Motivations and Measurements in an Agile Case Study

Lucas Layman
North Carolina State University
900 Main Campus Dr., Rm. 197
Raleigh, NC 27695
+1.919.513.5082

Imlayma2@ncsu.edu

ABSTRACT

With the recent emergence of agile software dewatog
technologies, the software community is awaitingurgh
empirical investigation of the impacts of agile gifees in a live
setting. One means of conducting such researcthrmugh
industrial case studies. However, there are a eumbf
influencing factors that contribute to the succetsuch a case
study. In this paper, we describe a case studpnpeed at Sabre
Airline Solutions evaluating the effects of adoptifExtreme
Programming (XP) practices with a team that had
characteristically plan-driven risk factors. Wengmre the
team’s business-related results (productivity andlity) to two
published sources of industry averages. Our dasly $ound that
the Sabre team yielded above-average post-releasitygand
average to above-average productivity. We discoss
experience in conducting this case study, includipgcifics of
how data was collected, the rationale behind oaocgss of data
collection, and what obstacles were encounterethglihe case
study. We also identify four factors that potelhyiampact the
outcome of industrial case studies: availability ddta, tool
support, co-operative personnel and project statdée believe
that recognizing and planning for these factorsessential to
conducting industrial case studies, and that thfisrmation will
be helpful to researchers and practitioners alike.

Categories and Subject Descriptors

K.6.3 [Management of Computing and Information Systems]:
Software Management -seftware process; and D.2.9 $oftware
Engineering]: Management —}ife cycle, programming teams

General Terms
Management, Measurement, Experimentation, Humatofsac

Keywords

Agile software development, extreme programmingecgtudies

1. INTRODUCTION

The introduction of Extreme Programming (XP) [5]tan
mainstream software development has been met with b
enthusiasm and skepticism. For decision-makersgrapirical,

quantitative investigation is beneficial for invgsting XP’s

efficacy. A survey of 90 software engineering exshers and
practitioners [24] revealed that industry is inficed by

compelling evidence on the effectiveness of a teglnin live

situations in an environment such as their own.e @wthod for

Laurie Williams
North Carolina State University
900 Main Campus Dr., Rm. 198
Raleigh, NC 27695
+1.919.513.4151

willlams@csc.ncsu.edu

Lynn Cunningham
Clarke College
60 South Algona Street
Dubuque, IA 52001
+1.563.556.4637

lynn.cunningham@clarke.edu

conducting research in a live industrial settinthimugh realistic,
methodologically-defensible case studies. Casaliestu are
valuable because they involve factors that stagqubrements
generally do not exhibit, such as scale, complexity
unpredictability, and dynamism [18]However, Zelkowitz and
Wallace [25] reported that less than 10% of papersthe
respected journals they examined involved a casly st

In order for case study results to have meaning, riecessary to
record contextual information and to implement miees that
satisfy the goals of the study. For instance,unaase studies of
XP practices [16, 21], we record context informat@bout the
team and project under study, we measure the tesasage of XP
practices, and we measure the business-relatettsrsuch as
productivity and quality) of the project. Howeveata collection
and software process measurement are not simplks.tas
Furthermore, when studying agile processes in qaati, it is
desirable that any metrics collection program ghtiveight and
unobtrusive to the team’s daily activities. In theurse of
conducting our case studies, we have observed aewstfical
factors that impact data collection. We have fothat the ability
to collect even a lightweight set of metrics is Vilainfluenced
by the presence of historical data, by the co-capeness of
personnel, by the availability of data, and by tgbport.

This paper discusses the process of conductingdarsirial case
study with an agile team at Sabre Airline Solutioria order to
facilitate data collection and to guide our agibse studies, we
have created the Extreme Programming Evaluatiomé&nark
(XP-EF) [21]. We discuss our rationale behind phecesses for
collecting certain metrics so that we can create a
methodologically defensible case study. We anatlyase factors
which both enabled and prevented the collectiotheffull range
of XP-EF metrics. This information will be useftd those
practitioners who are considering the implementatiof a
software metrics program in conjunction with thegjjile process.

The remaining sections of this paper are organazdollows:
Section 2 describes related work on case studyarelsethe XP-
EF, and XP studies in general; Section 3 descrthesSabre
Airline Solutions case study and the team’s adoptaf XP
practices; Section 4 provides a discussion of casecstudy
findings and lessons learned.

2. RELATED WORK

The following sections present background infororaton case
study research, the XP-EF, and existing empirichilged XP
studies.

2.1 Case Study Research

Case studies can be viewed as “research in theatyB, 13].
As opposed to formal experiments, which often havearrow
focus and an emphasis on controlling context véembcase
studies in software engineering test theories aoldeat data
through observation of a project in an unmodifiedtisg [25].
However, because the corporate, team, and prdjechcteristics
are unique to each case study, comparisons andajjeaons of
case study results are difficult and are subjectjdestions of
external validity [14]. Nevertheless, case studies particularly
important for industrial evaluation of software evegring
methods and tools [13]. Researchers become moffeleat in a
theory when similar findings emerge in differentntaxts [13].
By performing multiple case studies and/or expentseand
recording the context variables of each case stedgarchers can
build up evidence through a family of experiments.

When conducting a case study, or any form of rebeait is
important to consider the validity of that researclrin [23]
describes four components of experimental validitgonstruct
validity regards whether the measures and metrics in Eexe
appropriate for capturing the desired resultsiternal validity
concerns changing or influencing factors in theeotfg) under
study (in our case, a software project and softweaen) that may
impact the resultsExternal validity regards whether the results of
one study can be generalized outside the contexhaif study.

Finally, experimental validity concerns whether the research was

executed in a scientifically-defensible manner wahitable
attention to detail. Replication of case studiddrasses threats to
experimental validity [3].

2.2 Extreme Programming Evaluation

Framework

The Extreme Programming Evaluation Framework (XPB-EFa
benchmark for expressing XP case study informafd}. The
XP-EF is a compilation of validated and proposedtrice
designed for expressing the XP practices an orgtaiz has
selected to adopt and/or modify, and the outconeeetif. We
desired for all metrics to be parsimonious andtligtight so that
they could be collected by a small team without eglicated
metrics specialist. The XP-EF is composed of tipags: XP
Context Factors (XP-cf); XP Adherence Metrics (XR}aand XP
Outcome Measures (XP-om).

