

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Journal of Systems Architecture 59.3 (2013): 135-143

DOI: http://dx.doi.org/10.1016/j.sysarc.2013.01.004

Copyright: © 2013 Elsevier B.V. All rights reserved

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.sysarc.2013.01.004

FPGA acceleration using High-Level Languages of a

Monte-Carlo method for pricing complex options

Diego Sanchez-Roman, Victor Moreno∗, Sergio Lopez-Buedo, Gustavo
Sutter, Ivan Gonzalez, Francisco J. Gomez-Arribas, Javier Aracil

Escuela Politécnica Superior, Universidad Autónoma de Madrid
c/Francisco Tomás y Valiente, 11 28049 Madrid, Spain

Abstract

In this paper we present an FPGA implementation of a Monte-Carlo method
for pricing Asian Options using Impulse C and floating-point arithmetic. In
an Altera Stratix-V FPGA, a 149x speedup factor was obtained against an
OpenMP-based solution in a 4-core Intel Core i7 processor. This speedup
is comparable to that reported in the literature using a classic HDL-based
methodology, but the development time is significantly reduced. Addition-
ally, the use of a HLL-based methodology allowed us to implement a high-
quality gaussian random number generator, which produces more precise
results than those obtained with the simple generators usually present in
HDL-based designs.

Keywords: High Level Language Synthesis, Field Programmable Gate
Arrays, financial data processing, parallel machines, floating-point
arithmetic.

1. Introduction

Options are derivative financial instruments which consist on a contract
that gives the right to its holder to buy or sell some amount of the underlying

∗Principal corresponding author
Email addresses: d.sanchez@uam.es (Diego Sanchez-Roman),

victor.moreno@uam.es (Victor Moreno), sergio.lopez-buedo@uam.es (Sergio
Lopez-Buedo), gustavo.sutter@uam.es (Gustavo Sutter), ivan.gonzalez@uam.es
(Ivan Gonzalez), francisco.gomez@uam.es (Francisco J. Gomez-Arribas),
javier.aracil@uam.es (Javier Aracil)

Preprint submitted to Journal of System Architecture October 19, 2012

asset at a future date, for a pre-specified price. Options do not imply any
obligation to buy or sell, they just grant the right to execute a transaction
at an agreed price. Although contracts similar to options have existed since
ancient times, the first time that contemporary financial options were traded
in an orderly fashion was in 1973, with the opening of the CBOE in Chicago.
Since then, option trading has grown tremendously, and nowadays options are
traded on a wide range of assets: stocks, indexes, currencies, commodities,
etc. An option giving the right to buy a certain asset is named a “call”, while
an option giving the right to sell a certain asset is named a “put”.

Options are useful for hedging the risk. For example, if you know that
you are going to buy oil in the future, you can buy call options for protecting
yourself against a sudden rise in its price. If the price of oil does not rise,
you simply let the option expire, but if there is an unexpected increase in
its price, you can exercise the option to buy at a lower price. Alternatively,
options can also be used for speculative purposes. If you suspect that there
is going to be market crash soon, you can buy put options for a given equity.
If the market crash finally occurs, you can buy that equity and then exercise
the option to sell at a higher price. The buyer of the option pays an amount
named premium to the originator of the option. Depending on the premium
paid, it will be profitable or not to exercise the option at its expiration date.

Option valuation is a complex problem. There are many pricing models,
which usually depend on the current price of the asset being negotiated, the
price at which it will be traded (strike price), the cost of holding the asset
(e.g. interests), the time to the expiration of the option, and volatility of
the asset price during the life of the option. Depending on the style of the
option, pricing may require complex numerical models. For example, in the
case of Asian option pricing, an asset price is calculated in terms of the mean
value during its lifetime. For American options, the asset price is calculated
at its exercise point which, in contrast with the European option style, can
be different to the option’s expiration time. This way, Asian options are
cheaper (as their potential benefits are lower) and less sensitive to market
peaks and manipulation. However, the mean value feature of Asian option
pricing has the problem of not having a closed-form solution for the pricing
equation. In such cases, some approximation form [1] or simulation method
must be applied, typically Monte-Carlo simulations. This papers focuses
on the usage of Monte-Carlo simulations due to their ubiquity in the High-
Performance Computing world. These Monte-Carlo simulations are based on
the computation of random experiments following a determined probabilistic

2

distribution. However, the low convergence rate of such methods creates the
need of running huge number of path simulations in order to converge to the
proper value. This is translated into simulations taking enormous amounts
of time.

In those cases were pricing is based on complex models, there is a com-
petitive advantage for those traders which can compute the models faster.
The sooner that you can realize that the price of an option is favorable, the
less possibilities exist that other trader buys the option and profits from it.
However, not only the speed in getting the estimated price is relevant, but
the accuracy of the estimation is also of capital relevance to decide if the
price of an option is favorable. The ubiquity of high-performance computing
systems has made difficult to stand out in the financial market: Nowadays
anyone can use a powerful computer in order to calculate an asset price be-
fore his competitors. It is therefore necessary to find out new technologies
which allow traders to significantly accelerate simulations in order to provide
a relevant advantage to the competition.

