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Abstract

Vehicle routing problem with time windows (VRPTW), which is a typical
NP-hard combinatorial optimization problem, plays an important role
in modern logistics and transportation systems. Although the particle
swarm optimization (PSO) algorithm exhibits very promising perfor-
mance on continuous problems, how to adapt PSO to efficiently deal with
VRPTW is still challenging work. In this paper, we propose a neighbor-
hood comprehensive learning particle swarm optimization (N-CLPSO)
to solve VRPTW. To improve the exploitation capability of N-CLPSO,
we introduce a new remove-reinsert neighborhood search mechanism.
We calculate an information matrix (IM) recording the probability
of adjacency between two clients based on the information about the
clients themselves and the local information about the elite individuals
to guide the removal operation of the neighborhood search. At the same
time, we combine the cost matrix (CM) that records the cost of cus-
tomer removal with IM to create a guided reinsertion operator based on
local information to guide the routing. Moreover, to enhance the explo-
ration of N-CLPSO, a semi-random disturbance strategy is proposed. To
prevent degradation of the population, the longest common sequences
of elites are saved when performing the disturbance. To illustrate the
effectiveness of N-CLPSO, this paper conducts extensive experiments
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on Solomon’s benchmark sets. The numerical results show that the
proposed algorithm outperforms or can compete with many other state-
of-the-art algorithms. Furthermore, sensitivity analysis of the newly
introduced strategies is also conducted based on extensive experiments.

Keywords: Vehicle routing problem with time windows, Particle swarm
optimization, Neighborhood search, Longest common sequence

1 Introduction

The vehicle routing problem (VRP), which is a typical combinatorial optimiza-
tion problem, was first proposed by Dantzig et al. in 1954 when they studied
the optimal path of gasoline transportation trucks (Dantzig and Ramser, 1959).
Since there is a high correlation between VRP and the reality of logistics, the
VRP attracts much attention of researches in the logistics field. During the
last few years, various variants of VRP, such as the Capacitated VRP (CVRP)
(Rabbouch et al, 2020) and the Heterogeneous Fleet VRP (HFVRP) (Lai et al,
2016), have derived from different real-world problems. One of the most signif-
icant variations is the VRP with time windows (VRPTW) (Yu et al, 2011a),
in which users’ access time and vehicles’ capacity limits are considered in VRP
aiming to make the problem more realistic.

Initially, some deterministic algorithms are adopted to solve VRPTW (Bal-
dacci et al, 2012; Kallehauge, 2008), but due to VRPTW’s NP-hardness,
solving large-scale VRPTW with the deterministic algorithms is exceedingly
time-consuming. Thus, in recent years, various heuristic and meta-heuristic
algorithms for solving VRPTW problems are of great interest to researchers.
For example, the Simulated Annealing (SA) (Zhong and Pan, 2007), Taboo
Search (TS) (Ho and Haugland, 2004), Ant Colony Optimization (ACO)
(Cruz-Reyes et al, 2014), Particle Swarm Optimization (PSO) (Gong et al,
2012), and Genetic Algorithm (GA) Nalepa and Blocho (2015) have been
proved to be effective in solving VRPTW problems. However, as the complex-
ity and scale of VRPTW increase, the convergence speed and optimal results of
the algorithms are still unsatisfactory. Hence, how to speed up the convergence
and improve the solutions’ accuracy needs to be further studied.

PSO algorithm (Poli et al, 2007), as an excellent heuristic proposed
by Kennedy and Eberhart in 1995, was initially widely used for contin-
uous function optimization and achieved many promising achievements in
both theoretical studies (Wei et al, 2020; Xia et al, 2020b,a,c) and engi-
neering applications (Veeramachaneni et al, 2005; Lin et al, 2009; Kulkarni
and Venayagamoorthy, 2010; Kanakasabapathy and Swarup, 2010; Kulkarni
and Venayagamoorthy, 2011). In recent years, some researchers have tried
to improve the basic PSO algorithm to adapt it to combinatorial optimiza-
tion problems, including VRPTW. However, PSO also has some shortcomings,
including (1) premature convergence for complicated multimodal problems,
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and (2) low precision of final solutions. The main reasons for the former short-
coming of the PSO algorithm is that the population diversity may disappears
rapidly during optimization process. Hence, many improvements intending to
keep the population diversity have been proposed by researchers (Ajibade et al,
2022; Cheng et al, 2011). To overcome the latter drawback of the PSO algo-
rithm, various excellent and efficient local search strategies have been applied
to some PSO variants (Chourasia et al, 2019; Liu et al, 2020). Although these
strategies significantly enhance the comprehensive performance of PSO on con-
tinues problems, they cannot be directly applied in combinatorial optimization
problems, such as VRPTW. Thus, how to improve these strategies in PSO and
adapt them to VRPTW still needs to be further studied.

Based on the analysis above mentioned, this paper proposes a neighborhood
comprehensive learning PSO (N-CLPSO) to solve VRPTW. In N-CLPSO,
update operators of the velocity and position applied in traditional PSO are
improved to satisfy characteristics of VRPTW. Based on the update oper-
ators, we design a novel neighborhood search operator to enhance the local
search capability of N-CLPSO. Moreover, intending to maintain population
diversity, a diversity retention strategy based on elite fragments is introduced
in N-CLPSO. Properties of introduced strategies in N-CLPSO is analyzed by
systematic experiments, while the overall performance of N-CLPSO is testified
by comparison results between it and other state-of-the-art metaheuristics on
a large number of benchmark VRPTW instances.

The main contributions of this study are summarized below.
(1) PSO has been widely used in the field of VRPTW, but its lack of

local search capability leads to the solution quality being often unsatisfac-
tory. To remedy this deficiency, we propose a novel reinsert operator and two
remove operators with the help of the remove-reinsert idea of Large Neigh-
borhood Search (Hong, 2012). We combine the novel remove-reinsert-based
neighborhood search with CLPSO and propose N-CLPSO.

(2) In previous reinsert operators, most of them only consider the incre-
mental repair cost after node insertion, which tends to ignore other useful
information. Therefore, we propose an efficient repair operator, in which not
only considers the local information of the location between clients, time win-
dows and elite segments, but also evaluates the incremental cost caused by the
insertion of client points into the current location.

(3) To overcome the premature convergence, this study proposes a diversity
retention strategy based on semi-random disturbance of elite fragments. In
order to ensure the diversity of particles, a certain scale of reorder operations
on the original routes should be performed. However, a large-scale random
reorder operations may lead to particle degradation. Therefore, we design a
new reorder strategy, in which the longest common sequences of elite particles
are saved. Based on the strategy, the promising gene blocks, i.e., the longest
common sequences, of the elites, can be saved when executing the reorder
operator.
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The rest of this paper is organized as follows. Section 2 provides a short
introduction to the PSO algorithm and the VRPTW model, and Section 3
reviews the current state of VRPTW research. N-CLPSO and the main strate-
gies are detailed in Section 4. Next, the experimental results and analysis are
reported in Section 5. Finally, a summary and future work of this study are
presented in Section 6.

2 Related work

2.1 PSO

In the standard PSO, states of each particle i in the tth generation can be
described by two vectors, i.e., a position vector Xt

i =
[

xt
i,1, x

t
i,2, . . . , x

t
i,D

]

and

a velocity vector V t
i =

[

vti,1, v
t
i,2, . . . , v

t
i,D

]

, where D denotes a dimension

of the problem to be optimized. Xt
i is considered as a candidate solution,

and V t
i is regarded as the search direction and step size of particle i in the

tth generation. In the process of population search, each particle adjusts its
flight path by its own historical best position PBt

i =
[

pbti,1, pb
t
i,2, . . . , pb

t
i,D

]

and the population’s historical best position GBt
i =

[

gbti,1, gb
t
i,2, . . . , gb

t
i,D

]

.

