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Abstract

In spite of the extensive studies that have been conducted regarding the con-
struction of multi-objective test problems, researchers have mainly focused their
interests on designing complicated search spaces, disregarding, in many cases,
the design of the Pareto optimal fronts of the problems. In this regard, the work
related to scalable multi-objective test problems—i.e., problems that can be for-
mulated for an arbitrary number of objectives—has been much less studied. This
paper introduces a new set of continuous and box-constrained multi-objective
test problems which are scalable in both the number of objectives and in the
number of decision variables. Each test problem included in the proposed test
suite has a peculiar Pareto front different from those observed in the existing
scalable multi-objective test suites. In addition to different Pareto fronts, the
proposed test suite introduces features related to the search space that place
obstacles that complicate exploring Pareto optimal solutions. Such features
can be easily switched on and off by the user to analyze specific mechanisms
of multi-objective evolutionary algorithms (MOEAs). The components used in

the proposed test suite can be used as a toolkit to construct new test instances
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not included in this set of problems. To illustrate the use and difficulties of the
proposed test suite, some experiments are presented adopting three MOEAs
using selection mechanisms based on Pareto optimality, decomposition, and a
performance indicator (hypervolume).

Keywords: multi-objective optimization, scalable multi-objective test

problems, evolutionary multi-objective algorithms.

1. Introduction

Multi-objective optimization problems (MOPs) involve the simultaneous op-
timization of a number of commonly conflicting objectives. Because of their
nature, based on the use of a population, multi-objective evolutionary algo-
rithms (MOEASs) have become a standard optimization tool to solve MOPs. To
analyze and evaluate the working principles of MOEAs, several researchers have
adopted the use of artificial test functions where the features of the problem are
known beforehand. This has facilitated the understanding of specific compo-
nents of MOEAs in particular scenarios. A multi-objective test problem should
include a variety of characteristics that simulate the properties usually observed
in real-world problems. For this reason, the design of multi-objective test prob-
lems plays an essential role in the headway of MOEAs. Consequently, a wide
variety of multi-objective test problems have been proposed so far. An exten-
sive review of multi-objective test problems can be found in [I} 2]. Optimization
problems involving more than three objective functions are commonly referred
to as many-objective optimization problems. Their solution with MOEAs has
motivated a significant amount of research, as such problems appear in many
real-world applications. A compilation of real-world problems can be found
in [3, 4, B]. However, notwithstanding the wide variety of MOEAs that have
shown success in solving problems with two and three objectives, several studies
have revealed the inefficiency of the existing evolutionary approaches in high-
dimensional objective spaces [6l [7]. This has been the main incentive to design

new evolutionary approaches capable of solving efficiently many-objective opti-
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mization problems, the so-called many-objective evolutionary algorithms.

In spite of the existence of several multi-objective test problems reported in
the specialized literature, their scalability in the number of objectives has been
a topic much less studied. Particularly, the variety of Pareto optimal fronts is
limited by a reduced number of shapes that have been reported so far in the liter-
ature [2]. On the other hand, most of the many-objective problems do not have
as many characteristics as those designed for multi-objective optimization [2].
In addition to this, the growing development of multi- and many-objective evo-
lutionary algorithms makes the design of scalable multi-objective problems an
active area of research.

According to the recommendations and features suggested by Huband et
al. [I] and extended by Zapotecas et al. [2], multi/many-objective optimization
problems should consider no extremal nor medial optimal solutions (related to
the search space), scalability in the number of decision variables and objective
functions, dissimilar scales in the decision variables and objective functions, and
known optimal solutions. On the other hand, the test problems should attend
features such as Pareto front geometries (concave, convex, linear, disconnected,
or mixed), separability, bias, many-to-one solutions, modality, difficult Pareto
set topologies and difficult Pareto front shapes. Additionally, the test problems
should consider the correlation between position and distance functions, the
single optimal solution for a high number of objectives, and an easy configuration
of features E These are properties that, in fact, complicate the design of test
problems for multi- and many-objective optimization.

This paper introduces a new set of continuous and box-constrained multi-
objective test problems that are scalable in the number of objectives and in the
number of decision variables. Overall, the proposed test suite incorporates the

following characteristics:

e Each test problem has a unique Pareto front with a peculiar shape unusu-

IThe complete list of recommendations and features can be seen in Table
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ally seen in the specialized literature. This motivates the design of new
density estimators to represent in a proper way the entire Pareto front in

high dimensionality.

e In addition to new Pareto front shapes, the proposed test suite incorpo-
rates a wide variety of characteristics that complicate the search for Pareto
optimal solutions, such as multi-modality, non-separability, deception, and

bias.

e Moreover, the proposed test suite includes test problems with difficult
Pareto sets, i.e., problems for which it is difficult to find a Pareto solution
from another Pareto solution in a determined neighborhood. This prop-
erty of multi-objective problems hinders the search process of evolutionary

approaches.

e An advantage of the proposed test suite is that the test problems can be

easily configured by using different parameters settings.

e Additionally, the components employed in the proposed test suite can be
used as a toolkit for the construction of other multi-objective test problems

different from those formulated in this paper.

In order to illustrate the difficulties of the proposed test suite, a couple of
experiments is carried out adopting state-of-the-art MOEAs based on three dif-
ferent schemes: decomposition, Pareto optimality and a performance indicator
(hypervolume). The experiments in this work show how difficult it is to solve a
test problem from the proposed test suite using different configurations.

The remainder of this paper is organized as follows: Section [2] introduces a
review of test suites for multi- and many-objective optimization. Section 3| de-
scribes the proposed test problems introducing their mathematical formulation.
Section [4] presents the features of the proposed test problems and analyzes them.
Section [p| shows how to use the proposed test suite, including its configuration,

and analyzes how difficult it is to solve a test instance under different settings.



80

85

90

95

100

Table 1: Recommendations and features for multi-objective test problems

Recommendation (R) or Feature (F) | Comment

: No Extremal Parameters

No Medial Parameters

lable Number of Parameters
able Number of Objectives
: Dissimilar Parameter Domains
6: Dissimilar Trade-off Ranges

: Pareto Optima Known

Prevents exploitation by truncation-based correction operators
exploitation by intermediate recombination

ses flexibility, demands ili
Increases flexibility, demands

Encourages normalization of object]

Facilitates the use of measures, and analysis of results, in addition to other benefits

F1: Pareto Optimal Geometry
F2: Parameter dependencies
F3: Bias

F4: Many-to-one mappings
F5: Modality

Convex, linear, concave, mixed, degenerate, disconnected, or some combination
Objectives can be separable or non-separable

Substantially more solutions exist in some regions of fitness space than they do in others
Pareto one-to-one/many-to-one, flat regions, isolated optima

Uni-modal, or multi-modal (possibly deceptive multi-modality)

F6: Difficult Pareto Set Topology
F7: Difficult Pareto Front Shape
F8: Correlation of Position and Distance Functions

Pareto set difficult to characterize
Pareto optimal front difficult to estimate
Dependencies between position and distance functions

F9: Single Optimal Solution for a High Number of Objectives
F10: Easy Configuration of Features in Scalable Test Problems

Single objective solution for multiple objective functions
Easy way to configure the features of a scalable test problem

Finally, in Section [6} we provide our conclusions and some possible paths for

future research.