In the XP-EF, researchers and practitioners recesdential
context information about their project via the EBntext Factors
(XP-cf). Recording factors such as team size, eutojsize,
criticality, and staff experience can help expldifierences in the
results of applying the methodology. The secormt glathe XP-

EF is the XP Adherence Metrics (XP-am). The XP-amables
one to express concretely and comparatively vieathje and
subjective metrics the extent to which a team agdi the XP
practices. By examining multiple XP-EF case stedibe XP-am
also allows researchers to investigate the intiemast and
dependencies between the XP practices and thetextevhich

the practices can be separated or eliminated. tftag of the XP-
EF is the XP Outcome Measures (XP-om), which ersabie to
assess and to report how successful or unsuccessedhm is
when using a full or partial set of XP practices.

A more detailed discussion of the XP-EF, its catirationale,
and shortcomings may be found in [21]. Instructioand
templates for measuring and reporting XP case Stlatly via XP-
EF Version 1.4 have been documented in [20].

2.3 XP Studies

Practitioners and researchers have reported
predominantly anecdotal and favorable, studies ld XP

methodology. However, some empirically-based Xgecstudies
do exist. Abrahamsson [1] conducted a controllaskecstudy of
four software engineers using XP to implement daémagement
software. Comparison between the first and secetehses of
the project yielded increases in planning estinm#iocuracy and
productivity while the defect rate remained constaSimilarly,

Maurer and Martel [17] reported a case study of imen
programmer web application project. The team slidosteong

productivity gains after switching from a documestitric

development process to XP.

Reifer reported the results of an industrial sureeyducted to
determine if agile methods/XP reduce costs and ongr
development time [19]. Results from 14 firms spagn31
projects were collected. Most projects were charamed as
small pilot studies, for internal use only, andg&hnerally low
risk. Most projects had average or better tharrame budget
performance and schedule adherence. Projectseirsdftware
and telecommunications industry reported produetityjuon par
with nominal quality ratings; e-business reporteldove par
quality ratings; and the aerospace industry repoatdelow par
quality rating for their agile/XP projects.

A year-long case study was performed with a sneht (7-11
team members) at IBM to assess the effects of adpptP [21].
The case study was structured using the XP-EF.ougr two
software releases, this team transitioned to aabilgted its use
of a subset of XP practices. The use of a “saffsetl] of the XP
practices was necessitated by corporate culturegjegr
characteristics, and team makeup. The team
productivity, reduced pre-release defect density 306, and
achieved a 40% reduction in the post-release defatsity when
compared to the same metrics from an earlier releds similar
case study was performed with another team at SAbli@e

Solutions [16]. This team (denoted as the Sabredm) was
selected as an example of a “characteristicalljleagieam,
whereas the team in this case study is “charatitaiily plan-
driven,” as discussed in section 3.2.1. The stooiypared the
business-related results of a product developedhbySabre-A
team using traditional methods and the same proéluther
developed using XP. The study showed a 65% remtudti the
product’'s pre-release defect rates, a 35% redudtiaie post-
release defect rates, and a 50% improvement inuptvity (as
measured by code output) in the XP release.

3. SABRE-P CASE STUDY

In this section, we describe the details of apgythe XP-EF
framework to our case study at Sabre Airline Sohgi We
provide discussion of the important components iafidencing
factors of our study, and discuss the method beh&wdrding
various measures.

numerou

imdrove

In this study, we examine the " 3elease of the Sabre team’s
product. To differentiate between the Sabre tearthis study,
and those in other case studies, we refer to &amtas Sabre-P
(plan-driven). At the time of this release, thantehad been using
XP for approximately 20 months. The release bemarthe
second quarter of 2003 and lasted 5 months. Datection for
this case study was largely dependent on histordata.
Integration and build tools allowed the researchergather code
samples, and a web-based defect-tracking systemide a
means for gathering quality information. Similarihe team’s
project planning and tracking tool (an augmentedrbloft®
Excel spreadsheet) was used for productivity antbeduale
analysis. The Shodan Adherence Survey (describeBection
3.3) was used to gather subjective information & Practice
usage from team members during the new release.e-Amwil
guestionnaire was sent to developers approximaiglyt months
after the completion of the release under studgrder to solicit
qualitative information about their use of XP prees and any
obstacles in adopting these practices.

We now describe this case study in terms of theEXPand its
sub-categories. In the case of all data and nsetdtlected, we
discuss our methods of collection and the ratiohaleind those
methods, and we highlight difficulties thus encemwat. In each
of the data tables below, we include a column thciate how the
data was collected based on the following key:

Table 1: Data Source Key

Sour ce Key
Defect tracking DT
Development leader DL
Developer questionnaire DQ
Observation OB
Project tracking PT
Source code SC
Survey SU
Test suite / test tools TS

3.1 Team and Project Selection

Our case study was performed with a Sabre Airliodut®ns

development team (the Sabre-P team) in the Unitate§ This
study was done as a part of a cooperative effottvdrn

researchers at North Carolina State University aederal

development teams at Sabre Airline Solutions. Befomnducting
any case study, it is important to select a santpigt is

representative of the company or organization whale in order
to reduce threats to external validity. Kitchenhawotes that
project selection is not always a decision thatlmamade by the
researcher, since a participating company may oaipmit one

or two teams/projects to the research [13]. Omessdect based
on project age, programming language,
methodology, risk factors, etc.

The team reported in this paper was selected ticipate in the
study because they were classified as “charadtaiist plan-
driven” based upon the five developmental riskdexsuggested
by Boehm and Turner [6] for evaluating a team’deagr plan-
driven characteristics. These risk factors includgquirements
dynamism, team size, personnel skill, criticalapd team culture.

development

We were also able to select other teams for sepaeste studies
based on varying risk factors. By selecting migtipams with

differing risk factors, we hoped to acquire sampileat were

representative of teams within the development rargdion. A

more thorough discussion of the Sabre-P team’sfastors may

be found in Section 3.2.1. Team selection for @search project
was also influenced by data availability, team siaed the

cooperativeness of the team with the researchers.

