
Accepted Manuscript

An Architectural Co-Synthesis Algorithm for Energy-Aware Network-on-Chip

Design

Yi-Jung Chen, Chia-Lin Yang, Yen-Sheng Chang

PII: S1383-7621(09)00025-3

DOI: 10.1016/j.sysarc.2009.02.002

Reference: SYSARC 869

To appear in: Journal of Systems Architecture

Received Date: 21 October 2008

Revised Date: 25 February 2009

Accepted Date: 25 February 2009

Please cite this article as: Y-J. Chen, C-L. Yang, Y-S. Chang, An Architectural Co-Synthesis Algorithm for Energy-

Aware Network-on-Chip Design, Journal of Systems Architecture (2009), doi: 10.1016/j.sysarc.2009.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2009.02.002
http://dx.doi.org/10.1016/j.sysarc.2009.02.002

ACCEPTED MANUSCRIPT

An Architectural Co-Synthesis Algorithm for

Energy-Aware Network-on-Chip Design ⋆

Yi-Jung Chen, Chia-Lin Yang ∗, Yen-Sheng Chang

Department of Computer Science and Information Engineering
National Taiwan University

No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan(R.O.C.)

Abstract

Network-on-Chip (NoC) has been proposed to overcome the complex on-chip com-
munication problem of System-on-Chip (SoC) design in deep sub-micron. A com-
plete NoC design contains exploration on both hardware and software architectures.
The hardware architecture includes the selection of Processing Elements (PEs) with
multiple types and their topology. The software architecture contains allocating
tasks to PEs, scheduling of tasks and their communications. To find the best hard-
ware design for the target tasks, both hardware and software architectures need
to be considered simultaneously. Previous works on NoC design have concentrated
on solving only one or two design parameters at a time. In this paper, we propose
a hardware-software co-synthesis algorithm for a heterogeneous NoC architecture.
The design goal is to minimize energy consumption while meeting the real-time
requirements commonly seen in embedded applications. The proposed algorithm is
based on Simulated-Annealing (SA). To compare the solution quality and efficiency
of the proposed algorithm, we also implement the branch-and-bound and iterative
algorithm to solve the hardware-software co-synthesis problem of a heterogeneous
NoC. With the given synthetic task sets, the experimental results show that the
proposed SA-based algorithm achieves near-optimal solution in a reasonable time,
while the branch-and-bound algorithm takes a very long time to find the optimal
solution, and the iterative algorithm fails to achieve good solution quality. When
applying the co-synthesis algorithms to a real-world application with PE library
that has little variation in PE performance and energy consumption, the iterative
algorithm achieves solution quality comparable to that of the proposed SA-based
algorithm.

Key words: Network-on-Chip, Hardware-Software Co-synthesis, Energy-aware
Design

Preprint submitted to Elsevier 25 February 2009

http://ees.elsevier.com/jsa/viewRCResults.aspx?pdf=1&docID=830&rev=1&fileID=11782&msid={BA4AF56F-BA34-4521-A5EC-92E2C18F4ADE}

ACCEPTED MANUSCRIPT

30 31 32 33

20 21 22 23

10 11 12 13

00 01 02 03

Tile Network logic
3mm

12mm Processing

Core
Router

Crossbar

Switch

buffer

W est

Output

West

input
East

Output

East

inputbuffer

buffe
r

Pro
c.

Outp
utPro

c.

in
put

b
u
ff

er

N
o

rt
h

O
u

tp
u

t

N
o

rt
h

in
p

u
t

b
u
ff

er

S
o

u
th

O
u

tp
u

t

S
o

u
th

in
p

u
t

(a) Tile-based NoC Architecture (b) The Typical Structure of a Tile

A Tile

Fig. 1. Architectural Overview of an NoC-based System [11]

1 Introduction

To cope with the complexity of System-on-Chip (SoC) design in billion transis-
tors, Network-on-Chip (NoC) has been proposed to overcome the complex on-
chip communication problem [4]. As shown in Figure 1(a), an NoC-based sys-
tem is typically divided into a number of regular tiles interconnected by a 2D
mesh network. A tile is composed of a processing element (PE) and a router. A
PE could be a general-purpose CPU, Digital Signal Processors (DSP), Field-
Programmable Gate Arrays (FPGAs), memory blocks, or Application-Specific
Integrated Circuits(ASICs). PEs communicate with one another by sending
packets via the mesh network instead of routing wires. The router embedded
in each tile consists of input and output links, buffers and a crossbar switch.
The abstract view of a tile is shown in Figure 1(b) [11].

The design flow of an NoC is shown in Figure 2. We assume an IP-centric de-
sign where PEs are selected from the IP library [25]. Given a set of target tasks
(represented in task graph), a set of PEs are selected from the IP library (PE
Selection), and tasks are allocated to PEs (Task Allocation). The selected PEs
are mapped to the n × n tiles (Tile Mapping), and the schedule of tasks allo-
cated to the same PE is decided (Task Scheduling). The communication paths

⋆ The preliminary version of this paper was published in SAC 2007[10]. In this pa-
per, we extend our conference paper with:
(1) Implementing a branch-and-bound and an iterative algorithm to solve the NoC
co-synthesis problem.
(2) Comparing the solution quality and algorithm efficiency achieved by the pro-
posed SA-based algorithms, the branch-and-bound algorithm and the iterative al-
gorithm.
(3) In addition to the original energy model that considers dynamic energy con-
sumption only, we use an additional energy model that considers system leakage
when performing system synthesis.
∗ Corresponding author.

Email addresses: d91015@csie.ntu.edu.tw (Yi-Jung Chen),
yangc@csie.ntu.edu.tw (Chia-Lin Yang), r92043@csie.ntu.edu.tw (Yen-Sheng
Chang).

URL: http://www.csie.ntu.edu.tw/∼ yangc (Chia-Lin Yang).

2

ACCEPTED MANUSCRIPT

among tasks allocated to different PEs are determined through routing path
allocation. From the design flow we can see that a complete NoC design con-
tains exploration on both hardware and software architectures. The hardware
architecture includes the selection of PEs and their topology. The software ar-
chitecture contains the allocation of tasks to PEs and scheduling of tasks and
their communication. The design of the hardware and software architecture
actually interplays with each other. For example, a good task schedule might
reduce the required PE computing capability to meet the real-time require-
ments of tasks. To find the best hardware design for the target tasks, both
hardware and software architectures need to be considered simultaneously.

In this paper, we propose a hardware-software co-synthesis algorithm for a
heterogeneous NoC platform. Previous works on NoC design have concentrated
on solving only one or two design parameters at a time. Hu et al. in [12] solve
task allocation and scheduling for a given NoC-based hardware architecture.
They also proposed a tile mapping algorithm for a given PE communication
graph in [11]. Shin et al. in [20] use genetic algorithm (GA) to solve link speed
assignment problem for NoC. All the previous work does not address the issue
of selecting IPs from the IP library. In an IP-centric design, the IP library could
soon contain hundreds or even thousands of IPs in the future. It is challenging
for an SoC designer to pick up the IPs manually to achieve the optimal design.
Therefore, in this paper, we propose a hardware-software co-design algorithm
that address the PE selection problem, and considers the interplay between
the steps in the co-design flow. To the best of our knowledge, this paper is
the first co-synthesis algorithm that allows fast NoC design space exploration
considering both energy and performance factors.