2. Multi- and Many-Objective Optimization Problems

Throughout two decades of evolutionary multi-objective optimization (EMO),
the success of evolutionary approaches has been shown in real-world applications
in different disciplines [8, [0 10, 11l 12]. A multi-objective optimization solver
should provide information to the Decision Maker (DM) to satisfy his/her needs
for a specific problem. Accordingly, a multi-objective optimization algorithm
must be able to find a set of non-dominated solutions that glimpses a genuine
representation of the real Pareto front of a given problem. However, as dis-
cussed by some authors [I3] 2], the performance assessment of multi-objective
approaches is not an easy task. Since the early days of multi-objective optimiza-
tion, the performance assessment of multi-objective approaches has been widely
studied in the EMO community. In the specialized literature, it is possible to
find important contributions related to the performance of multi-objective algo-
rithms for both general purposes and particular problems [I4} 15 [16]. On the
other hand, the design of artificial test functions for multi-objective optimization
has been essential to evaluating and understanding the behavior of evolutionary
approaches. The known features of multi-objective test problems (Pareto set
and Pareto front) give the possibility to evaluate more correctly multi-objective

algorithms and understand their performance in known scenarios. In this sense,
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the following section presents a brief review of synthetic test suites for multi-

and many-objective optimization.

2.1. Test suites for multi-objective optimization

From the earliest developments of multi-objective test problems, the scal-
ability in the number of decision variables has been one of the main features
considered. In this regard, design approaches such as Deb’s toolkit [I7] and
Ziztler et al. ’s (ZDT) test suite [I8] marked the beginning of the design of
multi-objective test suites scalable in the number of decision variables. With
the introduction of the bottom-up approach [19], the design of multi-objective
test suites has become much more accessible, facilitating the construction of
the Pareto front and the Pareto set. Most multi-objective test suites adopting
the bottom-up approach are scalable in the number of decision variables and
objectives. In this regard, Li and Zhang [20, 2] introduced a multi-objective
test suite scalable in the number of decision variables with complicated Pareto
sets. This test suite incorporates several characteristics that make it challenging
to explore Pareto optimal solutions to problems with two and three objectives.
Mirjalili and Lewis [22] presented a multi-objective test suite to evaluate the
performance of MOEAs dealing with robust optimization. This test suite con-
siders two and three objectives, including multimodality and no separability,
making difficult the exploration of Pareto optimal solutions. Li et al. [23] in-
troduced a multi-objective test suite with degenerated Pareto fronts to evaluate
the survival mechanism in MOEAs. In this test suite, the diversity mechanisms
of MOEAs are tested to find a suitable representation of the true Pareto front.
Li et al. [24] introduced a test suite with biased search spaces, which compli-
cates the approximation to the real Pareto front. In this test suite, MOEAs
are tested, evaluating the genetic operators to deal with biased spaces. Another
problem collection is proposed by Liu et al. [25]. This test suite incorporates
imbalanced objective functions, i.e., problems with objective functions that are
more challenging to solve. In this regard, MOEAs are evaluated to achieve

the extreme portions and obtain a proper representation of the Pareto optimal
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front. Wang et al. [26] introduced nine test problems for multi-objective opti-
mization. This test suite incorporates difficulties in the search space, such as
nonseparability, multimodality, and rugged PS. The PF shapes in this test suite
involve linear, convex, and dissimilar objective ranges. However, their formu-
lation is limited to two and three objective functions. More recently, Songbai
et al. [27] introduced a test suite for large-scale multi-objective optimization.
The proposed test suite is based on traditional single-objective functions, such
as the Schewefel, Ackley, Rastrigin, and Rosenbroack functions. Therefore, the
properties of uni/multimodality and separability are inherited from functions
based on a single objective. The proposed test problems are formulated for two
and three objective functions. In the case of two-objective problems, PF shapes
can be seen as convex, concave, and linear, while three-objective problems adopt
PF shapes similar to an inverted simplex.

Although the above test suites are not scalable in the number of objec-
tives, they can be employed in some studies in the context of large-scale multi-

objective optimization.

2.2. Test suites for many-objective optimization

In the last two decades, researchers have developed multi-objective test prob-
lems scalable in the number of objectives. Pioneering designs of test suites such
as the Deb-Thiele-Laumanns-Zitzler (DTLZ) [19] and the Working-Fish-Group
(WFG) [1] problems marked the beginning of the construction of many-objective
test problems with known features. The DTLZ and WFG test suites incorpo-
rate several characteristics such as unimodal, multimodal, biased, and decep-
tive landscapes that evaluate the abilities of multi-objective algorithms to find
Pareto optimal solutions. Emmerich and Deutz [28] introduced a scalable test
suite based on the Lamé supershperes. This test suite can modify the con-
vexity /concavity of the Pareto front shapes by setting the parameter v in the
Lamé spheres. Remarkably, this test suite introduced the concept of mirror
test problems where the spheres are inverted to generate different Pareto front

shapes. The principle of complicated PSs introduced for two and three objec-
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tive problems [21] [20], was extended by Saxena et al. [29] in many-objective test
problems. In this test suite, the Pareto front shapes include degenerated surfaces
for problems having more than three objectives. Cheng et al. [30] introduced a
set of nine test problems scalable in the number of objectives and designed to
evaluate MOEASs in large-scale optimization. This proposal states the decision
variable dependency by two variable linkage functions (linear and nonlinear).
Additionally, this test suite introduces a correlation between decision variables
and objectives by employing a correlation matrix. Masuda et al. [31] proposed a
toolkit to generate test problems scalable in the number of objectives. This test
suite is mainly focused on the design of different Pareto optimal shapes. The
methodology introduced in this approach allows the design of Pareto optimal
surfaces by using a finite number of vertices. Such vertices state the Pareto
optimal front, whose shape can be defined as linear, concave, or convex. Other
test suites scalable in the number of objectives were introduced by Ishibuchi et
al. [32]. This test suite proposed the minus versions of the DTLZ and WFG test
problems, namely minus-DTLZ (DTLZ™) and minus-WFG (WFG™), respec-
tively. These test problems stand out mainly because the Pareto optimal fronts
of the original DTLZ and WFG test problems are inverted in order to obtain a
similar effect as in the mirror LSS test problems [28]. However, the test problems
maintain the same properties regarding the difficulties of the distance functions
proposed for DTLZ and WFG, respectively. Cheng et al. [33] presented a com-
pilation of 15 test problems scalable in the number of objectives. This test
suite, called MaF, includes test problems mainly taken from WFG, DTLZ, and
ML-DMP. Thus, a wide variety of features can be found in this test suite which,
indeed, shall be able to assess the robustness of many-objective evolutionary ap-
proaches. Wang et al. [34] modified the well-known DTLZ1-DTLZ4 test prob-
lems to avoid the regularly-oriented Pareto front shapes and the single distance
functions in all the objectives. The main characteristic of the modified DTLZ
(mDTLZ) test problems is the hardly-dominated boundaries, which hinder the
approximation of optimal solutions for Pareto dominance-based MOEAs and

Tchebycheff-decomposition-based MOEAs. A generator for multi-objective
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test problems was introduced in [35]. The proposed generator enables the de-
sign of test problems with controllable difficulties. Particularly, multimodality,
deceptivity, and bias features can be observed in the search spaces. Addition-
ally, rugged PSs complicate the search for Pareto optimal solutions. Although
this generator offers interesting features regarding the fitness landscapes, the
test problems are limited to regular PF shapes (e.g., a normal/inverted simplex
or similar). Li et al. [36] introduced a test suite for many- and multi-objective
optimization. The proposed problems introduce challenging difficulties such as
multimodality and biased search spaces, which, in fact, complicate the explo-
ration of optimal solutions. An interesting feature of these test problems is the
degeneracy of the PF shapes, which deteriorates the performance of predefined
reference-vector-based MOEAs such as MOEA/D.