3.2 Context Factors

Drawing conclusions from empirical studies in salftes
engineering is difficult because the results of anycess largely
depend upon the project setting. One cannot assupni®ri that
a study’s results generalize beyond the specifidrenment in
which it was conducted [3]. Therefore, recordimgeaperiment’s
context factors is essential for fully understagdihe generality
and the utility of the findings. Context is alseneficial for
understanding the similarities and the differenbesween the
case study and one’s own environmemhe XP-Context Factors
utilize developmental factors, based upon work lpetn and
Turner [6], and the seven categories of contexbfamutlined by
Jones [9]: software classification, ergonomic, iclogical,
project-specific, technological, geographical.

3.2.1 Developmental factors
Some proponents of XP claim that it can work in @tmany
setting, while others warn that XP may not be $létdor large
teams or in a safety-critical environment [6]. Beling a team’s
developmental factors can aid in investigating ¢helsims. The
Sabre-P development team’s Boehm-Turner [6] rigkofs for
the release under study are graphed on a polatr<iisze axes,
shown in Figure 1. Because most of the data pairgstoward
the periphery of the graph, the Sabre-P team’seshaficates that
a hybrid “partially plan-driven, partially agile itod” is
appropriate. The developmental factors that apfeaecessitate
plan-driven practices are personnel, dynamism attdre.
Personnel
B Laval 1B} (%6 Level 2&3)

40 T 15

20

Criticality
{Loss due fo Dynamisim
impact of defacts) (% Regqliremeants
Single changemonths)

life

Es=zertial
funds

Flan-driven

Size
(# of parsonne)
100

Culture
(% thekaing on
Cchaos va. arder]

3m

Figure 1: Sabre-P Developmental Factors
3.2.2 Sociological

The team’s sociological factors are summarizedabhl@ 2. The
Sabre-P team was comprised of 15 developers, odieaied

tester, and several specialist personnel (suchB#ssPuUl layout

designer, etc.). The team members had varied aooh
experience and education. Personnel turnover gluhia release
under study was low (5%) and consisted of one pelesaving the
team prior to development began on this release.

When documenting personnel characteristics, itriportant to
distinguish whether one is counting only softwaewelopers, or
whether one is including project managers or tesier the

measurement. In this study, we count only softwiereelopers,
but include a dedicated tester in the counts famteize. This
tester was present in the software lab and conéibuo

development on a regular basis. Collecting thesgmerel

turnover rate involved a consultation with the telader, who
identified those team members who left prior to dndng each
release. The accuracy of such information mayrbguestion
when dealing with a non-recent release. Howevalcutating

turnover would be trivial if an XP tracker or somean a similar
role recorded the number of developers presentngugach
iteration/release. Assessing factors such as domiertise and
language expertise also involved inquiry of theedepment lead.
It may be possible to evaluate these factors inogenobjective
manner through a standardized examination, butwhis beyond
the scope of our study.

Table2: Sociological Factors

Context Factor Value Sour ce
Team Size (developers) 15+1 tester PT
Team Education Level Bachelors: 8 + 1 testeDL
Masters: 6
PhD: 1
Experience Level of 1-5yrs: 6 + 1 tester DL
Team 6-10 yrs: 5
11-15yrs: 3
16+ years: 1
Domain Expertise Medium DL
Language Expertise High DL
Experience of Proj. Mgr.| High DL
Specialist(s) Available Dedicated tester, DL
dedicated DBA,
configuration manager,
web-services specialist]
Personnel Turnover 5% PT
Morale Factors None DL

3.2.3 Project-specific factors

As shown in Table 3, the Sabre-P team’s produet lsrge web
application combined with a back-end batch compbrtéat
together total over 1 million lines of executablede (>1,000
KLOEC). Development during the release under stladyed
approximately five months and involved enhancementhe web
application component of the system (487 KLOEC}huine total
number of new and changed classes amounting toKR@EC
and new and changed lines of code totaling 26.4 KCO The
new and changed lines, methods and classes areresgiect to
the release developed immediately prior f{rsion) to the

release under study (13ersion). Also, there was a two-month
feature freeze before the release point during lwhihe entire
team engaged in end-to-end testing of the system.

The person-month metric is a traditional measurefédrt that
can be calculated by knowing number of personrestqmt during
the course of a project as well as the elapsedadindevelopment.
Basic XP project tracking advocated by Beck [4] viules
sufficient information to perform this calculationOther effort
metrics that we gathered involve the amount of gkap the code
base that occurs during release development. TExis$ that can
compare two file systems and determine those fitldh new,
changed, and deleted lines. One can thereby éstiatse files
with changes in them; in the case of object-oriértmguages,
this technique could possibly be used to identdwrand changed
classes. However, many tools are not context-aaacecannot
separate significant changes (changes in executaigs) with
insignificant changes (changes that do not impawcttionality).
Also, to our knowledge, no tool exists to count tlwnber of new
and changed methods in a project. In this caslystue used the

Beyond Comparetool to identity new and changed classes and to

count the new, changed, and deleted lines of cdd®m these
classes, new and changed methods were manuallytechua
time-consuming task that may be prone to humar.erro

Table 3: Project-specific Factors

Context Factor Value Sour ce
New & Changed User Storieg 46 PT
Domain Web application DL
Person Months 23.1 PT
Elapsed Months 5 PT
Nature of Project Enhancement DL
Relative Complexity Moderate DL
Project Age 10 years DL

Constraints Fixed-delivery | DL

date, utilize CM

and quality-

management

processes
New/Changed Classes 1,200 SC
Total Component Classes 2,721
New/Changed Methods 2,471 SC
Total Component Methods 30,088
New/Changed KLOEC 26.4 SC
KLOEC of New & Changed | 234.5 SC
Classes
Component KLOEC 487.4 SC
System KLOEC 1,014.8 SC

3.2.4 Technological factors

The Sabre-P team’s development methodology thrautghite

release was XP. Release versions were dictatédebsnarketing
department and served as development milestondse tdam
almost exclusively did their planning activities thme iteration

level, and the product was continuously availableustomers via
an automated build machine. User stories anddsisinates were
recorded in a Microsoft® Excel spreadsheet that a¥ss used to

! http://mww.scootersoftware.com/

forecast release points and iterations based ometire’s project
velocity. The web-application component was depetb using

Java, and the team employed the JUaiitomated unit testing
framework. The team also began preliminary evanaof the

FIT® acceptance testing framework during the reledsmjgh it

was not used extensively. The team’s technolodmetiors are
shown in Table 4.

