversible gates are used in analogy with invertible operators ruling quantum

mechanics.

In classic computer science, the units of memory are 0 and 1, that is, the155

possible values of the so-called bit. However, in quantum computing there is

the qubit, the quantum bit, that can assume all values between 0 and 1. This

is a consequence of the principle of state superposition in quantum mechanics.

In addition, to measure the value of a qubit and store it in a classic bit, it is

necessary to perform a measurement operation which is a destructive one: the160

wavefunction, representing the state, collapses to one of its values. All further

measures will then give the same result. Destructive measure occurs in quantum

all robots were the neighbors of each other. Consensus is implicit in reaching the robot with

the highest “reward,” a concept that is explained later. In the case of a larger swarm where

one can consider subsets of neighbors, the consensus formation can deal with the comparison

of max rewards in each subset.
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physics, and it was the first operation measure where the observer influenced

the observed system.

In general, quantum computing enhances speed and efficiency of classical165

algorithms, and nowadays quantum computers and simulators can be accessed

remotely (e.g., IBM, Amazon, and so on). The main cost of these gains is

the access itself to quantum computers or simulators, and thus, the need for an

internet access. One of the major motivations for the use of quantum computing

is its power of calculation.170

The advantages of quantum speed-up come with some drawbacks: it is the

case of decoherence, that is, a loss of information of the quantum system into

the environments for effect of its interaction with it. The collapse of the wave-

function is necessary to perform measurements, but such a phenomenon should

be controlled. Constructors of quantum computers have to take into account175

the risk of errors given to decoherence. Decoherence does not appear in simu-

lations because there are no interaction with the environment—unless they are

modeled in purpose.

Starting from initial insights in physics [51] and computer sciences [52], quan-

tum computing has recently been applied in robotics [53, 54] and artificial intel-180

ligence [10]. Quantum particle swarm behavior inspires algorithm improvements

[55] and swarm optimization [56, 19]. Examples of quantum-inspired algorithms

include quantum harmonic oscillator algorithm as an heuristic optimization al-

gorithm [57]. The quantum paradigm helped enhance techniques to solve mul-

tiobjective large-scale optimization problems [58]. Other applications involve185

improvements to quantum-inspired evolutionary algorithms [59], to solve the

positioning-antenna problems in networks [60], enhancement of grey levels in

images [61], face multi-objective large-scale problems [62]. In particular, Cao et

al. considered position uncertainty, that is, as a quantum reference, to formalize

their approach [62]. In fact, based on quantum mechanics postulates, quantum190

computing is essentially probabilistic [63]. Probability has already been used

for threshold-based robotic swarm behavior [64]. One of the most singular phe-

nomena of quantum mechanics is entanglement [65]. Two entangled particles
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are parts of the same system, in the sense that a measure on one of them affects

the other one. With quantum computing, one can build up circuits to make195

entangled states [50]. The entanglement has an essential role for pure-state (not

mixed) quantum algorithms, while it does not necessarily lead in general to

computational speed-up [66]. The idea of entanglement has been proposed to

entirely model a swarm of robots, as a theoretical simplification to group and

connect robots’ behavior [67], or to enable a different communication strategy200

between two complex robots [68]. However, the application of the quantum

paradigm to swarm autonomous devices is, to the best of our knowledge, still a

largely unexplored field [69, 11].

In a recent study, simulated underwater swarm localization made use of fuzzy

logic [70]. Because quantum logic can be seen as a particular example of fuzzy205

logic [71], we choose the quantum paradigm to investigate and model the swarm

behavior. Also, a quantum algorithm has been developed for the path planning

of a single robot [72].

Pioneering applications of quantum computing in biology deal with simu-

lation technologies [73]: imaging, spectroscopy, microscopy, molecule dynamics210

[74], and protein structure prediction [75]. Quantum neural networks are con-

sidered key tools for neuroscience: from genes, to molecules, to cells, to neural

structures, up to the human behavior—seen as an emerging effect [76]. In Table

1, a synthetic overview of the literature framework is proposed.
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Table 1: A synthetic overview of the literature framework.

area topic authors year ref.

quantum mechanics

basics Feynman et al. 1965 [77]

entanglement

Einstein et al. 1935 [78]

Bell 1964 [65]

Greenberger et al. 1989 [79]

probabilities Hemmo and Shenker 2020 [63]

quantum computing

general Stolze and Suter 2004 [50]

entanglement and speed-up Josza and Linden 2003 [66]

for AI Wichert 2020 [10]

AI, learning Kwak et al. 2008 [80]

for robots

Dong et al. 2006 [52]

Benioff 1998 [51]

Dong et al. 2008 [81]

Zhu et al. 2010 [6]

Lamata et al. 2021 [68]

Atchade-Adelomou et al. 2021 [54]

Ivancevic 2016 [67]

Chella et al. 2022 [72]

for swarms of robots
Koukam et al. 2021 [69]

Mannone et al. 2022 [11]

swarms of robots

general Hamann 2018 [18]

overview Shranz et al. 2020 [19]

terrestrial (ants) Berman et al. 2011 [7]

terrestrial (kilobots) Rubenstein et al. 2014 [43]

terrestrial (e-pucks) Alkilabi et al. 2017 [44]

terrestrial Groß et al. 2006 [45]

aerial Oung 2013 [46]

aquatic Schmickl et al. 2015 [48]

outer space Kang 2018 [49]

general Zambonelli et al. 2011 [12]

response probability Wu et al. 2011 [64]

hormone-inspired Shen et al. 2020 [13]

foraging Pitonakova et al. 2020 [14]

general Sahin 2004 [17]

micro, health Dong and Sitti 2020 [16]

future Dorigo et al. 2020 [39]

fuzzy, underwater Sabra and Fung 2020 [70]

consensus formation Mañas-Álvarez et al. 2023 [42]

natural swarms

general Eberhart 2001 [1]

flocking birds Hemelrijk and Hildenbrandt 2012 [4]

termites Noirot 2000 [2]

foraging ants Plowes et al. 2013 [82]
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3. Motivations215

We described above the motivations for quantum computing. In this Section,

we enunciate the details of our research questions motivating our work.

Our first research question is: how can one connect local and global behavior

to model the swarm behavior emergence from local behavior of the single and

pairs of robots?220

The second question is: is it possible to model a local decision system through

quantum computing, to be the core part of a whole swarm approach?

Swarms of animals make use of a mixture of instinct, individual intelligence,

environment and peer observations for individual decision-making. Individual

decisions are the pieces in the puzzle of the emerging swarm intelligence.225

Robotic swarms rely on simple individual behavior and decision-making

which can be modeled first and coded then. The local behavior, with single-

agent decisions and pairwise interactions, needs to be connected with the global

behavior, that is, the emerging swarm behavior. We need a theoretical frame-

work to connect the local with the global behavior, and a logic model to build230

up decision-making structures.

Our quantum circuit models pairwise interactions, and, to be tested, it is

included inside an original algorithm (codes 1, 2) for the robotic swarm. For our

case study, we consider the biological inspiration of ants moving between the

nest and the food location. Group food retrieval in Aphaenogaster cockerelli,235

an ant species, is in fact the inspiration source for swarm robotic studies [7].

We focus on ant colonies because of their simplicity of modeling, importance

as a classic biological model, and easy generalizability. While our research may

appear as an optimization study, we are developing some initial elements for a

decisional system. In fact, even though we will be considering and comparing240

trajectories of robots, we are not developing a system to reach a target with

the fastest trajectory. We are not looking at the best possible solution of a

problem, but instead, at applications of quantum computing. The quantum

enhancement of an algorithm usually yields faster solutions than the classical
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counterparts. In our research, we are open to sub-optimal solutions. Thus, we245

preferred to not analyze our results with statistical approaches, but rather with

qualitative observations. Nevertheless, some quantitative comparisons (between

our method and the results of a particle swarm optimization adapted to our

scenario) are proposed in Table 10.