FPGAs have already been proved as good candidates for algorithm accel-
eration since they allow engineers to design custom architectures optimized
to solve a specific problem by taking advantage of much higher degrees of
parallelism than CPUs. One of the main drawbacks in hardware develop-
ment is the use of hardware description languages (HDLs), whose utilization
entails high development times and painful verification processes. In order
to ease this process, in the recent years we have seen the advent of high level
languages (HLL) compilers capable of generating HDL code from high level
languages such as C or derivates. In this work, we use the Impulse C tool
to generate a hardware description of a highly accurate Monte-Carlo method
for pricing Asian Options and compare it against a multicore solution based
on the OpenMP programming framework. It is shown that a HLL-based
methodology is not only capable of providing similar accelerations to those
of a HDL-based design, but also with a better accuracy, since more precise
algorithms can be implemented.

The remainder of the paper is organized as follows. In section 2 an
overview of the Asian option model is presented, as well as the mathematical
mechanisms used in this paper to simulate this model. A keynote on the
High-Level Language used during the implementation phase (Impulse C) is
pictured in section 3. The implementation procedure is depicted along sec-
tion 4 and its results are presented at section 5, compared to a multicore
CPU solution. Finally, some conclusions are drawn in section 6.

3

2. Asian options and Monte-Carlo simulations

2.1. Asian options

As it has been set along the introduction of this paper, options are con-
tracts between two parts regarding some asset or stock price. The price in the
contract is known as the exercise price or strike price (E), and the date in the
contract is known as the expiration date or maturity (T). When acquiring
the option, the “owner to be” must pay to the option issuer the fixed price
for the option to be created. The calculation of the price usually depends on
the desired interest rate r and the expiration time of the option as shown in
Eq.(1).

optionvalue = e−rToptionpayoff (1)

Once the option has been created, the option issuer must accept the deci-
sion of the option owner regarding the execution or not of the call/put oper-
ation. Under those terms the acquiring price of an option must be carefully
calculated, therefore both the accuracy and the latency of this calculation
become of critical relevance.

Regarding the time when the option can be exercised, we can distinguish
between American or European options. The former ones allow the holder to
exercise the option at any time up to the expiration date. However, European
options can only be exercised at maturity. Traditional Asian options behave
like the European ones regarding the moment they can be exercised at.

The payoff of an option is the quantity used for the option exercise price
calculation process. The payoff of a call option is then the difference between
the price of the underlying asset at the exercise time (Price(T)) and the
exercise price for both American and European options. If this difference is
lower than zero then the payoff will be zero because the option will never be
exercised (see Eq.(2)). Similarly, the payoff of a put American or European
option is the difference between the exercise price and the asset price at the
exercise time unless this difference is lower than zero (see Eq.(3)).

Pcall = max(Price(T)− E, 0) (2)

Pput = max(E − Price(T), 0) (3)

Asian options come to remove the risk of market manipulation, since the
strike price is computed as the mean price of the underlying asset over the

4

life of the option [2] as shown in Eq.(4) and Eq.(5).

Pcall = max(
1

n

n∑
i=1

Price(ti)− E, 0) (4)

Pput = max(E − 1

n

n∑
i=1

Price(ti), 0) (5)

Modifications of the basic Asian option model have been formulated, such
as the American Asian option model [3]. This model allows the option to be
exercised any time during its lifetime, keeping the payoff calculation using
the mean price of the asset. However, this model is not widely extended, so
we focus our work in the traditional Asian option model.

In year 1973 Fischer Black and Myron Scholes articulated a mathematical
model capable of capturing the behaviour of a stock price movement [4]. This
model, known as the Black Schole’s model, says that the price of a stock over
time is governed by Eq.(6):

Si+1 = Sie
((r− v2

2
)∆t+v

√
∆tW) (6)

were Si = S(ti) is the price of the asset at time step ti, r is the interest rate,
v is the volatility of the underlying stock price, ∆t is the time between two
time steps and W is a Gaussian random number (GRN).

2.2. Monte-Carlo simulations

Monte-Carlo computations need to evaluate a large number of indepen-
dent paths in order to converge to the solution. In our case this is translated
into the need of a huge amount of Gaussian independent and identically dis-
tributed samples. When working with stock prices the quality of the Gaussian
samples used becomes a critical matter: the very tiniest fraction of money is
relevant. The more pseudo-random the Gaussian random number generator
is, the more biased the simulation results will be, which could lead to relevant
economic losses [5].

Most common methods for non-uniform RN generation are based on a
first stage in which U [0, 1] samples are generated [6]. Let ui be a sample

5

of the U [0, 1] distribution, X the target distribution and ICDF its Inverse
Cumulative Distribution Function. The inversion method states that

zi = ICDF (ui)

is a sample of X. Even direct methods which claim to directly generate
non-uniform RN such as [7],[8] use a uniform RN generator in their core.