The specific update rules of V t
i and Xt

i are defined as Eq.(1) and Eq.(2),
respectively.

vt+1
i,j = wvti,j + c1r1

(

pbti,j − xt
i,j

)

+ c2r2
(

gbtj − xt
i,j

)

(1)

xt+1
i,j = xt

i,j + vt+1
i,j (2)

where w denotes an inertia weight, which is used to control the influence of the
current speed on the latest speed; c1 and c2 are two constants that determine
the learning weight on PBt

i and GBt
i respectively; r1 and r2 are two random

numbers uniformly distributed in the interval [0, 1].
To improve the global search capability of the basic PSO, Liang et al (2006)

proposed a CLPSO in which a new speed update rule described as Eq.(3) is
used to prevent premature convergence.

vt+1
i,j = wvti,j + c1r1

(

ptf(i),j − xt
i,j

)

(3)

where f(i) represents a particle index that guides particle i to fly in the jth

dimension, and the particle f(i) can be any particle including particle i itself.
To select f(i) in each dimension, CLPSO will generate a random number r.
Subsequently, r is compared with Pci defined as Eq.(4), which is the learning
probability of the control particle to learn from itself or others.

Pci = 0.05 + 0.45 ∗

(

exp
(

10(i−1)
N−1

)

− 1
)

(exp(10)− 1)
i = 1, 2, . . . , N (4)



Springer Nature 2021 LATEX template

A neighborhood comprehensive learning particle swarm optimization ... 5

where N is the population size.
If r is greater than Pci, the particle i learns toward its own personal his-

tory. On the contrary, the particle i selects the particles f(i) as its learning
exemplar by binary tournaments selection. Using this learning strategy, parti-
cles can learn not only from themselves, but also from the optimal features of
other particles. These features allow the particles to have more learnable sam-
ples and a larger potential flight space. Thus, CLPSO can utilize the helpful
information in the population more efficiently, and then can generate higher
quality solutions. Experimental results in (Chen et al, 2010) manifest that
CLPSO has good performance for discrete optimization. Hence, we will use
CLPSO as the basic framework to solve VRPTW problems.

2.2 Mathematical definition of VRPTW

VRPTW is to find the lowest cost route to serve consumers in a given geo-
graphic area with the same size fleet within a certain time window. The total
demand for service provided by each vehicle must not exceed the total capac-
ity of the vehicle, and each customer is served by a vehicle only once during a
defined time window. A vehicle must wait until the start of the time window if
it approaches a customer before the start of the customer’s time window. Sim-
ilar to this, a customer cannot be served if a vehicle arrives at their location
after the end of their time window.

VRPTW is a problem in which a fleet of K vehicles serve M customers.
Each vehicle has a constant capacity Q. The depot v0 is the start and end
point of each route. The vertex vi is defined as a customer, i ∈ {1, 2, . . . ,M}.
The customer point vi is located at (xi, yi), its the demand for goods is qi and
the delivery time window [bi, li], where bi and li refer to the earliest and latest
time when the customer starts the service, respectively. If a vehicle arrives at
the customer vi earlier than bi, it must wait until the start of the time window
to serve the customer, on the other hand, if the vehicle does not arrive before
li, it cannot serve the customer vi. The service time of each customer is si.
The depot is located at (x0, y0) with demand q0 = 0 and the time window
[0, l0 ≥ max (ei)]. For simplicity, the time cost that a vehicle traveling from
customer i to customer is represented by the Euclidean distance between nodes
(di,j = dj,i), where i 6= j, i, j ∈ {1, 2, . . . ,M}.

VRPTW has two objectives defined as Eq.(5) and Eq.(6), respectively. The
primary goal is to minimize the number of vehicles (NV ) and the secondary
goal is to minimize the total distance (TD) with the same number of routes.
VRPTW can be mathematically formulated as follows. Define variable:

xk
i,j =

{

1, if vehicle k treavels directly from i to j
0, otherwise

yki =

{

1, if customer i is served by vehicle k
0, otherwise



Springer Nature 2021 LATEX template

6 A neighborhood comprehensive learning particle swarm optimization ...

The goal of the VRPTW is to minimize

minNV = K (5)

and

minTD =

M
∑

i=0

M
∑

j=0

K
∑

k=1

di,j ∗ x
k
i,j (6)

s.t.

M
∑

i=0

xk
i,j = ykj ∀k = 1, . . .K, ∀j = 1, . . . ,M (7)

M
∑

i=0

xk
i,j = yki ∀k = 1, . . .K, ∀i = 1, . . . ,M (8)

K
∑

k=1

yki = 1 ∀i = 1, . . .M (9)

M
∑

i=0

yki ∗ qi ≤ Q ∀k = 1, . . .K (10)

K
∑

k=1

yk0 = K (11)

ti + wi + si + di,j = tj ∀i, j = 1, . . .M, i 6= j (12)

ei ≤ tj ≤ lj ∀j = 1, . . .M (13)

wi = max {ei − ti, 0} ∀i = 1, . . .M (14)

Constraints Eq.(7)-Eq.(9) mean that each customer will be served by a
vehicle and that each customer can be served by only one vehicle. Constraint
Eq.(10) means that each vehicle cannot carry more than capacityQ. Constraint
Eq.(11) means that all routes start from the depot. Eqs.(12)-(14) define the
time window constraint, where ti is the vehicle arrival time at node i; wi is
the vehicle waiting time at the customer location to start the service time; Si

is the service time; and di,j is the time cost between nodes i and j.

3 Literature review

VRP and its variants have been extensively studied based on different intel-
ligence algorithms in the past decades. For instance, ACO inspired by the
foraging behavior of real ants is a popular probabilistic algorithm to solve
VRPTW. Considering the customer service time,Wang et al (2019) designed a
multi-ant system with local search, which combines the Multi Ant System algo-
rithm and four local search operators to improve the solution quality. Gupta
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and Saini (2017) proposed an improved ACO to solve the VRPTW problem,
which uses new pheromones to reset and update the function to enhance the
global search capability of the algorithm, and improve the optimization path
by the 2-opt method. Zhang et al (2019) designed a solution strategy based on
ACO and three variational operators to solve a multi-objective VRP problem
with flexible time windows.

GA is a heuristic algorithm that simulates genes, chromosomes and the
genetic evolution of organisms. Due to its strong search performance and good
extensibility, GA has been widely used in VRPTW problems. Gocken et al
(2017) proposed a hybrid version of the GA that performs a scan calculation
for the initial population, allowing the algorithm to start searching directly for
high-quality solutions to produce more has been solutions. Moon et al (2012)
proposed a model of the VRPTW with overtime and outsourcing vehicles
(VRPTWOV) by extending the conventional VRPTW model, which allows
drivers to appear to work overtime and use outsourcing vehicles. Thus, an
integer programming model, a GA and a hybrid algorithm based on simulated
annealing are proposed to solve the VRPTWOV problem. Zhang et al (2020)
used VRPTW as a research object and proposed a hybrid multi-objective
evolutionary algorithm with fast sampling strategy-based global search and
route sequence difference-based local search (HMOEA-GL).

PSO, as a typical swarm intelligence optimization algorithm, imitates the
foraging behaviour of a flock of birds, and it was mainly applied to continuous
problems at the beginning of its proposal. In recent years, some scholars have
started to try to improve the standard PSO to make it applicable to the opti-
mization of combinatorial problems, such as VRPTW. Marinakis et al (2019)
proposed a Multi-Adaptive PSO (MAPSO), which improves the traditional
PSO in three aspects: initialization, position update and hyperparameters.
Moreover, two memories i.e., global best memory (GBM) and personal best
memory (PBM), are proposed in MAPSO, to update the particles position
information. Zhang et al (2018) proposed an evolutionary scattering search
PSO (ESS-PSO) to solve VRPTW, which introduces a GA and a new “route
+/-” evolutionary operator. The algorithm redefines the velocity and position
update rules based on the concept of “destroy and rebuild”.