Quantum computing is used here to model probabilistic information sent250

by robots and probabilistic trajectory outcomes. Here, the quantum paradigm

involves:

• definitions of rewards (as probability amplitudes of ‘target yes’ and ‘target

no’ as 0/1) and positions (left/right as 0/1 along x, up/down as 0/1 along

y);255

• use of quantum circuits, with quantum logic gates, for robots’ probabilistic

decision-making;

• definition of an entangled GHZ state.

The Greenberger–Horne–Zeilinger state (GHZ state for short) is an entangled

state which, for three qubits, takes the form: |ψGHZ〉 = 1√
2
(|000〉 + |111〉)260

[79]. We will consider a GHZ for five qubits. In an enhanced and shortened

version of our code discussed later in the article, we omit the GHZ state, because

convergence is faster.

A closely-related research has been developed by Koukam and others [69].

The authors, focusing on agents, considered a quantum circuit, relating robot’s265

perceptions with robot’s actions, picking up an action from a list, as activating

an item. The idea has been implemented with IBM quantum simulators. In our

study, we also build up quantum circuits, embedding them into a theoretical

and nested approach to swarms, to model a search and rescue behavior. Our

research can inherit expertise in agent systems and multi-robots, adding the270

condition of swarm as a relationship between local and global behavior. In

[69], the authors used entangled W states, that is, states of the form |ψW 〉 =

1√
3
(|100〉+ |010〉+ |001〉). In our study, we choose entangled GHZ state, because
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we focus on space positions elements and we are interested in bringing together

all robots in a position (indicated by qubit 0) or in an opposite one (indicated275

by 1).

We aim to model the connection between local and global behavior through

nested matrices. A block matrix represents the swarm, while each sub-matrix

represents a single robot’s behavior or a pairwise interaction term. Changing

the structure of matrices, it is possible to model swarm features. We present the280

general theoretical idea and an experiment with a toy 3- and 10-robot swarm

implementation, confirming our expectations. In addition, even though our

approach is open to suboptimal solutions, we present a comparison between our

results and the results obtained with two optimization approaches, the PSO

and NL-SHADE-RSP algorithms, assessing the degree of suboptimality, and285

verifying the validity of our proposal.

4. Experimental

In our research, we propose a matrix-based model of a robotic swarm (the

details are provided in Section 5). We focus on off-diagonal sub-matrices, rep-

resenting interaction terms. We design a quantum-based local-interaction ap-290

proach, modeling relationships between input information (position and reward

as food proximity) and behavioral outcome. We implement a simulation of toy

3- and 10-robot swarms inspired by ant foraging in nature. The robots search

for the food and then get back to the nest. The food location and the nest are

targets to reach. Regarding communication strategies, broadcast communica-295

tion [14] are considered here. In the Appendix, all the necessary information to

replicate our experiment are provided.

Our proposed quantum circuit is included in two Python codes, created

in Jupyter Notebook environment and corresponding to Algorithm 1 and Al-

gorithm 2, accessible online, jointly with screenshots and a video simulation.300

Qiskit QASM simulator is called locally from the Notebook. An alternative

code could involve the loop repetition of the solely quantum gate, until the
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target is reached. The additional materials can be found in the GitHub fold-

ers https://github.com/medusamedusa/3-robot and https://github.com/

medusamedusa/10_little_ants.305

5. Theory and Calculation

In this section, we describe the theoretical background of our method, with

nested matrices (subsection 5.1) and quantum computing for decision-making

in search and rescue (subsection 5.2). Then, in Section 6, a toy model with a

robotic swarm is implemented.310

5.1. The overall matrix

In our former research [11], we presented a category-theoretic framework to

connect specific, existing swarms of robots with their typologies, going upward

in abstraction toward main classes of swarms (for underwater, flying, walking

robots), up to conceptual “ideal” swarms. Thus, we can make vertical com-315

parisons, between swarms of different ontology, and horizontal comparisons, be-

tween swarms of the same level of reality [11]. A comparison between different

swarms becomes in this way a comparison between block matrices.

In our approach, a swarm can be described by a block matrix at each time

point, where diagonal sub-matrices represent individual information of each

robot, and off-diagonal sub-matrices contain information on pairwise interac-

tion. Equation (1) shows the matrix Sn. The dimensions of the matrix are

computed as (nm)× (nm), where n is the number of robots and m is the size of

the matrix blocks, depending upon the degree of freedom and detail of informa-

tion exchange. Thus, if n = 3 and m = 4 (as the (4×4) blocks in Paragraph 5.2),

14
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S3 has dimensions 12× 12 (see Figure 1 in the separated file of the Appendix).

S(t)
n =



R1 R1 ∗R2 ... R1 ∗Rn−1 R1 ∗Rn

R2 ∗R1 R2 ... R2 ∗Rn−1 R2 ∗Rn

.

.

.

Rn−1 ∗R1 Rn−1 ∗R2 ... Rn−1 Rn−1

Rn ∗R1 Rn ∗R2 ... Rn ∗Rn−1 Rn


(1)

The case with n = 2 robots is described in [11]. In the case of a 3-robot

swarm, the matrix S3 is constituted by three single-robot terms (diagonal sub-

matrices) and six pairwise interaction terms (off-diagonal sub-matrices).

S
(t)
3 =


R1 (R1 ∗R2) (R1 ∗R3)

(R2 ∗R1) R2 (R2 ∗R3)

(R3 ∗R1) (R3 ∗R2) R3

 (2)

In eq. 2, off-diagonal sub-matrices are not symmetric: e.g., R1 might be sending

a message to R2, while R2 might not be sending any message in turn. Even if the320

two robots are sending messages to each other, their content will be different,

so the terms are different. In the case study of Section 6, we consider broadcast

communication: each robot sends a message to all the other robots. Inside the

matrix of eq. (2), one can define the structure of single-robot terms (eq. 4)

and pairwise interaction terms (eq. 5). In each single-robot sub-matrix (eq.325

4), diagonal blocks indicate robot’s own ‘perception’ and off-diagonal blocks

correspond to robot’s communication tools.

A specific form that can be taken by diagonal and off-diagonal sub-matrices is

proposed at the end of Section 5.2. Let us now introduce the quantum formalism

needed to develop our modeling.330

5.2. The quantum machinery

We formalize pairwise robotic interaction terms as quantum gates. To this

aim, we quantize robots positions and target positions. That is, for each robot,
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we model the position along the x-axis, the position along y, and the reward as

quantum superposition of |0〉 and |1〉. In our study, we measure the individual335

reward in terms of target proximity.

In the case of one-dimensional movement, the x-position of the i-th robot is

given by:

|q0〉 = αx
i |0〉+ βx

i |1〉,

where αx
i is the probability amplitude for outcome |0〉 along x (left) and βx

i is

the amplitude for outcome |1〉 (right), and the reward is given by:

|q1〉 = γi|0〉+ δi|1〉,

where γi is the probability amplitude to obtain |0〉, failure, and δi to obtain |1〉,

success. In the case of a 2-robot toy swarm and motion along one dimension

only, one can thus define a reversible logic gate as the one presented in Table 2.

If a robot had a successful reward (1) in position 1 at time 0, the other robot340

reaches it at time 1. Otherwise, the second robot explores around position 0.