Along the rest of this section, the methodology used to generate high-
quality GRN will be described, separated in two steps: generating uniform
samples and using these uniform samples to generate Gaussian ones. At the
end of the section our approach will be placed in contrast with the previously
developed works on this matter.

2.2.1. Mersenne Twister

As it has already been stated, a high quality uniform pseudo-random gen-
erator is required. There are several key properties to measure the goodness
of such generator [9, 10]:

• its period p. This is a determining parameter not only in order to
avoid the repetition of pseudo-random sequences, but also in order to
be able to run larger simulations. As explained in [10], different authors
sustain that the number of values to be used in an experiment using
a pseudo-random generator with period p must be much lower than
p itself: some say that p/100 is enough, but others defend that even

lower amounts of numbers must be used, such as
√
p

200
or even 3

√
p.

• its k-dimensional equidistributed property1

However, when working with hardware devices, there is another key factor
that must be taken into account when using a RNG:

• the amount of area (in terms of memory and other silicon resources)
required by the RNG. There are several RNG with have a very large

1A pseudorandom sequence xi of w-bit integers of period P is said to be k-distributed
to v-bit (v lew) accuracy if for each subsequence

(truncv(xi), truncv(xi+1), · · · , truncv(xi+k−1)) 0 ≤ i ≤ P

each of the 2kv possible combinations of bits occurs the same number of times in a period,
except for the all-zero combination that occurs once less often.

6

period due to the use of a bigger amount of memory keeping the RNG
state information.

Table 1 shows some of the features for several RNG that have been evalu-
ated during the development of this work. This table shows as well the results
obtained when applying a suite of difficult-to-pass uniformity tests [11] to
such generators. Those tests has been run with more than 5.61̇09 values gen-
erated for each RNG. Mersenne Twister was chosen amongst the considered
RNGs due to their good results and its period-memory tradeoff.

Table 1: Properties of different RNGs

RNG
memory

log2(Period)
% of tests

Refs.
(32b words) passed

taus88 3 88 96.49 [12]
mcw256 256 8222 97.37 [10]
lr 345 > 345 97.37 [13]
mt19937 624 19937 99.12 [9]
sobol (40-dim) 1280 32 98.25 [14, 15, 16]
cmwc4096 4096 131086 97.37 [10]
superKiss 41790 1337279 99.12 [10]

The Mersenne Twister (MT) is a high quality uniform random number
generator with a period of 219937 − 1 and a 623-dimensional equidistributed
property. The original C source code can be found in [9] and its CPU execu-
tion is highly efficient, both in terms of memory and performance. A matrix
of 624 32-bit integers is initialized in a first stage. After that, one value of
the matrix is returned with each call to genrand() through some bit manip-
ulation process known as tempering. Once all the values in the matrix have
been used, it is reconstructed by shuffling and masking its bits.

Although the Mersenne-Twister code behaves properly on CPU comput-
ing, the lack of constant throughput (because of shuffling and masking the
generation matrix) of this approach turns it into a quite pipeline-unfriendly
code. It is important to remark that we have decided to use such a pipeline-
unfriendly approach for generating random uniform samples in contrast with
other HW-friendlier existing approaches [17]. We have made this decision
because accuracy has been considered a much more critical issue rather than

7

throughput for our Asian option simulation solution. We consider that our
approach presents a more appropriate accuracy-throughput tradeoff than
other existing solutions such as [18], [19] or [20]. Moreover, previous works
such as [21] shows that despite its pipeline-unfriendliness, MT can be highly
benefited using FPGA technology.

2.2.2. Box-Muller transform

For our Asian option pricing problem we are interested in generating
Gaussian samples, whose CDF is given by Eq.(7).

CDF (x) =
1√
2π

x∫
−∞

e−
t2

2 dt (7)

As there is no closed form for its ICDF function, the generic inverse method
can not be applied. Some approaches have been developed in previous works
such as [19] or [20] in which a approximation to the ICDF function is used.
A tradeoff must be met between the accuracy requirements and the com-
plex expressions that need to be evaluated in order to meet these accuracy
constraints. These expressions require a substantial amount of floating-point
operations so their implementation would severely restrict the number of
Monte-Carlo cores that could be mapped inside a FPGA.

Fortunately, there is another method for generating Gaussian samples
from uniform samples, which is the Box-Muller transformation [22]. It re-
quires less floating-point arithmetic, and its good quality has already been
proved [23].

The Box-Muller transformation produces two independent Gaussian sam-
ples from two independent uniform ones. Let u1 and u2 be two independent
samples of the U [0, 1] distribution, then

z0 =
√
−2 lnu1 cos(2πu2)

z1 =
√
−2 lnu1 sin(2πu2)

are two independent Gaussian samples ∼ N (0, 1).
The implementation of this transform with Impulse C is trivial in a

pipelined process, generating one sample per clock cycle. The only issue
is the area required by the transcendental and trigonometric floating-point
operators from the Altera Megafunctions [24], which limits the number of
Monte-Carlo cores that can be implemented in the FPGA. In order to slightly

8

reduce this area utilization, the identity sin2α+ cos2α = 1 is utilized, saving
one trigonometric evaluation at the cost of adding one square root and one
multiplication.

