
Authentication in Stealth Distributed Hash Tables

Andrew MacQuire Andrew Brampton Idris A. Rai Nicholas J. P. Race Laurent Mathy
Computing Department

Lancaster University
{macquire,brampton,rai,race,laurent}@comp.lancs.ac.uk

Abstract

Most existing DHT algorithms assume that all nodes
have equal capabilities. This assumption has previously
been shown to be untrue in real deployments, where the
heterogeneity of nodes can actually have a detrimental ef-
fect upon performance. In this paper, we acknowledge that
nodes on the same overlay may also differ in terms of their
trustworthiness. However, implementing and enforcing se-
curity policies in a network where all nodes are treated
equally is a non-trivial task. We therefore extend our pre-
vious work on Stealth DHTs to consider the differentiation
of nodes based on their trustworthiness rather than their
capabilities alone.

1. Introduction

Distributed Hash Tables (DHTs) have been shown to be
a useful form of decentralised, structured peer-to-peer over-
lay [17][22][23][15]. They allow for the provision of sim-
ple hash table functionality – that is, the ability to put and
get pieces of data indexed via hash codes – across multiple
nodes in a scalable and resilient fashion. Primarily, DHTs
have been used as location substrates for many varied appli-
cations, such as large-scale file storage [8][6][9] and multi-
cast [18][25], amongst others.

Theoretically, most DHTs consist of numerous nodes
which organise themselves and behave in a well defined
manner. Each node is associated with a unique identifier
(ID), randomly selected from a large, sparsely-populated
address space. When an object is put into a DHT, its con-
tents are hashed in some way as to produce an identifier
which also maps into this address space. The originating
node then routes the object to the local node that it knows to
have the closest-matching identifier. If the recipient knows
of an even closer node, it then forwards the data on. Even-
tually, the object reaches a node which does not know of
any closer match. This node is considered the final destina-
tion, and must then take responsibility for the storage and/or

any other handling of the object. Any individual who then
wishes to get the same object at a later date can then do so
based on the knowledge of the object’s hash alone, as any
message routed to the same hash should arrive at the same
node that the object originally reached. Of course, this can
only occur if all nodes follow the DHT protocol correctly.

Unfortunately, in a real-world deployment it would be
naı̈ve to assume that all nodes can be relied upon to con-
form to any prescribed behaviour. Without appropriate se-
curity policies in place, numerous problems may exist for
public DHTs. For instance, a malicious node may exam-
ine, alter or deliberately drop messages passed through it
(i.e. a sniffing, man-in-the-middle or denial of service at-
tack). The ability to inject unsolicited messages into the
DHT, or to alter those in transit, also allows untrustworthy
nodes to corrupt the routing tables of others. Possible con-
sequences of such actions could be legitimate nodes being
denied service, or malicious nodes improving their standing
on the network at the expense of others. In terms of content
in the DHT, if all nodes are allowed to perform put oper-
ations, then the pollution of the system with unwanted or
illegal data may become an issue.

To avoid these security problems, it is clear that some
methods for handling untrustworthy nodes in DHTs is re-
quired, especially if DHTs are to be used commercially.
Sadly, most traditional DHTs make the assumption of ho-
mogeneity amongst peers, treating them all as equals. This
means that untrustworthy nodes are regrettably granted ex-
actly the same privileges and responsibilities as the trust-
worthy. A common approach to solving this problem is
to make use of an authentication mechanism to ensure that
only trustworthy nodes are allowed to join the DHT. How-
ever, determining the veracity of a node can be a difficult
process, and simply alienating all those who cannot prove
themselves trustworthy may be unwise. A better approach
is to instead allow such nodes to still make use of the DHT,
but in a limited capacity.

To this end, a means of separating sets of nodes on the
same DHT proves necessary. In this paper, we intend to
show how our recently proposed Stealth DHT concept [3]



can be used to provide this precise functionality. In this
previous work, we explained how almost any existing DHT
algorithm could be adapted into a Stealth DHT, thus creat-
ing two distinct sets of nodes with differing routing prop-
erties on the same overlay. Our original evaluation covered
the benefits of this approach from a performance standpoint,
whereas this paper now considers the advantages gained in
terms of security.