It is obvious that the solution space of the hardware-software co-synthesis
problem is huge, and it is impossible to search the design space completely.
In this paper, we propose a Simulated Annealing(SA) [14] based co-synthesis
algorithm. SA is a widely used non-deterministic algorithm for solving combi-
natorial optimization problem. The proposed co-synthesis algorithm targets at

p1p0 p2

PE Library

(0,0)

NoC Architecture

Task Graph

Task Allocation

PE Selection

Routing Path Allocation

Tile Mapping

Task Scheduling

Scheduler

t0

t2t1

t3

t4

t5

(0,1)

(1,1)

(2,1)

(1,2)

(2,2)

(0,2)

(1,0)

(2,0)

src(0,1) des(2,2) (0,1) (0,2) (1,2) (2,2)

src(1,1) des(0,2) (1,1) (1,2) (0,2)

p0

p1

Fig. 2. Overall Network-on-Chip Design Flow

3

ACCEPTED MANUSCRIPT

a heterogeneous NoC architecture running a task set with timing constraint.
Since most embedded systems are battery-operated and have real-time re-
quirements, the optimization goal of our co-synthesis algorithm is to minimize
the energy consumption without violating real-time constraints. In this paper,
we propose four SA-based co-synthesis algorithms; the baseline SA algorithm,
Low-Temperature Moves on PE-Selection (LTM-PS), the Greedy PE-Selection
method and Two-Stage SA. The details of each algorithm are described in Sec-
tion 5.

To compare the solution quality and efficiency of the proposed algorithms,
we also implement a branch-and-bound algorithm [5] and an iterative al-
gorithm [25] to solve the hardware-software co-synthesis problem of NoC.
Branch-and-bound is a general algorithm for finding optimal solutions of
various optimization problems. In a branch-and-bound algorithm, a branch
method is used to enumerate all the possible solutions, and a bounding method
is used to prune branches that are not likely to achieve the optimal solution.
An iterative algorithm, on the other hand, starts from the initial solution and
iteratively converges to a better solution. Compared to the branch-and-bound
algorithm, the iterative algorithm has short execution time but tends to fall
into local optimal solutions. In this paper, we evaluate the proposed algorithms
by comparing the the solution quality and algorithm efficiency of various co-
synthesis algorithms. Here, we use the energy consumption of a synthesized
system as the metric for solution quality, and the algorithm execution time as
the metric for algorithm efficiency.

To evaluate the proposed SA-based co-synthesis algorithms, we apply all algo-
rithms to a set of synthetic task sets generated by TGFF [6] and a real applica-
tion task graph obtained from MPEG2 encoder. The experimental results show
that the proposed Two-Stage SA performs the best among all SA-based algo-
rithms. When considering dynamic energy consumption only, the Two-Stage
SA algorithm achieves 32.9% and 7% less energy consumption than the base-
line SA method with synthetic task sets and MPEG2 encoder, respectively.
When comparing the performance of SA-based, branch-and-bound and itera-
tive algorithms, the SA-based method achieves the best balance in both so-
lution quality and execution time. Although the branch-and-bound algorithm
always finds the optimal solution, the execution time of branch-and-bound
is unacceptable when the solution space is large. For systems synthesized by
the iterative algorithm, the energy consumption is up to 82% more than that
of the system synthesized by baseline SA. With MPEG2 encoder, since the
PE library has little variation in PE performance and energy consumption,
the iterative algorithm achieves comparable solution quality to that of the
SA-based method. Although the iterative algorithm can not achieve good so-
lution quality for complex task sets, the iterative algorithm uses only 35% of
baseline SA execution time to find a synthesis result.

4

ACCEPTED MANUSCRIPT

The rest of this paper is organized as follows. We briefly review the related
works on NoC design techniques in Section 2 and present a concise specifi-
cation of our co-synthesis models in Section 3. A formal problem definition
is described in Section 4. The proposed SA-based architectural co-synthesis
algorithms are described in Section 5. The branch-and-bound and iterative
algorithm for the co-synthesis problem of NoC are described in Section 6. The
experimental results are discussed in Section 7. Section 8 concludes the paper.

2 Related Work

NoC has been proposed to mitigate on-chip interconnection problem [9, 2, 15,
4, 26]. In [4], Dally and Towles introduce the concept of on-chip networks,
sketch a simple network, and discuss some challenges in the architecture and
design of these networks. Ye et al. [26] give a detail analysis for the power con-
sumption on network communication. Kumar et al. [15] propose a Network-
on-Chip platform including both the architecture and the design methodology.
Based on this architecture, Millberg et al. [16] present the Nostrum NoC sup-
porting multiple communication services modelled by a protocol stack. All the
above papers essentially advocate the advantages of using NoCs as effective
means to design high performance SoCs.

For NoC system design, Hu et al. [11, 12] propose an energy-aware task al-
location and scheduling algorithm which schedules both communication and
computation for NoC architecture. They also propose an energy-aware tile
mapping algorithm which exploits routing flexibility of regular NoC architec-
tures. The algorithms in both papers are proposed to optimize only one or
two aspects of the NoC-based design framework at one time. Shin et al. in [20]
propose a communication optimization technique for NoC with voltage scal-
able links. In this work, they addressed the importance of inter-related steps of
the NoC design flow and presented a GA-based algorithm to solve link speed
assignment problem. However, it omits the PE Selection step and only focuses
on link speed assignment to minimize communication energy cost. Murali and
De Micheli propose an algorithm that maps processing cores onto a mesh
NoC architecture under bandwidth constraints [17]. In [18], the same authors
introduce SUNMAP, which automatically selects the best topology for a cer-
tain application under delay, area and energy constraints. In [19], a topology
synthesis process that considers the effect floorplan is proposed. Srinivasan et
al. [22, 23] propose an automatic technique to generate floorplan and route
for application-specific NoC with irregular topology.

Several works [25, 24, 21] are proposed to solve the hardware-software co-
synthesis problem of traditional bus-based distributed embedded systems. In
[25], an architectural co-synthesis algorithm that considers PE selection and

5

ACCEPTED MANUSCRIPT

task allocation simultaneously is proposed for distributed embedded system;
however, their algorithm omits tile mapping and routing path allocation which
are specific to the NoC-based systems.

3 System Models

Our system consists of four main models: a real-time application model, an
NoC architecture model, a PE library and a system energy model.