2.3. Related work

As for other financial problems, there has been a lot of effort made in
the resolution of Asian option pricing. Other approaches rather than Monte-
Carlo methods have been researched [25], but the parallelizability of Monte-
Carlo simulation has made this approach to be much widely extended in the
High-Performance Computing world.

However, the use of Monte-Carlo simulation methods for this calculation
makes this task a heavy computational one, so many high performance com-
puting approaches has been developed to solve this problem. Some of those
solutions are based on message passing programming [26] [27] for high per-
formance clusters. Nevertheless, the most notable efforts have been made
in the field of reconfigurable/reprogrammable coprocessor computing, both
based on FPGA [18] [19] [28] and GP-GPU [19] [29] technologies.

All those works have focused their efforts in creating a high-performance
simulation solution, giving priority to the throughput of the system rather
than to its accuracy. In this work, we have tried to create an as accurate as
possible solution for the Asian option pricing problem, keeping in mind the
relevance of the timing behaviour of the system.

Table 2 summarizes the performance results shown in the mentioned re-
lated works, as well as the technology approach used for each solution and
their performance reference.

3. High Level Languages

The use of High Level Languages has a set of advantages against the
use of low level programming languages. The most indisputable of those
advantages is the decrease of the development time. Thanks to that, a fast
evaluation of the feasibility of a project via prototyping becomes a reality.
As previous works has shown [30], [31], [32] this effect becomes more evident
when it comes to programming FPGA devices in contrast with hardware
description languages (VHDL, Verilog).

Of course, HLL-based FPGA design leads to less area-efficient design
in contrast with HDL-based design. A tradeoff must be met regarding the
development time and the area efficiency constraints for each design.

9

T
ab

le
2:

R
el

at
ed

w
o
rk

te
ch

n
o
lo

g
y

a
n

d
p

er
fo

rm
a
n

ce
fe

a
tu

re
s

R
ef

.
Y

ea
r

T
ec

h
n
ol

og
y

R
N

G
S
p

ee
d
u
p

U
n
if

or
m

G
au

ss
ia

n

[1
9]

20
11

X
il
in

x
V

ir
te

x
-5

lr
I
C
D
F

p
ie

ce
w

is
e

in
te

rp
ol

at
io

n
31

3.
00

v
s

In
te

l
X

eo
n

2.
5

G
H

z

N
v
id

ia
T

es
la

C
10

60
m

t1
99

37
B

ox
-M

u
ll
er

14
1.

00
v
s

In
te

l
X

eo
n

2.
5

G
H

z

[2
6]

20
11

2x
In

te
l

d
u
al

-
co

re
1.

6
G

H
z

lr
B

ox
-M

u
ll
er

2.
13

v
s

In
te

l
d
u
al

-c
or

e
1.

6
G

H
z

[2
9]

20
10

N
v
id

ia
Q

u
ad

ro
F

X
46

00
so

b
ol

I
C
D
F

ap
p
ro

x
i-

m
at

io
n

15
0.

00
v
s

Q
u
ad

-C
or

e
X

eo
n

[2
8]

20
08

64
x

X
il
in

x
V

ir
te

x
-4

ta
u
s8

8
B

ox
-M

u
ll
er

34
0.

00
v
s

In
te

l
X

eo
n

2.
8

G
H

z

10

3.1. Impulse C

The development of this work has been made using the Impulse C pro-
gramming framework [33]. The choice of this language has been made be-
cause of its outstanding usability compared to other high-level approaches
for FPGA programming, as stated in [30]. Moreover Impulse C potential has
been shown in previous works such as [34], [35] and [36].

Impulse C extends standard ANSI-C using C-compatible predefined li-
brary functions in support of a communicating process parallel programming
model. This programming model is conceptually similar to a dataflow or a
communicating sequential process programming model in the sense that it
simplifies the expression of highly parallel algorithms through the use of well-
defined data communication, message passing, and synchronization mecha-
nisms. The programming model supports a wide range of applications and
parallel process topologies.

In Impulse C, the programming model emphasizes the use of buffered data
streams as the primary method of communication between independently
synchronized processes, which are implemented as persistent (rather than
being repetitively called) C subroutines. This buffering of data, which is
implemented using FIFOs that are specified and configured by the application
programmer, makes it possible to write parallel applications at a higher level
of abstraction, without the clock cycle-by-cycle synchronization that would
otherwise be required .