The so-obtained decision system can be described through a reversible gate. Ac-

tual configurations are quantum superposition of states. For a detailed account

of states and some simulations, see [11]. The code to implement this gate can

be found in the Appendix.345

While considering a motion along the plane, we have:

|q0〉 = αx
i |0〉+ βx

i |1〉, |q1〉 = αy
i |0〉+ βy

i |1〉, |q2〉 = γi|0〉+ δi|1〉, (3)

where |q0〉, |q1〉 are the positions along x and y, respectively, and |q2〉 is the

reward. In particular, αx
i is the probability amplitude for outcome |0〉 along x

(left), βx
i for |1〉 along x (right), αy

i for |0〉 along y (up), and βy
i for |1〉 along y

(down). The pairwise interaction of two robots on the x-y plane can be described

through Table 3, implemented through the circuit of Figure 1 obtained with IBM350

Quantum Composer. On the plane, in case of failure (reward 0) of robot 1, then

robot 2 has more than one option, leading to outcome indeterminacy—and the

gate is no longer reversible.
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Table 2: Truth tables (reversible equivalents of XNOR gates), representing the interaction

between robot 1, R1 (q0: position, q1: reward) and robot 2, R2 (q2: position, q3: reward). At

time t0, R1 sends to R2 a message with its position and reward. According to this information,

R2 can choose to reach the first robot or not at t1. The reward of R1 is copied in the output to

guarantee the same number of inputs and outputs, making the gate reversible. After having

sent the message, R1 stops and waits for the motion of R2. Once the R2 reaches the new

position at t2, it can send to R1, in turn, its position and obtained reward. And, similarly,

R1 can decide to reach R2 or not at t2. The first table represents the situation t0 → t1, and

the second table, t1 → t2.

q0 q1 q0 q2

0 0 0 1

0 1 0 0

1 0 1 0

1 1 1 1

q2 q3 q2 q0

0 0 0 1

0 1 0 0

1 0 1 0

1 1 1 1

Table 3: The idea of Table 2 is now extended to two dimensions in space, with the truth

table for two robots Ri, Rj on the plane, no longer reversible because of the indeterminacy

on x, y in the case of 0 reward. In this application, we do not consider any waiting time. All

robots are exchanging information and moving only if its reward is lower than their own.

q0 q1 q2 q4 q3 q2

x-pos y-pos reward y-pos x-pos reward

Ri Ri Ri Rj Rj Ri

0 0 0 0/1 0/1 0

0 0 1 0 0 1

0 1 0 0/1 0/1 0

0 1 1 1 0 1

1 1 1 1 1 1

1 0 0 0/1 0/1 0

1 1 0 0/1 0/1 0

1 0 1 0 1 1

In a 3-robot swarm, such an indeterminacy is solved because each robot is

receiving information from two robots, not only one, and it can let only the355

most successful robot (reward = 1 or just higher than the other) enter the

table. However, if the most successful robot presents a H (Hadamard) gate for
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Figure 1: Quantum circuit realizing the truth table of Table 3. The circuit is made of NOT,

Toffoli, and Hadamard gates. The white “plus” inside a blue circle indicates the NOT gate;

the same symbol connected with two other smaller blue circles indicates the Toffoli gate. The

symbol containing the red square with the white H indicates the Hadamard gate. The gray

boxes with the Z letter characterize the measurement operation. These are standard symbols

used in quantum computing, to indicate logic gates. Each line indicate a qubit (q[0], ..., q[4])

and a classical bit (mq21, mq31, mq41), where the results of the measurements are stored.

At the end of the circuit, there are measurements for each qubit. As an example, the initial

configuration with |q0〉 = 0, |q1〉 = 1, |q2〉 = 1 is shown.

the reward state, then one can also get a superposition of possibilities as the

output (Tables 4, 5, 6).
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Table 4: Theoretical expectations for inputs and outputs of the proposed quantum circuit

for a selection of eigenstates and state superpositions. The input is given by the values of

(x, y)-position and reward values of robot Ri, that is, the message sent by Ri to Rj , the second

robot. The output is thus the expected (x, y)−position to be reached by Rj . The reward of

the first robot is just copied into the output, to have the same number of inputs and outputs,

necessary for reversible gates in quantum computing. In fact, in the output, the reward is

the one of Ri. The reward of Rj will be computed once the second robot actually will have

reached the expected position.

Ri (exp.) Rj

label x y rew. y x (rew.)

A Ry(1.9) 1 1 1 Ry(1.9) 1

B Ry(1.9) 0 1 0 Ry(1.9) 1

C 0 0 1 0 0 1

D 0 0 0 H H 0

E 1 1 0 H H 0

F 1 0 1 0 1 1

G H 1 1 1 H 1

H 1 1 H H (more 1) H (1) H

I H H H H H H

L 1 1 Ry(1.9) 1 1 Ry(1.9)

M 0 1 1 1 0 1

N 1 1 1 1 1 1
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Table 5: Comparison and agreement between theoretical expectations (Table 4) and measured

outcomes, obtained with the QASM simulator. Empty cells indicate 0 measurements. Screen-

shots of measurements A1, ..., N1 can be retrieved at https://github.com/medusamedusa/

3-robot/blob/main/QASM_simulator.zip. Here and in Table 6, the states indicate x, y, and

reward, respectively.

states agr.

label 000 001 010 011 100 101 110 111

A1 345 679 X

B1 345 653 X

C1 1024 X

D1 245 265 254 260 X

E1 254 232 258 280 X

F1 1024 X

G1 540 484 X

H1 152 124 146 128 474 X

I1 247 259 270 248 X

L1 87 84 100 75 678 X

M1 1024 X

N1 1024 X
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Table 6: Comparison between the outcomes obtained with three IBM quantum comput-

ers (C), located in Bogotà (B), Lima (L), and Manila (M), for states A, ..., N and agree-

ment with respect to theoretical expectations (Table 5). Some relevant results in agreement

with the expectations are highlighted in bold. Screenshots of A2, ..., N2 can be retrieved

at https://github.com/medusamedusa/, in the zip files quantum computer Bogota.zip, quan-

tum computer Lima.zip, and quantum computer Manila.zip, respectively.

states agr.

label C 000 001 010 011 100 101 110 111

A2 B 177 197 99 136 129 139 74 82 ∼

L 144 163 108 117 152 160 63 117 ∼

M 88 78 83 119 70 234 88 264 X

B2 B 212 181 127 146 120 94 73 71 ∼

L 240 196 136 156 126 75 53 42 ∼

M 99 283 86 302 66 67 44 77 X

C2 B 144 251 88 128 111 132 78 92 X

L 199 318 100 130 122 168 65 22 X

M 114 384 70 96 69 129 84 78 X

D2 B 368 59 141 21 294 25 106 10 X

M 248 106 174 44 225 33 173 21 X

L 260 44 250 33 208 33 179 17 X

E2 B 203 66 125 59 256 90 154 71 X

L 304 51 218 41 216 26 131 37 X

M 259 41 184 34 229 51 174 52 X

F2 B 98 234 106 209 77 115 74 111 ∼

L 165 257 111 230 106 49 74 32 ∼

M 69 324 72 280 62 91 49 77 ∼

G2 B 135 206 71 125 138 188 74 87 ∼

L 120 137 106 73 109 222 114 143 X

M 55 177 45 129 75 293 59 191 X

H2 B 161 109 141 55 202 113 152 91 X

L 185 61 204 72 156 64 205 77 X

M 184 77 162 112 113 95 113 168 X

I2 B 198 140 137 121 155 89 110 74 X

L 231 104 143 94 216 62 106 68 ∼

M 188 128 128 83 190 109 112 86 X

L2 B 224 85 192 100 122 93 119 89 x

L 142 156 101 154 138 124 108 101 x

M 128 107 148 123 102 110 77 229 X

M2 B 134 115 108 192 160 68 119 128 x

L 146 173 127 199 149 118 106 86 x

M 68 198 65 101 81 339 76 96 X

N2 B 147 154 112 253 58 108 65 127 x

L 150 190 99 139 103 130 111 102 x

M 67 98 81 304 78 104 76 216 ∼
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Table 4 presents, for a selection of states, input values and expected values.360

Table 5 shows the agreement between these expectations and the output ob-

tained with the QASM simulator. Table 6 shows the comparison between the

outcomes obtained through three different IBM quantum computers, presenting

a larger quantum noise.