(1) Application Model
We represent a real-time application by a task graph G =< V, E >,

which is a directed acyclic graph, where V represents the set of tasks and
E represents the set of directed edges between tasks. Each vertex vi ∈ V

has following properties:
• d(vi) denotes the deadline of the node vi which must be met to ensure

correct functionality of the application.
• type(vi) denotes the type of this task node, which can be a general-

purpose CPU, DSP, or ASIC.
• An array Ri, where the j-th element ri

j ∈ Ri gives the execution time
of task vi if vi is executed on j-th PE pj in the PE library.

• An array Si, where the j-th element si
j ∈ Si gives the energy consump-

tion of task vi if vi is executed on j-th PE pj in the PE library.
Each ei,j ∈ E represents a precedence relation (vi should be executed

before vj) between vi to vj and is associated with a value c(ei,j) which
indicates the amount of communication volume (bits) between vi and vj .

(2) NoC Model
The NoC architecture under consideration is composed of m × n tiles

interconnected by a 2D mesh network. We model such an NoC-based
system with m × n tiles as an Architecture Graph N =< T, L >, which
is a directed graph, where T = {t1,, tm×n} is the set of tiles and
L is the set of links between tiles. Each link li,j ∈ L represents a link
connection between ti and tj and is associated with b(li,j) which stands
for the bandwidth (bits/second) of li,j.

Similar to [12], we also assume a static XY routing scheme [7] as our
underlying routing protocol. It first routes packets along the X -axis. Once
it reaches the column where the destination tile lies in, the packet is then
routed along the Y -axis. Note that the proposed co-synthesis can be
easily modified to apply other deterministic routing algorithm.

(3) PE Model
We denote the PE library P = {p1, ..., pn}, where pi indicates the i-th

PE in the PE library. We assume that the number of PEs are at least more
than the number of tiles. Each pi are associated with a type(pi) which

6

ACCEPTED MANUSCRIPT

indicates the compatible task type of pi. The task vi can execute on pi if
and only if type(pi) is a general-purpose CPU or type(pi) = type(vi).

(4) Energy Model
In this paper, we use two energy models to evaluate the energy con-

sumption of synthesis results. The first energy model considers system
dynamic energy only. The dynamic energy consumption of a system is
composed of computation and communication energy consumption. Ac-
cording to the application model described before, computation energy
consumption Ecomput. can be modelled as

Ecomput. =
|V |
∑

i=1

si
k (1)

, where task i is mapped to the k-th PE in the PE library, and si
k is

the energy consumption of task i running on the k-th PE. For the energy
consumption of communication, we use I

ti,tj
bit to denote the average energy

consumption (in joules) of sending one bit of data from ti to tj , including
energy consumed in the links and switches. We use the energy model
in [26, 12, 11] to calculate I

ti,tj
bit . They define I

ti,tj
bit as

I
ti,tj
bit = nhops × ESbit

+ (nhops − 1) × ELbit
(2)

, where ESbit
and ELbit

represent the energy consumed on the switch and
on the link between tiles, respectively. The nhops is the number of routers
the bit passes on its way from ti to tj .

The second energy model used in this paper considers both dynamic
and static energy consumption in the system. The dynamic energy con-
sumption is modelled by Eq.(1) and Eq.(2). The static energy from the
leakage of each component is modelled by Eq.(3), where Pstatic is the
static power of selected PEs and routers, and T is the total execution
time of system. A similar leakage model is also used in [13].

Estatic = Pstatic × T (3)

4 Problem Formulation

For a given task graph G =< V, E >, a PE Library P = {p1, p2, ..., pn} and
an NoC architecture N =< T, L >, the problem we want to solve is to find
both the hardware and software architectures such that the overall energy
consumption is minimized and specified performance constraints are met. For
the overall NoC energy consumption, we break down the NoC hardware into
two components: PE and interconnection. We can define the NoC co-synthesis
problem as follows.

7

ACCEPTED MANUSCRIPT

Given G =< V,E >,P = {p1, ..., pn}, and N =< T,L >,

Find a subset P ′ of P and the function φ, ω, η such that

{
∑

∀vi∈V

si
ω(vi)

+
∑

∀ei,j∈E

I
φ(ω(vi)),φ(ω(vj))
bit × c(ei,j)} is minimized

Subject to ∀vi ∈ V , completionT ime(vi) ≤ d(vi)

In the problem formulation,
∑

∀vi∈V si
ω(vi)

is the total energy consumption

on PEs, and
∑

∀ei,j∈E I
φ(η(vi)),φ(η(vj))
bit × c(ei,j) is the total energy consumption

on interconnections (routers and links). When static energy consumption is
considered, Estatic defined by Eq.(3) is also evaluated for the overall NoC
energy consumption. P ′ is the result of PE Selection, where |P ′| = |T |. The
function φ, ω, and η represent steps: Tile Mapping, Task Allocation and Task
Scheduling respectively and are defined as below:

• Tile Mapping: Map each selected PE in P ′ onto one of tile of the NoC. We
use the function φ : P ′ → T to represent ”Tile Mapping” step. Obviously φ

is a one-to-one and onto function.
• Task Allocation: Assign each task node in V into one of compatible PE

in P ′. We use the function ω : V → P ′ to represent ”Task Allocation” step.
• Task Scheduling: Determine the execution order of the tasks and com-

munication. For ”Task Scheduling” in our problem, the set of all possible
solutions consists of all the possible permutations of the tasks subject to
the additional precedence and exclusion constraints and to their deadlines.
We use the function η : V → V ′ to represent ”Task Scheduling” step.

5 SA-based Architectural Co-Synthesis Algorithm

The design space for the NoC hardware-software co-design problem is huge,
and all of the steps in the co-design flow, PE Selection, Tile Mapping, Task Al-
location and Task Scheduling, actually interplay with one another. Therefore,
in this work, we propose a Simulated-Annealing (SA) based hardware-software
co-synthesis algorithm. SA is a widely-used non-deterministic algorithm for
solving combinatorial optimization problems. Figure 3 shows a generic SA
flow. Each iteration of SA is composed of three steps; Perturbation, feasibility
test and cost evaluation. Each perturbation results in a new solution through
a set of operations. Therefore, after each perturbation, feasibility test is re-
quired to verify if the solution violates its constraints or not. The quality of
the solution is evaluated with a pre-defined cost function. The whole process
is repeated until the SA termination condition is met.

8

ACCEPTED MANUSCRIPT

Perturbation

Feasibility Test

Cost Evaluation

Terminate ?
No

Yes

Fig. 3. Generic Simulated-Annealing (SA) Flow

In this section, we first describe the baseline SA algorithm. We then present
three variations to the baseline algorithm; Low-Temperature Moves on PE-
Selection(LTM-PS), Greedy PE Selection and Two-Stage SA.

5.1 The Baseline SA Algorithm

The easiest way to adopt the SA approach for the co-synthesis problem is
to treat each co-synthesis step as a perturbation operation. We refer to this
as the baseline SA algorithm. Figure 4 shows the baseline SA flow. The four
steps in the NoC co-design flow (PE Selection, Tile Mapping, Task Allocation
and Task Scheduling) are treated as perturbation operations. Some important
ingredients of the baseline SA algorithm are defined as follows.