Programming with Impulse C processes is conceptually similar to pro-
gramming with threads. As with thread programming, each Impulse C pro-
cess has its own control flow, it is independently synchronized and it has
access to its own local memory resources (which will vary depending on the
target platform). For this reason it is relatively easy to convert applications
written in threaded C (for example, using the Posix thread library [37]) to
Impulse C. Thus, the coarse parallelism in Impulse C is simply achieved by
coding multiple concurrent processes. Synchronization among these concur-
rent computational kernels is easily achieved by the stream dataflow [38].

Finer levels of parallelism can be exploited inside each process. Instruc-
tion level parallelism is automatically generated by the scheduler. Impulse
C automatically generates and analyses the instruction dependence graph
so that independent instructions are scheduled in parallel. In the case of
loops, further level of parallelism can be achieved by means of precompiler
directives or pragmas. They are loop unrolling and loop pipelining, which

11

are specified by placing #pragma CO UNROLL and #pragma CO PIPELINE just
after the header of a loop.

An additional feature of the Impulse C framework is the ability to eas-
ily modify the IP cores to be instantiated whenever a hard-function or an
arithmetic operator appears in the C source code. This is made by editing
a set of XML files attached to the target platform. The Impulse C vendor
refers to this feature as Platform Support Package (PSP). The ease-of-use of
the PSP turns the Impulse C framework into an extremely interesting option
when working with custom cores, so anyone can create their own optimized
HDL-based core and use C code to instantiate it along the design. The use
of PSPs strengthens as well the portability of a project between different
platforms.

4. Implementation

4.1. Option price calculation

The Monte-Carlo algorithm for pricing Asian Options is depicted in List-
ing 1. For each simulation path, stock prices are updated by using Equation
(6) and accumulated in order to compute the mean value until the maturity
time T . The payoff is evaluated as the profit involved in the transaction.
Again, values are accumulated in order to obtain the mean value. Finally,
the price is adjusted by the fixed interest rate. The architecture of the solu-
tion is shown in Fig. 1 where each of the functional modules are identified,
as well as the FIFO channels that Impulse C instantiates for inter-module
communication.

In order to accelerate this algorithm with Impulse C, loop pipelining
must be used. This is trivially achieved by simply inserting #pragma CO

PIPELINE after the head of the body. However, Impulse C does not allow
pipeline nesting and the two loops should be flattened into a single loop exe-
cuting nSim∗nSteps iterations. However, there is loop dependence between
iterations which prevents a pipeline with rate 1, i.e, a pipeline computing
iterations every clock cycle. To avoid the loop dependence, we must take ad-
vantage of the independence of the stock prices among different simulations,
so that PARALLEL PATHS simulations are concurrently computed.

To this end we split the problem in two different Impulse C processes.
The first one computes the stock prices and performs the arithmetic mean.
It also computes the payoff, which is written to the second process. Listing 2
depicts the Impulse C pseudo-code working at rate 1. There are two different

12

Monte-Carlo Asian option simulation
module

Producer Consumer

Se
ed

Seed

Seed

Monte-Carlo Asian option simulation
module

M
e
rs

e
n
n
e

T
w

is
te

r

B
o
x
- M

u
lle

r
T
ra

n
sf

o
rm

p
a
y
O

ff

su
m

P
a
y
O

ff

C
o
lle

ct
o
r

P
ro

ce
ss

INTs FLOATs FLOATs FLOATs

FLOATs

FL
OATs

Option
price

Figure 1: Architecture of the FPGA-based solution

arrays of PARALLEL PATHS elements which store the stock and the addition
until the i-th step, respectively. We use the CO NONRECURSIVE pragma to tell
Impulse C that there are no data dependences regarding the array access,
so that waits are not inserted. However, we must set PARALLEL PATHS big
enough so that the previous assertion is actually true. The optimum value
for PARALLEL PATHS would be the latency of the critical code in between the
read from and the write to the memories. As PARALLEL PATHS is going to be
small and it does not affect performance, it is easier to simply use the total
routine latency (85) as the lower bound, since it is automatically reported by
Impulse C. Therefore, with the rate 1 pipeline, all the payoffs are computed
after nSteps ∗ nSims plus the pipeline latency, which is despicable.

Each of these computed payoffs must be added, that is the function of the
second Impulse C processes. A naive implementation would be the one in
Listing 3. Here again there is the problem of loop dependence and the pipeline
can only perform at a rate equal to the latency of the addition operator. A
simple trick can be used to avoid this inconvenient. The accumulation is
performed in different positions of an array with a size BUFF SIZE greater or
equal to the addition latency, as shown in Listing 4. This way, the additions
can be performed with rate 1 plus a negligible penalization to add the final
values stored in the array. As before, we must only ensure that BUFF SIZE is
bigger than the pipeline latency so that it is true that there is no dependence
between all the stages in the pipeline.