Once our quantum circuit is defined and tested on simulators and quantum365

computers, it can be embedded into a code for a robotic swarm, to verify the

impact of quantum-modeled local interactions on the swarm global behavior.

Thus, we can now more precisely shape our matrices. In fact, in practical

implementations with robots, we can either use the circuit of Figure 1 in a loop

until robots reach the target, or we can embed the circuit in a more complex370

code with several steps. Each step corresponds to a shot of the matrix, with

broadcast information and consequent action of each robot, activating the sub-

matrices corresponding to pairwise interaction with the most successful robot.

This strategy has been chosen for the case study in Section 6. In the Appendix,

the matrices for each step of a run are presented.375

Ri(t) =


xi(t) (Where I am) ẋi(t) (Where I go) send (A) on send (B) on

yi(t) (Where I am) ẏi(t) (Where I go) send (C) on send (D) off

receive (A) on receive (B) on type e-puck wheels 2

receive (D) on receive (D) off camera on motor 1


(4)

Let us focus on a 3-robot toy swarm moving on the plane, analyzing in more

detail the structure of matrices. In (4), positions x, y are considered as the

quantum superposition of states, see Section 5.2 for details. Letters A, ..., D

indicate different communication channels.

In each pairwise-interaction sub-matrix (eq. 5), the first diagonal block

contains the information, sent by the i-th robot (Ri), about its (x,y)-position

probability amplitudes and reward. The second diagonal block contains the

possible behavioral response of the j-th robot (Rj), according to the reward of

Ri. If the reward is high, Rj follows Ri; otherwise, the position of the Rj robot
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at the subsequent time interval is assumed as a quantum superposition of the

possible outcome of x- and y-positions.

(Ri ∗Rj)(t) =


αx
i (t) βx

i (t) γi(t) 0

αy
i (t) βy

i (t) 0 δi(t)

0 0 αx
j (t+ 1) βx

j (t+ 1)

0 0 αy
j (t+ 1) βy

j (t+ 1)

 (5)

In principle, one should evaluate six interaction terms. However, we can com-380

pute only three of them, halving computational times. In fact, the Rj gets

signals from Ri and Rk, comparing this information with its own information

on position and reward. Rj chooses which robot to follow (or, more precisely,

which robot should enter the quantum circuit to decide the position) accord-

ing to its highest reward. Rj remains stationary if it already has the highest385

reward. In the presented pseudocodes (see the Appendix) and in the corre-

sponding Jupyter/Python codes we created, it has been necessary to compute

just one interaction term, having as inputs positions’ and rewards’ probabil-

ity amplitudes of the robot with the highest reward, and as output, positions

probability amplitudes assigned to the other two robots. Small fluctuations are390

added to avoid a superposition of these two robots. An example of the matrix

output, when the proposed quantum circuit is included in our ant-inspired code

for three robots, is proposed at the end of the Appendix.

5.3. Pseudocodes

Before moving to the results, let us describe the pseudocodes used in our395

method. We present here our original and improved algorithms, Algorithms 1

and 2, respectively.
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Algorithm 1 original quantum-gate driven search

1: Class Target and instances (T1: Food, T2: Nest)

2: Robots R1 R2, R3 as classes, values as attributes

3: if All robots have a high but not max reward: then

4: little random variation of R1

5: end if

6: Inputs: initial robots’ positions

7: Reward evaluation Robots i, j, k (as Euclidean distance from the target)

8: if R1,2,3 have a reward lower than a threshold: then

9: Re-initialize randomly their positions and rewards

10: else Do not re-evaluate positions and rewards

11: end if

12: for i, j, k = 1, 2, 3 do

13: Ri gets information from robots j, k

14: Evaluation of the highest probability of ‘Yes’ as reward

15: if If the i-th robot had already the highest reward: then

16: the other robots reach it

17: end if

18: end for

19: Evaluation of the highest probability of ‘Yes’ as reward

20: if If the i-th robot has the highest reward: then

21: it does not enter the circuit of Figure 1 for probabilistic decision-making

22: it does not move

23: else if robot j has the highest reward: then

24: x-y positions and reward of Rj at time t are the circuit inputs

25: circuit output: most likely positions at t + 1 for both Ri and Rk

26: the 2 most frequent configurations: arrays; occurrences: weights

27: end if

28: update positions, reward, graph

29: repeat lines 3, 8, 15

30: if R1,2,3 have a reward difference lower than a threshold: then

31: lock robots in a GHZ. 1(0): higher-reward robot position +(-) fluctuation;

measure of the qubits

32: end if

33: overall fluctuation or overall flip

34: Outputs: final robots’ positions and final rewards

35: repeat from Line 3 to Line 34 to get back to the nest, calculating rewards with

respect to the nest (T2).
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Algorithm 2 enhanced quantum-gate driven search

1: choose the number of robots

2: initialize robots’ positions as state superpositions

3: if all rewards are below a certain threshold then

4: for each robot do

5: randomly reshuffle positions

6: if a position hits the obstacle then

7: reshuffle the position for that robot

8: end if

9: end for

10: end if

11: find the robot with the highest reward and let it enter the circuit

12: find the new suggested position through the circuit

13: for all robots do

14: evaluate the new rewards

15: end for

Regarding time complexity, conditional statements have a complexity of

O(n log n), and time loops of O(n); because our algorithms contain nested for

and if, the complexity is of O(n). Space complexity is also O(n), because of400

the sorting function: What is the most successful robot?. The sorting function

adopted for our examples is classical. The quantum part regards the computa-

tion of the logic gate Ri → Rj . In next research, the sorting operation could be

made quantum as well, using the Grover search, with O(
√
n).

6. Results: A case study405

At the end of Section 5, the pseudocodes used for our method have been

presented. In this Section, we analyze the effectiveness of our quantum circuit

inside the algorithm, and then we compare it with other search methods. First,

setup and conducted experiments based on your model are presented (subsection

6.1); then, a quantitative comparison between our method and the PSO variant410
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(subsection 6.2) and the NL-SHADE-RSP with midpoint algorithm (subsection

6.3) are discussed.

6.1. Setup and experiments with our model

Before presenting the implementation results, we recall that robot positions

are defined here as quantum state superpositions: for Ri, there is a probability415

amplitude αx
i to stay in the point 0 of the x-axis, βx

i to stay in the point 1 of

the x-axis, and corresponding αy
i , β

y
i for the y-axis, respectively. If (βx

i , β
y
i ) =

(0.99, 0.99) is almost sure to find the robot in (1,1): visually, wave functions have

a peak in (1,1). So, one can reasonably (within quantum indeterminacy) localize

Ri in (1, 1). If (βx
i , β

y
i ) = (0.5, 0.5), however, there is the same probability420

amplitude to find the robot in any point of the xy-plane. With a little abuse of

notation, in this situation we indicate the robot in (0.5, 0.5), that is, considering

the positions as the peaks of the wavefunctions describing the states: half-way

between the two extremes of the [0, 1] segment along x and y. This is why βx
i , β

y
i

are considered to build our (approximate) visual representations. The target is425

treated the same way, making possible the comparisons between target’s and

robots’ positions.