With the aim to visualize the behavior of algorithms in many-objective
problems, Ishibuchi et al. [37] proposed a set of test problems in two- and
three-dimensional decision spaces based on a generalization of the single poly-
gon problems presented by Koppen and Yoshida [38] and the multi-line (or
multi-curve) problems introduced by Rudolph et al. [39]. Although these test
problems were formulated for low-dimensional decision spaces, the authors gave
the idea to design test problems in high-dimensional spaces by specifying multi-
ple points in the required dimensionality. Such an idea was implemented in the
many-objective test suite formulated in a high-dimensional decision space [32].
Inspired by the above test suites, Li et al. [40] introduced a test problem whose
Pareto optimal solutions lie in a rectangle (in the two-variable decision space),
and they are similar (in the sense of Euclidean geometry) to their images in the
four-dimensional objective space. As a generalization of Li et al.’s test problem,
Li [24] introduced a class of multi-objective test problems scalable in the number
of objectives (called multi-line distance minimization problems (ML-DMP)). In
this test suite, the Pareto optimal solutions lie in a regular polygon in a 2-D
decision space, and these solutions are similar (in the sense of Euclidean ge-
ometry) to their images in high-dimensional objective spaces. More recently,

Fieldsend et al. [41] introduced a visualizable test problem generator for many-
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objective optimization. This problem is based on the distance between vertices.
However, the test problem includes hard constraints and non-intersecting perfor-
mance disconnected Pareto sets. The test problem generator has the possibility

to combine different features to construct more complicated problems.

2.8. Suites of real-world multi-objective optimization problems

In spite of the advantages of using artificial test problems to assess the perfor-
mance of algorithms, their formulations have some limitations. As some authors
indicate, synthetic test problems do not have all the properties observed in real-
world applications [42, 40]. Therefore, an MOEA that works well in artificial
test problems does not necessarily work well in real-world applications. How-
ever, researchers have evaluated the performance of multi-objective algorithms
using synthetic test problems for more than two decades. The main reason
is that the details of those real-world problems are not always in the public
domain due to confidentiality agreements. On the other hand, researchers ded-
icated to design multi-objective algorithms are not necessarily experts in the
disciplines in which these problems lie. In this sense, some researchers have
summarized real-world applications from different research areas. Regarding
mathematical models formulated as unconstrained multi-objective optimization
problems (the topic covered in this paper), we mention some works that compile
real-world problems reported in the literature.

Tanabe et al. [3] presented a set of real-world problems taken from differ-
ent disciplines to assess the performance of multi-objective evolutionary algo-
rithms. Most of these problems have constraints handled by the composition
of a function added to the multi-objective formulation. He et al. [4] presented
seven multi-objective optimization problems to promote data-driven evolution-
ary multi-objective optimization research. The authors analyzed the perfor-
mance of four popular algorithms, including three data-driven MOEAs and
a model-free MOEA. From the perspective of problem properties, the set of
adopted problems covers different problems with different irregular /regular Pareto

optimal fronts. More recently, Zapotecas et al. [5] presented a compilation

10
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of real-world applications formulated as box-constrained multi-objective opti-
mization problems. The correlation between the objectives was analyzed and
discussed. Particularly, the authors’ study inquired about the performance of
traditional multi-objective evolutionary approaches based on Pareto dominance,
decomposition, and hypervolume principles, in real-world problems with pecu-
liar PF shapes.

The studies mentioned above are just an example of the variety of problems
that exist in the real world. Some of these problems have different characteristics
that complicate the performance of MOEAs. In particular, the suites mentioned
above are evidence for the existence of peculiar PF shapes in real-world appli-
cations. Figure [I] illustrates the PF approximations of some problems in the
above suites. It is worth noticing that the development of new problem-solving
strategies has brought many applications based on simulations and/or different
types of models with unknown characteristics. Such models are formulated as
multi-objective optimization problems that can occasionally be difficult to solve
and interpret. In this sense, it is crucial to design simpler multi-objective prob-
lems with complex challenges but known characteristics to guide researchers in
the design of MOEAs. While artificial test functions are not a substitute for
real-life problems, they can be used as black-box problems to assess in a more
effective way the performance of MOEAs. For this reason, we believe that the
design of synthetic test problems will continue to be a line of research in the
EMO community for many more years. In the next section, the proposed test

suite is presented.

11
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Figure 1: Normalized Pareto front approximations for the problems (a) Liquid-rocket single
element injector design [43]; (b) milling parameters for ultrahigh-strength steel [44]; (c) crash-
worthiness design of vehicles [45]; (d) packed bed latent heat thermal storage performance [46]
and (e) wire electrical discharge machining [47].

3. Proposed Test Suite

3.1. General Framework

In the proposed test suite, a multi-objective test problem consists in mini-

mizing the M objective functions which are of the form:

fimtmr (%) = ai(xr) + Bi(xr1 - g(x1/m)) 1)
s.t. x €0
280 Wwhere
o O =T1",[a;,b;] is the feasible decision space;
e X is the decision variable;

e x; and x;; are two subvectors of x, such that, x; = (z1,...,2,) and

XII = (xm+1a e 7-Tn)~

285 e a; (i=1,...,M): functions from [];%;[a;, b;] to R;

12



e B (i=1,...,M): functions from R™ to R*;
e g: a function from [, [a;, b;] to TTie,1 (@i, bi]

Therefore, the Pareto front and the Pareto set of the above MOP are stated
by the following theorem [QO]B

20 Theorem 1. Suppose that:
i) Bi(z)=0 foralli=1,...,M iffz=0

ii) The Pareto set of the following problem:

minimize:  (ay(x1),...,apm(x11)) (2)

s.t. Xy € Hzl[ai,bi]
is E c [1i% [ai,bi]-
Then, the Pareto set of the problem defined in Equation 18:
xrr = g(x7/m), x7eFE

that is with B;(z) =0, fori=1,..., M and the PF is:

{(Ozi(X[), . ,OéM(XI))|X[ € E}

To design a multi-objective test instance with known features, the following

205 remarks are of interest:

e x; states the position parameters while x;; defines the distance parame-

ters.

2The proof of this theorem is found in [20].

13
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e m defines the dimensionality of F. If the dimensionality of E is m =
M -1, then the Pareto set and the Pareto front of the test problem will

be (M - 1), which follows the regularity property of continuous MOPs.

e «;’s function determines the Pareto front of the test problem, while the

Pareto set is defined by the g function.

e [’s functions define the distance of solutions to the Pareto front and reg-

ulate the difficulty of the test problem.

3.2. Proposed Test Problems

In this test suite, we introduce twenty scalable test problems with different

characteristics. For all the test problems, the decision variable space is given by

Q:ﬁ[ai,bi]:ﬁ[—;,;] 3)

3 =1

r1—-a; Ln—0n

e ERRTE yiger: ) as the normal-

For convenience, it is assumed that: y =

ized vector of the decision variables x = (z1,...,2,) € Q. The problem in

Equation (1] is now rewritten as

fiztm (y) = ailyr) + Bi(yrr — g(yrim)) (4)
s.t. y €[0,1]"

where n is the number of decision variables, m is the number of position-related
decision variables, y; = (y1,.-.,Ym) and ¥17 = (Ym+1s---,Yn)-

A test instance is generated by constructing position functions «;’s, distance
functions 3;’s, and a vector function g that defines the shape of the Pareto set
satisfying conditions i) and i) in Theorem [1l In the following, we describe all

of these functions.