The separation of nodes in Stealth DHTs can be ex-
ploited to enable secure content distribution in peer-to-peer
networks, since, with an appropriate authentication mecha-
nism, it can return network control to the service provider.
That is, the ability to create fine-grained permissions for
nodes on the DHT means that security policies are much
easier to enforce. For example, by having only autho-
rised nodes storing and retrieving content, Stealth DHTs
can ensure that only legitimate and useful content is served,
thus a providing a platform for Digital Rights Management
(DRM) in peer-to-peer networks, as well as aiding in the
prevention of pollution attacks.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a brief overview of the differences between tra-
ditional and Stealth DHTs. Section 3 discusses the struc-
ture of a typical Public Key Infrastructure. Section 4 then
explains how a Stealth DHT and a PKI may interoperate.
Section 5 then highlights and evaluates a number of imple-
mentation concerns for such a system. Section 6 goes on
to examine related work in the field of DHT authentication,
and finally Section 7 concludes the paper.

2. Overview of a Stealth DHT

The join process for most DHT implementations in-
volves a node first gathering state. Usually, this is achieved
by routing a join message addressed to its own ID into the
DHT via a bootstrap node1. Nodes along the message’s path
then reply directly with relevant routing information for the
joining node. Once the joining node receives notification
that its message has reached its destination, it announces
its presence on the network so that other nodes may route
messages through it.

Stealth DHTs [3] modify this procedure slightly to create
two types of nodes on the network: Service and Stealth. Ser-
vice nodes provide the routing infrastructure for the over-
lay, whereas stealth nodes communicate with and through
service nodes only. This separation is achieved by halting
the join procedure for stealth nodes after they have gath-
ered state, but before they announce their presence on the
DHT. The resultant effect is that stealth nodes do not ap-
pear in any routing tables, and thus are not used to forward

1An already-connected node discovered through some alternate mech-
anism

any messages or store any keys. Therefore, they are inca-
pable of interfering with message delivery or object storage
in any direct manner. The routing data gathered by stealth
nodes is used only for selecting the locally-optimal location
to forward their own requests to, thus aiding routing per-
formance while removing the possibility of a single point
of failure that many similar DHT super-peer schemes suffer
from [12].

It is important to note that the assignment of the stealth
and service node roles is application-dependent, and is not
prescribed or constrained by the Stealth DHT itself [3].
However, a Stealth DHT provides an individual or a ser-
vice provider with the control to command such assignment.
Therefore, from a security perspective, and since service
nodes are responsible for handling all messages, they should
consist of verifiably trustworthy machines. Conversely, any
nodes which are potentially untrustworthy should be forced
to join as stealth nodes, thus prohibiting them from interfer-
ing with DHT operations to any extent.

In contrast with traditional DHTs, the distinction be-
tween trustworthy and untrustworthy nodes provided by a
Stealth DHT results in an architecture where the implemen-
tation of security policies is more straightforward. In addi-
tion, the fact that service nodes never retain any knowledge
of stealth nodes means that Stealth DHTs are poised to offer
significant advantages from a security perspective.

For example, when a stealth node joins or leaves the
network, no service nodes need to update their routing ta-
bles, which prevents them from being affected by stealth
nodes churning. This is especially important from a se-
curity standpoint, as the effects of heavy churn have been
identified as being particularly harmful to many DHT im-
plementations [16][10]. Malicious individuals have accord-
ingly used this knowledge as a means of facilitating Distrib-
uted Denial of Service (DDoS) attacks. By making numer-
ous nodes under their control rapidly rejoin DHTs, an at-
tacker can cause floods of maintenance messages as nodes
struggle to keep their routing tables up to date, resulting
in inconsistent routing and overloaded nodes. If, however,
a Stealth DHT is used where the potentially untrustworthy
are forced to join as stealth nodes, no routing table updates
and thus no maintenance messages are required. Of course,
the inevitable cost of such an advantage comes in the form
of increased stress upon the service nodes, although these
are assumed to be relatively powerful machines capable of
handling such load.

Of course, in a system such as this there still must be
a means of ensuring that stealth nodes cannot masquerade
as service nodes. This can be achieved through the use of
an appropriate authentication scheme to effectively enforce
the separation between node types in a Stealth DHT. Ac-
cordingly, this is the focus of this paper, wherein we dis-
cuss how an authentication scheme based on a Public Key



Infrastructure can be implemented in a Stealth DHT.