The reward is evaluated as the distance from the target. It is the measure of

δ, the amplitude probability to get 1, that is, ‘success.’ This is a conceptual sim-

plification: the robots cannot truly know their distance from the target. They430

can assess their approximate positions and distances interpreting their vision (if

we are considering robot vision, or smell for ants), as ‘yes,’ ‘no,’ ‘maybe.’ In

principle, robots can rotate to improve their camera vision, and they should also

avoid eventual obstacles in their path. In future research, one can model robot

vision, leaving the evaluation of rewards to the ‘precision’ of target proximity435

assessment. E.g., if only the 30% of target is visible on a camera, then that

robot will have, as a reward, 30% or ‘yes’ and 70% of ‘no.’ The overall code

would remain the same, except for the reward’s evaluation.

Let us now describe an implementation of our method for a small-sized
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robotic swarm. We start with the comparison of convergence efficiency7 of our440

decision-making system for swarms of different sizes. In Table 7, we consider

the enhanced and shortened code, allowing the customization of the number

of elements of the swarm. Once can notice that the scalability starts being

visible for N ≥ 5. A more robust convergence is presented for 10 robots. Trials

performed with swarms of 15 units, not reported here, show results similar to445

the ones obtained for 10 robots. In analogy with the biological model of foraging

ants [82], in this analysis we consider the motion from the nest to the source

of food (the target). In the table, the closer the average reward to 1, the more

successful the swarm.

Table 7: We present a comparison between the rewards for swarms of different sizes, with

N = 2, 3, 5, 10 robots, respectively. For these simulations, we used the second (and shorter)

algorithm, and we placed the nest (start) in (0.2, 0.9), and the food (target) in (0.9, 0.2).

average reward

N trial t0 t1 t2 t3

2

1 0.249 0.689 0.682 0.760

2 0.217 0.637 0.777 0.781

3 0.245 0.534 0.698 0.733

3

1 0.244 0.694 0.779 0.801

2 0.256 0.546 0.585 0.673

3 0.271 0.756 0.836 0.920

5

1 0.253 0.778 0.798 0.892

2 0.245 0.637 0.831 0.899

3 0.241 0.685 0.774 0.856

10

1 0.256 0.596 0.684 0.821

2 0.251 0.661 0.843 0.878

3 0.255 0.601 0.833 0.924

7While talking about our algorithms, we use the term “efficiency” to indicate the reduction

of code lines and the improved accuracy in target reaching, shown by the second code.
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Let us now observe in detail the performance with the longer algorithm,450

complete with GHZ, for a 3-robot swarm. Following the biologic example of

ants, we consider a motion back-and-forth between the nest (T2) and the food

location (T1), evaluating robots’ behavior in terms of their rewards (Table 8).

When the convergence is not optimal, additional run of the code allow to reach

a more precise convergence. In the majority of our tests, the robots converge to455

the targets, showing a concordance with the model. In the lower part of Table

8, the food position is changed.

Table 8: Top: Comparative table with the results of eight runs of the first code (longer),

between two targets: T2, the food source, and T1, the nest, in analogy with the Ant Lines

model. Numbers in bold highlight the most relevant contributions of the gate to improve

rewards. The arrival position of the first path is the starting point for the second path. The

last column shows the convergence, which is successful if the final rewards are ≥ 0.8, and

approximate if ≥ 0.6, < 0.8. Bottom: Robots’ behavior in terms of reward time points for

changing food locations. Details of the gate states outcomes and populations can be found

at https://github.com/medusamedusa/3-robot; files test(number) Jan 29.pdf (table above)

and trial(number) different food Jan 29.pdf (table below).

test path initial rewards rewards before circuit rewards after circuit rewards before GHZ final rewards

1 T2 → T1 (0.3, 0.34, 0.29) (0.68, 0.6, 0.57) (0.68, 0.8, 0.53) (0.8, 0.8, 0.82) (0.85, 0.85, 0.85) X

→ T2 (0.15, 0.15, 0.15) (0.58,0.56,0.38) (0.58,0.78,0.38) (0.78, 0.86, 0.81) (0.92, 0.92, 0.92) X

2 T2 → T1 (0.3, 0.34, 0.29) (0.78, 0.84, 0.81) (0.7, 0.84, 0.69) (0.87, 0.84, 0.53) (0.81, 0.81, 0.81) X

→ T1 (0.25, 0.25, 0.25) (0.9, 0.93, 0.86) (0.68, 0.93, 0.86) (0.93, 0.93, 0.89) (0.9, 0.9, 0.9) X

3 T2 → T1 (0.3, 0.34, 0.29) (0.76,0.55,0.41) (0.76,0.6,0.6) (0.7, 0.7, 0.7) (0.67, 0.67, 0.67) ∼

→ T1 (0.33, 0.33, 0.33) (0.86, 0.8, 0.83) (0.86, 0.78, 0.83) (0.78, 0.76, 0.83) (0.83, 0.83, 0.83) X

4 T2 → T1 (0.3, 0.34, 0.29) (0.78,0.56,0.25) (0.78,0.78,0.78) (0.78, 0.78, 0.78) (0.67, 0.67, 0.67) ∼

→ T1 (0.41, 0.41, 0.41) (0.41,0.41,0.41) (0.7,0.7,0.41) (0.7, 0.7, 0.7) (0.77, 0.77, 0.77) ∼

5 T2 → T1 (0.3, 0.34, 0.29) (0.79, 0.4, 0.65) (0.79, 0.52, 0.67) (0.79, 0.71, 0.71) (0.77, 0.77, 0.77) ∼

→ T1 (0.53, 0.53, 0.53) (0.53, 0.53, 0.53) (0.46, 0.46, 0.53) (0.89, 0.89, 0.93) (0.85, 0.85, 0.85) X

6 T2 → T1 (0.3, 0.34, 0.29) (0.68,0.21,0.79) (0.8,0.8,0.79) (0.78, 0.8, 0.6) (0.77, 0.77, 0.77) ∼

→ T1 (0.29, 0.29, 0.29) (0.35, 0.42, 0.53) (0.46, 0.46, 0.53) (0.7, 0.7, 0.72) (0.72, 0.72, 0.72) ∼

7 T2 → T1 (0.3, 0.34, 0.29) (0.92, 0.9, 0.9) (0.92, 0.9, 0.9) (0.9, 0.69, 0.98) (0.9, 0.9, 0.9) X

→ T1 (0.25, 0.25, 0.25) (0.63 0.57 0.66) (0.46, 0.66, 0.66) (0.75, 0.75, 0.66) (0.66, 0.66, 0.66) ∼

8 T2 → T1 (0.3, 0.34, 0.29) (0.64, 0.62, 0.59) (0.64, 0.77, 0.54) (0.77, 0.77, 0.6) (0.81, 0.81, 0.81) X

→ T1 (0.38, 0.38, 0.38) (0.86, 0.93, 0.87) (0.59, 0.93, 0.87) (0.93, 0.96, 0.91) (0.92, 0.92, 0.92) X

food position (T ′1) path initial rewards rewards before circuit rewards after circuit rewards before GHZ final rewards