Moreover, some studies on VRPTW have indicated that an efficient local
search strategy has become a useful method to help individuals to jump out of
local optima. Therefore, designing efficient local search strategies becomes one
of research hot spots on VRPTW, and attract more attentions of researchers
in recent years. For instance, Liu and Jiang (2019) designed an efficient algo-
rithm based on the combination of large-neighborhood search and GA. The
algorithm uses a constrained relaxation scheme to extend the search space
by neighborhood search of existing infeasible solutions. It initiates a GA to
explore the undiscovered space when the search falls into a local optimum. Yu
et al (2011b) introduced a neighborhood search operator on top of the ACO
and borrow the population diversity protected by forbidden search and explore
new solutions.
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4 Proposed method

Since VRPTW is an NP-hard problem with high computational complex-
ity and many conditional constraints, this study proposes N-CLPSO to solve
VRPTW. In this section, Section 4.1 presents the framework of N-CLPSO,
and Section 4.2 describes the details of it. Section 4.3 introduces the vehicle
insertion strategy. Section 4.4 shows the guided reinsertion operator based on
local information, and Section 4.5 details the remove-reinsert-based neighbor-
hood search strategy. Diversity retention strategies based on elite fragments
are described in Section 4.6.

4.1 Framework of N-CLPSO

N-CLPSO is a combination of CLPSO and a new proposed local search strat-
egy. Although, CLPSO has a good global search capability when optimizing
continues problems, the encoding and related operators of it need to be
redefined according to the distinct characteristics of VRPTW.

We use the vector Xt
i to denote the position of particle i in the tth

generation. xt
i,d denotes the set dk,l = {< k, d >,< d, l >} of a set

of arcs in the d-dimension of Xt
i , which indicates that the left and right

neighbors of node d in particle i in the tth generation are k and l, respec-
tively. To ensure that each position is a valid solution, the position xt

i,d has
three constraints: (1) d ∈ (0, 1, 2, . . . , n), n represents the city number; (2)
k, l ∈ {0, 1, . . . , d − 1, d + 1, . . . , n} and (3) k 6= l. Constraint (1) ensures
that each element is a valid city, constraint (2) makes each city will not
be adjacent to itself, and constraint (3) enables that each city’s neighbour-
ing points are not duplicated. Taking a VRPTW problem with four cities as
an example, a route sequence 0 → 2 → 4 → 3 → 1 → 0, can be repre-
sented by 5 arcs: (01,2, 13,0, 20,4, 34,1, 42,3). There exists a set of probability
sets vti,d = [< u, v > /p(u, v) |< u, v >∈ Ad] in dimension d of the velocity vec-

tor V t
i , where Ad denotes the set of all possible adjacent arcs to node d and

p(u, v) ∈ [0, 1] is the probability corresponding to each arc < u, v >.
The framework of N-CLPSO is demonstrated by Fig.1. N-CLPSO is the

framework of CLPSO with the addition of a vehicle insertion strategy (see
Section 4.4), a diversity retention strategy (see Section 4.6), and a neigh-
borhood search strategy (see Section 4.5). After the N-CLPSO velocity and
position update (see Section 4.2), we use a vehicle insertion strategy to mini-
mize the number of vehicles in the feasible solution. Then, we insert two start
conditions after the steps of vehicle insertion strategy and individual optimal
solution Pbest update to determine whether the diversity and neighborhood
search strategies are started or not, respectively. Finally, after updating the
global optimal solution Gbest, N-CLPSO continues with the next iteration
until the stopping condition is reached.

It has been pointed out in Section 2 that VRPTW has two objectives. In
this study, we combine a new decision method (Gong et al, 2012) to deal with
the number of vehicles NV and the total distance TD of VRPTW. To better
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Initialize the population and 

correlation matrix IM

N-CLPSO updates the 

velocity and position of the 

particles (See 4.2)

Minimize the number of 

vehicles by inserting strategy 

(See 4.3)

Gbest is stagnation?
Start Diversity Retention 

Srategy (See 4.6)

Update Pbest in N-CLPSO

Pbest is stagnation?
Start Neighbourhood Search 

Srategy (See 4.6)

Update Gbest in N-CLPSO

Output the Gbest

Satisfy stop conditions?

Yes

No

Yes

No

Yes

No

Fig. 1 Framework of N-CLPSO

present the priority of the NV objective over the TD objective, we normalize
TD in the range of [0,1] weighted with NV . The objective function of N-
CLPSO is defined as Eq.(15), where NV (Xt

i ) and TD (Xt
i ) denote the number

of vehicles and the total distance corresponding to particle Xi, respectively.

fitness
(

Xt
i

)

= NV
(

Xt
i

)

+ normalize
(

TD
(

Xt
i

))

(15)

normalize(x) =
arctan(x)

Π
2

(16)

4.2 Basic operators in N-CLPSO

In N-CLPSO, inspired by the literature (Gong et al, 2012),we define new
operators to update the position and velocity of each particle on the set and
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probability. The proposed 4 operators are defined as Eqs.(17)-(20), respec-
tively. c ∗ vti,d and vti,d + vtj,d denotes the probability p(u, v) variation of the

arc. xt
i,d − xt

j,d means the set solving difference set and c ∗ (xt
i,d − xt

j,d) stands
for converting a crisp set into a set with probability:

c ∗ vti,d = {< u, v > /p′(u, v) |< u, v >∈ Ad}

p′(u, v) =

{

1, if c ∗ p(u, v) > 1
c ∗ p(u, v), otherwise

(17)

vti,d + vtj,d = {< u, v > /max (pi(u, v), pj(u, v)) / < u, v >∈ Ad} (18)

xt
i,d − xt

j,d = Ud =
{

< u, v >|< u, v >∈ xt
i,d and < u, v >/∈ xt

j,d

}

(19)

c ∗ Ud = {< u, v > /p′(u, v) |< u, v >∈ Ad}

p′(u, v) =







1, if < u, v >∈ Ud and c > 1
c, if < u, v >∈ Ud and 0 < c < 1

0, if < u, v >/∈ Ud

(20)

Taking the velocity update Eq.(3) as an example, we assume that vti,1 =
{< 1, 2 > /0.3, < 1, 4 > /0.5, < 4, 1 > /0.6}, xt

i,1 = {< 5, 1 >,< 1, 2 >},
pt
f(i),1 = {< 1, 4 >,< 5, 1 >}, w = 0.4, c1 = 2.0, r1 = 0.3. Then, we have

w ∗ vti,1 = {< 1, 2 > /0.12, < 1.4 > /0.2, < 4, 1 > /0.24} and pt
f(i),1 − xt

i,1 =

{< 1, 4 >} and c1 ∗ r1 ∗
(

pt
f(i),1 − xt

i,1

)

= {< 1, 4 > /0.6}. Finally, the new

velocity vti,1 = w ∗ vti,1 + c1 ∗ r1 ∗
(

pt
f(i),1 − xt

i,1

)

= {< 1, 2 > /0.12, < 1, 4 >

/0.6, < 4, 1 > /0.24} can be obtained.
In order to speed up the convergence of the algorithm, this study modi-

fies the traditional CLPSO with certain improvements, shown as Eq.(21) and
Eq.(22).

Pci =
sci

2 ∗N
(21)

n = 2 + round

(

ceil
(

N
2

)

− 2

N ∗ sci

)

(22)

where N is the size of population, sci is the ranking of particle i in terms
of its fitness value in the population, and n is the number of selected sample
particles.

Unlike the traditional CLPSO, in which a particle selects its learning exem-
plar based on its index, a particle in N-CLPSO adjusts it learning rate and
the number of learning samples based on the its fitness values. Concretely, the
higher the particle fitness is, the smaller its selection probability Pc and the
number of learning examples n will be, thus ensuring the fitness of its parti-
cles. On the contrary, if the particles fitness value is lower, both Pc and n will
become larger to make the particles have a greater probability to learn from
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other particles. In other words, it will have a greater probability to learn from
other outstanding particles, which is beneficial for speeding up the convergence.