(1) solution space: The solution space is the combination of PE Selec-
tion(PS), Tile Mapping(TM), Task Allocation(TA), and Task Schedul-
ing(TS). If we define solution space as S, then S = P ′×φ×ω×η, where
P ′ is the selected PEs for the current solution.

(2) neighborhood structure: There are four types of perturbation in our
SA engine: PS, TM, TA and TS.
(a) PS (PE Selection): The PS perturbation is to randomly pick pi ∈ P

and swap pi and pj. Due to the heterogeneity of PE types, we have
two cases for the PS perturbation:
(i) type(pi) = type(pj) or type(pj) = CPU : swap pi and pj directly.

If the newly selected PE is the same type as the replaced PE
or is a CPU, which could execute any type of tasks, the tasks
running on the replaced PE can run on the new PE directly.

(ii) type(pi) 6= type(pj) and type(pj) 6= CPU : in this case, parts of
the tasks running on pi may not be able to execute on pj. To
handle this case, we select a CPU from P ′ and migrate these
tasks to the selected CPU. If there is no CPU in P ′, we then
redo the PS perturbation.

9

ACCEPTED MANUSCRIPT

Application Specification PE Library

+
Hardware

Architecture

Software

Architecture

Initial solution

NoC Architecture

Keep the best solution

Task Allocation

(TA)

PE Selection

(PS)

Tile Mapping

(TM)

Task Scheduling

(TS)

Perturbation

Terminate?

Yes

No

Feasibility test

Cost evaluation

Fig. 4. Overview of the Baseline SA Algorithm for NoC Design

(b) TM (Tile Mapping): TM is to pick pi, pj ∈ P ′ randomly, where
pi 6= pj, ti = φ(pi), and tj = φ(pj). Then we change the tile mapping
to: φ(pi) = tj , φ(pj) = ti.

(c) TA (Task Allocation): TA picks vi ∈ V randomly and selects a
pi ∈ P ′ randomly, where vi is compatible with pi. Then migrate vi

into pi.
(d) TS (Task Scheduling): We adopt List Scheduling [1, 8] as our

baseline scheduler. In List Scheduling, tasks are scheduled according
to their precedence relations and priorities. In our SA-based List
scheduler, the task priorities are first randomly given, and then we
use the TS perturbation to change the priorities of the task set. More
specifically, the TS is to randomly select vi, vj ∈ V, vi 6= vj , and then
swap the priority of vi and vj . Note that communication traffic is
taken into account for task scheduling.

(3) cost function: The objective function contains two parts: energy cost
and miss deadline penalty.

Φ = Cenergy + Cpenalty (4)

, where Φ is the cost of current solution. We normalized both energy term
and timing penalty term in the cost function. The energy term (Cenergy)
is the same as the objective function in the problem formulation.

{
∑

∀vi∈V

si
ω(vi)

t +
∑

∀ei,j∈E

I
φ(ω(vi)),φ(ω(vj))
bit × c(ei,j)}

10

ACCEPTED MANUSCRIPT

and the Cpenalty is described as following:
(a) Cpenalty = 0, if T ≤ Td

(b) Cpenalty = T − Td + ǫ, if T > Td

, where Td is the timing constraint of the application, T is the current
completion time of the application and ǫ is a constant.

Recall that our optimization goal is minimizing the total energy con-
sumption while meeting the tight performance constraint. In the first
case, when the current solution satisfies the specified timing constraint,
we concentrate on energy consumption optimization by setting Cpenalty to
zero. In the second case, the completion time T violates the timing con-
straint Td, therefore, both energy consumption and timing factors should
be considered in searching for solutions. The Cpenalty is given more weight
as the difference between the timing constraint and the current comple-
tion time gets larger. Note that we include ǫ in Cpenalty to distinguish a
feasible solution from an infeasible one. The ǫ is an user-defined exper-
imental parameter. A larger ǫ indicates that an infeasible NoC configu-
ration is less likely to be accepted as the best configuration during the
execution of SA. Since both energy term and timing penalty term in the
cost function are normalized, ǫ should be 0 < ǫ < 1. In this paper, we set
ǫ to 0.25 for all experiments.

5.2 LTM-PS: Low Temperature Move on PS

In the SA algorithm, after a perturbation, the derived solution is evaluated
using the cost function to decide accepting or rejecting the solution. Since a
PS perturbation changes the underlying hardware architecture, it implies that
it might require a significant change in software architecture as well. For ex-
ample, if the newly selected PE has lower computing power than the replaced
one, it is very likely that the current schedule is not going to meet the timing
constraints with the new set of PEs. Therefore, the new solution will be prob-
ably rejected by the SA due to its high cost. However, trivially rejecting this
new PE configuration may foreclose possibly attracting PE configurations. In
the example mentioned above, if we re-schedule the tasks according to the new
hardware configuration, we might be able to find a feasible solution. There-
fore, in the LTM-PS scheme, we try to optimize for the PE configuration by
performing a low-temperature SA containing only TA, TM and TS perturba-
tions on the new PE configuration before deciding to accept or reject the new
PE configuration.

11

ACCEPTED MANUSCRIPT

p1p0

PE Library

…

Low High
Energy Consumption

Initial PE configuration

p2 p3 p4 p5 p6 p7 p8 p11p10p9 p13p12 p99p14 p97 p98

The first feasible configuration

Fig. 5. Greedy PE-Selection Method

5.3 Greedy PE-Selection Method

Instead of randomly choosing a PE in each SA iteration, a heuristic approach
is to select PEs in a greedy method as illustrated in Figure 5. We first sort
the PEs in a non-decreasing order of their energy consumption 1 . We then
choose the first n PEs where n is the number of tiles as our initial hardware
configuration (P ′). In the example shown in Figure 5, the initial hardware
configuration P ′ contains p0,p1,p2 and p3 assuming a 2×2 NoC. For a selected
PE configuration, we evaluate its feasibility with a low-temperature SA engine
with only the TM, TA and TS perturbations. If there exist tasks that cannot
be scheduled using P ′, we replace a PE by the CPU with the lowest energy
consumption (CPUlowest) in the sorted PE library. The victim PE (Pv) is
the PE with the maximal energy consumption in P ′, and the new hardware
configuration is P ′ = (P ′ − Pv)

⋃

CPUlowest. If we can not find a feasible
solution, we replace the PE with the lowest energy consumption in P ′ by the
PE with the lowest energy among all the PEs that have energy consumptions
larger than that of P ′ − CPUlowest. We repeat this process until a feasible
solution is found. We then perform a normal SA run on the selected PEs to
determine the corresponding tile mapping and software architecture.

We can see that the greedy method only explores a subset of PE combi-
nations. For example, the greedy method does not try the PE combination
(p0, p3, p4, p5) in the example shown in Figure 5. This limitation may lead to
a configuration with high energy consumption. To expand the solution space,
we propose the Two-Stage SA algorithm described in the next section.