Therefore the extra time needed for adding the nSims values would be

13

Listing 1: Monte-Carlo algorithm for pricing Asian Options

1 payOffSum = 0 ;
2 for (i = 0 ; i < nSims ; i++){
3 priceSum = S0 ;
4 for (j = 0 ; j < nSteps ; j++){
5 W = getGauss ian () ;

6 S = S∗exp((r − v2/2)∆t+ v ∗W ∗
√

∆T) ;
7 priceSum += S ;
8 }
9 payOff = max(0 , priceSum /(nSteps+1) − K) ;

10 payOffSum += payOff ;
11 }
12 p r i c e = exp(−r ∗ T)∗payOffSum/nSims ;

approximately of nSims+ la +BUFF SIZE · la ≈ nSims clock cycles, where la
is the addition latency. However, the overall computation time of our Monte-
Carlo core is essentially of nSteps ∗ nSims cycles, since there is overlapping
between the payoff computation and the sum reduction.

4.2. Random number generation

The traditional Mersenne-Twister CPU code is not HW-friendly because
it lacks a constant throughput due to the shuffling and masking stages made
once all of the values in the matrix have been used. To overcome this limita-
tion we have rewritten the algorithm so that once the value of the matrix is
used, it is replaced by the new one. Moreover, the MT algorithm reads two
data and writes one for each random number generation. Since the matrix is
mapped into a BlockRAM, whose simultaneous access is limited to a maxi-
mum of two ports, we need two different matrices to achieve a one sample per
clock cycle throughput. After initialization, the matrix A takes the read-only
role. Its values are tempered and returned as the uniform samples, one each
clock cycle. At the same time, the matrix B is filled with a new Mersenne
Matrix. Once all the values in the matrix A have been used, the roles are
interchanged so that B becomes read-only.

A Mersenne Twister core with a throughput of 623 samples per clock
cycle has also been developed by implementing the Mersenne matrix with
registers. This is somehow a tedious task when working with Impulse C,

14

Listing 2: Impulse C pseudo-code for the payoff computation in a pipeline with rate 1

1 for (i = 0 ; i < nSteps∗nSims ; i++){
2 #pragma CO PIPELINE
3 #pragma CO NONRECURSIVE l a s t S t o c k P r i c e
4 #pragma CO NONRECURSIVE lastStockSum
5
6 co s t ream read (sGauss , &W, s izeof (f loat)) ;
7
8 i f (i n i t S t a g e (i)){
9 S = S0 ;

10 priceSum = S0 ;
11 } else { // Acumulation s t a g e
12 S = l a s t S t o c k P r i c e [i % PARALLEL PATHS] ;
13 priceSum = lastStockSum [i %

PARALLEL PATHS] ;
14 }
15 S = updateStock (W, S) ;
16 priceSum += S ;
17 lastStockSum [i % PARALLEL PATHS] = priceSum ;
18 l a s t S t o c k P r i c e [i % PARALLEL PATHS] = S ;
19
20 i f (outputStage (i)){
21 payOff = computePayOff (priceSum , K) ;
22 co s t r eam wr i t e (sPayOff ,&payOff ,

s izeof (f loat)) ;
23 }
24 }

15

Listing 3: Impulse C pseudo-code for the payoff accumulation in a pipeline with a rate
equal to the latency of the addition operation (7 cycles for the lowest latency Altera
Megafunction)

1 payOffSum = 0 ;
2 for (i = 0 ; i < nSims ; i++){
3 #pragma CO PIPELINE
4
5 co s t ream read (sPayof f In , &payOff ,

s izeof (f loat)) ;
6 payOffSum += payOff ;
7
8 }

as there is no way to tell the tool that we want a matrix inferred this way.
Instead, we declared each element of the matrix as a different 32-bit unsigned
integer variable and we generated the Impulse C code with the help of a
python script. However, the area required for this implementation was not
worth the effort and it is preferable to instantiate several BlockRAM based
Mersenne cores if more throughput is required.

Once one have been able to generate independent uniform random num-
ber using our Mersenne-Twister implementation, applying the Box-Muller
transform to obtain Gaussian samples is a completely straightforward proce-
dure using Impulse C.

Note that in order to get unbiased simulation results, some care must be
taken with regard to the choice of the random seeds that will feed the differ-
ent Monte-Carlo simulation cores so the pseudo-random number sequences
generated by each simulation path are independent. Consequently, the seed-
ing must be made taking into account the principles detailed in [39, 40].
However, this seeding process must only be done once for each simulation,
so it can be done in software and the different seeds loaded into the FPGA
before starting the execution.

4.3. Floating-point arithmetic cores

Hardware acceleration requires high throughput, and pipelining is a must.
However, most pipelined intellectual property (IP) cores focus on working at
high clock frequencies, what in the end increases register utilization too much,

16

Listing 4: Impulse C pseudo-code for the payoff accumulation in a pipeline with rate 1

1 payOffSum = 0 ;
2 for (i = 0 ; i < nSims ; i++){
3 #pragma CO PIPELINE
4 #pragma CO NONRECURSIVE sumsBuffer
5
6 co s t ream read (sPayof f In , &payOff ,

s izeof (f loat)) ;
7
8 i f (i n i t S t a g e (i))
9 payOffSum = 0 ;

10 } else {
11 payOffSum = sumsBuffer [i % BUFF SIZE] ;
12 }
13
14 payOffSum += payOff ;
15 sumsBuffer [i % BUFF SIZE] = payOffSum ;
16 }
17
18 // Fina l a d d i t i o n
19 payOffSum = 0 ;
20 for (i = 0 ; i < BUFF SIZE ; i++){
21 payOffSum += sumsBuffer [i] ;
22 }

17

not only because of the internal registers of each core, but also because the
registers needed to synchronize the signals in the pipeline.