Based on the velocity generated by the above equation, the position of
the particle can be obtained by three set: SV = {m |< k,m >∈ Vi, and <
k,m > satisfies Ω}, Sx = {m |< k,m >∈ Xt

i , and < k,m > satisfies Ω},
Sa = {m |< k,m >∈ A, and < k,m > satisfies Ω}. It can be seen that the
arcs < k,m > come from the sets Vi, X

t
i and A respectively, while satisfying

the constraints. First, we set a random number r ∈ [0,1] in order to ensure
that arcs with larger probability are more likely to be selected, and only arcs
with probability greater than r in V t

i will be added to Vi. Second, the set Xt
i

and A in the set of all possible arcs in the search space since the position of the
previous generation of particles and the set of all possible arcs in the search
space, respectively.

As in Algorithm 1, assume that the new location Xt+1
i is set to the empty

set, and according to the constraint, each vehicle departs from the depot and
iteratively selects the next customer node adjacent to the current customer.
Suppose k is the customer being served by the vehicle, and the next customer,
m to be visited by the vehicle. If there is an available node in SV , we select
m from SV . Otherwise, we select m from Sx. When there is no available node
in both SV and Sx, we select m from Sa. After m is selected, arc < k,m >
is added to Xt+1

i and the search continues with m as the current client until
all client visits are complete. When there are no available nodes in all Sv, Sx,
and Sa, it indicates that the constraints of VRPTW cannot be satisfied, so we
need to create a new path. Specifically, a depot node needs to be inserted after
the current customer point k, and the next customer point m to be served is
reselected using the depot as the starting point, thus ensuring the feasibility of
Xt+1

i . Finally, the updated Xt+1
i goes to replace the current position Xt+1

i . In
addition, we also use the heuristic selection method NNH (Gong et al, 2012)
to speed up the convergence of the algorithm.

4.3 Vehicle insertion strategy

It is well known that the number of vehicles is one of crucial factors determining
a VRP’s difficulty. In reality, each additional vehicle is likely to increase the
cost significantly. Therefore, in this paper, a simple insertion scheme is applied
to reduce the number of vehicles after each particle completes its position
update. The vehicle insertion strategy is shown in Algorithm 2.

Take Fig.2 as an example, where 1 is a depot and 2-7 are 6 customers.
The route r = {1, 2, 3, 1, 5, 6, 1, 4, 7, 1} means that there are 3 subpaths, i.e.,
V c(1) = {1, 2, 3, 1}, V c(2) = {1, 5, 6, 1}, and V c(3) = {1, 4, 7, 1}. First, we
remove subpath V c(1) from route r to obtain an intermediate route r∗. After
that, the nodes {2, 3} in V c(1) need to be inserted into the r∗ through a guided
insertion strategy (see Section 4.4). When all nodes are inserted successfully,
as shown in Fig.2(a), a new route r consisting 2 new sub-paths V c(1) and
V c(2) can be obtained, and continue to remove the path V c(1). If any node is
not inserted in the r∗ as shown in Fig.2(b), the route keeps the sub-path in the
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Algorithm 1 Pseudocode for the position update process in N-CLPSO

Input: Xt
i ; Vi; A;

Output: Xt+1
i

1: Xt
i = φ;k = 0;t = 0;

2: SV = {m |< k,m >∈ Vi, and < k,m > satisfies Ω};
3: Sx = {m |< k,m >∈ Xt

i , and < k,m > satisfies Ω};
4: Sa = {m |< k,m >∈ A, and < k,m > satisfies Ω};
5: while Customers do not have complete access do:
6: if SV 6= φ then

7: select m in SV , and add < t,m > to Xt+1
i

8: k = m;t = m;
9: update SV ,Sx,Sa;

10: else if Sx 6= φ then

11: select m in Sx, and add < t,m > to Xt+1
i

12: k = m;t = m;
13: update SV ,Sx,Sa;
14: else if Sa 6= φ then

15: select m in Sa, and add < t,m > to Xt+1
i

16: k = m;t = m;
17: update SV ,Sx,Sa;
18: else

19: k = 0;
20: update SV ,Sx,Sa;
21: end if

22: end while

Algorithm 2 Vehicle insertion strategy

Input: Routing r, Vehicle Collection V c
Output: New Routing Nr
1: n = number(V c); //Record total number of vehicles
2: i = 1;
3: while i <= n do:
4: ins = V c(i); //Add the node with vehicle i to the set to be inserted
5: r∗ = r − V c(i); //Remove the vehicle i from the path r
6: Insert ins into r∗ using Algorithm 3;//See section 4.4
7: if ins all inserted successfully then

8: r = r∗;
9: n = n− 1;

10: else

11: r = r;
12: i = i− 1;
13: end if

14: end while

15: Nr = r;
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Fig. 2 Vehicle insertion diagram

state before insertion, and removes path V c(2). Such operations are repeated
until all sub-paths being visited.

4.4 Guided reinsertion operator based on local

information

The VRPTW problem itself has a very complex time-space distribution, where
the customer points are not only distributed in different locations in space (i.e.,
spatial distribution characteristics), but also have their distinct time windows
(i.e., temporal distribution characteristics). If spatial locations of two customs
are close, but the time windows of them are very different, directly connecting
the two customs in a route may result in a longer waiting time for a vehicle,
which makes the quality of the solution degrade. On the contrary, if the time
windows of two customers are close, but the distances of them are far, infeasible
solutions may be generated if the two customers are severed by a same vehicle.
Therefore, it is necessary to consider both time and space factors when solving
VRPTW.

In this section, a guided reinsertion operator based on local information
is proposed. To create a local information matrix, the space-time distribution
characteristics between customer points, elite segment information, and inser-
tion cost are considered. Then, we go through the local information matrix to
guide a customers to reinsert into a path. In this study, the local information
matrix is mainly divided into two modules: one is the customer information
matrix (IM), and the other is the route cost matrix (CM) that rises after
customer insertion. Details of the two modules are introduced as follows.

4.4.1 Information matrix

Inspired by the study in (Jiang et al, 2022), the local information among cus-
tomers can be utilized to quickly calculate the probability of adjacency between
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two customers, and then to obtain a higher quality solution set after the
crossover operation. Therefore, the IM proposed in this work is constructed
based on the time-space distribution characteristics of nodes and informa-
tion on elite segments of particles in N-CLPSO. Concretely, IM t

i,j , defined as
Eq.(23), denotes the probability that customers i and j can be served by the
same car consecutively.

IM t
i,j = (1− at) ∗ (DSTmax −DSTi,j) + at ∗ CT (23)

From Eq.(23) we can see that IM t
i,j contains two components. The first

component isDSTmax−DSTi,j , whereDSTi,j , detailed as Eq. (24), represents
the distance in time-space between customer i and customer j. DTi,j and
DISi,j denote the time and space distances between customer points i and
j, respectively. It is obvious that the latter can be expressed in terms of the
Euclidean distance between two points. The size of the time window tends
to be more likely to reflect the probability that two different customer points
can be served by the same vehicle. Generally, the probability of two points
being served by the same vehicle will decrease as an interval between the two
time windows is very small. For instance, in the condition, the vehicle is likely
to exceed the latest time window constraint for the latter node while finish
the serve of the former node. To avoid the problem, intuitively, we want the
vehicle to have plenty of time to serve the latter customer. Therefore, we utilize
the idea in (Qi et al, 2012) to select the next serve customer. Concretely, we
measure the time distance based on the amount of time saved when the vehicle
arrives before the end of the time window.

DSTi,j = (1− a) ∗
(DTi,j −min(DT ))

max(DT )−min(DT )
+ a ∗

(Disi,j −min(Dis))

max(Dis)−min(Dis)
(24)

Suppose there exists customer i and customer j, time windows of them
are [a, b] and [c, d], respectively, and k1 and k2 denote the cost coefficients of
the remaining service time and waiting time of the vehicle, respectively. Then,
the vehicle-saving time can be found according to the time t

′

of the vehicle
arriving from i to j, as in Eq.(25).