Table4: Technological Factors

Context Factor Value Source
Soft. Dev. Meth. XP DL/OB
Project Mgmt. XP Planning game DL/OB
Defect Prevention| Unit testing, dedicated tester| DL/OB

& Removal customer acceptance tests
External/System | Involvement throughout codg DL/OB
Test development, daily interaction
Language Java, C++ DL
Reusable Third party libraries, JUnit DL
Materials test suites, FIT tests, code

template skeletons

3.2.5 Ergonomic factors

The Sabre-P team’s ergonomic factors are documémf€able 5.
A representative from Sabre’s product marketing adpent
served as the XP customer on this project, waster2§%-50%
of the time, and was available through e-mail dteottimes.
When the marketing representative was not availdbk team’s
XP tracker served as the proxy customer and wasetiuby the
marketing representative and product managemesgrice as an
appropriate replacement. The team worked in twacaat, open-
space XP labs. Team members stated that, due toutimber of
people in open space, the work area could sometimesme a
distraction. Again, information for these factosgs solicited
from the project lead and from developer questioBrmasponses.

Table5: Ergonomic Factors

Context Factor Value Source
Physical Layout Two adjacent, open labs DL/®B
Distraction of Medium DL/DQ
Office Space
Customer Pseudo-customer. Primarily DL/DQ
Communication | face-to-face and e-mail

communication.

3.2.6 Geographical factors

The entire development team was co-located, asateti in
Table 6. The team’s product was used by three rreadte
customers. These customers were all remote: omesta, two
international. One of the international customéss based
overseas.

2 http://junit.org
% http://fit.c2.com/

Table6: Geographical Factors

Context Factor Value Source
Team location Co-located DL/OH
Customer Cardinality and | 3 (remote; multi- DL
Location national; several

time zones away)
Supplier Cardinality None DL

3.3 Adherence Metrics

Most companies that use XP adopt the practicestsedty and
develop customized approaches that are appropwiditén their
particular organizational setting [7]. The XP adimee metrics
enable case study comparison, the study of XP ipeact
interaction, and the determination of contextusdlased, safe XP
practice subsets. Most of the adherence metriesiraprocess
metrics that must be planned for and documentednglur
development. These metrics also introduce poteotierhead in
the measurement process. For example, thererisntlyrno fully
automated means of tracking the frequency of paigramming
or how often unit test suites are run by individuaémbers.
Therefore, some of this information requires eithesubjective
estimate or manual data tracking by some or althef team
members. Where feasible, the XP-am contain objcéind often
automated, measures that capture adherence informafith
minimal development overhead. Unfortunately, mafythe
objective metrics in the XP-am could not be gattidoe this case
study since most of the information in this stuslycollected from
historical data.

The XP-am also contain subjective information ia form of the
Shodan Adherence Survey (described fully in [20d adapted
from [15]). The survey is an in-process means athering XP
adherence information from team members, and &skguestion
“How often do you perform each XP practice?” Thevsy is
web-based and was taken by each developer duregjirtie of
the release under study. Also, a questionnaire agiasinistered
to the Sabre-P team approximately eight monthsr affe
completion of the release under study. The teams asked to
discuss the various XP practices and why theytffelt the team
had difficulty adopting certain practices (based suarvey
responses). Team members were also asked whicticesathey
felt were essential and which practices they fetewunnecessary.
An additional question also asked if the team membelieved
that XP worked for a team of their size and to ifystheir
answers. A summary of the Sabre-P team’s surveyoreses are
provided for context. We discuss the Sabre-P teakP-am
results under three categories: planning, teséind,coding.

3.3.1 Planning practice adherence

The entire team participated in daily stand-up ingst

Developers noted that this exercise could becordmus with

their team size, since some points brought up byeldpers

seemed irrelevant to others on the team who htie id@ do with

other people’s components. However, team leadsjegr
managers, trackers, and some developers found theting

extremely beneficial for evaluating the status bé tproject.

Developers also believed that customer access wesbéem, and
that their representative was not available asnofie needed to

make decisions. As such, team members felt theg¢ldement
would sometimes become hurried or ill-planned bseau
important features needed to be incorporated evarked late in
the release cycle at times when the customer wkes tabgive
input. Furthermore, developers noted that thenpfangame was
often influenced by factors outside the team’s mantsuch as
deadlines set by upper management and feature.ci@epiness
demands sometimes required the team to incorponadee
features than were planned into an iteration orelease but
without the feature tradeoff that XP mandates. sThlanning
became difficult and sometimes frustrating for th@m. Releases
ranged from three to five months in length, andaiien lengths
were fixed at ten days. Many developers noted/éthee of small
iteration plans because they provided a conciseysted set of
tasks that must be completed in the coming weeks.

Gathering the release and iteration length mewias a matter of
examining the team’s project tracking tool. Regmients
dynamism serves as our measure of requirementslitplalf the
team is agile, then it should be able to withstaridgh amount of
requirements change. However, collecting this rmfation
potentially introduces overhead into the XP procdssthe Sabre
team’s project tracking tool, no mechanism exidtadrecording
which user stories were injected, removed, or cedngDeleted
stories disappeared from iteration plans, but #esen for their
removal (be it by customer request or because atufe
completion) was not recorded. Similarly, it waglear whether
stories that were added to iteration plans weraraqf the larger
release plan, or whether an impromptu customer egtqwas
made to insert the story directly into the iteratio Collecting
meaningful information for this metric was alsofidiilt given
that the team operated almost exclusively on mamaplans.
Since the user story changes were not recordégattease plan
level, it is difficult to quantify the actual amauaf requirement
change that took place over the release period.