3. Overview of a Public Key Infrastructure

A Public Key Infrastructure (PKI) is a security plat-
form which allows multiple users who have not previously
exchanged any secret information to validate each other’s
identities, be sure of message integrity and even set up con-
fidential communication. This is usually achieved via dig-
ital certification signed by mutually trusted third parties,
where the certificates themselves are used to verify the iden-
tity of their owner through public/private key cryptography.

A typical PKI is composed of several logically separate
entities, although the functionality offered by each may, in
fact, be contained within a single physical machine:

A Registration Authority (RA) is a trusted entity which
acts as the first point of contact for an individual requesting
certification. The RA is used to check the requestor’s sup-
plied credentials and, if deemed valid, pass them on to the
Certification Authority.

A Certification Authority (CA) is a trusted entity re-
sponsible for the creation and, if supported, revocation of
certificates. As it is a mutually trusted third party, individu-
als may authenticate each other with confidence if they sign
their messages using a certificate verifiably issued by a CA.

A Certificate Repository (CR) simply acts as a data-
base of existing certificates. A CR need not be a trusted en-
tity as the certificates it holds are immutable; if any attempt
is made to alter an existing certificate, the digital signature
will no longer match the contents. Note that if nodes are
made responsible for the storage and dissemination of their
own certificates, a dedicated CR may be redundant.

If supported, the CR also contains the Certificate Re-
vocation List (CRL), indicating which certificates in the
database have been forcibly revoked. Certificate revocation,
however, is often an unsupported feature in actual PKIs due
to implementation difficulties; an issue discussed further in
Section 5.4 of this paper.

Many PKI implementa- Version
Serial Number
Validity Duration
Subject
- Identity
- Public Key
Issued By
Issuer’s Signature
Extensions
- Subject Permissions

Figure 1. Format

tions use certificates which
conform to the ITU-T X.509
standard [1], a simplified
version of which can be seen
in Fig. 1. For compatibility
reasons, certificates must
contain a version record. To
aid certificate management,
unique serial numbers are
also considered useful. Each
certificate should also have
two discrete dates associated
with it, indicating its period of validity.

The most important element of any digital certificate,
however, is the subject. That is, the individual or organ-
isation whose identity the certificate may be used to au-
thenticate. Typically this information is comprised of the
owner’s name and any other pertinent information (address,
organisation name etc.). The owner’s public key is also usu-
ally included in this section of the certificate. This key is
cryptographically paired with a corresponding private key
that each individual must keep secret, as it serves as their
means of creating a digital signature, as well as decrypting
any messages encrypted with their public key.

Finally, the certificate must indicate the authority which
issued it, and must also contain the signature of that au-
thority. The key point here is that once the certificate has
been signed in this manner, the data contained within cannot
change without invalidating the signature. Note that certifi-
cates may also contain optional extension fields, which may
be used, for instance, to indicate the operations an individ-
ual is authorised to carry out within a given system.

It is also notable that as any individual who owns a
signed certificate from a higher authority may also sign cer-
tificates themselves, lengthy certification hierarchies often
exist. As requesting and verifying each level of certification
separately may prove to be time-consuming, many PKIs al-
low for the chaining of certificates. That is, all certificates
up to the initial, self-signed certificate (created by some in-
trinsically trustworthy entity) are included in a single col-
lection. While such a certificate-chain will obviously be
larger than any single certificate, it intuitively reduces over-
head if verification up to the highest level is known to be
required.

4. Authentication in a Stealth DHT

A straightforward approach to implementing a PKI on
a Stealth DHT is to require each service node to be issued
with a certificate that it alone possesses the private key for.
However, stealth nodes are required to possess certificates
only when they need to perform optionally restricted opera-
tions, such as the ability to join the DHT itself, or to get/put
content of particular types.

Beyond the standard identifying fields (see Fig. 1), each
certificate should contain a list of authorised operations that
its owner may carry out. Simple examples of such per-
missions could be the right to join as a service node, or to
put keys into the network. It would then be mandatory for
the relevant DHT messages to contain a field which iden-
tifies the node’s certificate in some way, as well as a dig-
ital signature to prove that the same node was indeed the
message’s creator. The node’s certificate or certificate-chain
could also be attached to the message to aid in the authenti-
cation process.