14
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8.2.1. Position Functions
In the proposed test problems, the position functions of an M-objective test

problem are given in the form:
ai(yr) =i x Fi(y;) fori=1,...,M (5)

where functions F; define the shape of the Pareto front.

Each test problem has a Pareto front with a different shape from each other
problem formulated in this test suite. Therefore, the mathematical formulation
of the F;’s functions is unique for each test problem. Table [2] lists the proposed

test problems formulating the unique F; functions.

3.2.2. Distance Functions
Distance functions can be formulated in many ways, thus setting distinct
features and difficulties to a test problem. In the proposed test suite, the B;

functions are defined as follows.

Let yrr - g(y1lm) = (Ym+1 = gme1(y1Im), ..., yn — gn(y1lm)) be denoted by

Zm+1m = (Zm+1,---,n), then the 5; functions are of the form:
Bi(szrlm) = i2 x ZLevel(wm+1:n|Ji) for i = ]-7 ceey M (6)
such that
(ZBias(Zm+1)7 e ,Z}gias(zn))7 Bias=True
Wm+1ln = (7)
Zm+1in, Otherwise

where n is the number of decision variables, m is the number of position-related
decision variables, and Zg;,s is a transformation that biases the test problem (cf.
Section .

In Equation @, J; is the set of indices from y;; correlated to the i*" £ func-
tion. In the proposed test problems, such correlation is stated by the modular

approach [29]. Concretely, the set of indices correlated to the ith objective is

15
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defined by
Ji={jl mod (j-m~-i,M)=0,j=m+1,...,n} (8)

In Equation @, the Zrever (Level € {1,...,6}) function states the difficulty
of approximating solutions to the Pareto front. This function is set according
to different configuration levels (¢f. Section . It is worth noticing that by
defining the same Z;qye1 function for all 5; functions, the difficulty to optimize
each (; function shall be exactly the same. However, it is possible to modify its
difficulty by using a different Z1¢ye1 function for each ; function. As a result, for
a given it" objective, if the 8; function is much easier to optimize than the others,
the search of an MOEA will be biased towards the i*" objective, leaving the rest
of the objective functions without a proper exploration. This type of problems,
known in the specialized literature as imbalanced [25], shall test the abilities of
an MOEA to achieve a proper approximation and distribution along the Pareto
front. Imbalanced problems can be constructed in different ways [25]. For
example, in the ZCAT test suite, the imbalance between objectives is controlled
by a flag that reformulates the problem (cf. Section. Thus, an imbalanced

test problem is formulated by

Z4(wm+1:n|Ji)7 mod (1, 2) =0
ﬁi(zm+1:n) = ZQ X (9)
Z1(Wims1:n|Ji), otherwise
fori=1,...,M.
If the concerned flag is not activated, the 3; functions shall be exactly defined

as in Equation ().

3.2.8. Pareto Set Topology Function
Let us consider the multi-objective optimization problem given in Equa-

tion . In this case, the vectorial function g maps the vector y; € [0,1]™ to

16
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another vector in [0,1]"™. This transformation is denoted by

g(yrlm) = (gme1(y1lm), ..., gn(yrlm)) (10)

where each component g; (j =m+1,...,n) defines the shape of the Pareto set.

"M i.e., in the normalized search

Since the g function generates a vector in [0, 1]
space, the Pareto solution to the scalable test problem is reached by expanding
the resulting g vector into the original search space 2 (¢f. Equation )

The proposed test suite introduces ten complicated PS topologies which are
mathematically formulated in Table [3] and instantiated for each test problem
in Table Such topologies can be switched on and off to be complicated or
simple (¢f. Section .

To exemplify the way in which a test problem can be constructed, in Ap-
pendix A from the supplementary material, we detail the instantiation of three

test problems. On the other hand, the source code of the proposed test suite

can be obtained at https://github.com/evo-mx/ZCAT.

4. Features of the proposed test suite

In the proposed test suite, all the test problems follow the recommendations
discussed by Huband et al.[I]. Additionally, each test problem adds several
features that determine its difficulty which can be defined a priori. In the fol-
lowing, the features of the proposed test problems are exposed. We particularly

refer to the set of features discussed by Huband et al.[I] and Zapotecas et al.[2].

4.1. Pareto Front Features

The Pareto front of a test problem is defined by the parametric functions F’
formulated (for each test instance) in Table 2} The F' functions in all the test
problems have their minimum value at 0 and their maximum value at 1. Conse-
quently, the surface defined by the F' functions at each test problem is contained
in the hypercube [0,1]™. Therefore, from Equation , it is possible to infer
that the ideal and the Nadir points of the test problems with M objectives are
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Table 2: Mathematical formulation of F' functions and the corresponding g function for the
instantiated test problem