5.4 The Two-Stage SA Algorithm

The Two-Stage SA algorithm contains two stages as shown in Figure 6. The
first stage is the aforementioned Greedy PE-Selection. After a feasible solution
is found, all PEs with higher energy consumption than those in P ′ (the set of
PEs of the feasible solution) are not considered in the second stage SA. In the

1 We compute the average energy consumption of PE pk by 1
|P |

∑|P |
i si

k.

12

ACCEPTED MANUSCRIPT

Is Feasible?

Greedy PE Selection

No

Yes

End

Stage 1

Stage 2

Sort P by energy consumption

Get initial PE configuration P’

SA Engine

(TM,TA,TS)

SA Engine

(PS,TM,TA,TS)

Set Candidate PEs P

Fig. 6. Overview of Two-Stage SA

example shown in Figure 5, only the set of {p0, p1..., p11} are selected as the
candidate PEs for the second stage SA. The objective of the first stage is to
prune the design space. The second stage SA is the LTM-PS scheme described
in Section 5.2.

6 Branch-and-Bound and Iterative Synthesis Algorithm

To evaluate the effectiveness of the proposed SA-based co-synthesis algo-
rithms, we also implement a branch-and-bound and iterative algorithm to
solve the hardware-software co-synthesis problem of NoC architecture. In this
section, we describe how we implement the two algorithms.

6.1 The Branch-and-Bound Algorithm

Branch-and-bound is a general algorithm for finding optimal solutions of var-
ious optimization problems. The branch-and-bound method systematically
enumerates all candidate solutions (branch method), and discards a branch of
candidates by upper and lower estimated bounds of the quantity being opti-
mized (bound method). For the NoC hardware-software co-synthesis problem,
we use a search tree as shown in Figure 7 to enumerate all configurations.
Each node in the tree is either a root, internal, or leaf node. The root node
represents the initial state, which is an empty configuration. The search tree
has three kinds of internal nodes: L1, L2, and L3 internal node. An L1 inter-

13

ACCEPTED MANUSCRIPT

Level0

Level1

Level2

Level3

Level4Sp,ap,ma,1

A1,a1

P2

R

S1,1,1,1 S1,1,1,2 S1,1,1,s1

…

M1,1,1 M1,1,m1

A1,1 Ap,ap

Sp,ap,ma,sm
…

Mp,ap,ma
Mp,ap,1

P1 Pp

… …

…

……

……

……

……

…
…

…
…

…

…

…

… … …

…

…

…

…

… …

Root Node

L1 Internal Node

L2 Internal Node

Leaf Node

L3 Internal Node

Fig. 7. Search Tree of NoC Design

Synthesis Step Number of Configurations Explanation on Parameters

PE Selection
(|P |
m×n

)

P :total num. of PEs in the PE library

m,n: dimension of the target NoC

Task Allocation |A|m+n A: total num. of tasks in the task set

Tile Mapping |(m × n)|! m,n: dimension of the target NoC

Task Scheduling |S|! S: total num. of tasks

Total Num. of Config.
(|P |
m×n

)

× |A|m+n × |(m × n)|! × |S|!

Table 1
Number of Configurations to be Explored in the Search Tree

nal node Pi represents a configuration of PE Selection. An L2 internal node
Ai,j represents the j-th Task Allocation configuration enumerated from the
PE Selection configuration Pi. L3 internal nodes are the enumeration of all
possible Tile Mapping based on the result of L2 internal nodes. We use Mi,j,k

to represent the k-th Tile Mapping configuration enumerated from Ai,j . A
leaf node represents a complete system configuration, including Task Schedul-
ing. We use Si,j,k,l to denote a leaf node representing the l-th Task Schedul-
ing configuration enumerated from Mi,j,k. The search tree is explored by the
Depth-First-Search (DFS) method. We can see that, the number of nodes in
the search tree increases exponentially as the size of NoC template and task
set increase, and the number of configuration to be explored in each synthesis
step and the whole search tree are listed in Table 1.

To prune the solution space, we obtain the upper bound of a solution by
running the low-temperature baseline SA, which converges quickly. The lower
bound of a solution is set to the energy consumption estimated by the node’s
configuration. For example, the system energy consumption estimated from

14

ACCEPTED MANUSCRIPT

Application Specification PE Library

+
Hardware

Architecture

Software

Architecture

Initial solution

Is Better?

No

Yes

NoC Architecture

Keep the best solution

Reallocate tasks to minimize

the energy consumption from computation

Reallocate tasks to minimize

the energy consumption from communication

Fig. 8. Overview of the Iterative Algorithm for NoC Design

an L2 internal node is computation energy consumption only since an L2 node
considers PE Selection and Task Allocation only. When the lower bound of
the node is larger than its upper bound, the branch started from the node is
discarded.

6.2 The Iterative Algorithm

The iterative algorithm starts with an initial solution, and iteratively improves
the quality of the solution in the following iterations until further improve-
ment can not be achieved. The iterative algorithm evaluated in this paper is an
extension of the algorithm proposed in [25], which is targeting at bus-based
Multi-Processor SoC. The iterative algorithm proposed in [25] consist of a
step of finding the initial solution and an iterative refinement step that is ex-
ecuted repeatedly. In each iteration, the iterative refinement process modifies
the system configuration to minimize energy consumption from task com-
putation and communication, respectively. We maintain the structure of the
algorithm proposed in [25], and modify the detail steps of finding the initial so-
lution and performing iterative refinement to cope with the NoC co-synthesis
problem. The overview of the iterative algorithm for NoC hardware-software
co-synthesis is illustrated in Figure 8, and the overview of each operation is
as follows.

15

ACCEPTED MANUSCRIPT

Initialization Algorithm:
Input: Task graph G =< V, E >, NoC platform N =< T, L > and PE library P

Output: An initial configuration with PS, TM, TA and TS are decided
/* ————Initial PE Selection and Task Allocation———— */

1 Sort tasks in V according to their workload
2 Vm×n = the set of m × n tasks that are with the most workload
3 for each task t ∈ Vm×n

4 Selected PE = Selected PE ∪ Select most efficient(t, P);
5 for each task t ∈ V − Vm×n

6 Allocate to most efficient(t, Selected PE);
/* ————————Initial Tile Mapping——————— */

7 Sort PEs∈Selected PE according to their communication volume;
8 Put p ∈Selected PE with the most communication volume at the middle of NoC
9 Unmapped PE = Selected PE - p;
10 for each p ∈Unmapped PE
11 for each un-mapped tile position c that is closest to the mapped ones
12 fit valuep,c = calculate fit value(p, c);
13 fit position = {i|max{fit valuep,i, ∀i ∈ un-mapped tile position}};
12 map PE(p, fit position);

Fig. 9. Initialization Process of the Iterative Algorithm

(1) Initial solution: Initial solution generates an initial configuration, in-
cluding PE Selection, Tile Mapping, Task Allocation and Task Schedul-
ing.