Si,j =







k1 ∗ (d− c)− k2 ∗ (c− t′) , t′ < c
−k1 ∗ t

′ + k1 ∗ d, c ≤ t′ ≤ d
−∞, t′ > d

(25)

When the vehicle arriving early at customer j, the vehicle needs to wait
until the customer starts service time c. Therefore, the time saved Si,j is equal
to the length of the customer’s time window minus the time the vehicle is
waiting. If the vehicle arrives within the time window at point j, the saving
time Si,j is equal to the end time window j subtracting the arrival time t

′

. If
the vehicle arrival time exceeds the end time d of the customer, the customer
cannot be served. We can see that it is easier for customer i to go to customer
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j if Si,j is larger. To be consistent with the spatial distance, we define the time
distance between two customers denoted as Eq.(26).

DTi,j = k1 max(S)− Si,j (26)

The second component in the right side of Eq.(23) is CT , which represents
the local information (see Eq.(27)) of the elite individuals.

CT =
ct− ctmin

ctmax − ctmin
(27)

where ct denotes the total number of times that customer i and customer j
are adjacent to each other from the beginning to the current generation; ctmax

and ctmin denote the maximum and minimum values of the number of times
that all customers are adjacent to each other, respectively.

In evolutionary algorithms, individuals with better fitness values are more
likely to produce promising offspring. Since these individuals usually have bet-
ter fitness values, it seems that they may be closer to the optimal solution and
their common fragment is more likely to be part of the optimal solution. Thus,
if two adjacent customers appear frequently in elite individuals, the probabil-
ity of them being served by the same vehicle in the optimal solution will also
be high.

During the search process, the excellent genes of elite individuals will grad-
ually spread to the whole population. If the diffusion rate of the favorable
genes is fast, it is beneficial to improve the convergence speed of the algorithm,
but it is may cause the population fall into local optimum easily. Conversely, if
the diffusion rate is slow, it is beneficial to maintain the population diversity,
but it will reduce the convergence speed of the algorithm. Therefore, a lin-
early decreasing coefficient at, defined as Eq.(28), is introduced in this study
to adjust the diffusion rate of good.

at =
t

tmax
(28)

where t is the current number of generations and tmax is the maximum number
of generations.

It can be seen from Eq.(28) that at the early stage of the optimization pro-
cess, the value of at is small. In this case, the diffusion rate of excellent genes of
elite individuals is slow, which is conducive to preserving population diversity
and enhancing the global search ability of the population. On the contrary, a
larger at at the later optimization process can bring a higher diffusion rate of
excellent genes, which is beneficial for the speed convergence.

As mentioned above, a larger IM t
i,j indicates that the probability of cus-

tomer i and customer j being served by the same car in the tth generation is
larger. It is worth noting that the size of IM is determined by the number of
customers. Concretely, when the number of customers is N , the size of IM is
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N ∗N . Thus, to reduce the computational cost, we only update IM when the
global optimal solution is updated.

4.4.2 Cost matrix

To speed up the convergence, we also propose a CM -assisted information
matrix for bootstrap repair. CM finds the best insertion position in a path
with the help of greedy ideas, i.e., the insertion brings the least increase in
total cost afterwards. As shown in Fig.3, there exists a point i to be inserted
into a path r with length L+ 1. In the insertion process, we not only need to
determine whether node i satisfies a constraint after insertion, but also need
to calculate the corresponding incremental cost. Note that, if the constraint
being violated after inserting node i into a point in the path, the correspond-
ing cost increment is ∞. It can be seen from the value of CM in Fig.3 that
node i satisfies the condition of insertion positions L−1 and L. Therefore, the
cost increment after insertion is saved to CM .

i

r ...

1 2 L-1 L

CM

∞

∞

...

2

4

1

2

L-1

L

Fig. 3 CM building process

From the above definitions of IM and CM , it is clear that a larger IM t
i,j

denotes a greater correlation between node i and node j, while a smaller CMl

means a smaller incremental cost of routing when the node is inserted into
location l. Therefore, both IM and CM are considered when inserting node i
into a certain path. We first perform ascending and descending operations on
IM and CM , respectively. Then, the insertion position of node i is determined
based on the contents of the two matrices. Specifically, we base the selection
on the sum of the ranking values of the positions to be inserted in the two
matrices. For example, if the position to be inserted is ranked 3rd in IM and
8th in CM , the priority value of the inserted position is equal to 11. Finally,
according to the priority value of each inserted position, the inserted position
with the lowest priority value is selected to insert node i. It is worth noting
that if node i is in the current path and there is no location where it can
be inserted, then the node will start a new route from the warehouse. See
Algorithm 3 for a guided reinsertion operator based on local information.



Springer Nature 2021 LATEX template

A neighborhood comprehensive learning particle swarm optimization ... 17

Algorithm 3 Guided reinsertion operator based on local information

Input:

the current route r, the node set ins to be inserted, the information matrix
IM , and the distance matrix Dis.

Output: Nr
1: Nr = r;
2: for i = 1 to ins do // ins denotes the number of customers to be inserted
3: l ← Calculate the path r length;
4: stay ← Record the location of the path r repository;
5: Pd ← ins(i);//InsertNode
6: CM ← Create a two-dimensional matrix with initial value ∞ for l ∗ l;
7: j ← 1;
8: while j < l do //Calculate CM
9: if the node Pd insertion is overweight then

10: j = stay(find(stay == j) + 1); // go to the next path
11: else

12: if Pd can be inserted in the current position then

13: Pi = Nr(j);// Predecessor Nodes
14: Pj = Nr(j + 1);// Post nodes
15: // Calculating Cost Increment
16: CM(j) = Dis(Pi, Pd) +Dis(Pd, Pj)−Dis(Pi− Pj);
17: j = j + 1;
18: end if

19: end if

20: if Pd has no position where it can be inserted then

21: IX = [];
22: else

23: IM ← Sorting node Pd in ascending order
24: CM ← Sort the cost matrix of node Pd in descending order;
25: IX ← Find the number of the lowest position in the sum of IM

and CM rankings;
26: end if

27: if IX is empty then

28: Nr ← Insert Pd and repository at the end of Nr;
29: else

30: Nr ← Insert Pd at the location of IX;
31: end if

32: end while

33: end for

4.5 Removal-reinsert-based neighborhood search

When using PSO to solve VRPTW problems, an efficient neighborhood search
operator plays a positive and crucial role in helping particles to jump out of
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local optima, improving the solution accuracy, and accelerating the conver-
gence speed (Chih, 2018). Furthermore, the study in (Shi et al, 2018) verify
that the neighborhood region of elite particles is more likely to contain high-
quality solutions or even global solutions. Therefore, to enhance the local
search efficiency of N-CLPSO, we perform a neighborhood search operation for
elite individuals, rather than all individuals, in the population. Concretely, the
neighborhood search operation only exert on the individual optimal solution
Pbest.

Subject to the ideas of LNS (Hong, 2012) removal-reinsert, this section
introduces removal-reinsert-based neighborhood search method. First, we ran-
domly choose one of the removal methods to remove D customers from the
complete route and insert them into the set Nt of customers to be inserted.
Then, we reinsert the route by guided reinsertion operator based on local infor-
mation(see Section 4.4), i.e., the customer nodes in Nt are reinserted into the
route, forming a route that traverses all nodes to generate a new solution.
Finally, we compare the routes before and after the update, and then keep the
better individuals for the next iteration.

We determine the number of customers D to be removed from the original
route according to Eq. (29).

D = min

(

ceil

(

I

10

)

, ceil

(

N

10

))

(29)

where N is the number of customers and I is the number of generations in the
population for which the optimal solution has not been updated. It can be seen
that when the optimal solution has more generations-stagnancy, there are more
customers should be removed. Thus, the search range of the neighborhood can
be increased. It is worth noting that the number of removed customers D set
in this paper must not exceed N/10 because a too large D not only increases
the computational effort, but also causes the inability to find the best insertion
position for nodes. Two removal strategies proposed in this study are described
below.