MOP | F and g functions | MoP F and g functions
Mo
Wy =TT, sin(yi x7/2) .
Mo Mo
Freaara(y) = (TI257 sing /) x cos(yar-on % 7/2) =g (S w) + ()]
ZCAT1 Fu(yr) = 1-sin(y x 7/2) ZCAT1L Fulyn) - cos((2K - D)yim) + 2y +4K(1-y1) -1
(i) g0(y/|M ~1), complicated PS=False 4K
m) = ) _
9(v1 GA(yilM -1, otheruise () = [0 TIM 1), compicated Ps=False
g3(y1|M -1), otherwise
M-1
) I P () =1 B
Fi(yn) = [T 1= cos(ua xn/2) Al =1L 1=
1) = (T 1 costym/2)) x (1m0 <7/2) Braaayn) =1 (I’ 1= 3:) <o
) , S((2K - Dyam) + 251 + 4K (1= 1) - 1
ZCAT2 Fa(yr) =1-sin(y; x7/2) ZCAT12 FM(YIFCU”(( - )m”)le* (-s)
9(yilm) = "?(y"‘”’l)' complicated-PS=False (yrfm) = [0V =1),  complicated pS-False
g5(y1/M - 1), otherwise 9(y1fm) = 910(y1|M - 1), otherwise
1 i
1 A (yr)=1o— L1 sin(u: x 7
Fi(yn) = g7 Zea ¥ Filyn) =1= gy iy sinCuxn/2)
1 M-j . » y >
Freasia() = 5= (527 0) + (- cson)] Fraaara(vn) = 1= g (7 sintau xnf2)) + costynr s xw/2)]
~ 2 7 | .
ZCAT3 ZCATI13 cos((2K - 1)yum) + 251 + 4K (1= 1) - 1
Fu(y)=1-n Fu(yr)=1-% (( i )4Kﬁ (1-y1)
a(yilm) = 90(ys|M - 1), complicated PS=False ~ [90(y1lM ~1), complicated PS=False
92(y1|M ~1), otheruise 9yrlm) = g1(ys|M ~1), otherwise
Fi(yr) =sin(ys x7/2)°
a1 (yr) =y Fyanra(ys) = sin(yy x w/2)>0-D/(M=2)
[ [ . ) .
ZCATA Fulyn) = 1= 377 2w W1 ZOATIA Farayr) = 5 [+ sin(Gys x /2 =/2)), 16 M >2
(yalm) g0(ys|M 1), complicated PS=False Fai(yr) = cos(yr x /2)
1lm) = )
i g7(y/|M -1), otherwise (yrfmy < [ 90071V 1), compricated ps=rase
I =1 g6 ~1), othervise
1) =y oy Fiiaga(yn) =y 07D
exp i l-y) -1 cos((2K = Dyum) + 2y + 4K (1-1) -1
Fy - F N b 3
ZCATS o) exp(1)5 -1 ZCAT15 wyn) 1K
olyalm) = g0(yr|M 1), complicated PS=False o(yrlm) = 90(ys|M ~1), complicated PS=False
! g9(yi|M -1), otherwise g8(y1|M - 1), otherwise
Fiorama(yn) =y, Fi(yr) =sin(y, x /2)
: : 1+(j-1)/(M-2)
Pty = & +exp (2 - 1)) = pu— (L exp(r)) ™ +p Fyzar2(y1) ’”‘"(‘“ x7[2)
(1+exp(=r)) = (1+exp(r)) " +p YSCARES L0 4 sin(0g, % /2 - 2)] i M > 2
ZCATG such that y = ﬁz;‘:‘;’y,.u =40 and p=0.05. ZCAT16 Fon) = LI ) 2 (L) -
M- = =
g(yilm) = 90(y1|M - 1), complicated PS=False g0(ys|M ~1),  complicated PS=False
g4(yi|M 1), otherwise 9(yilm) = J10(ysM - 1), otherwise
v, Vyi<05,ie{l,...m
Fiaalyn) = {2 Y { }
y;, otherwise
m-1(y1) =, exp(1-y1)* -1
) 1 M-t 5.1 S Ch) -0 Yy <0.5,i € {1,...,m}
YC 7 R e——— L (ST L i yi<05ie{l,...,
ZCATT ) 2(1‘1-1)X<0-5)"Z"]( 2 ZCATIT Fulyr) = Cx‘)‘("(l) \l, gyt
(yrfmy = [9001M 1), compiicated ps-ralse PN - ly’ otherwis
g(yrlm) = -
o g5(yilM - 1), otherwise exp( )
90(y:|M ~1), complicated PS=False
g(yilm) =
g1(ys|M -1), othervise
B v, (Y5 <0.4) or (Vg 206),i€{1,....m}
§ v Sevar-1(yr) = herwi
W) = 1= [T 1= singys xw/2) up. otherwi
M- . ) ; —n )P
Firaarma(yr) = 1= (T2 1 sin(us x1/2)) % (1 - cos(uar-yo1 x 7/2)) (o ‘2XJ(‘0) ;,_0 L (Ym<04) or (Vg 206) i e (1....m)
ZCATS Far(ys) = cos(y x 7/2) ZCATI18 Fulyn) = N5 g)° J,) )
(s = [0 1), complicated ps=Falae 2(&1—1) syt Otherwise
1 = N
92(y1|[M - 1), otherwise (yalm) = 90(y7|M ~1), complicated PS=False
o(yilm
I g8(y1[M - 1), otheruise
m=1
W(yn) = 377 i Sin(y % 7/2)
m<24m. +7/2) o
1(yn) = e [(0) sin(ye x 7/2)) + cos(yar—jer x 7/2) Am ’ m=
ZCATY M= J”[( ' ) ] ZCAT19 Pulyn) = U g cosQAngy Sy e w/2) )
Fa(yr) = cos(yr x w/2) ’72 Vit o4 Otherwise
(y1lm) = g0(yr|M - 1), complicated PS=False =1iff y1 €[0,0.2] or y1 €[0.4,0.6]; otherwise m =M —1.
IV = g7(yM -1),  otherwise (yalm) = 90(y7|M ~1), complicated PS=False
g(yilm
i g6(ys|M ~1). otheruise
m=1
i (yr) =y Baara(yn) = {(//, otherwise
: _
Fuly )Jf‘ M- m)w) 7(0'51 V(‘L: J)'O m=1
w(yn) = - 2% (05)°
ZCAT10 o) ZCAT20 FuGn) =) i 05 1 herwis
olyrim) = g0(y1|M ~1), complicated PS=False (M- 1)x(05)5 " g Ctherwise
99(y1|M -1), othervise m=1iff y, €[0.1,0.4] or y; € [0.6,0.9]; otherwise m = M - 1.

where p = 0.02.

90(y1|M - 1),
93(y1|M - 1),

complicated PS=False
otherwise

g(yrlm) :{
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Table 3: Different instances of the g functions. Function g is in the form g(y;|m) =
(gm+1(y1lm), ..., gn(y1Im)), such that, g;(j = m +1,...,n) is defined according to the in-
stantiated g function.

g function ‘ g; formulation
g0(ylm) | g;(yrlm) =0.2210
gl(yz|m) ‘ 9j(yrlm) = 2m > 1sin(1.57ryi+0j)+%
g2(yilm) | g;(yilm) = 5= X1 y? xsin (4.57y; +6;) + 3
g3(yilm) | g;(yilm) =L £, cos (my; +0;)°
gd(yrlm) | gi(yilm) = 5 T yi x cos (32 i yi+6;) + 3
g5(y1lm) | g;(yilm) = & x £y sin (2my; - 1+6;)° + 3

— A1 m 2

9(yrlm) = (—10e( 2VETE) L 1040

g6(yl|m) —6(% > cos(ll‘rryi+9j)3))/(_106—2/5

—e1+10+ e)

sin(77 L

m
e Ty v /2405) _ -1

g7(yrlm) gi(y1lm) = o it yite

1+el—e-1

g8(yrlm) | gi(yirlm) = 5 Bi% [sin (2.57(yi = 0.5) +6;))|

gi(yrim) = ﬁ 1 Yi

— 5= > [sin (2.57y; — /2 +6;)] +

Qm

g9(yzlm)

g10(y1lm) | g;(yrlm) = 5o (Si2 sin((4yi ~2)m + 9j)) +3
2n(j - (m+1))

where 6; = yforj=m+1,....n
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Figure 2: Pareto fronts of ZCAT test problems using M = 3 for: (a) ZCAT1, (b) ZCAT2,
(c) ZCAT3, (d) ZCAT4, (e) ZCATS5, (f) ZCAT6, (g) ZCAT7, (h) ZCATS, (i) ZCATY,
(j) ZCAT10, (k) ZCAT11, (1) ZCAT12, (m) ZCAT13, (n) ZCAT14, (o) ZCAT15, (p) ZCAT16,
(q) ZCAT17, (r) ZCAT1S, (s) ZCAT19, and (t) ZCAT20.

z* =(0,0,0,...,0) and n* = (12,22,3% ..., M?), respectively. In the proposed

test suite, four classes of Pareto fronts are considered and described below.