(2) Iterative refinement: Two steps are performed in the iterative refine-
ment:
(a) Minimization of computation energy consumption: Configurations of

PE Selection and Task Allocation are modified to minimize compu-
tation energy consumption.

(b) Minimization of communication energy consumption: Tasks are re-
allocated to minimize inter-PE communication.

To find a feasible initial solution, the algorithm tends to select PEs with
high computation power. Although PEs with high computation power tend to
have high energy consumption, these PEs can be replaced by the ones with
low energy consumption during the iterative refinement process as long as
the timing constraint is met. Therefore, for the initial solution, the algorithm
selects PEs according to the tasks with the most workload. Assume an m× n

NoC, the algorithm finds the m × n tasks with the most workload among
the task set. For each task, the PE compatible to the task type and with the
highest computation power is selected, and the task is also allocated to the PE.
For the tasks other than the m× n tasks, each of them is allocated to the PE
with feasible type and the highest computation power. On deciding the initial
Tile Mapping, the algorithm tends to minimize the communication cost by

16

ACCEPTED MANUSCRIPT

allocating PEs with high communication demands as close to one another as
possible. To achieve this, the algorithm first allocates the PE with the highest
communication needs in the middle of the NoC platform. For each un-mapped
tile position that is adjacent to a mapped one, we calculate fit value FPEi,(x,y)

2

of tile position (x, y) for all PEi that is an un-allocated selected PE. FPEi,(x,y)

represents the average communication load of links between tile position (x, y)
with PEi and other mapped PEs. Therefore, the algorithm tends to map the
PE with the highest fit value for an un-mapped tile position. The schedule of
tasks allocated on a PE is set according to the precedence constraint of the
input task graph. The priorities of tasks at the same level in the task graph
are randomly decided. The flow of generating initial solution is summarized
in Figure 9.

In the iterative refinement process, the algorithm minimizes system energy
consumption in two directions; computation and communication energy con-
sumption. The computation energy consumption is minimized by (1) replacing
an selected PE PEi by a PE in the PE library that is compatible to PEi and
has energy consumption lower than PEi, and (2) re-allocating a task originally
allocated on PEi to another selected PE, which is feasible for the task and has
energy consumption lower than PEi. The communication energy consumption
comes from the distance and communication volumes between two PEs on the
system. To minimize communication energy consumption, the algorithm ex-
haustively merge tasks with high communication volume to the same PE as
long as the merging leads to less on-chip communication.

7 Experimental Results

To evaluate the effectiveness of the proposed NoC hardware-software co-synthesis
algorithms, we implement all the proposed SA-based algorithms and perform
several experiments on synthetic and real-application task sets. In Section 7.1,
the solution quality achieved by different co-synthesis algorithms are discussed.
The efficiency of different algorithms is compared in Section 7.2.

2 FPEi,(x,y) =
∑

∀mapped PEm

Commu(PEi,PEm)
link(position(PEm),(x,y)) , where Commu(PEi, PEm)

denotes the communication volume between PEi and PEm, and
link(position(PEm), (x, y)) denotes the Manhattan-Distance between (x, y)
the tile position that PEm is mapped to.

17

ACCEPTED MANUSCRIPT

(4) DCT Type

Estimation

(3) Predict

(2) Motion Estimation

(5) Transform

(6) DCT (10) Inverse DCT

(9) Inverse Transform

(8) Inverse Quantize

(7) Quantize

(1) Control Code

Fig. 10. Partitioning of MPEG2 Encoder

7.1 Comparison of Synthesis Results

For evaluation, we implement all the proposed SA-based co-synthesis algo-
rithms; baseline SA, the Greedy PE-Selection method, LTM-PS and Two-
Stage SA. We also implement the branch-and-bound and iterative algorithm
described in Section 6 for comparison. For each SA-based algorithm, we ran
100 times and pick up the best result among runs. Note that, in Two-Stage
SA, the first stage runs only once. The candidate PEs are then passed to the
second-stage SA which are performed 100 times to derive the best solution. In
the NoC-based architecture, we use a 2× 2 tiles interconnected by a 2D mesh
network.

We apply all the co-synthesis algorithms on two set of benchmarks; that is,
synthetic task sets and a real-world application. The synthetic task sets are
generated by the graph generator TGFF [6]. TGFF is a parameterizable gen-
erator that can accept user specifications like maximum in-degree and out-
degree of the vertices. We generate random task graphs g1 to g15 which varies
in graph size and in-out degree. A synthetic PE library is also generated for
this set of tasks. The synthetic PE library contains three types of PEs: ASIC,
DSP and CPU. The frequency and voltage of each type of PE is randomly
generated, and there are 16 CPUs, 26 ASIC and 39 DSPs in this PE library.

To test the proposed NoC co-design flow on a real-world application, we apply
our schemes to MPEG2 encoder [27]. MPEG2 encoder is divided into 10 tasks
as shown in Figure 10. Note that we transform the cyclic task graph into an
acyclic one by removing the incoming edge of the node that is the entrance
node of a strongly connected component [3]. The traffic traces are obtained
directly by executing the encoder on the SimpleScalar [30]. The PE library for
MPEG2 encoder is constructed from the datasheets of IPs comprising DSP,
CPUs, and customized ASICs that support the functionalities required by
MPEG2 encoder. We select 29 CPUs from ARM [28], 8 DSPs from TI [31],
and 19 ASICs from Philips [29]. Three different kinds of functionalities are
provided by the selected ASICs. Because we only get execution cycle of each
task from SimpleScalar [30], we set the execution cycle to 1 when a task

18

ACCEPTED MANUSCRIPT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 ave.

Random Task Graphs

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

Greedy SA LTM-PS Two-Stage SA Iterative Branch and Bound

Fig. 11. Dynamic Energy Consumption of Solutions Synthesized by Various Co-Syn-
thesis Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 ave.

Synthetic Task Graphs

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Greedy SA LTM-PS Two-Stage SA Iterative Branch and Bound

Fig. 12. Dynamic and Static Energy Consumption of Solutions Synthesized by Var-
ious Co-Synthesis Algorithms

executing on an ASIC and set the execution cycle to half of the CPU cycle
when a task executing on a DSP.