(1) In Section 4.4.1, we define IM to measure the probability of being
served by the same vehicle successively among customers. With the help of IM ,
we can design an information matrix-based removal strategy, as in Algorithm
4. First, we randomly select a customer point i and insert it into the customer
set Nt. After that, we randomly pick a point i

′

in Nt and select j points to
join Nt based on IM , where node j denotes the node that is least likely to be
adjacent to node i

′

, i.e. IM t
i
′
,j
= min(IM t

i
′ ). Since we are borrowing the IM

for evaluation, the time complexity of the operator is O(D).
(2) We propose a removal operator on removal cost based on the customer’s

removal cost, and its pseudo-code is shown in Algorithm 5. The algorithm
performs a removal operation on a customer by calculating the difference in
cost incurred by removing each customer point from the original path, i.e., the
removal cost. We select a customer i to insert into Nt based on the removal
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cost corresponding to each customer in a roulette wheel method. The time
complexity of our removal of customer D is O(D).

Algorithm 4 Removal strategy based on IM

Input:

//Information Matrix and node to be deleted, respectively
IM ; D;

Output: Delete node set Nt
1: Nt = φ;
2: for x = 1 to length of D do

3: Randomly select a customer i from Nt;
4: Find the node j that is least likely to be adjacent to customer i

′

by IM ;
5: Nt = Nt ∪ {j};
6: end for

Algorithm 5 Removal strategy based on removal cost

H

Input:

// Enter the route, distance matrix and node to be deleted, respectively
r;Dis;D;

Output: Delete node set Nt
1: Nt = φ;
2: L = r.length;
3: for x = 2 : L− 1 do // Calculate the removal cost ∆c for each customer

point removed
4: F = r(x− 1); // Precursor node of node x
5: C = r(x); // Node x
6: R = r(x+ 1); // Posterior node of node x
7: ∆c(x) = Dis(F,C) +Dis(C,R)−Dis(F,R);
8: end for

9: k = 0;
10: while k < D do

11: Randomly select the customer i in ∆c where Nt does not appear by
roulette;

12: Nt = Nt ∪ {i};
13: k = k + 1;
14: end while
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4.6 Diversity retention strategy based on elite fragments

In order to maintain the population diversity and improve the quality of the
solution, a diversity retention strategy based on elite fragments is designed in
this study.

In PSO, the diversity of particles disappears as the number of iterations
rises, which directly leads to the premature convergence of the algorithm. In
order to prevent the particles from converging prematurely, we need to per-
turb the particles. However, a large range of random perturb can easily make
the particles degenerate and degrade the algorithm performance thought it is
beneficial for improving population diversity. Generally, in evolutionary algo-
rithms, elite individuals generally contain better genetic fragments. So when
perturbing an individual, if we can also retain some gene fragments shared
by other elite individual, we can increase diversity while retaining superior
genetic information. Therefore, inspired by the longest common subsequence
(LCS) (Xia et al, 2022), we propose a diversity retention strategy based on
elite fragments.

When using PSO to optimize a VRPTW problem, each particle can often
be represented by a complete route. Therefore, we base on the elite fragment
between the particle and the elite particle, other nodes will be inserted into
the elite fragment one by one through the guided reinsertion strategy to form
a new route, and finally, we reserve the better individual. It can be seen that
the retention of elite fragments avoids excessive degradation of particles to
some extent, and the strategy perturbs the current particles while ensuring the
performance of the algorithm. Obviously, when two particles are more similar,
their extracted fragments are longer and the set of nodes to be inserted is
smaller. On the contrary, if two particles are more different, their common
sequence is shorter and the number of nodes to be removed will be more,
which is more conducive to increasing population diversity as well as helping
the algorithm to jump out of the local optimum.

r1 1 2 5 6 1 3 4 7 8 1

r2 1 3 6 1 2 4 7 1 5 8 1

LCS 1 6 1 4 7 8 1 3 2 5

Nodes to be inserted

... Guided reinsertion operator based on local information

r3 1 2 6 1 3 4 5 7 8 1

Fig. 4 Illustrative Example of Diversity Strategy
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Fig.4 depicts process of the proposed diversity retention strategy. For exam-
ple, the sample particle r1 is {1, 2, 5, 6, 1, 3, 4, 7, 8, 1}, and the current particle
is r2 is {1, 3, 6, 1, 2, 4, 7, 1, 5, 8, 1}. Then, we can obtain that the LCS of r1 and
r2 is {1, 6, 1, 4, 7, 8, 1}. Based on the LCS, the set of nodes to be inserted is
{2, 3, 5}. After that, we insert the customer nodes in the node-set into the LCS
to get the new r3. Nots that the finding process of the LCS depends on the
length of the r1 and r2, thus the time complexity of it is O(n ∗m).

5 Experimental evaluation

In this section, Section 5.1 describes the general setup of experiments while
Section 5.2 presents an introduction to the dataset used in the experiments. In
Section 5.3, a sensitivity analysis of each component in N-CLPSO is presented.
Section 5.4 gives the experimental results and corresponding discussions.

5.1 Setup

In this study, extensive experiments are conducted to investigate the perfor-
mance of N-CLPSO. In the experiments, the inertia weight value w in Eq.(3)
is initialized to 0.9 and decreases linearly from 0.9 to 0.4 during the optimiza-
tion process, and the acceleration coefficient c is set to 2.0. In this paper, the
refresh gap “rg” of CLPSO is set according to (Liang et al, 2006). The learn-
ing probability Pc and the sample selection method are used in Eq.(21) and
Eq.(22). The parameters of Eq.(24)-Eq.(25) are set to a = 0.5, k1 = 1 and
k2 = 2, respectively. The population size is set to N = 20. Neighborhood
search and diversity preservation policies are activated at 10 and 100 genera-
tions of Pbest and Gbest stagnation updates, respectively. The optimization
process will be stopped when Gbest has been stagnation for consecutive 10,000
generations. Each trial is performed independently 5 times.

5.2 Datasets

N-CLPSO is tested on a classical benchmark of 56 VRPTW problem instances
proposed by Solomon (1987) since the benchmark can reflect various real life
scheduling problems. According to properties, the instances can be classified
into three categories: clients distributed in a clustered manner (Class C), clients
distributed in a random manner (Class R), and test sets with a mixture of
clustering and randomness (Class RC). On this basis, the test set can be further
classified into to two categories, i.e., problems with smaller vehicle capacities
and more compact time windows (C1, R1 and RC1), and problems with larger
vehicle capacities and longer dispatch cycles (C2, R2 and RC2).

5.3 Sensitivity analysis of components in N-CLPSO

This section aims to clarify the impact of the components proposed in N-
CLPSO. We attempt to verify the effectiveness of the strategy by adding
components one by one to the original CLPSO. The strategys proposed in
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this paper focuses on speeding up the convergence and maintaining population
diversity.

In N-CLPSO, we use the new speed selection strategy and vehicle insertion
strategy to speed up the convergence of N-CLPSO. To this end, 3 algorithms
are adopted as competitors to N-CLPSO, i.e., ”CLPSO” which does not con-
tain the new proposed strategies, ”add-V” which denotes that only the new
speed selection strategy is involved in CLPSO, and ”add-C” which means that
only the vehicle insertion strategy is added in CLPSO.

Comparison results shown in Fig.5 demonstrate that “N-CLPSO” shows
faster convergence in these experiments and higher accuracy in solving at
later stages. The convergence speed and solution accuracy of “add-C” are
slightly lower than those of “N-CLPSO”, but higher than those of “add-V”
and “CLPSO”. Although “add-V” displays similar performance as “CLPSO”,
in terms of solution accuracy, it yields significantly higher convergence speed
than “CLPSO”. Therefore, we can see that the new speed selection strategy
and the vehicle insertion strategy play positive performance on improving the
convergence speed.

In addition, to investigate the advantages of the neighborhood search and
diversity retention strategies applied in N-CLPSO, 3 variants of N-CLPSO are
selected as peer algorithms. Specifically, “noLV” and “noZ” denote two algo-
rithms in which the neighborhood search strategy and the diversity retention
strategy are removed from N-CLPSO, respectively, while “noLV+noZ” means
that both the two new proposed strategies are removed from N-CLPSO. The
comparison results in most of the datasets, in terms of the percentage error
between the best stroke length and the best-known stroke length for each algo-
rithm, are shown in Fig.6. It can be observed that both the addition of the
neighborhood search module and the diversity retention strategy optimized
the optimal solution to be closer to the global optimal solution, and it is clear
that the optimal results were obtained by adding both the neighborhood search
and diversity retention strategies to N-CLPSO.