The team’s planning adherence is summarized ineT@bl The
objective metrics appear on the top and the Shoslalojective
metrics appear on the bottom. This format willused for Tables
7,8, and 9.

Table 7: Planning adherence metrics

XP-am Planning Metric Value Source
Release Length 3 months PT
Iteration Length 10 work days PT
Requirements dynamism N/A N/A

Subj ective M etrics (Shodan) Mean (6°)

Stand-up meetings 98.0% (4.1) su/0Q
Short Releases 75.5% (22.6), suU/Q
Customer Access / On-site Cust 70.0% (23.6) SUDQ
Planning Game 66.5% (17.3) SU/DQ

3.3.2 Testing practice adherence

Table 8 summarizes the Sabre-P team'’s testing edbemetrics.
The team’s test coverage information was gathersidguthe
Clover* tool that ran as a part of the automated buil¢@ss. The
large amount of legacy code was the most influenitabitor to

4 http://www.cenqua.com/clover/

the team adopting the XP testing practices. Theahcoverage
provided by the unit tests is small (7.7% stateneterage).
Test coverage is averaged over the entire comppnenjust the
new and changed portions. Therefore, the covepageentage is
relatively low due to the large amount of legacyeadn place
before unit testing was instated as a developmettipe within
the team. A considerable amount of effort wouldréguired to
unit test all of this code.

More revealing information regarding the team’gitegeffort can
be inferred by examining the number of test clastest
correspond to new and changed classes, as wéleaatio of test
KLOEC to source KLOEC. This information was ga#tusing
the Beyond Compare tool to identify the new andhgea classes
in the system, and then searching for a correspgnist class in
the source tree. Since identifying new and chawrtesses could
not be counted by the Clover tool, identifying esponding test
classes that corresponded with new and changedeslagas a
manual process. This counting could potentiallwolae
significant overhead in a large system with a kagiount of code
churn. These remaining testing adherence measntenadéso
turned out to be low, indicating that the team doeswrite unit
tests often. Further consultation with the teaadlesvealed that
the team’s unit testing strategy centered on vgitiests for the
classes containing the business logic of the comprwhich in
turn exercised many supporting classes.

Further insights about the team’s difficulties idopting unit

testing were offered by the developer questionnedsponses.
Writing unit tests for some of the legacy code was perceived
to be cost-effective by some individual developefsirthermore,
developers noted that, because there are many erraf@ments
to their system, it is often difficult to write urtests for all pieces
of code. Some developers also cited limitationgjisting unit

testing frameworks (such as limited capabilities tést GUI

applications) as a major hurdle in adopting urstitey and test-
driven development. Also, developers often abaadonriting

tests when under deadline pressure, striving tdement all the
features promised in the release. This was donepite of

encouragement from the team leads and the XP ceaeit®e

urged the team members to write unit tests fonel or changed
pieces of code.

The team has just begun learning to automate #weptance
testing via the FIT framework. However, most of ticceptance
tests were not automated. Developers stated hkgtftequently

use acceptance tests, but that these tests are ofte very

detailed or extensive before work began on an é&ssak user
story or feature. The practice of writing an ateepe test to
guide development was not strictly enforced attthre. Many

developers found value in the tests as a mark wiptetion for a

user story, but that acceptance tests that wetertigfined early
in the process could help drive development mdiecgfely.

Table 8: Testing adherence metrics

XP-am Testing Metric Value Source
Test Coverage (statement) 7.7% TS
Test Run Frequency 0.4 DL
(quickse? runs / person-day)

[anecdotal]

Test Classes to New/Changed | 2.25% TS

classes (JUnit only)
New Classes with correspondir{g5.66% TS
Test Classes (JUnit only)

Test LOC / Source LOC 0.061 TS
(including test code embedded

in the system)

Subjective M etrics (Shodan) Mean (6°)

Test First Design 60.0% (21.0) SU/DQ
Automated Unit Tests 74.0% (23.0) SU/DQ
Customer Acceptance Tests 64.0% (26.6) SU/bQ

3.3.3 Coding practice adherence

The Sabre-P’s coding adherence metrics can be fioufdble 9.
The coding adherence metrics have been the mdatuttifto

automate. An automated means of collecting thes#ica is
currently unavailable, though one suggested metimvdlves
examining comment banners to identify changes donepair

programmers rather than by solo programmers [2dgnually

tracking the amount of time spent pairing when virgglon a user
story would be elementary, but would be tedious tirat

developers would have to record information evanetthat they
worked on a specific item. Perhaps sampling theldpers’ time
spent pairing and doing inspections at various @hasf
development is a plausible alternative.

Beck hypothesizes that continuous integration mag

problematic on a large team since the integratioitware will

have to handle multiple code streams simultaneoysly

However, the Shodan survey response for the questio
continuous integration averaged 89.5% (std. dev. 7d),

indicating that, on average, the team members @utettieir code
into the integration machine more than once per. dajhe

practice was considered essential by some deval@seit forced
them to design simply and to code in smaller in@ets. Many
developers also noted that the constant integraimvided
feedback (in the form of automatically-run unitttesites) helped
identify errors quickly.

The survey responses also indicated that the teaimedp
approximately 60% of the time. Questionnaire resiemts noted
that the team used “intelligent pairing,” wherdirey only paired
on those problems perceived to be suitably complebowever,
many questionnaire respondents stated that paisag often
discarded due to impending deadlines. Developdtdtat they
must work solo in order to meet these deadlinespiti strong

5 Quickset refers to a subset of the entire unitgeie that is run
to excerise a particular module of the system

encouragement from the coach and the team leadsntinue to
pair program. Developers noted that refactoringametimes a
neglected practice due a fear of injecting deféots existing

production code. They state that a more robuse sxfiunit tests
would help alleviate this fear, but, because oflinge amount of
legacy code, refactoring this code to be enabletasiing is not a
viable option. When asked if they followed theesilof simple
design, most developers stated that the practioéiés followed.