Figure 11 and Figure 12 show the dynamic and dynamic+static energy con-
sumption of systems synthesized by various co-synthesis algorithms, respec-
tively. In both figures, the energy consumption is normalized to that of baseline
SA. Among the SA-based methods, the experimental results show that Two-
Stage SA performs the best and the Greedy PE-Selection method performs
the worst, even worse than baseline SA. When considering dynamic energy
consumption only, Greedy PE-Selection has 36.9% more energy consumption
than baseline SA on the average. As described in Section 5.3, Greedy PE-
selection always pick the n PEs that are sequential in energy consumption,
where n is the number of tiles on the NoC platform. Therefore, task sets
that have tasks with high computation demand would lead the Greedy PE-
Selection method to select high frequency PEs and lose the chance of mapping
tasks with low computation demands to PEs with low energy consumption.
The Greedy PE-Selection method can be considered as an approach that a de-

19

ACCEPTED MANUSCRIPT

signer would adopt without an automatic co-design environment. This result
demonstrates the importance of PE Selection. We can also observe that LTM-
PS dramatically improves the solution quality over baseline SA. When con-
sidering dynamic energy consumption only, LTM-PS achieves 13% less energy
consumption than that of baseline SA. Two-Stage SA first uses the Greedy
PE-Selection method to prune down the solution space, therefore, it can find
better solutions in short time than LTM-PS. On the average, Two-Stage SA
achieves 32.9% less energy consumption than baseline SA when considering
dynamic energy consumption only.

When comparing SA-based algorithms with the branch-and-bound and itera-
tive algorithm, we can observe that the proposed SA-based algorithms is able
to synthesize a solution with good quality in a reasonable time. The branch-
and-bound algorithm can always synthesize the optimal solution. When con-
sidering dynamic energy only, branch-and-bound achieves 52.5% less energy
consumption than baseline SA. However, the execution time of the branch-
and-bound algorithm is also extremely long. In this set of experiments, when
performing the branch-and-bound algorithm, we can only get synthesis results
of task graphs g1−g5, which have at most 13 tasks in their task graphs. When
comparing the SA-based algorithms and the branch-and-bound algorithm, we
can observe that the solution quality of configuration synthesized by Two-
Stage SA is close to that of branch-and-bound. When considering dynamic
energy only, among the five task graphs that the branch-and-bound algorithm
is able to synthesize, Two-Stage SA has at most 5.9% more energy consump-
tion than that of the branch-and-bound algorithm. We can also observe that
the iterative algorithm, which only explores a subset of feasible solutions in
each iteration, performs worse than baseline SA, LTM-PS and the Two-Stage
SA in all cases. However, the iterative algorithm performs better than the
Greedy PE-Selection method in some cases. As described earlier, the Greedy
PE-Selection method tends to select a set of PEs with high computation power
and high energy consumption when a task set needs PEs with high computa-
tion power to meet its deadline. In such cases, Greedy PE-Selection tends to
perform worse than iterative algorithm.

When comparing Figure 11 and Figure 12, we observe that the differences be-
tween SA-based algorithms and iterative algorithm are shortened when con-
sidering static power consumption. SA-based methods tend to select PEs with
lower voltage levels as long as the timing constraints are met. These PEs also
lead to a longer execution time and thus have more leakage energy consump-
tion. However, when considering static power consumption, except for Greedy
PE-Selection, the SA-based methods still perform better than the iterative
algorithm, and the Two-Stage SA still performs the best in all cases.

Figure 13 and Figure 14 show the dynamic and dynamic+static energy con-
sumption of MPEG2 encoder system, respectively. The energy consumption is

20

ACCEPTED MANUSCRIPT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

MPEG2 Encoder

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

Greedy LTM-PS Two-Stage SA Iterative

Fig. 13. Dynamic Energy Consumption of MPEG2 Encoder System Synthesized by
Various Co-Synthesis Algorithms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

MPEG2 Encoder

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Greedy LTM-PS Two-Stage SA Iterative

Fig. 14. Dynamic and Static Consumption of MPEG2 Encoder System Synthesized
by Various Co-Synthesis Algorithms

also normalized to that of baseline SA. In this set of experiments, we do not
show the results of the branch-and-bound algorithm since the communication
pattern of MPEG2 encoder is complex and branch-and-bound can not syn-
thesize its result in a reasonable time. In this set of experiments, Two-Stage
SA achieves 6.5% less energy consumption than baseline SA. The Greedy PE-
Selection method still performs the worst in this set of experiments. However,
the results synthesized by the iterative algorithm is almost the same as that
of Two-Stage SA. PE library used in this set of experiment has little variation
in PE performance and energy consumption. Therefore, the PE library makes
the co-synthesis algorithms hard to choose PEs to trade off between perfor-
mance and energy consumption, and the iterative algorithm is easy to choose
good configuration in the initial solution. When considering system leakage
energy consumption (Figure 14), the result is similar to that of considering
dynamic energy consumption only.

7.2 Comparison of Algorithm Efficiency

Another important metric for evaluating various hardware-software co-synthesis
algorithms is how fast they find the synthesis result. Table 2 lists the execu-

21

ACCEPTED MANUSCRIPT

Schemes Running Time

Baseline SA 1

Greedy SA 1.40

LTM-PS 2.20

Two-Stage SA 2.07

Iterative Algorithm 0.35

Branch and Bound Method 6368.8

Table 2
Execution Time Evaluation

tion time of various schemes normalized to baseline SA. The results show that
Two-Stage SA derives better solution than LTM-PS without using longer ex-
ecution time. In Two-Stage SA, the first stage is invoked only once, and the
second stage converges faster than LTM-PS because the PE searching space
has been reduced. LTM-PS has longer execution time than baseline SA since
a low-temperature SA is performed after each PS perturbation. The experi-
mental results also show the iterative algorithm is the fastest among all the
evaluated algorithms. Compared to SA-based algorithms, the solution space
explored by the iterative algorithm explores is smaller. Therefore, the iterative
algorithm tends to sacrifice solution quality to get execution efficiency. The
branch-and-bound algorithm is the slowest among all the evaluated algorithms
since it needs to exhaustively explore the design space.

8 Conclusion

In this paper, we propose an energy-aware architectural co-synthesis algo-
rithm for Network-on-Chip (NoC) system design which simultaneously opti-
mizes both software and hardware architectures to meet a tight performance
constraint. We propose four types of SA-based co-synthesis algorithms. The
baseline SA algorithm treats each co-design step as a perturbation; LTM-
PS performs a low-temperature SA after each PS perturbation; the Greedy
PE-Selection method tries the PE configurations in a non-decreasing order of
their energy consumption; Two-Stage SA first uses the Greedy PE-Selection
method to prune the design space and then invoke a complete SA to derive
final hardware and software architecture. To compare the efficiency of the
proposed SA-based algorithms, we also implement the branch-and-bound and
iterative algorithm to solve the co-synthesis problem of NoC. Our experimen-
tal results show that the Two-Stage SA algorithm achieves the best solution
quality in a reasonable execution time. When considering synthetic task set

22

ACCEPTED MANUSCRIPT

and dynamic energy only, Two-Stage SA achieves 32.9% less energy consump-
tion than baseline SA on the average.

References

[1] T. L. Adam, K. Chandy, and J. Dickson. A comparison of list schedules for
parallel processing systems. Commun. ACM, 17(12):685–690, December
1974.

[2] L. Benini and G. De Micheli. Network on chips: A new soc paradigm.
IEEE Computers, 35:70–78, January 2002.

[3] T. H. Coreman, C. E. Leiserson, R. L. Rivest, and C. Stain. Introduction
to Algoirthms. McGraw Hill.