Additionally, the high clock frequencies that these individual cores achieve
are rarely reached in a whole design, due to I/O restrictions or routing re-
strictions. Therefore, the use of low-latency operators either reduces the
utilization of FPGA resources by allowing the implementation of more com-
plex algorithms or improves performance by allowing further parallelism by
kernel replication.

Our arithmetic addition/subtraction and multiplication cores are fully
compliant with the IEEE 754-2008 32-bit (single-precision) standard except
for signaling NaNs and subnormal numbers. The former are only useful
when collaborating with a microprocessor that handles exceptions, which is
not typically the case in reconfigurable solutions. The latter are rarely im-
plemented in FPGAs since the area and complexity involved in their imple-
mentation are not justified. By simply adding one more bit to the exponent,
the numeric range outperforms by far that achieved by subnormals. Our
single-precision arithmetic cores have been developed with the purpose of
working at a moderate frequency of ∼ 100MHz at the lowest latency pos-
sible. Their area/timing characteristics are depicted in Table 3 in contrast
with the standard Altera floating point cores [24].

Table 3: Area and performance for Stratix 5SGSMD8N3F45C2

Operation Core Latency ALUTs Registers DSPs Mem bits Fmax (Mhz)

Add/Sub
Altera 7 581 373 0 0 284.5
Own 2 526 105 0 0 167.3

Mul
Altera 5 150 190 1 0 308.2
Own 1 154 147 1 0 287.8

Div
Altera

6 189 245 5 4608 195.2
14 200 702 5 4742 285.7

Own 7 1377 540 0 0 136.2

Sqrt
Altera 16 436 538 0 121 233.0
Own 7 435 298 0 0 132.4

Available 532720 1065440 1755 35942400

The development of those floating-point cores has been completely made
using HDL-based design. However, the use of the Impulse C framework

18

allows to instantiate our cores whenever a floating-point arithmetic operation
appears in the C source code. To that purpose, only some modifications must
me made in the PSP files (which follow a XML syntax) corresponding to the
target platform.

5. Results

The area utilization of the implementation discussed for a single compu-
tational kernel is shown in Table 4. These results are obtained with Quartus
II 12.2 after Place and Route. The floating-point operators have been gen-
erated with the Megawizard Plug-in Manager from Altera. These operators
are seamlessly integrated within Impulse C by editing some XML files. As
it can be seen, the area bottleneck is found in the Box-Muller component,
because of the area used by the trigonometric and logarithmic operators [24].
In the Stratix V 5SGSMD8, a total number of 40 computational Monte-Carlo
kernels are instantiated. The outputs of these individual components are av-
eraged by a collector Impulse C process which then performs the interest rate
update in the price of the underlying asset.

Table 4: Area utilization for Stratix 5SGSMD8N3F45C2

Core ALUTs Registers DSPs Mem bits Fmax (Mhz)
Mersenne 744 867 2 40666 269.69
Box-Muller 8803 8155 22 1698 172.63
PayOffs 1242 1375 11 2268 206.48
SumPayOffs 1242 510 0 2498 156.48

1 Monte-Carlo core
9855 9409 29 41227

154.9
1.9% 0.9% 1.5% 0.1%

40 Monte-Carlo cores
396729 378509 1166 1682900

142.3
75.6% 36% 59.4% 3.2%

Available 532720 1065440 1755 35942400

Performance results are depicted in Table 5 compared to several CPU im-
plementations (for fairness reasons, the CPU version uses single-point float-
ing operations). The CPU code is executed on Ubuntu 10.10 64 bit and
the source is compiled with gcc 4.4.5, which allows the use of the OpenMP
multicore programming framework [41], using the optimization flags -O3 and

19

-ffast-math. By using the OpenMP framework, we allow the program to
run through several computational cores just by placing the OMP PARALLEL

FOR pragma before the outer loop of the Monte-Carlo simulation code. The
CPU hardware consists of an Intel i7 860 CPU which runs at 2.8 GHz and
it has 8 MB of cache.

For all the different versions the number of time steps, nSteps, is set to
3650 and the number of independent path simulations, nSims, is 107. The
FPGA execution time has been obtained by simulation but the performance
in a real system will not suffer from communications, as data transfer time
will be negligible compared to computation time. The tool reports a max-
imum frequency of 142.3 MHz, which leads to a total computation time of
6.41s. Comparing to the multi-core implementation, the reconfigurable im-
plementation runs ∼ 149 times faster (and ∼ 504 faster than the single-core
version).