However, when faced with a complex problem, a semggsign
approach is not sufficient and more detailed plagrand design
is required.

When asked to comment on collective code ownensitigin the
team, developers stated that it provided some Hernief
distributing knowledge of the system. However, e the
system is large and complex with different modulkesre are still
some team members who retain specialized knowleageare
the only ones qualified to work on certain task3ne drawback
several developers mentioned about collective osimpris that it
has lead to a decreased amount of responsibility pfaorly-
written code. For instance, a developer might ekodo
implement the quickest solution, but not one witboand design
or an optimal structure since he/she is not they qmérson
responsible for the performance and the effectghat code.
Without this responsibility, there is less motieatito write code
that conforms to standards and/or is well-designéthen asked
if they felt that they were working at a sustaimalplace, the
developers all agreed that they were not. Sined¢g¢am operated
with fixed and aggressive deadlines without thditgtio reduce
scope, the team worked consistent overtime to rpeatised
features and delivery dates. Underestimation etithe it took to
complete user stories also contributed to the prabl

Table9: Coding adherence metrics

Coding Metric Value Source
Pairing Frequency 70% DL
(anecdotal)

Inspection Frequency 0% DL
(anecdotal)

Subj ective Metrics (Shodan) M ean (6?)

Pair Programming 61.5% (22.3 SU/DQ
Refactoring 59.5% (20.4)| SU/D(Q
Simple Design 69.0% (21.0) SU/D(

Collective Ownership 70.0% (21.0) SU/DQ
Continuous Integration 89.5% (7.6) SU/DQ
Coding Standards 80.5% (14.7 SU/DR
Sustainable Pace 61.0% (25.9) su/OQ
Metaphor 55.0% (25.7)| SU/DQ

3.4 Outcome Measures

Of utmost importance to decision makers is whethernot

adopting XP aids in productively creating a highguality

product. Because adequate baseline data was aitalade for the
Sabre-P team, their business-related results,tstattvia the XP-
Outcome Measures (XP-om), are compared to industeyages
documented by Capers Jones in [9] and the Bang&lgld group
[2]. We selected these two sources because af abeessibility
(the Bangalore SPIN report is available online ahd Jones
reference is available in many bookstores). Funtioee, these

sources contained similar software process meassrdhose in
the XP-om. The measures in these two sources \aE@
documented clearly enough that data collection ccobke
conducted in similar manner to that of the industvgrages.

In our other case studies, we compared these segultesults
from a previous release of the same product. Camereduce
internal validity concerns by studying the sametvgalffe project
with a team comprised largely of the same personkigwever,
for this case study, no such comparison point cbeléstablished
since the necessary artifacts for earlier relegsegect tracking,
defect information, etc.) could not be obtained.

In order to provide an informative comparison, vged published
industry averages from two sources [2, 9]. Whemgaring with

industry survey data, it is critical to ensure tha¢ metrics are
identical and that they were collected using theesanethods.
For example, when gathering defects, the sameatialfe period
must be established. This period can be eithest dirme period
(e.g. six months after release) or a set of spgegfiases of
development (post-release, system test, integraéet). When
interpreting the results, it is important to rememthat the
published data covers a broad range of projectoegahizations.
Therefore, it can be unclear how your own caseystethtes to
the sample population from the industry average#. the

published information is organized into specifidecmries (e.g.
team size, project duration, criticality, domair¢.g then one
may be able to draw more meaningful conclusionshelVsuch
data is unavailable, one must be cautious whemnpirggng the
results since the specific context of one’s studgyrbe vastly
different from those projects in the industry sye

3.4.1 Limitations

The case study results are presented relativedigsiry averages
of the Bangalore SPIN Benchmarking group [2] (Tali and of
Jones [9] (Table 11). The results in Table 10mesented with
regard to the 95% confidence bounds published é rdport:
Higher (greater than upper limit), Lower (less thidwe lower
limit), or Similar (within the confidence interval) Results in
Table 11 are presented in the same fashion, exieit no
confidence bound was given and only a point esémit
available. Interpreting the Jones surveys requixad/erting the
system size from KLOEC to function points. Funetipoints
were estimated from lines of code using the 1998iwr of the
Programming Languages Table This estimation technique,
known as “backfiring,” has been shown to have atusscy of £
20% [11]. The lines of New and Changed Code seasdhe
basis for all computations in the table below.ounr calculations
for Table 11, we tested both the upper bound angiddound of
the function point estimate. Items with a resaftsHigher” were
higher than the upper bound and items marked “Lbwesre
lower than the lower bound of the given the + 2086umacy of
function point estimation. Due to the inaccuradiesur function
point estimation and the use of point estimateséonparison, we
acknowledge that there are experimental validityceons.

Another experimental validity concern involves thecuracy of
our defect counts. It has been our experience ritgdt teams
have their own methods for recording defect infdiom even in

® http://www.spr.com/products/programming.htm

a standardized or automated setting. Interpredingd) codifying

this information correctly is important to ensuritige validity of

the data. Counting the defects in the Sabresfegrrwas a non-
trivial process and required extensive input froothbthe team’s
tester and the project lead. When counting defehtese were
several entries that were not classified as defécitsinstead as
enhancements, customizations, etc. We counted tndge

entries where the resolution type was a "Defectré&xion.”

Furthermore, (as is consistent with both survey manson

points), we did not count defects uncovered dudagelopment
or unit test. We also only counted defects whichuld be

positively identified as attributable to the releamder study (all
entries in the Sabre-P team’s defect tracking systead a
“release” category). Some defects that were edtémeo the

system during the defect collection timeframe (frothe

beginning of development through six months afééease point)
had an entry of ALL in the “release” category of thntries.
Those entries that were attributable to the relaasger study
were added to the defect counts and were identifigdthe

development lead after examining the body of thdeate
information.

Our final limitation involves external validity. HE intention of

this study was to compare the outcome measuredezm using
XP with industry averages of software teams usiagyrdifferent

development methodologies. Since we do not knawsghecific

contexts of the industrial teams our industry agereesources, it
is unclear whether the Sabre-P team is comparalileose teams
in terms of their contexts. Therefore, we cannohctetely

identify whether the relationship between Sabredht's project
outcome and the industry averages is due to theijptéon of XP,

or if there are other elements of Sabre-P teamfest factors
that may have influenced the results.