(0.2, 0.9) T2 → T ′1 (0.6, 0.6, 0.64) (0.6,0.6,0.64) (0.86,0.86,0.64) (0.81, 0.86, 0.82) (0.81, 0.81, 0.81) X

→ T ′2 (0.65, 0.65, 0.65) (0.65, 0.65, 0.65) (0.68, 0.64, 0.75) (0.74, 0.84, 0.82) (0.92, 0.92, 0.92) X

(0.9, 0.9) T2 → T ′1 (0.19, 0.23, 0.2) (0.6, 0.6, 0.64) (0.2, 0.23, 0.6) (0.98, 0.94, 0.98) (0.93, 0.93, 0.93) X

→ T2 (0.65, 0.65, 0.65) (0.86, 0.88, 0.91) (0.86, 0.88, 0.91) (0.74, 0.84, 0.82) (0.91, 0.91, 0.91) X

(0.5, 0.0) T2 → T ′1 (0.42, 0.44, 0.38) (0.5, 0.44, 0.5) (0.5, 0.5, 0.5) (0.55, 0.55, 0.5) (0.71, 0.71, 0.71) ∼

→ T2 (0.69, 0.69, 0.69) (0.69, 0.69, 0.69) (0.78, 0.7, 0.69) (0.76, 0.76, 0.76) (0.81, 0.81, 0.81) X
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From our tests, one can see that the proposed gate works better when the

robots are in exploration phase, that is, in sight of the target but not very close

to it. In a real application, one can argue that, if robots are all already close460

enough to the target, they are not required to enter the gate. In the majority

of cases, the gate actually improves the robot reward statuses. Fluctuations are

justified by the probabilistic nature of this approach. Our toy-swarm converges

to the target (final rewards ≥ 0.8) in 14 out of 19 paths, and it reaches some

closeness (final reward ≥ 0.6) in all paths.465

Here, we propose the entanglement (GHZ state) to let robots act as a whole sys-

tem in the latest steps of the search process. In other studies, the entanglement

condition is imposed right at the beginning [67]. However, here we avoid any

strong hypothesis in the first steps of the process, preferring instead to focus on

the proposed circuit action.470

Figure 2 shows the path simulation obtained with the shorter code and 10

robots. One can notice that, to reach the target, a smaller number of passages is

required, and the convergence is high (the average reward is 0.925). Considering

as metrics the number of direction changes across the different methods, we can

qualitatively assess that, even in its original version, our method requires a475

smaller number of turns for the robots. Moreover, in the shorter version of the

code, there is only one change of direction, after the computation of the gate.

The number of direction changes for the bounded round walk and the NetLogo

simulation is visibly higher than 1. To make the code more general, we included

a known obstacle (indicated by the red pentagon), that is avoided by the swarm.480

If, after the random generation of positions (step 1), the obstacle position would

be hit by a robot, a new cycle of random-number generation is activated.
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(a) Test A, initial configuration, in analogy with

the ant-lines example
(b) Second step with the scattering

(c) Results of the gate computation
(d) Final configuration, after the gate

Figure 2: Same setup of Figure 3, improved code (the second and shorter one) and results

of the test for 10 robots. The red pentagon indicates an obstacle which is avoided. The

complete output of this test is in the PDF testA.pdf, available in the shared Git folder https:

//github.com/medusamedusa/10_little_ants.

6.2. Comparison with a PSO variant

In this subsection, we first present a qualitative comparison with another

ant-colony model, coded in NetLogo; then, we focus on a PSO variant. Our485

method is applied to a 3-robot swarm for the first case, and to a 10-robot swarm

in the second case. Figure 3 also shows a qualitative visual comparison between

paths back-and-forth in Test 1, a similar setup with Ant Lines in NetLogo and

a Python-made 3-objects bounded random walk. A video simulation for Test 1

is available at https://github.com/medusamedusa/3-robot.490

Let us now present a comparison between particle swarm optimization (PSO)

approach [83] and our proposed method. See the Appendix for the code refer-

ences. Our results are shown in Table 9 and Figure 4. For both approaches,

we consider a 1 × 1 square. However, PSO is conceptually different from our
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(a) Test 1, path T2 → T1
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(b) Test 1, path T1 → T2

(c) Bounded random walk from left to right (d) 3-ant example with NetLogo from nest to food

Figure 3: Visual comparison between paths for our setup, ant lines, and bounded random

walks. For the simulations of our method, we used here the first (longer) code. In (a) and (b):

the red star indicates the center of the nest, and the turquoise star indicates the food source.

The yellow disks highlight the range of convergence. As one can see in Figure 2, with the

enhanced and shortened code, the convergence is significantly improved, presenting a smaller

number of steps. Computational details of the bounded random walks and the 3-ant example

with NetLogo are provided in the Appendix.

approach. Our method is not an optimization technique. For our PSO ex-

ample, there is a surface living in three dimensions. The equivalent of the

target is the minimum of the surface. We define an object function, that is,

f(x, y) = (x−0.9)2 +(y−0.5)2, having its minimum in (0.9, 0.5), the same point

where the considered target is. In Table 10, the considered target is (0.8, 0.9),

and the objective function is changed accordingly. Running the simulation, we

estimate the precision of PSO particles in making it to the target. Starting with

the PSO with the same initial conditions of our approach (all robots in a small

cluster centered in a point of the plane), obtained with

X = np.random.rand(2, n particles) ∗ 0.1 + 0.2,
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Y = np.random.rand(2, n particles) ∗ 0.1 + 0.2,

(X, V in the code), the convergence is 10 times less precise than for our method.

Starting with the PSO with all-scattered robots, that is, with

X = np.random.rand(2, n particles) ∗ 0.9,

Y = np.random.rand(2, n particles) ∗ 0.01,

then the target is more precisely reached. In both tests with PSO, 49 iterations

are considered. However, with our method, only four passages are needed. To

quantitatively compare our results against the PSO ones, we compute distances

(Euclidean, Manhattan, cosine dissimilarity) between the swarm barycenter and

the target coordinates. Results are presented in Table 10. We consider PSO495

taking into account the constraints of our scenario. When the initial parameters

are the same as the ones we used, the results obtained with our approach appear

as more precise. In fact, the distance values between the barycenter of the

swarm and the target are smaller, see Table 10. If the PSO initial condition is

the scattered search rather than all particles in a “nest,” then in one case PSO500

outperforms our method (test f), and in another one, our method outperforms

PSO (test n). However, these are only initial considerations. In future research,

one can exploit machine learning to run further tests, and statistical techniques

to analyze the results, also taking into account recent developments of PSO

[35], and enhancements of ant-colony approaches with the genetic algorithm505

(GA) [36, 37]. More details about future improvements, also inspired by GA-

derived and differential evolution-based competition-winner algorithms [34, 84],

are discussed in Section 7.
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Table 9: Comparison between our method (second code) and a PSO test (see Figure 4).

The PDF with the complete outputs can be found in the folder https://github.com/

medusamedusa/10_little_ants/tree/main/test_PSO.

nest (starting points) food (target) error

expected (0.6, 0.6) (0.9, 0.5) 0.

our method centered in (0.6, 0.6) (0.89, 0.65/0.66) 0.01

PSO - test 1 centered in (0.6, 0.6) (0.79..., 0.59,...) 0.1

PSO - test 2 scattered (0.90, 0.49) 0., 0.01

Table 10: Distance comparison between the position of the robotic-swarm barycenter and

the target coordinates, at the end of the search process. In tests (a)-(e) and (g)-(m), the

starting point of robots are centered in the nest at (0.6, 0.6), while in tests (f) and (n) they

are scattered through the arena (that is, with an initial condition that differs from ours).