4.1.1. Non-Degenerate and Connected Pareto Fronts

Multi-objective test instances ZCAT1-ZCAT10 are problems with non-degenerate
and connected Pareto fronts. Particularly, the Pareto front of ZCAT1 and ZCAT2
can be characterized by an (M — 1)-simplex, i.e., they are easy to approximate
(see the discussion presented in [2]). ZCAT3 and ZCAT4 present linear Pareto
fronts which differ from the traditional (M —1)-simplex adopted by the currently
available scalable test problems, such as DTLZ1. ZCAT5-ZCAT10 have Pareto
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Figure 3: Pareto sets of ZCAT test problems using M = 3 for: (a) ZCAT1 and ZCATS6,
(b) ZCAT2 and ZCAT7, (c¢) ZCAT3 and ZCATS8, (d) ZCAT4 and ZCAT9,
(e) ZCATS5 and ZCAT10, (f) ZCAT11, (g) ZCAT12, (h) ZCAT13, (i) ZCAT14, (j) ZCAT15,
(k) ZCAT16, (1) ZCAT17, (m) ZCAT18, (n) ZCAT19, and (o) ZCAT20.

fronts with a high level of convexity and/or concavity which shall test the density
estimators of MOEAs. According to the discussion presented in [2], problems
ZCAT3-ZCAT10 adhere to the feature of having a Pareto front difficult to ap-
proximate. The Pareto fronts of the test problems having non-degenerate and

connected Pareto fronts (i.e., problems ZCAT1-ZCAT10) are illustrated, for
M = 3, in Figures 2aH2]]

4.1.2. Disconnected Pareto Fronts

ZCAT11-ZCAT13 are three test problems whose Pareto fronts are discon-
nected. The number of disconnected regions is controlled by parameter K (see
the mathematical formulation presented in Table . In addition to having
disconnected parts, other characteristics such as convexity, concavity, and lin-
earity can also be observed. For M = 3, these Pareto fronts are illustrated in
Figures[2k}[2m] As the problems are disconnected, the Pareto set is also discon-

nected. Projections of these Pareto sets (for M = 3) onto the space x1,zy and
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x3 are illustrated in Figures

4.1.8. Degenerate Pareto Fronts

The proposed test suite includes three problems (ZCAT14-ZCAT16) with
Pareto fronts of dimension m =1, i.e., they are degenerate for M > 2. In addition
to being degenerate, ZCAT15 and ZCAT16 present disconnected Pareto fronts.
Analogously to the disconnected Pareto fronts presented in Section the
number of disconnections in problems ZCAT15 and ZCAT16 is controlled by
the parameter K (see the mathematical formulation presented in Table . For
M =3, the Pareto fronts and the Pareto sets of the problems ZCAT4-ZCAT16

are illustrated in Figures and Figures B1H3K] respectively.

4.1.4. Miztures of Degenerate and Non-degenerate Pareto Fronts

In the specialized literature, it is possible to find real-world problems whose
Pareto front approximations look like a mixture of degenerate and non-degenerate
surfaces; examples of such problems can be found in [45, 48]. In the proposed
test suite, four problems simulating these types of Pareto front shapes have been
introduced. The degenerate regions of these Pareto fronts are designed in two

different ways:

1. In the first type, the degeneracy is obtained by mapping different position
parameters into the degenerate surface without modifying the dimension-
ality of the Pareto set. Therefore, different solutions of the Pareto set
can be mapped to the same solution (many-to-one solutions) in objective
space. This is the case of problems ZCAT17 and ZCAT18. To illustrate
this type of problems, Figures show the Pareto fronts (for M = 3)
of problems ZCAT17 and ZCAT18, while their Pareto sets are shown in
Figures

2. The second type of degeneracy is the result of reducing the dimension-
ality of the Pareto set in a specific region. An example of how to build
these types of problems is shown in the construction of ZCAT20 in Ap-

pendix A from the supplementary material. Problems following this ap-
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proach are ZCAT19 and ZCAT20. Figures show the Pareto fronts
(for M = 3) of problems ZCAT19 and ZCAT20, while their Pareto sets are

shown in Figures

In addition to the Pareto fronts for the three-objective test instances illus-
trated in Figure[2] Figure A.8 in Appendix B from the supplementary material,
we show the Pareto fronts shapes for the two-objective formulation of the pro-

posed test problems.

4.2. Pareto Set Features

Complicated Pareto set shapes test specific components of an MOEA. Li
and Zhang [20] showed the difficulties of solving these types of problems. Our
proposed test problems adopt the idea of using complicated Pareto sets and
introduce ten different shapes in their formulation. The mathematical formu-
lation of such shapes is presented in Table The Pareto set shapes can be
switched on and off to a shape much easier to approximate by activating the
flag Complicated PS=True. Particularly, if the flag is Complicated PS=False,
the Pareto set shape is comparable to the one introduced by the DTLZ or WFG
test problems. That is, the Pareto set can be seen as being piecewise linear.
The projections of the Pareto sets into the space x1,z2 and x3 for all the test
problems are shown (for M = 3) in the plots of Figure In these plots, it
is possible to appreciate non-degenerate and connected surfaces (Figures
and Figures disconnected regions (Figures , degenerate shapes
(Figures , and mixtures of degenerate and non-degenerate shapes (Fig-
ures . Finally, projections of the Pareto sets into the space z1, 22 and x3
for the two-objective formulation (i.e., M = 2) of the ZCAT test problems are

illustrated in Figure C.10 in Appendix C from the supplementary material.

4.3. Distance Functions Features

In the bottom-up approach, the distance functions establish the difficulty of
solving a test problem. ZCAT problems adopt different characteristics in their

distance functions which can be switched on/off to increase the difficulty degree
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of the problems. This section presents the features of the distance functions

that can be configured in ZCAT problems.

4.3.1. Separability, multimodality, and deception

In Equation @, f; functions state the distance of solutions to the Pareto
front. The (; functions are composed by Z functions, which establish the de-
gree of difficulty of approximating a Pareto solution for a given problem. Con-
cretely, Z(wWms1:n|Ji) = Zrever (Wms1m|Ji) where Zrever (Wms1:m|J;) is mathemat-
ically formulated in Table |4} for Level € {1,...,6}.

The features of the Z functions are shown in Table [d] where the following
abbreviations are used: “S” for separable, “NS” for non-separable, “U” for
unimodal, “M” for multi-modal, and “D” for deceptive. The optimal solution

for all the Z functions is w,4+1.n = 0.

4.3.2. Bias

In addition to the different levels for the Z functions, the proposed test suite
introduces a bias function which is activated by the flag Bias € {True,False}.
In Equation @, the Zpias function biases the component z; = y; —g,(yr|m) (for

j=m+1,...,n) according to the following equation:
Wm+1m = (|zm+1|7,,,,,|zn|7) (11)

where 7 = 0.05. Since |z;| € [0,1], for v < 1, the component is biased towards 1,
while for v > 1, the component is biased towards 0.

Since the optimal solution of Z(wy,+1:n) 18 Wims1m = 0, the polynomial bias
(with v = 0.05) shall move w11, away from the optimum 0, i.e., the 5; functions
will be more difficult to optimize. Therefore, in a ZCAT test problem, this
feature shall bias solutions far away from the Pareto set. That is, a tiny change in
the decision variables of some Pareto solutions may cause significant changes in
their objective vectors in the objective space. The Z functions and their contour
lines are illustrated in Figure D.11, in Appendix D from the supplementary

material.
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Table 4: Functions related to distance and their features.

Function Features
Z1(Wis1m|Js) = % Yjes w3 U/S
Zy(Wins1in|Ji) = 10 x maxe s, {|w;|} U/NS
Zs(Wma1nl|di) = % Y jed; % [wj2 - cos((2K - 1)mw;) /S
+1]
Za(Wimsrnl i) = 3225 [ema"ff-’i“w”}o's
M/NS

_eﬁ Yies; L[cos((2K-1)mw;)+1] -1

ZS(wm+1:n|Ji) =-0.7 x Z3(wm+1:n|Ji) D/S

Zﬁ(wm+1:n|Ji) =-0.7x Z4(wm+1:n|Ji)
L 0.002 D/NS
+ 10 X (m Zje.]i, )

+el

wj|

where K =5

4.3.3. Imbalance

In the ZCAT test suite, an imbalanced problem can be formulated by setting
the flag Imbalance = True. With this parameter setting, some objectives will be
more difficult to optimize than others. It is also worth noting that, according to
Equation @D, parameter Level will not be considered when this flag is activated.
In this paper, we adhere this feature to the list of recommendations and features
presented in Table[l} To clarify the use of parameters Level, Complicated_PS,
Bias, and Imbalance, the reader is referred to the three examples presented
in Appendix A from the supplementary material.