Table 10: XP outcome measur es (compared to [2])

XP Outcome M easures Result Source
Pre-release defect density Similar DT/SC
(test defect/KLOEC)

Total defect density Lower DT/SC
(pre-release + post-release defectg /

KLOEC)

Productivity (LOEC/Staff Day) Similar SC/PT

Table 11: XP outcome measur es (compar ed to [9])

XP Outcome M easur es Result Source
Post-release defect density Lower DT/SC
(released defects / KLOEC)

Total defect density Lower DT/SC
(pre-release + post-release defectg /

Function Points)

Defect removal efficiency Lower DT

(test defects / total defects)

Productivity (FP/Staff Month) Higher SC/PT

3.4.2 Prerelease Quality

Both pre-release defect density (test defects/KLPD&@I defect
removal efficiency are indicators of pre-release aliqy

Kitchenham notes that pre-release quality is aogate measure
of quality [12], and that it is in truth a measwt the testing

process. The Sabre-P team showed similar presesleafect
density and a lower defect removal efficiency tharblished

averages. These results are subject to interfmethecause the
release underwent a two month feature freeze iciwhind-to-end
testing of the product was performed. This conedetl testing
effort may have led to more defects being uncovenaah in a

release where no extended testing period took plddes entire
team participated in the testing process. Contiersawith the

team’s tester revealed that, in many cases, defeatsd during

this test phase were not always recorded in thectl¢facking

system: the defects were uncovered and dealtimithediately.

As such, the count of pre-release defects may hadarcount of
the actual number.

3.4.3 Post-release Quality

The team’s post-release quality includes the nunabedefects
delivered to and reported by the customer. We aisgefect
collection period of six months after the releasep a time box
suggested by Kitchenham [12] and others [10], towalthe

customer time to exercise and test the produce Sédbre-P team
achieved lower than the average delivered defeatsitie

Furthermore, the team’s total defect density (idilg both pre-
release and post-release defects) was lower thém dwis of
survey results. Again, these numbers may be infleé by the
team’s extended testing effort prior to the releafsthe product.

These results would be better understood if we é@dence
regarding the customer’s use of the system after rease.
According to the development lead, the release ustiely was
not received by all of the team’s existing custanand that new
customers for the product activated only a subltteofeatures in
this release. Therefore, since the system waduliptexercised
by all available customers, the count of post-rededefects may
be lower than the team’s usual numbers.

3.4.4 Productivity

Effort was calculated in both LOEC/Staff Day andn&iion

Points/Staff Month. As previously mentioned, thewN and

Changed LOEC (Table 3) provided the basis for tiEng

estimates; this is consistent with the method usdmbth surveys.
The Sabre-P team’s productivity was similar to #neerages
published by the SPIN group and better than avenragen

compared to projects of similar size in the Jonablipation.

Again the team did not spend the entirety of tHease updating
and/or creating new features because of the twothmfwature

freeze. This was taken into account both proditgtiv
measurements, where only those staff days the tepemt

working on development code (and not performingethé-to-end
testing) were counted. Furthermore, the produgtigounts do
not account for the unit test code written duriegelopment.

4. DISCUSSION

This paper has provided one example of an agile sagly. We
discussed the difficulties involved in collectingfarmation,
provided some guidance for collecting various nestriand

showed an example of how comparisons can be matle wi

published industry average data. The results ofcase study
may not be conclusive, but this paper illustratgesal important
considerations for performing a case study.

4.1.1 Availability of Data

The measurements we gathered were largely depemdettie
availability of data. Our original intent for thistudy was to
compare this release of the product to a releaswleted using a
plan-driven methodology. However, because of diffies in
obtaining source code and because of changing tdefec
repositories, none of our outcome measures weriébisafor the
desired plan-driven baseline. When establishirgy gbals of a
study, it is important to identify what measurensentill be
necessary to enable those goals and if the requiedd is
available.

4.1.2 Tool Support

Strong tool support allowed us tmllect our data for analysis
quickly and easily. In the case of the defectkirag system, the
tools also allowed us to perform our analysis mouéckly by

providing simple sorting features, hyperlinks to tezded

descriptions, and the like. Manually collectingdasorting

through this information would have required exihd
involvement of the development team. The last tpam

particularly important since we did not wish to posxcessive
burden on the developers that might impact theileggrocess.
However, even with tool support, thealysis portion of the study
still required considerable effort on the partluf tesearchers.

4.1.3 Co-operative Personnel

Since many agile teams do not have a dedicatedasispecialist,
having a team with personnel who are willing to peate in data
collection and interpretation is essential. In study, the team
leader was the source for most of the context médion, and
both the team lead and the tester were essentiaieipreting the
defect information. Furthermore, the cooperatioh the
developers was necessary in taking the survey ramesponding
to questionnaires provided important qualitativefoimation
needed to help understand and interpret the qa#nétfindings
of the case study. The qualitative information nfrothe
developers is also valuable for other practitionexading this
case study, as it allows them to see some of tilstacles and
benefits of adopting XP practices that may not bplieitly
captured by the measurements of the XP-EF framework

4.1.4 Project Satus

Project status is related to data availability. the XP-EF, we
employ several in-process metrics to determine XBctre
adherence. Since the project had already begthe dime of the
study, we could not gather all of these metricxesithe data
would have been incomplete. Project status ic#fan the case
study that is dependent upon the nature of the dtaiag
collected. Furthermore, if the case study projeas occurred
several years or even several months ago, datfacastiand
personnel associated with project may not be adailado
contribute valuable quantitative and qualitativieimation.

4.1.5 Conclusion and Future Work

Throughout this paper, we have discussed our expegi of
performing a case study to evaluate the effectisenef XP
practices with an industrial team at Sabre AirlBautions. We
employed the XP-EF in our study as a means foctstring our
metrics collection, and describe various depen@sncand

difficulties in collecting the data throughout. Wseesent the
Sabre-P team’s business related results as ratatad published
industry averages. These results indicated thatt#am had
better post-release quality than average and sinatabetter
productivity than average. These results are dige within the
specific context of the case study.