The pairs of tests (d),(e) and (l),(m) lead to the same numerical results, respectively. The

complete outputs can be found in the folder https://github.com/medusamedusa/10_little_

ants/tree/main/test_distance_comparison_PSO.

barycenter/target distance

test method start target Euclidean Manhattan Cosine

a our centered (0.9, 0.5) 0.047 0.066 0.001

b our centered ” 0.124 0.131 0.006

c our centered ” 0.019 0.025 2.95 ∗ 10−6

d PSO centered ” 0.137 0.193 0.010

e PSO centered ” 0.137 0.193 0.010

f PSO scattered ” 7.65 ∗ 10−5 7.70 ∗ 10−5 2.90 ∗ 10−9

g our centered (0.8, 0.9) 0.0196 0.025 0.0001

h our centered ” 0.071 0.099 0.0018

i our centered ” 0.126 0.155 0.0014

l PSO centered ” 0.418 0.506 0.057

m PSO centered ” 0.418 0.506 0.057

n PSO scattered ” 0.386 0.462 0.0497
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(a) Our method, start (b) Random scramble
(c) results after the gate

(d) PSO, test 1, start with

clustered particles
(e) Test 1, iteration 49

(f) Test 1, results

(g) PSO, test 2, start with

scattered particles
(h) Test 2, iteration 49

(i) Test 2, results

Figure 4: A comparison between our method (a-c), applied to 10 robots, for a target in (0.9,

0.5), clustered robots around (0.6, 0.6), and an obstacle, with an example of PSO (d-i), where

the target is represented by the minimum of an objective function.
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6.3. Comparison against an NL-SHADE-RSP algorithm

Finally, we performed a comparison between the precision of the results510

achieved with our method, and with a winner of a CEC-winner in 2022. In par-

ticular, we focused on a differential evolution-based algorithm, NL-SHADE-RSP

with midpoint [34]. During the competition, the code has been used to optimize

objective functions. Here, we wrote two new objective functions, having global

minima in correspondence of two target locations of our scenario, respectively.515

In [34], the conditions of our scenario are reproduced, with a population of ten

units initially starting in a disk centered on (0.6, 0.6) with a radius of 0.1. The

exploration space is a square of side [0, 1]. A total of 25 runs for each one of the

two objective functions have been completed. Table 11 shows the data of first

evaluations of the two functions in ten different runs for each objective func-520

tion. The objective function is evaluated 300 or 400 times to reach the target

with an error of 10−9. After one or three evaluations, the results have an error

of the same order of magnitude of the results attained with our methodology:

see test a-c and test g-h from Table 10. After four evaluations, the error is of

the same order of magnitude, or one order less. The advantage shown by our525

methodology (which leads to suboptimal solutions) is the simplicity of passages

and the precision corresponding to the first evaluations of an advanced and way

more complex optimization algorithm. It should be precised that the method

NL-SHADE-RSP [34] has not been devised for small functions, and that our

methodology is not an optimization technique. Thus, such a comparison gives530

an idea of the orders of magnitude of the error a target is reached with, in

our 4-step code, and according to the first evaluations of a recent and efficient

algorithm.
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Table 11: Outputs of a recent version of NL-SHADE-RSP with midpoint [34], tested on two

different objective functions (f. obj. 1 and f. obj. 2), having as minima the targets in our

scenario: (0.9, 0.5) and (0.8, 0.9), respectively. Population is constituted by 10 units, as in our

test of Table 10. The complete data can be retrieved at https://github.com/medusamedusa/

10_little_ants/tree/main/SHADE.

distance from the target

run no. of evaluations f. obj. 1 f. obj. 2

1

1 0.0564498 0.129196

4 0.00699566 0.121177

50 0.00428091 0.0590199

2

1 0.052212 0.0804435

4 0.052212 0.0804435

50 0.00898058 0.0434829

3

1 0.0368419 0.0804435

4 0.0135726 0.0804435

50 0.000914063 0.0434829

4

1 0.0135726 0.126022

4 0.0135726 0.0887293

50 0.000914063 0.026067

5

1 0.0961737 0.218962

4 0.0785412 0.109809

50 0.035633 0.0689708

6

1 0.158216 0.167935

4 0.0593486 0.0561922

50 0.0136765 0.0326968

7

1 0.0320644 0.170921

4 0.0320644 0.147435

50 0.000156165 0.0736671

8

1 0.0583604 0.0661496

4 0.0583604 0.0661496

50 0.0140189 0.0661496

9

1 0.0961737 0.218962

4 0.0785412 0.109809

50 0.035633 0.0689708

10

1 0.0583604 0.0804435

4 0.0583604 0.0804435

50 0.0140189 0.0434829
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7. Discussion

Addressing the problematics of a formal description of robotic swarms, we535

developed a matrix-based approach distinguishing between single robots’ infor-

mation and pairwise interactions. Then, we focused on interactions, developing

a quantum-based decision model to connect information exchange and local de-

cisions with the overall swarm behavior. We devised a strategy and implemented

it for 3-robot and 10-robot toy swarms. The proposed strategy could constitute540

a new software design paradigm, with communications included in the feedback

loop. The core idea of our study can in the future be enriched making the

whole system scalable, finding patterns of behavior, adding one more spatial

dimension, and introducing learning.

While we worked with three and ten robots only, our algorithm can be545

extended to a generic number of robots. The structure of the matrix would

remain the same. Scalability is thus possible. From 3 to N robots, one would

have no longer 3! = 6 but N ! interaction sub-matrices. However, given the

described patterns of behavior, with only the more successful robot entering

the circuit, also in the case of N robots, the evaluation of only one interaction550

term could just be required. At time t, all robots broadcast information about

their reward. The position of the only robot with the highest reward enters

the decision system of each robot, allowing them to move accordingly at t+ 1.

Other steps of reshuffle (see the Pseudocode in Materials and Methods) allow

robots to improve their exploration also in cases of low reward for all of them.555

Here, the reward has been evaluated as the distance from the target. In the

future, this information might be recovered through camera observations, sound

recognition, or even odor recognition, as it happens for ants with pheromones.

In any case, the main structure of the algorithm would remain unchanged.

Our study involved robots in the plane. This is an extension of our first560

approach with movements along a line [11]. One can extend the present study

by adding one more spatial dimension, as sketched in [85]. The circuit does

only require one more qubit. This change does not alter the core idea. A
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tridimensional motion would make the modeling of swarm robotic motion in

the air or underwater possible. In our study, we first considered the ideal model565

of motion in an obstacle-less two-dimensional space, with battery-less robots.

Then, in our enhanced code, we included a known obstacle. The passage from

simulation to real robots would of course require some battery information. The

precision has been greatly improved through the enhanced and shortened code.

It includes the nest→food path, allowing robots to quickly reach the target570

without the need for the GHZ passage. We also quantitatively measured the

different precision of target reaching achieved with our method and with an

application of particle swarm optimization. While we are not considering an

optimization approach here, we set up the parameters of a PSO example and of

a NL-SHADE-RSP algorithm [34] to match the characteristics of our scenario.575

When we have the same starting parameters, the results obtained with our

approach appear as being more precise. Refined approaches of machine learning

will be exploited to investigate in more detail the advantages of our code with

respect to existing classic approaches, and ultimately to refine our method. We

considered a basic example of PSO for its conceptual importance, being it at580

the base of recent and valuable developments [35]. Regarding the quantum

improvement of classical ant-foraging approaches, we qualitatively considered

the number of steps and direction changes in the NetLogo application and in

our simulation. Our robots reach the target with less changes of directions, that

is, with different steps. However, this article presents the methodology. More585

detailed evaluations of performance time will be considered in future research.

In our current research, we considered sub-optimal solutions. However, in our

case, the focus was on the methodology definition, rather than on the search of

an optimal solution. In addition, our methodology is general. It is specialized

into a specific task according to the choices made for the logic gate. Thus, the590

comparison we have run are merely examples of the results we can obtain with

respect to other methods.
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7.1. Hints toward future research

In next steps of the research, one can take into account the progressive

refinement of its applications. We can find out which logic gate or which degree595

of parameters’ detail may yield the more precise results. And, only in that case, a

precise comparison with optimization approaches can make sense. At that point,

we will dig into the most recent and effective approaches of PSO [35], GA + ant-

colony [36], competition-winners of GA-based and differential evolution-based

algorithms [34, 84] (CEC 2022 Bound Constrained Single Objective Numerical600

Optimization benchmark problems). These comparisons would, in turn, help

us refine the logic gates to obtain the best results. We have already considered

NL-SHADE-RSP with midpoint [34] for a first comparison, commenting the

results of Table 11 with respect to the outputs of our methodology shown in

Table 10. We noticed that the error in target-reaching with our 4-step method,605

leading to suboptimal solutions, are of the same order of magnitude of the first

objective-function evaluations in [34]. In general, the idea of genetic selection

could correspond, for us, to the attention devoted to the most successful robots.