In N-CLPSO, we used a combination of the information matrix IM and
the cost matrix CM to guide the neighborhood reinsertion strategy. To verify
the advantages of the combination matrix used in N-CLPSO, we implemented
three variants of N-CLPSO, i.e., N-CLPSO with IM only, N-CLPSO with CM
only, and N-CLPSO with IM and CB. Experimental results demonstrated in
Fig.7 verify that using CB is better than using only IM in R101, R201, RC101
and RC201 problems, while using IM is better than using only CB in the set
clustering dataset C104 and C204, it is clear that using both CM and IM has
the best performance.

5.4 Comparison with other algorithms

To verify the comprehensive performance of N-CLPSO, we compare it with
several state-of-the-art methods for solving VRPTW. Table 1 summarizes the
basic information of the selected peer algorithms. We demonstrate the effec-
tiveness of N-CLPSO by comparing it with the best known results and the
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Fig. 5 Contribution of speed selection strategy and vehicle insertion strategy

other 7 peer algorithms, and finally giving the results of the best average
operation for each subclass (C1, C2, R1, R2, RC1 and RC2).

In Table 2, we also give a comparison of the proposed algorithm with the
best-known results, where “NV” and “TD” denote the best-known results for
the best number of vehicles and the corresponding minimum distance, respec-
tively. “BNV” denotes the best number of vehicles, while “BTD” denotes
the minimum distance corresponding to the best number of vehicles. “MNV”
and “MTD” denote the average number of vehicles and the average dis-
tance obtained by the proposed algorithm respectively. “Deviation” = (BTD-
TD)/BTD denoting the percentage deviation of the algorithm from the best-
known result is used to measure the solutions quality of the algorithm. “Std”
is the standard deviation of multiple solutions achieved by an algorithm, which
is used to measure the stability of the algorithm.
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Fig. 6 Contribution of Neighborhood Search and Diversity retention Strategies

 

Fig. 7 Contribution of correlation matrix and cost matrix

It can be seen from Table 2 that the N-CLPSO algorithm obtains a new
more optimal solution on R101 and reaches 23 optimal solutions on other
tested problems. The average deviations of R1, C1 and RC1 are 0.45%, 0.27%
and 0.43%, respectively, which are less than 0.5%. Meanwhile the deviations of
R2 and RC2 are 2.51% and 1.94%, respectively, which shows that N-CLPSO
has favorable performance in the “1” class problems. There is no standard
deviation for class C2, and only C103 and C104 have 1.08 and 4.82 for class
C1. the average standard deviations of R1, R2, RC1, RC2 and the total data
set are 8.85, 12.19, 6.88 and 12.75, respectively, and most of the standard
deviations are below 10. The results show that N-CLPSO is stable and has good
robustness. Furthermore, it can be seen that N-CLPSO yields more favorable
performance in the “1” class problems who have narrow time windows, while
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Table 1 Information about the comparison algorithm

Symbol Method References

LNS Large neighborhood search Hong (2012)
CPSO Hybrid chaos-particle swarm optimization Hu et al (2013)
AC-CH Ant colony with characterization heuristics Cruz-Reyes et al (2014)
S-PSO set-based particle swarm optimization Gong et al (2012)

BSO
hybrid swarm intelligence algorithm by hybridizing
Ant Colony System and Brain Storm Optimization algorithm

Shen et al (2020)

Tabu-ABC
hybrid approach by combining Tabu search
and the artificial bee colony algorithm.

Zhang et al (2017)

MOLNS Multiobjective Large Neighborhood Search (MOLNS) algorithm Konstantakopoulos et al (2020)

there is a small decrease in the performance of N-CLPSO in the “2” class
problems who have longer time windows.

Table 2: Comparison with the best-known results.

Best-known N-CLPSO
Dataset NV TD BNV BTD MNV MTD Deviation Std
R101 19 1650.8 19 1648.08 19 1650.5 -0.16% 3.42
R102 17 1486.12 17 1486.12 17 1493.12 0 7.05
R103 13 1292.68 13 1299.99 13 1312.13 0.56% 17.66
R104 9 1007.31 10 996.27 10 1021.06 - 15.54
R105 14 1377.11 14 1377.11 14 1379.35 0 3.17
R106 12 1252.03 12 1262.80 12 1264.5 0.86% 2.40
R107 10 1104.66 11 1081.17 11 1107.85 - 2.40
R108 9 960.88 10 985.76 10 988.59 - 2.45
R109 11 1194.73 11 1210.73 11.7 1196.21 1.32% -
R110 10 1118.84 11 1101.49 11 1114.61 - 10.26
R111 10 1096.72 11 1064.67 11 1072.80 - 7.78
R112 9 982.14 10 974.95 10 982.27 - 8.85
R201 4 1252.37 4 1252.37 4 1258.83 0 7.52
R202 3 1191.70 3 1225.02 3.5 1178.49 2.72% -
R203 3 939.50 3 962.25 3 976.32 2.36% 9.06
R204 2 825.52 3 766.13 3 777.83 - 10.92
R205 3 994.43 3 1027.79 3 1051.16 3.25% 14.61
R206 3 906.14 3 939.46 3 947.38 3.55% 6.53
R207 2 890.61 3 872.40 3 877.56 - 5.90
R208 2 726.82 2 740.36 2 772.04 1.83% 28.30
R209 3 909.16 3 943.72 3 957.46 3.66% 10.13
R210 3 939.37 3 965.88 3 986.43 2.74% 17.00
R211 2 885.71 3 828.90 3 842.35 - 11.88
C101 10 828.94 10 828.94 10 828.94 0 0
C102 10 828.94 10 828.94 10 830.15 0 0
C103 10 828.06 10 839.35 10 840.20 1.35% 1.08
C104 10 824.78 10 833.67 10 837.08 1.07% 4.82
C105 10 828.94 10 828.94 10 828.94 0 0
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Table 2: (Continued.)Comparison with the best-known results.

Best-known N-CLPSO
Dataset NV TD BNV BTD MNV MTD Deviation Std
C106 10 828.94 10 828.94 10 828.94 0 0
C107 10 828.94 10 828.94 10 828.94 0 0
C108 10 828.94 10 828.94 10 828.94 0 0
C109 10 828.94 10 828.94 10 828.94 0 0
C201 3 591.56 3 591.56 3 591.56 0 0
C202 3 591.56 3 591.56 3 591.56 0 0
C203 3 591.17 3 591.17 3 591.17 0 0
C204 3 590.60 3 590.60 3 590.60 0 0
C205 3 588.88 3 588.88 3 588.88 0 0
C206 3 588.49 3 588.49 3 588.49 0 0
C207 3 588.29 3 588.29 3 588.29 0 0
C208 3 588.32 3 588.32 3 588.32 0 0
RC101 14 1696.95 15 1635.11 15 1644.17 - 6.98
RC102 12 1554.75 13 1503.42 13 1516.54 - 11.37
RC103 11 1261.67 11 1277.99 11 1278.11 1.28% 0.20
RC104 10 1135.48 10 1135.48 10 1140.4 0 6.96
RC105 13 1629.44 14 1542.55 14 1542.91 - 6.96
RC106 11 1424.73 12 1388.70 12 1396.14 - 10.06
RC107 11 1230.48 11 1230.48 11 1235.71 0 5.78
RC108 10 1139.82 11 1157.12 11 1163.34 - 6.72
RC201 4 1406.94 4 1406.91 4 1410.48 0 6.16
RC202 3 1365.65 4 1169.67 4 1176.73 - 9.98
RC203 3 1049.62 3 1082.57 3 1107.58 3.04% 21.34
RC204 3 798.46 3 828.61 3 834.68 3.64% 6.93
RC205 4 1297.65 4 1297.19 4 1314.81 0 14.06
RC206 3 1146.32 3 1146.32 3 1156.29 0 8.64
RC207 3 1061.14 3 1095.67 3 1120.65 3.15% 19.85
RC208 3 828.14 3 843.28 3 872.78 1.80% 17.33