4.1. Authenticating With a Stealth DHT

There are two broad approaches to supplying the PKI’s
constituent elements for the Stealth DHT: external and in-
ternal. In the former, the RA, CA and CR all exist entirely
separately to any part of the Stealth DHT itself, whereas
in the latter they exist as some subset of the Stealth DHT’s
service nodes. This subset may simply be a single, well-
known service node (centralised PKI) providing the entire
PKI functionality for the Stealth DHT, or in contrast it may
consist of several or all the existing service nodes (distrib-
uted PKI).

To acquire a certificate, a user must first generate a pub-
lic/private key pair, and then pass his or her public key along
with any requested proof of identity to the Registration Au-
thority. Following successful verification of these creden-
tials by the RA, they are then passed to the Certification
Authority. The CA then creates the certificate, signs it, and
passes it back to the user via the RA. It may also be passed
to a Certificate Repository, if necessary.

In a Stealth DHT with an external PKI that requires au-
thenticated join operations, the user simply sends a join
message containing their certificate to a suitable DHT boot-
strap node, with the separate PKI server(s) being contacted
as required. Conversely, the authenticated join procedure
for a Stealth DHT with an internal PKI is similar, but in-
volves messages being passed between the nodes on the
DHT that constitute the various components of the PKI. In
both cases, the DHT ID that the node joins as is irrelevant
(unless associated with their certificate); the real identity of
a user is always determined by the certificate they own.

Exactly how the PKI elements are organised is entirely
application-specific. For example, as the RA and CA must
be trusted entities, they may be comprised of a small num-
ber of highly-trusted service nodes with well-known iden-
tifiers. The CR, on the other hand, does not require a high
level of trust due to the immutability of digital certificates.
As a result, it could consist of several or all service nodes
on the DHT, with certificates being hashed and stored as if
they were normal DHT keys. Also, note that a new, un-
certified user may simply pass all their relevant details to a
bootstrap node as their join message, with no need for any
further action on their part. As all elements of the PKI are
contained within the DHT, a certificate can automatically
be returned to them whilst an appropriate DHT join mes-
sage with the newly created certificate attached is simulta-
neously forwarded, thus minimising join delay.

4.2. Actions following Authentication

Following a successful join, nodes may then communi-
cate as normal over the Stealth DHT, authenticating each
other as necessary. As an example of this, assume we have

two users, Alice and Bob, who have joined a Stealth DHT
with an internal PKI as a stealth node and a service node
respectively. Alice wishes to send a message to Bob, who
requires that messages be authenticated. The correct proce-
dure would therefore be as follows:

Alice first creates a message, signs it, and delivers it to
Bob via the DHT. Bob can then verify the signature, and
thus the message integrity, using Alice’s certificate. He may
have acquired Alice’s certificate from his certificate cache,
a Certificate Repository, or from within the message itself.
Bob can then recursively verify the issuers within the cer-
tificate chain, starting with Alice’s certificate. This process
continues until Bob reaches a certificate that he intrinsically
trusts. At this point, the authentication is complete, and
Bob can continue to handle Alice’s message appropriately.
Of course, if the certificate chain does not eventually lead
to an certificate that Bob trusts, his attempt to authenticate
Alice fails. Following any reply from Bob, Alice may per-
form the same process on his message to authenticate his
identity, but only if mutual authentication is required.

Further to this, if Alice and Bob wish to ensure that
their messages are kept confidential from even the other
service nodes2, they can simply use the public keys con-
tained within each other’s certificates to encrypt the mes-
sages’ contents. To clarify, if Alice wants to send sensi-
tive data to Bob, then she first uses the CR (e.g. service
nodes hashing and storing certificates) to retrieve his cer-
tificate beforehand. Following this, she uses his public key
to encrypt the message contents and her own private key to
sign the message. Only Bob’s private key can decrypt data
encrypted in this manner, so Alice can be sure that only
Bob is able to understand the message contents. Further to
this, her signature ensures that Bob can be sure the message
came from Alice, and that it was not tampered with.

Note that in an internal PKI, if the Certificate Repository
functionality is spread across many service nodes, and cer-
tificate chains are not included in messages, users perform-
ing get operations may experience longer retrieval delays
due to the need for the relevant certificates to also be re-
quested from the DHT. Of course, this increased overhead
should be weighed against the cost of using a centralised
PKI, which potentially represents a single point of failure
for all nodes on the network.