However, the other robots would not die or be substituted; instead, they would

just follow the more successful ones. As an example of how these connections610

could be developed, let us consider the key ideas of the CEC-winner, differential

evolution-based algorithm proposed by Biedrzycki and co-authors [34], called

NL-SHADE-RSP. It is a GA-derived algorithm where the k-means is used to

split into half large populations, evaluating their midpoint. In our case, we could

run experiments with a large number of robots, and split the population into615

two parts, distinguishing between the robots closer and less close to the target.

The bound constraint can be given, in our case, by the size of the arena (as

we already did for PSO). The objective could be a function having a minimum

or so in a neighborhood of the target (similarly to what we did for PSO and

NL-SHADE-RSP). The step of population size diminution can lead, in our case,620

to the shift of attention toward only those robots that are really close to the

target. In the following step, one would just give all other robots the command

to reach their most successful peers. From such a comparison, we could refine
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our search-and-rescue applications, getting to the target with a limited number

of passages and with a greater precision. We could also, quantitatively, find out625

how to tune the parameters within our matrices to get scenarios and results as

close as possible to NL-SHADE-RSPv[34] and other recent works [84].

As another future development, learning can be added by defining arrays of

“probable target locations.” This can easily be done for T2, with robots storing

their initial position if, as in our examples, they start from the nest. It can630

also be done for food position (T1): once a robot obtains a reward ≥ 0.8, it can

store its (probable) position within an array, and communicate this information

to the other robots. If, during subsequent exploration steps, the reward of a

robot gets higher than the stored information, the memory array is updated.

Otherwise, if rewards are constant or diminish, at least one robot can get back635

to the stored position. The entire algorithm can be performed as a loop, and

the search can be stopped once the stored position corresponds to a reward of

around 0.9. Thus, one would have a loop while the rewards are ≤ 0.9.

The introduction of learning would connect our research with Quantum Rein-

forcement Learning studies, with discrete successive states and decisions [81, 80].640

Our research may thus constitute a key connection between quantum comput-

ing, swarm robotics, swarm modeling, and future developments in this research

area. As mentioned above, we found that the proposed gate works better when

the robots are in exploration phase, rather than already close to the target. The

enhancement of the code eliminated this issue.645

8. Conclusions

In this article, we proposed a quantum approach to swarm robotics. Our

strategy is a two-step modeling technique, where we first model the individual

behavior, and then we tune the swarm to observe the emerging behavior.

Our approach to the swarm is based on nested matrices. Diagonal sub-650

matrices represent information (position, speed, activated sensors) of each in-

dividual robot. Off-diagonal sub-matrices are the pairwise interaction terms,
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containing the information about sent and received messages, and suggestions

of behavior according to the received signals. A core element of our approach

is the use of an original quantum circuit. To test it and measure the effect of655

quantum noise, we compared theoretical expectations of our circuit with mea-

surements obtained through IBM QASM simulator and three real IBM quantum

computers. To test our approach on a swarm of robots, our circuit was then

included in a Jupyter Notebook original code, written in Python. This idea can

lead to a quantum-based decision-making system.660

We simulated the behavior of a 3-robot swarm and then of a 10-robot swarm

as case studies. We considered a search and rescue mission, inspired by the for-

aging ant behavior, for its simplicity and importance in nature. We obtained an

overall success in target finding (food retrieval and return to the nest), observ-

ing the circuit effect on swarm behavior. We compared our method with other665

case studies coded in NetLogo, with bounded random walks, and with an opti-

mization approach of particle swarm, trying to recreate conditions similar to the

ones in our research. We also compared our results against two optimization

algorithms, the particle swarm optimization (PSO) and the NL-SHADE-RSP

with midpoint algorithms.670

In our code (second version), a known obstacle to be avoided is also included.

The size of the swarm can be modified by suitably setting the N number of

robots. The study has been developed for a 2-dimensional scenario, but it can

be easily generalized to a 3-dimensional scenario, as sketched in [85]. In our

study, we chosen to focus on a simplified scenario to validate the approach.675

We deliberately ignored unknown obstacles, battery information, information

storage, and techniques for target detection. Regarding the last point, in our

current simulation, we considered the Euclidean distance as a measure of target

proximity. However, in a realistic scenario, we should consider visual feedback,

or infrared detection, or sonar-collected information to name but a few. A limi-680

tation on the feasibility of our approach is the access to quantum simulators and

the risk of decoherence, that are common issues for all quantum applications.

Swarm robotics is one of the countless technologies inspired by nature, with

41



its swarms and self-organizational structures. Another natural source of inspi-

ration for computer science is quantum physics. Our research aims to merge685

nature-inspired swarms and quantum computing. Our work constitutes one

of the first steps toward the adaptation of the quantum paradigm to swarm

robotics development. The resources of quantum computing have started being

explored in full only in the latest years, and the extension of their computational

power to artificial intelligence and robotic development is yet to come.690
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[42] F.-J. Mañas Álvarez, M. Guinaldo, R. Dormido, R. Socas, S. Dormido,

Formation by Consensus in Heterogeneous Robotic Swarms with Twins-in-835

the-Loop, in: ROBOT 2022: ROBOT2022: Fifth Iberian Robotics Con-

ference, volume 589 of Lecture Notes in Networks and Systems book series,

2023, pp. 435–447.

[43] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, R. Nagpal, kilobot: a

low cost robot with scalable operations designed for collective behavior,840

Robotic Autonomous Systems 62 (2014) 966–975.

[44] M. H. M. Alkilabi, A. Narayan, E. Tuci, Cooperative object transport with

a swarm of e-puck robots: robustness and scalability of evolved collective

strategies, Swarm Intelligence 11 (2017) 185–209.

[45] R. Groß, M. Dorigo, elf-assembly at the macroscopic scale, in: Proceedings845

IEEE, volume 96, 2008, p. 1490–1508.

[46] R. Oung, R. D’Andrea, The distributed flight array, Mechatronics 21

(2011) 908–917.

47



[47] T. Schmickl, Collective cognitive robots–the year of cocoro.,

http://zool33.uni-graz.at/artlife/cocoro, 2015.850

[48] M. C. Schmickl, T., K. Crailsheim, Collective Perception in a Robot Swarm,

Springer, Berlin, Heidelberg, 2007.

[49] C.-K. Kang, Marsbee–swarm of flapping wing flyers for enhanced mars

exploration, https://www.nasa.gov/directorates/spacetech/niac/

2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_855

for_Enhanced_Mars_Exploration, 2018.

[50] J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to

Experiment, Wiley, Weinheim, Germany, 2004.

[51] P. Benioff, Quantum robots and environments, Physical Review A 58

(1998) 893.860

[52] D. Dong, C. Chen, C. Zhang, C. Chen, Quantum robot: structure, algo-

rithms and applications, Robotica 4 (2006) 513–521.

[53] C. Petschnigg, M. Brandstötter, H. Pichler, Quantum Computation in

Robotic Science and Applications, in: IEEE International Conference on

Robotics and Automation (ICRA), 2019.865

[54] P. Atchade-Adelomou, P. Alonso-Linaje, J. Albo-Canals, D. Casado-Fauli,

qRobot: A Quantum Computing Approach in Mobile Robot Order Picking

and Batching Problem Solver Optimization, Algorithms 14 (2021).

[55] M. Alvarez-Alvarado, F. Alban-Chacón, E. Lamilla-Rubio, C. Rodŕıguez-
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