Finally, to facilitate the reading of properties in the proposed test suite,
in Appendix E from the supplementary material, Table E.5 summarizes the
recommendations and features suggested by Huband et al. [I] and Zapotecas et

al. [2], that have been adhered to in each test problem.

5. On the Use and Difficulties of the ZCAT Test Suite

In this section, we present some experiments using the proposed test suite.

Particularly, this section shows how can the test suite be employed to evaluate
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the performance of MOEAs using different configurations.

w  5.1. On the ZCAT Test Suite Configuration
The ZCAT test suite has six parameters to be configured which establish
the difficulties and features of a test problem. This set of parameters should be
carefully established to analyze specific components of MOEAs. In the following,

we describe the parameters of ZCAT for a possible configuration.

485 1. Number of objectives (M): This parameter can be used to analyze the
behavior of MOEASs in objective spaces of different dimensionality (M > 1).
The default value for this parameter is M = 3.

2. Number of decision variables (n): This parameter can be set to evaluate
MOEAs on test problems with a predefined number of decision variables

490 (n > M). The default value for this parameter is n = 10 x M.

3. Complicated Pareto set (Complicated_PS): The flag Complicated PSe
{True,False} can control the Pareto set shape for a given test problem.
The default value for this parameter is Complicated PS=True.

4. Level of Difficulty (Level): This parameter can be used to evaluate the

405 abilities of an evolutionary algorithm to approximate a Pareto solution
in different scenarios (e.g., separable, multi-modal, and deceptive land-
scapes). The parameter Level can be chosen from six possible different
values (Level € {1,...,6}) stating the difficulties of the concerned test
problem. The default value for this parameter is Level = 1.

500 5. Bias function (Bias): A test problem can be biased by activating the flag
Biase {True,False}. This flag configures the test problem to be more
challenging to solve, as this type of problem shall test the abilities of
MOEAs to find Pareto solutions with a high-quality approximation. The
default value for this parameter is Bias=False.

505 6. Imbalanced problems (Imbalance): The objective functions in a test prob-
lem can be imbalanced by activating the flag Imbalancee {True,False}.
This flag configures some objective functions to be more challenging to

solve than others. The default value for this parameter is Imbalance=False.
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The following experiments analyze the performance of three state-of-the-art

MOEAs employing some of the above configurations.

5.2. MOEAs Adopted for Performance Analysis

The experiments were carried out by comparing three MOEAs having selec-
tion mechanisms based on decomposition, Pareto optimality, and a performance
indicator (hypervolume). Since the Differential Evolution (DE) operator has
shown superiority in solving MOPs with complicated Pareto sets [20], MOEAs
employing DE as their main recombination operator were selected. Concretely,
MOEA/D-DE [20] and GDE3 [49] were adopted. For the case of hypervolume-
based MOEAs, SMS-EMOA [50] using the DE operator was adopted (we call it
SMS-EMOA-DE in this paper).

MOEA/D-DE adopted a neighborhood size T = 20, a maximum number of
replacements n, = 2, and a neighborhood selection probability 6 = 0.9. The
scalarizing function adopted was the PBI approach with a penalty value 6 = 5.
DE was used with the same parameters as in [20], i.e., F = 0.5 and CR = 1.
Polynomial-based Mutation (PBM) was employed adopting a mutation rate of
P,, =1/n (n is the number of decision variables) and a mutation index n = 20.
The population size for the algorithms was established by the simplex-lattice
design which is used to generate the weight vectors for MOEA/D-DE. The
configuration of H for the simplex-lattice design was set to H = 99, H = 19
and H = 6. Consequently, the population size (N) was 100, 210 and 210, for
two, three and five objective functions, respectively. In all the experiments, the

adopted MOEAs were restricted to perform 2000x V fitness function evaluations.

5.8. Difficulties on Many-Objective Problems

To show the difficulties on many-objective problems, we considered the test
problem ZCAT7 adopting the default parameters. The performance of MOEAs
was evaluated using 3, 4, and, 5 objective functions. To illustrate the perfor-
mance of the MOEAs, we employed parallel coordinates. Figure [4] shows the

parallel coordinates comparing a sample of 5000 solutions properly distributed
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Figure 4: Parallel coordinates of the approximations obtained by the MOEAs on ZCAT7 with
three, four, and five objectives, respectively.

along the Pareto front and the approximation obtained by the adopted MOEAs.
The approximations produced by the MOEAs correspond to the final popula-
tions obtained in the best (according to IGD) of 30 independent runs. From
these plots, we can see that the performance of the MOEAs degrades as the
number of objectives increases. It is worth noticing that the Pareto front shape
of ZCAT7 combines convex and concave regions. This, in fact, could be a chal-
lenge for MOEAs and their density estimators in order to reach a proper rep-
resentation of the true Pareto front, particularly in high-dimensional objective

spaces.
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5.4. Difficulties on Large-scale Problems

The ZCAT test problems can be used to assess the performance of MOEAs
that deal with problems having a large number of decision parameters (the so-
called large-scale problems). To show how difficult is to solve a ZCAT problem,
we adopted ZCAT19 using the default parameters in its two-objective formu-
lation. In our experiments, we employed 50, 100, 500, 1000, 2000, and 5000
decision variables. Figures show the final approximations achieved by the
adopted MOEAs using these parameters settings. The plots correspond to the
best approximations (concerning IGD) obtained by the MOEAs in 30 indepen-
dent executions. As can be seen, the performance of MOEAs degrades as the
number of decision variables increases. It is important to notice that depending
on the principle on which an MOEA is based, the performance of an algorithm
becomes better or worse. Preliminary results indicate that SMS-EMO-DE ap-
proximates solutions in a better way than other algorithms. SMS-EMOA-DE
is a greedy algorithm that approximates the Pareto front by increasing the hy-
pervolume of non-dominated solutions at each offspring generation. This can
be the reason why SMS-EMOA-DE approximates solutions better than other
algorithms even when the number of decision variables is large (see for example
when using 2000 decision variables). Nonetheless, with 5000 decision variables,
the performance of SMS-EMO-DE significantly decreased.

An advantage of using the ZCAT test problems for large-scale optimization
is that the objective vectors produced by an MOEA can be visualized close to
the true PFs regardless of the number of decision variables. This is because
the Z functions bind the B; functions, see their mathematical formulation in
Table[d This property of the ZCAT test suite facilitates the examination of an
MOEA when it approximates solutions to different regions of the true PF in a

large-scale test problem.

5.5. Difficulties on Different Configuration Levels

The different Z functions in Table [ establish a difficulty level for the test

problems, which, depending on the evolutionary approach, can become easier
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Figure 5: (a) GDE3 approximations on ZCAT19 using different numbers of decision variables.
(b) SMS-EMOA-DE approximations on ZCAT19 using different numbers of decision variables.
(c) MOEA/D-DE approximations on ZCAT19 using different numbers of decision variables.
(d) Pareto front approximations on ZCAT1 using default parameters and Imbalance=True.

or more difficult to solve. Such difficulty levels are related to the fitness land-
scape of a problem. In this sense, a separable/unimodal /non-deceptive problem
should be easier to solve than a non-separable/multi-modal/deceptive prob-
lem, respectively. To facilitate the analysis on different configuration levels, we
adopted ZCAT7 with default parameters in its two-objective formulation. For
each MOEA, we performed 30 independent runs with the parameters settings
described in Section Figures show the best approximations (in terms
of IGD) obtained by the MOEAs in all the executions, using different configura-
tion levels. As can be seen, from the levels, the unimodal and separable setting
(Level=1) became the easiest to solve for all the algorithms. In fact, the PF of
ZCATT came to be covered almost in its entirety by all the MOEAs. It is also
worth noticing that at subsequent levels, the solution difficulty did not follow
an increasing order for the parameter Level (i.e., 2, 3, 4, 5, 6). As can be seen,
depending on the evolutionary approach, ZCAT7 became either easier or more

difficult to solve.
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Figure 6: (a) GDE3 approximations at different configuration levels. (b) SMS-EMOA-DE
approximations at different configuration levels. (c) MOEA /D-DE approximations at different
configuration levels. (d) Approximations obtained by the MOEAs using default parameters
and Bias=True.