5. Implementation Considerations

5.1. Certification Hierarchy

Some thought should be placed into how the certifica-
tion structure is organised within the PKI. The simplest ap-
proach for a Stealth DHT could be to have a single globally

2Recall that as stealth nodes are not involved in message forwarding,
they cannot possibly access these messages via the DHT.



trusted key, used to sign certificates for service nodes only.
However, users may require a more complex hierarchy for
economic, political or security reasons; again, this is an en-
tirely application-specific issue. A possible example could
be that each department within a typical commercial organ-
isation is granted a certificate signed by a single, highly-
trusted master key. It may be that the master key needs to
be kept physically secure and is therefore inconvenient to
access. By introducing this extra level of hierarchy, how-
ever, the need for it to be used to sign certificates on a reg-
ular basis is negated. This approach also allows for a finer
level of control, as if the privileges of an entire department
needed to be revoked, for instance, it is simply a matter of
invalidating the associated departmental certificate.

5.2. Authentication Granularity

Exactly how authentication is performed on the DHT
presents an issue of balance between overhead and security.
A fine-grained approach would be to verify messages on a
per-hop basis. Naturally, this results in all required authenti-
cation operations (such as retrieving appropriate certificates
or checking revocation lists) being performed an average
of logN times for each message, where N is the number
of service nodes in the network. However, it also results
in any invalid messages being dropped almost immediately,
thus making it difficult for unauthenticated malicious nodes
to get service nodes to pass invalid messages around; a tac-
tic often used in DHT denial of service attacks, typically
resulting in the network becoming overloaded with useless
traffic.

Considering a slightly coarser approach, if service nodes
were to simply validate messages upon receipt at their fi-
nal destination, then all associated authentication opera-
tions need only be performed once per message. Obviously
this means that any messages from unauthorised nodes may
be unnecessarily routed by multiple service nodes on their
journey, consuming bandwidth and processing time. How-
ever, it also means that the number of authentication opera-
tions performed may be significantly reduced.

Beyond per-message authentication, service nodes may
make use of the coarse concept of “sessions”. In other
words, a typical stealth node may be permitted to consume a
certain amount of resources, make use of a given service or
be active on the DHT for a pre-determined length of time.
Examples here could include a node being allocated a set
number of messages on the network, being given the abil-
ity to download a particular number of pieces of content or
being provided with a “day-pass” to use the DHT, respec-
tively.

Session-based authentication therefore requires that
some state be stored and validated for stealth nodes. If the
session is based on a set length of time, then this can be as

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Number of stealth nodes

In
cr

ea
se

 in
 n

um
be

r 
of

 m
es

sa
ge

s 
(%

) Per hop
Per message
Per hop with certificate chain
Per message with certificate chain

(a) Increase in the number of messages

0 200 400 600 800 1000
0

5

10

15

20

25

Number of stealth nodes

In
cr

ea
se

 in
 lo

ok
up

 la
te

nc
y 

(%
)

Per hop
Per hop with certificate chain
Per message with certificate chain
Per message

(b) Increase in lookup latency

Figure 2. Stealth DHT with 100 services nodes using
an internal, fully distributed PKI relative to a Stealth
DHT with no authentication. Note that the certificate-
chain simulations are overlaid in these figures.

simple as issuing a certificate with a corresponding period
of validity. Otherwise, it is likely that a more complex sys-
tem is required, such as an accounting mechanism, as dis-
cussed in Section 5.3 or a session authentication protocol
such as Kerberos [13].

Figs. 2 show results for simulations conducted with a
fixed number of 100 service nodes, where the number of
stealth nodes was varied between 10 and 1000. The simula-
tions were carried out using our own discrete-event packet-
level simulator, based on Pastry [17]. Each simulation was
performed on a GT-ITM [4] generated transit-stub topology
of 1,000 routers, with 4% transit nodes. Service, stealth and
normal Pastry nodes were connected to this topology in a
random fashion.

Every service node in the DHT initially held its own cer-
tificate as well as several content keys. During the simu-



lation itself, stealth nodes performed random get requests
for these keys at regular intervals. Authentication was per-
formed at the source and destination in the per-message re-
sults and also performed at each intermediate node in the
per-hop results. For both cases, simulations were run with
and without certificate chains contained within messages.