We have also identified four important factors thmpacted the
progress of the study: availability of data, toalpgort, co-

operative personnel and project status. The esoltected from

this case study were derived largely from histdrizta, such as
archived code and documented defect information.his T
presented a number of unique challenges
meaningful, informative data post hoc. There iseance on
software process artifacts, such as archived coder story
information, and defect reports, to enable coltectf historical
data. The production of these artifacts may runtreoy to the
agile paradigm. However, the presence of CASEstantluding
automated build tools, integration environmentsd amefect
tracking systems, may alleviate much of the ovethessociated
with collecting these metrics. This informationlivide useful to
those practitioners who are considering the implegateon of a
software metrics program in conjunction with thegjlile process.

We are currently analyzing one other case studydwected at
Sabre Airline Solutions. Three additional caselists structured
by the XP-EF are about to commence with a teleconications
firm in the United States. The results of this ilgmof case
studies and that of other researchers will builc&earpirical body
of results concerning XP in various contexts in ivas
organizations.

5 ACKNOWLEDGEMENTS

The authors wish to thank the individuals on th&r8aAirline
Solutions development team for participating instbtudy, and
Chris Shepperd, Brian Sullivan, Mahvash Hatamield &cott
Frederick for their invaluable assistance. Thisesgch was
supported by Sabre Airline Solutions. Lynn Cunihizig
participated in this research through support fribha National
Science Foundation Distributed Mentor Project.

6. REFERENCES

[1] Abrahamsson, P., "Extreme Programming: First Redrdm
a Controlled Case Study29th IEEE EUROMICRO
Conference, Belek, Turkey, September 1-6, 2003, pp. 259-
266.

[2] Bangalore Benchmarking Special Interest Group,
Benchmarking of Software Engineering Practices at High
Maturity Organizations. 2001, Bangalore Software Process
Improvement Network.

[3] Basili, V., F. Shull, and F. Lanubile, "Building Kwledge
Through Families of Experiments,” IEEE Transactions
Software Engineering, vol. 25, No. 4, pp. 456 -.473

[4] Beck, K. and M. Fowler?lanning Extreme Programming,
Boston, MA: Addison-Wesley, 2001.

[5] Beck, KentExtreme Programming Explained: Embrace
Change, New York: Addison-Wesley, 2000.

[6] Boehm, B. and R. TurneBalancing Agility and Discipline:

A Guide for the Perplexed, Addison Wesley, 2003.

[7] ElI Emam, KhaledFinding Successin Small Software

Projects, in Agile Project Management.

in catigcti

[8] Fenton, N.E. and S.L. Pfleeg&nftware Metrics: A
Rigorous and Practical Approach, Brooks/Cole Pub Co.,
1998.

[9] Jones, C.Software Assessments, Benchmarks, and Best
Practices, Boston, MA: Addison Wesley, 2000.

[10] Kan, S.,Metrics and Models in Software Quality
Engineering, Second ed, Boston, MA: Addison Wesley,
2003.

[11] Kemerer, C.F., "Reliability of Function Point Measment:
A Field Experiment," Communications of the ACM, v8b,
No. 2, pp. 85-97.

[12] Kitchenham, B.Software Metrics: Measurement for
Software Process Improvement, Cambridge, MA: Blackwell,
1996.

[13] Kitchenham, B., L. Pickard, and S. L. Pfleeger,s€a
Studies for Method and Tool Evaluation," IEEE Safte,
vol. 12, No. 4, pp. 52-62, July.

[14] Kitchenham, B.A., S. L. Pfleeger, L. M. Pickard W.
Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg,
"Preliminary Guidelines for Empirical Research wft%/are
Engineering," IEEE Transactions on Software Enginge
vol. 28, No. 8, pp. 721-733, 2002.

[15] Krebs, W.,Turning the Knobs: A Coaching Pattern for XP
Through Agile Metrics, in Extreme Programming/Agile
Universe, L. Williams, Editor. 2002, Springer: Chicago, IL.

[16] Layman, L., L. Williams, and L. Cunningham, "Exgloy
Extreme Programming in Context: An Industrial Case
Study,"2nd | EEE Agile Development Conference, Salt Lake
City, UT, June 22-26, 2004, pp. 32-41.

[17] Maurer, F. and S. Martel, "Extreme Programming:iRap
Development for Web-Based Applications," IEEE Ingsr
Computing, vol. 6, No. 1, pp. 86-90, January-Felyr@902.

[18] Potts, C., "Software Engineering Research Revisile&dEE
Software, vol. No. pp. 19-28.

[19] Reifer, D.J., "How to Get the Most out of Extreme
Programming/Agile MethodsZnd XP and 1st Agile
Universe Conference, Chicago, IL, August 2002, pp. 185-
196.

[20] Williams, L., L. Layman, and W. Krebs, "Extreme
Programming Evaluation Framework for Object-Oriente
Languages -- Version 1.4," North Carolina Statevidrsity
Department of Computer Science TR-2004-18, 2004.

[21] Williams, L., W. Krebs, L. Layman, and A. Anton, dWard
a Framework for Evaluating Extreme Programmir@;’
International Conference on Empirical Assessment in
Software Engineering (EASE 04), May 2004, pp. 11-20.

[22] Williams, Laurie, William Krebs, Lucas Layman, aAdnie
Anton, Toward a Framework for Evaluating Extreme
Programming. 2004, North Carolina State University:
Raleigh, NC.

[23] Yin, R.K., Case Study Research: Design and Method, Third
ed, Vol. 5, Thousand Oaks, CA: Sage Publicatiof832

[24] Zelkowitz, M.V. and D.R. Wallace, "Culture Conflcin
Software Engineering Technology TransféMASA Goddard
Software Engineering Workshop, 1998.

[25] Zelkowitz, M.V. and D.R. Wallace, "Experimental Mzd
for Validating Technology," IEEE Computer, vol. 349. 5,
pp. 23-31, May 1998.