5.6. Difficulties on Pareto Sets and Pareto fronts

The ZCAT test suite allows to formulate a test problem with a compli-
cated Pareto set topology by setting the flag Complicated PS=True. To show
the difficulties of these types of problems, we adopted ZCAT3 with default
parameters in its three-objective formulation. Figure [7] shows a performance
comparison between the adopted MOEAs using Complicated PS=True (Fig-
ures and Complicated PS=False (Figures 7f). From these plots, it
is possible to appreciate that the performance of MOEAs deteriorates using
Complicated PS=True. As pointed out in [20, 2], difficult Pareto set topologies
shall evaluate the mating selection and replacement mechanisms in MOEAs.

From the same plots, it is also possible to observe that employing
Complicated_PS=False (i.e., a PS topology that is relatively simple), the Pareto
front is not entirely achieved by all the adopted MOEAs. In particular, the
diversity mechanisms from GDE3 and MOEA/D-DE are not able to obtain
a proper representation of the true PF in this parameters setting. On the
other hand, SMS-EMOA-DE was the best choice to deal with the PF shape
of ZCAT3 when the simple PS topology is stated. However, note that the use of
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Figure 7: Pareto front and Pareto set approximations obtained by the MOEAs on ZCAT3
using Complicated PS=True for: (a) GDE3, (b) SMS-EMOA-DE, and (c) MOEA /D-DE. Using
Complicated_PS=False for: (d) GDE3, (¢) SMS-EMOA-DE, and (f) MOEA/D-DE.

SMS-EMOA-DE can be impractical when the number of objectives in ZCAT3
increases. As pointed out before, complicated PF shapes shall encourage the
design of new strategies to maintain diversity along the Pareto front in different

multi-objective approaches.

5.7. Difficulties on Biased Problems

The ZCAT test suite can be configured to formulate biased problems by
setting the flag Bias=True. As pointed out before, in a biased ZCAT test
problem, a tiny change in the decision variables of some Pareto solutions may
cause significant changes in their objective vectors. In order to appreciate the
performance of MOEAs readily, we adopted ZCAT7 using only two objectives
and employing the unimodal and separable configuration, that is Level=1. As
a reference, a random sample of 200,000 solutions was generated and compared
with the last populations obtained by the MOEAs in a single run. Figure [6d]
shows the approximation produced by the MOEAs. The random solutions were
plotted as well as a reference. As can be seen, the MOEASs were not able to solve
the unimodal and separable ZCAT7 problem with the biased search space as
they solved the unbiased ZCAT7 (see Figures . This simple experiment
shows how difficult it is to solve a biased ZCAT test problem, even when it is
unimodal and separable. As pointed out in [24], the bias feature is a major

factor that makes a multi-objective problem difficult since an MOEA needs to
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obtain a proper balance between exploration and exploitation. For this reason,
the bias feature should be considered when designing scalable multi-objective

problems.

5.8. Difficulties on Imbalanced Problems

The imbalanced ZCAT test problems assess the abilities of an MOEA to
achieve a relatively good representation of the real Pareto front. To show the
difficulties of solving these types of problems, we adopted ZCAT1 using default
parameters and Imbalance=True in its two-objective formulation. According to
the formulation of imbalanced problems (Equation @), odd objective functions
will be easy to optimize. This effect can be observed in Figure [pd| where f; is
favored and fs is unfavored during the search. These types of problems are a
challenge for MOEAs because finding a proper balance between convergence and
exploration is not an easy task. However, as pointed out in [25], these types of
problems should encourage researchers to devise modified algorithms balancing

convergence and diversity-preservation aspects.

5.9. Final and Brief Remarks

Rather than attempting to make a strong judgment of MOEAs’ skills, the
goal of the above experiments was to show how to use the test suite and to
have an idea of the behavior of MOEAs based on different principles at different
configurations of the ZCAT test suite. Although several test problems can be
formulated by setting the parameters M (objectives), n (decision variables),
Level, Complicated PS, Bias, and Imbalance, their analysis is beyond the
scope of this paper.

Nonetheless, it is worth noticing that any test problem included in the pro-
posed test suite can be set up according to the user’s preferences in order to
evaluate different components of an MOEA. Our suggestion in this test suite is
to start with Level = 1 without considering any other difficulty and continue
with subsequent levels activating the different flags in order to evaluate the

robustness of an MOEA.
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6. Conclusions

Multi-objective test problems have played an essential role in the analysis
and comparison of MOEAs. Over the years, several scalable test problems
have been designed to evaluate specific mechanisms of MOEAs. Most of these
proposals have been mainly focused on the search space of the test problems,
thus neglecting the design of Pareto fronts.

In this regard, this paper introduced a new set of scalable test problems em-
phasizing the importance of the design of new Pareto fronts which are scalable
in the number of objectives. The proposed test suite innovates the state of the
art by introducing twenty test problems with different Pareto fronts unusually
found in the specialized literature. Additionally, the proposed test suite incor-
porates several characteristics in the search space of the problems, covering:
separability, multi-modality, deceptiveness, and bias. An advantage of the pro-
posed test suite is that a test problem can be made more difficult by switching
among different configuration levels or through an imbalance of the objective
functions. In addition to these features that hinder the search for Pareto op-
timal solutions, the proposed test suite includes different shapes of the Pareto
sets to test the parent selection, recombination, and replacement mechanisms of
MOEAs. These Pareto set topologies can be switched on and off to make them
easier or more complicated.

Due to the constant progress in the development of MOEAs, the components
included in this test suite offer, in the form of a toolkit, a practical and flexible
solution to construct more complicated and challenging test problems. Our
preliminary experiments illustrate the difficulties of the proposed test problems
and motivate the development of new evolutionary approaches.

Although the proposed test suite is limited to unconstrained continuous
spaces, its components can be used to build test problems with new features.
Thus, the study presented in this paper opens the door to increasing the scope
of the proposed set of problems. Consequently, with the emergence of new test

problems, researchers could extend the suggested recommendations and/or fea-
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tures currently followed for the design of multi-objective test problems. These
limitations of the ZCAT problems and studies regarding the performance of
MOEASs on the proposed test set remain as work which is worth investigating.

As far as we are concerned, we will focus on designing discrete problems. In
this sense, the PF shapes of ZCAT test problems can be discretized to build
combinatorial or integer multi-objective optimization problems. Additionally,
we would also like to extend the same test problems focusing on uncertain and
dynamic environments. These are, in fact, paths for future research that we will
be working on in the near future.

Finally, we would like to encourage the EMO community to evaluate their
novel and already published algorithms in the ZCAT test suite. Particularly, it
is worth noticing that combining different features in the suite can help us to

assess the robustness of MOEAs.
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