Fig. 2(a) shows that both the per-hop and per-message
authentication schemes result in no increase in the overall
number of messages when certificate chaining is used. This
is because all the certificates required to fully authenticate
a message’s sender are included within the message itself,
thus increasing the average message size, but resulting in no
further requests to the CR.

On the other hand, an increase in the number of mes-
sages does exist when certificate chains are not used. This
increase is due to the distributed nature of the Certificate
Repository in an internal PKI; to acquire a certificate in or-
der to perform authentication, a node must retrieve it from
the service nodes through further DHT queries. Expectedly,
per-hop authentication results in markedly more messages
than per-message authentication. Also, as the number of
stealth nodes increases, the percentage increase in the num-
ber of messages relative to a system without authentication
falls. The reason for this is that the increased number of
stealth nodes results in an accordingly increased number of
requests for certificates. As all nodes cache certificates upon
receipt, there is no need for certificates to be re-acquired.

Fig. 2(b) shows how lookup latency3 is affected by these
factors. As expected, the cases which involved querying
the network (i.e. those without certificate chains) result in
increased lookup latencies. Note, however, that the cases
with certificate chains also incur increased lookup latencies
despite the lack of extra authentication messages. This is
attributed to the larger average message size that occurs as
a result of including certificate chains within messages.

As seen in Fig. 2(a), the relative increase in the number
of required authentication messages decreases with larger
numbers of stealth nodes. Fig. 2(b) therefore displays a cor-
related reduction in lookup latency. As the cases with cer-
tificate chains do not generate extra authentication message,
they remain unaffected by the number of stealth nodes in the
DHT.

5.3. Permissions Management

Managing the permissions of nodes on the network is yet
another issue with multiple solutions. One possibility is to
simply place them within each node’s corresponding cer-
tificate, but this has two notable associated issues. Firstly,
certificates are immutable after they are signed, so altering
the permissions for a node would require a certificate to be

3The time elapsed between a node requesting, receiving and fully veri-
fying a key from the DHT.

re-issued. Secondly, the average DHT message size would
have to increase to accommodate the larger certificates; ex-
actly how large they are depends on the volume of data re-
quired to represent all the relevant details. However, such an
approach does mean that the relevant permissions are imme-
diately available to any node receiving a message containing
the originating node’s certificate. If per-node permissions
are not likely to change on a regular basis, this is therefore
a lower-overhead solution than using a separate certificate
repository.

An alternative approach would be to store permissions
data within the network somehow, thereby avoiding the lack
of flexibility and larger message sizes associated with stor-
ing them within certificates. The inevitable cost, however,
arises in the form of extra messaging overhead; every time
a node needs to check an individual’s permissions, they
would have to look up and also validate the relevant data.

The permissions for a given node in a system such as
those discussed in this paper may require that some state is
maintained for each individual. For instance, this may be
based on a record of how much in the way of network re-
sources or service usage the node has consumed. To provide
such functionality, an accounting mechanism of some sort
is therefore required.

5.4. Certificate Revocation

Invalidating a given certificate at an arbitrary point in
time within a PKI structure (i.e. revoking it) is traditionally
a difficult problem, especially in distributed environments.
However, the need for the ability to revoke certificate of-
ten outweighs the cost of any associated overhead. In other
words, being able to remove a node from a network before
it can do any lasting damage may be worth the extra asso-
ciated costs. There are a number of possible methods for
certificate revocation, each with advantages and disadvan-
tages (see [24]).

An obvious solution is for stealth nodes to be simply
issued with certificates with short expiration times, result-
ing in a quasi-revocation scheme in which a CA can simply
refuse to re-issue a given certificate if it wishes to remove a
given entity’s privileges within the system. Unfortunately,
this intuitively has a high maintenance overhead, as every
individual that continues to exist on the network will require
a new certificate to be generated and issued at a regular in-
terval.

A common approach to this problem is to use a CRL, or
Certificate Revocation List. Any node verifying a certificate
must then check the list as part of its normal authentication
process. The list itself may be stored in one of a number
of ways. For instance, and as with many of the other issues
considered so far, a centralised server could be used. Again,
the problems common to this sort of approach are that it cre-



ates a central point of failure, and could potentially result in
the overloading of the server if many requests are regularly
made. A distributed approach amongst service nodes could
potentially be used to alleviate the load placed upon any one
node, but this results in increased messaging overhead due
to the added complexity of maintaining and retrieving the
list. It is important to note that, of course, the list may be
kept in its entirety on multiple nodes as well as the approach
of splitting it amongst them (i.e. replication vs. division, re-
spectively).