In Table 3, we have selected two recently published state-of-art algorithms
as competitors for N-CLPS. Note that, the data for each algorithm prioritizes
the minimum vehicle, followed by consideration of the shortest path length.
The results show that N-CLPSO obtains the best results on 47 out of the 56
data sets, while BSO and MOLNS yield the best results on 21 and 17 test
problems, respectively. In all three algorithms, N-CLPSO is able to find the
minimum number of vehicles and has the shortest path length in most of the
data sets. It can be seen that N-CLPSO has the strongest synthesis capability
in the prioritization of vehicles problem.
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Table 3: Comparison with recently published representative algo-
rithms

BSO MOLNS N-CLPSO
Dataset NV TD NV TD NV TD
R101 19 1671.16 19 1654.93 19 1648.08

R102 17 1504.60 18 1475.33 17 1486.12

R103 14 1245.86 14 1240.44 13 1299.99

R104 11 1010.73 10 1010.72 10 996.27

R105 15 1366.05 15 1389.85 14 1377.11

R106 13 1288.84 13 1269.14 12 1262.8

R107 11 1101.56 11 1102.72 11 1081.17

R108 10 974.17 10 991.57 10 985.76
R109 12 1165.71 12 1177.76 11 1210.73

R110 11 1090.92 12 1129.60 11 1101.49
R111 11 1148.14 12 1108.70 11 1064.67

R112 10 1004.53 10 964.15 10 974.95
R201 4 1336.05 4 1305.25 4 1252.37

R202 4 1128.05 4 1093.67 3 1225.02

R203 3 1020.10 4 915.43 3 962.25

R204 3 834.92 3 775.99 3 766.13

R205 3 1105.38 3 1075.10 3 1027.79

R206 3 949.11 3 979.21 3 939.46

R207 4 812.35 3 851.89 3 872.4
R208 2 940.30 2 754.99 2 740.36

R209 3 1046.73 4 898.23 3 943.72

R210 3 1069.26 4 941.58 3 965.88

R211 3 836.36 3 838.14 3 828.90

C101 10 828.94 10 828.94 10 828.94

C102 10 828.94 10 828.94 10 828.94

C103 10 828.06 10 828.94 10 839.35
C104 10 828.78 10 828.94 10 833.67
C105 10 824.94 10 828.94 10 828.94

C106 10 828.94 10 828.94 10 828.94

C107 10 828.94 10 828.94 10 828.94

C108 10 828.94 10 828.94 10 828.94

C109 10 828.94 10 828.94 10 828.94

C201 3 591.56 3 591.56 3 591.56

C202 3 591.56 3 591.56 3 591.56

C203 3 591.17 3 591.56 3 591.17

C204 3 590.60 3 590.60 3 590.60

C205 3 588.88 3 588.88 3 588.88

C206 3 588.49 3 588.49 3 588.49

C207 3 588.29 3 588.29 3 588.29
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Table 3: (Continued.)Comparison with recently published repre-
sentative algorithms

BSO MOLNS N-CLPSO
Dataset NV TD NV TD NV TD
C208 3 588.32 3 588.32 3 588.32

RC101 16 1643.78 15 1662.56 15 1635.11

RC102 14 1464.63 14 1486.35 13 1503.42

RC103 11 1275.64 12 1291.95 11 1277.99
RC104 10 1156.92 10 1162.53 10 1135.48

RC105 14 1609.68 15 1604.53 14 1542.55

RC106 13 1378.45 13 1400.09 12 1388.70

RC107 11 1318.69 12 1259.55 11 1230.48

RC108 11 1134.85 11 1205.13 11 1157.12
RC201 4 1514.41 4 1497.89 4 1406.91

RC202 4 1326.71 4 1199.53 4 1169.67

RC203 3 1166.91 4 985.54 3 1082.57

RC204 3 929.94 3 805.46 3 828.61
RC205 4 1360.91 5 1340.38 4 1297.19

RC206 3 1237.21 3 1316.42 3 1146.32

RC207 4 1039.59 4 1031.62 3 1095.67

RC208 3 910.59 3 859.13 3 843.28

Table 4 Comparison of average levels.

R1 R2 C1 C2 RC1 RC2
Best-known 11.92 1210.34 2.73 951.03 10.00 828.38 3.00 589.86 11.50 1384.17 3.25 1119.24

LNS 12.25 1218.28 3.27 964.11 10.00 833.10 3.00 590.31 12.13 1369.57 3.75 1131.18
CPSO 11.92 1215.78 2.73 952.98 10.00 828.38 3.00 589.86 11.50 1414.24 3.25 1136
AC-CH 12.50 1234.88 2.82 1057.42 10.00 829.59 3.00 593.88 11.88 1441.89 3.38 1146.5
S-PSO 12.58 1232.28 3.00 1016.66 10.00 835.92 3.00 593.42 12.13 1385.47 3.38 1169.07
BSO 12.83 1214.35 3.18 1007.15 10.00 828.38 3.00 589.86 12.50 1372.83 3.50 1185.78

Tabu-ABC 13.50 1187.90 4.73 862.90 10.00 828.38 3.00 590.40 13.25 1361.08 5.50 1017.47
MOLNS 13.00 1209.52 3.36 948.13 10.00 828.94 3.00 589.91 12.75 1384.09 3.75 1129.50
N-CLPSO 12.42 1207.47 3.00 956.75 10.00 830.62 3.00 589.86 12.13 1358.86 3.38 1108.78

In Table 4, the average best results of the given algorithms are given for
each subclass (C1, C2, R1, R2, RC1 and RC2). The results are given in the
form of NV TD, where NV and TD are the averages of the best minimum num-
ber of vehicles (NV) and the best minimum total travel distance (TD) found in
each subclass using the corresponding method, respectively. For instance, the
data “12.25 1218.28” in the second row of the table indicates that the average
number of vehicles and the average distance cost obtained by LNS on inde-
pendently runs are 12.25 and 1218.28, respectively. The best results for each
category are highlighted in bold.

It can be seen from Table 4 that for the C2 class problems, N-CLPSO
obtains the same results as the most well-known ones and obtains smaller travel
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distances at the expense of certain vehicles in the R1, RC1, and RC2 prob-
lems. However, in R2 and C1 class problems, the performance of N-CLPSO is
slightly worse than the CPSO and MOLNS. Similar to the previous compar-
ison, it proved that although the algorithm is better at solving the category
“1” problems, it also performs very well in the category “2” problems.

6 Conclusions and future research

In this paper, we propose a PSO-based algorithm, names as N-CLPSO, to
solve VRPTW. In the study, two objectives of VRPTW are considered. The
primary target is the number of vehicles, while the secondary target is the
total distance travelled all the vehicles.

In N-CLPSO, we use CLPSO as the main framework and redefine the
speed and position update operators of the CLPSO intending to make it more
suitable for VRPTW. Moreover, we propose an elite fragment diversity reten-
tion strategy and removal-reinsert-based neighborhood search strategy aiming
to address the premature convergence and speed up the convergence of PSO.
Meanwhile, we apply a novel sample selection strategy and vehicle insertion
strategy to improve the convergence speed of N-CLPSO. The experimental
results show that the new proposed strategies enable N-CLPSO to outperform
other selected state-of-the-art algorithms for VRPTW at present. Moreover,
properties and characteristics of the new introduced strategies are also testified
by extensive experiments.

Note that, although N-CLPSO yields very promising performance on dif-
ferent VRPTW problems, we regard that there are still some works need to be
further investigated. For example, as well as information of customer and elite
segment, other potential useful information about VRPTW can be extracted
and utilized to guide the evolution of the population, such as information on
customer clusters. Moreover, the location update of particles in N-CLPSO is
determined by the three new introduced sets.Thus, how to extract more help-
ful information from a VRPTW and design more efficient evolution operators
for PSO is our next work. Moreover, we also hope to apply the algorithm to
other combinatorial optimization problems, especially various variants of the
VRP.
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