[4] W. J. Dally and B. Towles. Route packets, not wires: On-chip intercon-
nection networks. Proc. Design Automation Conference (DAC), pages
684–689, June 2001.

[5] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[6] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: Task graphs for free. Proc.
Intl. Workshop on Hardware/Software Codesign, pages 97–101, March
1998.

[7] C. J. Glass and L. M. Ni. The turn model for adaptive routing. Proc.
international Symposium on Computer Architecture (ISCA), pages 278–
287, May 1992.

[8] M. Grajcar. Strengths and weakness of genetic list scheduling for het-
erogeneous systems. Proc. International Conference on Application of
Concurrency to System Design (ACSD), pages 123–132, June 2001.

[9] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and
D. Lindqvist. Network on a chip: An architecture for billion transistor
era. Proc. of the IEEE NorChip, 220(4598):671–680, November 2000.

[10] W.-H. Hung, Y.-J. Chen, C.-L. Yang, Y.-S. Chang, and A. P. Su. An ar-
chitectural co-synthesis algorithm for energy-aware network-on-chip de-
sign. Proc. SAC, March 2007.

[11] J. Hu and R. Marculescu. Energy-aware mapping for tile-based noc archi-
tectures under performance constraints. IEEE ASP-DAC, January 2003.

[12] J. Hu and R. Marculescu. Energy-aware communication and task schedul-
ing for network-on-chip architecture under real-time constraints. Proc.
Design, Automation and Testing in Europe Conference and Exhibition
(DATE), 2004.

[13] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting genera-
tional behavior to reduce cache leakage power. In Proceedings of the 28th
annual international symposium on Computer architecture 2001(ISCA’
01), 2001.

23

ACCEPTED MANUSCRIPT

[14] S. Kirkpatrick, C. D. G. Jr., and M. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[15] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg,
K. Tiensyrjä, and A. Hemani. A network on chip architecture and design
methodology. Proc. Symposium on VLSI, pages 117–124, April 2002.

[16] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth
using looped containers in temporally disjoint netwroks within the nos-
trum network on chip. Proc. of 2004 Desitn, Automation and Test in
Europe (DATE ’04), March 2004.

[17] S. Murali and G. De Micheli. Bandwidth-constrained mappings of cores
onto noc architectures. Proc. 2004 Design, Automation and Test in Eu-
rope (DATE ’04), March 2004.

[18] S. Murali and G. De Micheli. SUNMAP: A tool for automatic topol-
ogy selection and generation for nocs. Proc. 2004 Design Automation
Conference (DAC ’04), pages 914–919, 2004.

[19] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. De MiCheli, and L. Raffo. Designing application-specific networks
on chips with floorplan information. Proc. 2006 International Conference
on Computer-Aided Design (ICCAD ’06), 2006.

[20] D. Shin and J. Kim. Power-aware communication optimization for
network-on-chips with voltage scalable links. Proc. CODES+ISSS,
September 2004.

[21] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE
Transactions on Parallel and Distributed Systems, 4(2):175–187, Febru-
ary 1993.

[22] K. Srinivasan, K. S. Chatha, and G. Konjevod. An automated technique
for topology and route generation of application specific on-chip inter-
connection netowkrs. Proc. 2005 International Conference on Computer-
Aided Design (ICCAD ’05), 2005.

[23] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear-programming-
based atechniques for synthesis of network-on-chip architectures.
IEEE Transactions on Very Large Scale Intergration (VLSI) Systems,
14(4):407–420, April 2006.

[24] W. H. Wolf. Hardware-software codesign of embedded systems. Proceed-
ings of the IEEE, 82(7):967–989, July 1994.

[25] W. H. Wolf. An architectural co-synthesis algorithm for distributed, em-
bedded computing systems. IEEE Transaction on Very Large Scale In-
tegration (VLSI) Systems, 5, June 1997.

[26] T. T. Ye, L. Benini, and G. De Micheli. Analysis of power consumption on
switch fabrics in network routers. Proc. of Design Automation Conference
(DAC), pages 524–529, June 2002.

[27] MPEG2 video. IS standard. I. D. 13818-2, 2001.
[28] ARM Processor cores. http://www.arm.com/products/CPUs/.
[29] Electronics. Philips’ IP portfolio. http://www.semiconductors.philips.com.

24

ACCEPTED MANUSCRIPT

[30] SimpleScalar. http://www.simplescalar.com/.
[31] Texas Instruments. Digital Signal Processing

. http://focus.ti.com/dsp/docs/dsphome.tsp?sectionId=46.

25

ACCEPTED MANUSCRIPT

 Yi-Jung Chen received the B.S. and M.S. degrees from the Department of Computer

Science and Information Engineering at National Chi Nan University, Nantou, Taiwan

in 2000 and 2002, respectively. She is currently working toward the Ph.D. degree in

Department of Computer Science and Information Engineering at National Taiwan

University, Taipei, Taiwan.

Her research interests include high-level synthesis, Network-on-Chip design and

memory hierarchy design.

Chia-Lin Yang received the B.S. degree from the National Taiwan Normal

University, Taiwan, R.O.C., in 1989, the M.S. degree from the University of Texas at

Austin in 1992, and the Ph.D. degree from the Department of Computer Science,

Duke University, Durham, NC, in 2001.

In 1993, she joined VLSI Technology Inc. (now Philips Semiconductors) as a

Software Engineer. She is currently an Associate Professor in the Department of

Computer Science and Information Engineering, National Taiwan University, Taipei,

Taiwan. Her research interests include energy-efficient microarchitectures, memory

hierarchy design, and multimedia workload characterization.

Dr. Yang is the recipient of a 2000–2001 Intel Foundation Graduate Fellowship

Award and 2005 IBM Faculty Award.

Yen-Sheng Chang received the B.S. degree in computer science and engineering

from National Dong Hwa University, Hualien, Taiwan, in 2003, and the M.S. degree

in computer science and engineering from National Taiwan University, Taipei,

Taiwan, in 2005. His research interests include hardware-software co-design and

Network-on-Chip design.

Biography of all Authors

http://ees.elsevier.com/jsa/download.aspx?id=11757&guid=046356d8-cb23-479f-96e1-1680c15c2b1c&scheme=1

ACCEPTED MANUSCRIPT

Yi-Jung Chen

http://ees.elsevier.com/jsa/download.aspx?id=11756&guid=8b85bd5e-ed5b-4f7e-a2c2-120aef65fac1&scheme=1

ACCEPTED MANUSCRIPT

Chia-Lin Yang

http://ees.elsevier.com/jsa/download.aspx?id=11736&guid=1f7298e3-fe6e-4b57-85e2-c0bec35a1870&scheme=1

ACCEPTED MANUSCRIPT

Yen-Sheng Chang

http://ees.elsevier.com/jsa/download.aspx?id=11760&guid=cdbc9bc8-ee47-4565-be7e-7cdff95400d6&scheme=1