6. Related Work

Many previous works have discussed the varied prob-
lems associated with untrustworthy nodes in DHTs, noting
that security is an issue commonly overlooked in algorithm
proposals. For example, [20] and [5] both discuss possible
DHT attacks and defenses. In the former, Sit and Morris
broadly define three types of malicious behaviour: routing,
storage and other miscellaneous attacks.

A commonly encountered technique often used in all
three categories is the “Sybil” attack, as originally described
by Douceur in [7]. This refers to the situation when a sin-
gle malicious node is able to masquerade as multiple dis-
tinct entities within the network in order to gain control of
a substantial fraction of it. The conclusion is drawn that
a suitable defense against such an attack is to have a logi-
cally centralised authority which is capable of certifying the
identity of nodes in the network. Therefore, this work can
be said to support our approach of implementing a PKI in
conjunction with a Stealth DHT.

Routing attacks in a DHT may refer to nodes deliber-
ately providing incorrect lookups or producing incorrect
routing updates. More specifically, an example could be
the “Eclipse” strategy, as discussed in detail by Singh et
al. in [19]. This involves multiple malicious nodes deliber-
ately attempting to partition peer-to-peer overlays in a form
of Distributed Denial of Service (DDoS) attack. Again, the
suggestion is made of a certification scheme as a straightfor-
ward solution, as with our approach to such a problem. Be-
yond this, the authors propose defenses such as constrain-
ing the entries placed in routing tables [5] or periodically
auditing the connectivity of other nodes to detect anomalies
which are symptomatic of those conducting such an attack.

Storage attacks may involve behaviour such as nodes re-
fusing to store objects, corrupting them or simply denying
their existence. More resourceful attackers may also use
multiple malicious nodes to attempt to take control of spe-
cific pieces of content. Some may even try to make it im-
possible to access useful content by flooding the network
with useless data [11]. Srivatsa and Liu suggested the ap-
proach to obfuscate the location on the DHT of specific keys
from those not authorised to access them [21], although the

most commonly suggested solution is to make use of some
sort of digital certification scheme, such as the one we have
proposed in this paper. Furthermore, a Stealth DHT can en-
sure that potentially untrustworthy nodes are never even part
of the DHT which is responsible for storing keys, although
they may still access them if authorised to do so.

Of course, DHT-based storage systems have often con-
sidered security in their own right. PAST, for instance, uses
the concept of “smartcards”, with which users hold associ-
ated public/private keys [8]. These smartcards are managed
by brokers (trusted third parties). In other words, PAST is
yet another system that takes the approach of using a Public
Key Infrastructure for security purposes; again, the concept
we have suggested and expanded upon in this paper.

In terms of miscellaneous attacks, Sit and Morris also
noted that an attacker may attempt to conduct a DDoS at-
tack by causing multiple nodes under their control to rapidly
join and leave the network, resulting in degradation of DHT
performance [16][10]. Possible solutions to this problem
are suggested in [5], such as forcing nodes to solve crypto-
puzzles before they may join as a means of slowing down
attackers attempting to run multiple logical nodes on a sin-
gle physical machine. However, such an approach merely
makes carrying out an attack slightly more difficult. Our
Stealth DHT approach, however, means that stealth node
churn has a significantly reduced effect on DHT perfor-
mance relative to nodes churning in traditional DHTs.

Several works have also considered how such authen-
tication systems may be implemented in a physically dis-
tributed fashion over peer-to-peer networks. For example,
Aberer et al. discussed how a completely decentralised
PKI based on a statistical approach could be deployed on
many traditional DHTs (although they specifically use P-
Grid [14]) [2]. The key difference in comparison with our
work is that in this case, the authors consider a method that
can function with a network consisting entirely of poten-
tially untrustworthy nodes. However, they note that their
system breaks down if more than 25% of nodes are actu-
ally malicious, and that it may not function with several
DHTs, such as CAN or Chord [15][22]. We, however, be-
lieve that our system is implementable on any existing DHT,
and should function regardless of the percentage of mali-
cious stealth nodes.

7. Conclusion

The original goal of our Stealth DHT proposal was to
provide a distinction between nodes of greater and lesser
capabilities as a means of improving routing performance.
Powerful nodes were responsible for handling message for-
warding within the DHT, whereas the remaining, weaker
nodes simply requested services from them. In this pa-
per, we have shown that this separation can be extended to



incorporate both verifiably trustworthy and potentially un-
trustworthy nodes. By selectively limiting the privileges of
untrustworthy nodes on the network, on an individual ba-
sis if required, we can accordingly limit the numerous secu-
rity problems associated with supplying service to them. By
further augmenting our approach with a suitable Public Key
Infrastructure to enforce the separation between node types,
we have shown how a Stealth DHT can be used to supply a
secure, resilient overlay that caters to both trustworthy and
untrustworthy nodes simultaneously. Stealth DHTs do not
necessarily need to deny access to potentially untrustworthy
nodes as opposed to previous approaches that addressed se-
curity issues in DHTs. Instead, Stealth DHTs only limit the
operations that such nodes can perform. Further to this, we
have discussed a number of issues and possible solutions
related to implementing a PKI in a Stealth DHT.

In the future, we intend to add provisions for node au-
thentication in our existing Stealth DHT implementation,
so that it may be evaluated in a real-world environment.

References

[1] ITU-T Recommendation X.509. Information Technology
Open Systems Interconnection - The Directory: Authenti-
cation Framework, August 1997.

[2] K. Aberer, A. Datta, and M. Hauswirth. A decentral-
ized public key infrastructure for customer-to-customer e-
commerce. International Journal of Business Process Inte-
gration and Management, 1(1):26–33, 2005.

[3] A. Brampton, A. MacQuire, I. A. Rai, N. J. P. Race, and
L. Mathy. Stealth Distributed Hash Table: Unleashing the
real potential of peer-to-peer. In Proc. of the ACM Con-
ference on Emerging Network Experiments and Technology
(CoNEXT) (Student Workshop Session), October 2005.

[4] K. L. Calvert, M. B. Doar, and E. W. Zegura. Model-
ing Internet topology. IEEE Communications Magazine,
35(6):160–163, June 1997.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. In Proc. of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), December 2002.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of
the 18th ACM Symposium on Operating Systems Principles
(SOSP), October 2001.

[7] J. R. Douceur. The Sybil attack. In Proc. of the 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), March
2002.

[8] P. Druschel and A. Rowstron. PAST: A large-scale, persis-
tent peer-to-peer storage utility. In Proc. of the 8th Workshop
on Hot Topics in Operating Systems (HotOS), May 2001.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An archi-
tecture for global-scale persistent storage. In Proc. of ACM
ASPLOS, November 2000.

[10] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek.
Comparing the performance of distributed hash tables under
churn. In Proc. of the 3rd International Workshop on Peer-
to-Peer Systems (IPTPS), February 2004.

[11] J. Liang, N. Naoumov, and K. W. Ross. The index poisoning
attack in P2P file sharing systems. In Proc. of IEEE INFO-
COM, April 2006.

[12] A. T. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured
superpeers: Leveraging heterogeneity to provide constant-
time lookup. In Proc. of the 3rd IEEE Workshop on Internet
Applications (WIAPP), June 2003.

[13] B. C. Neuman and T. Ts’o. Kerberos: An authentication
service for computer networks. IEEE Communications,
32(9):33–38, September 1994.

[14] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In Proc. of the 9th Annual ACM Symposium on Paral-
lel Algorithms and Architectures, June 1997.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, August 2001.

[16] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proc. of the USENIX Annual Technical
Conference, June 2004.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), No-
vember 2001.

[18] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification in-
frastructure. In Proc. of the 3rd International Workshop on
Networked Group Communication (NGC), November 2001.

[19] A. Singh, T. Ngan, P. Druschel, and D. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In Proc.
of IEEE INFOCOM, April 2006.

[20] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. In Proc. of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), March 2002.

[21] M. Srivatsa and L. Liu. Countering targeted file attacks us-
ing location keys. In Proc. of the 14th USENIX Security
Symposium, July 2005.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. of ACM SIGCOMM, Au-
gust 2001.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, University
of California, Berkeley, USA, April 2001.

[24] P. Zheng. Tradeoffs in certificate revocation schemes. ACM
SIGCOMM Computer Communication Review, 33(2):103–
112, April 2003.

[25] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. Kubiatowicz. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In Proc. of
the 11th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV),
June 2001.