Table 5: Execution time comparison between CPU and FPGA

Time (s) SpeedUp

CPU (1 core) 3232.60 1.00
CPU (2 cores) 1735.83 1.86
CPU (4 cores) 955.63 3.38
FPGA (40 cores) 6.41 504.07

The speedup obtained by our solution is comparable to the ones shown
in the related work (see Table 2). A remark must be made again emphasiz-
ing the fact than keeping a comparable performance, our solution generates
a better-quality amount of gaussian random number, which improves the
Monte-Carlo simulation quality.

6. Conclusions

We have implemented a Monte-Carlo method for pricing Asian Options
in FPGAs using floating-point arithmetic and Impulse C. The focus of this
implementation has been made in the quality of the random number gen-
eration, a feature that has been obscured in the previous works in the best
interest of performance. In contrast to that, our solution achieves a good
accuracy-performance tradeoff.

20

With some tricks in the Impulse C code, and by exploiting path indepen-
dence, we achieved pipelines with rate one both in the pseudo-random gener-
ator (Mersenne + BoxMuller) and in the Asian option pricing computation.
The use of Impulse C language has allowed to obtain a good performance
improvement in a drastically shorter period of time than a HDL-based de-
velopment would have taken. Moreover, the use of the Impulse C framework
has allowed to use some custom arithmetic in order to reduce the latency of
the global system, as well as the total area of the simulation module.

As a result 40 Monte-Carlo cores have been located inside our Stratix V
5SGSMD8 Altera FPGA, showing a speed-up improvement of ∼ 504 times
over a single-core CPU implementation, and ∼ 149 times over a 4-core one.

References

[1] Path integral approach to Asian options in the Black-Scholes model.
Physica A: Statistical Mechanics and its Applications 2010;389(4):780
–8.

[2] Kemna A, Vorst A. A pricing method for options based on average asset
values. Journal of Banking & Finance 1990;14(1):113–29.

[3] Wu L, Kwok YK, Yu H. Asian options with the american early exercise
feature 1999;2(1):101–11.

[4] Black F, Scholes MS. The pricing of options and corporate liabilities.
Journal of Political Economy 1973;81(3):637–54.

[5] Robinson S. General concepts of quality for discrete-event simulation.
European Journal of Operational Research 2002;138(1):103–17.

[6] L’Ecuyer P. Random number generation. In: Handbook of Simulation:
Principles, Methodology, Advances, Applications, and Practice. John
Wiley & Sons, Inc.; 2007, p. 93–137.

[7] Wallace CS. Fast pseudorandom generators for normal and exponential
variates. ACM Trans Math Softw 1996;22:119–27.

[8] Thomas D, Luk W. Non-uniform random number generation through
piecewise linear approximations. In: Field Programmable Logic and
Applications, 2006. FPL ’06. International Conference on. 2006, p. 1 –6.

21

[9] Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans
Model Comput Simul 1998;8:3–30.

[10] Jones D. Good Practice in (Pseudo) Random Number Generation for
Bioinformatics Applications.
http://www0.cs.ucl.ac.uk/staff/D.Jones/GoodPracticeRNG.pdf;
2010.

[11] Brown RG. Dieharder: A Random Number Test Suite.
http://www.phy.duke.edu/ rgb/General/dieharder.php; 2009-2011.

[12] L’Ecuyer P. Maximally equidistributed combined Tausworthe genera-
tors. Math Comput 1996;65(213):203–13.

[13] Matrices and the structure of random number sequences. Linear Algebra
and its Applications 1985;67(0):147 –56.

[14] On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics
1967;7(4):86–112.

[15] Bratley P, Fox BL. Algorithm 659: Implementing sobol’s quasirandom
sequence generator. ACM Trans Math Softw 1988;14(1):88–100.

[16] Intel . Vector Statistical Library Notes for Intel Math Kernel Li-
brary 10.3 Update 12. http://software.intel.com/sites/products/
documentation/hpc/mkl/vslnotes/8_4_9_SOBOL.htm; ????

[17] Thomas DB, Luk W. High quality uniform random number genera-
tion through lut optimised linear recurrences. In: In Proc. International
Conference on Field-Programmable Technology. IEEE Computer Soci-
ety. 2005,.

[18] Tian X, Benkrid K. Design and implementation of a high performance
financial monte-carlo simulation engine on an fpga supercomputer. In:
ICECE Technology, 2008. FPT 2008. International Conference on. 2008,
p. 81 –8.

[19] Tse A, Thomas D, Tsoi K, Luk W. Efficient reconfigurable design for
pricing asian options. ACM SIGARCH Computer Architecture News
2011;38(4):14–20.

22

http://www0.cs.ucl.ac.uk/staff/D.Jones/GoodPracticeRNG.pdf
http://software.intel.com/sites/products/documentation/hpc/mkl/vslnotes/8_4_9_SOBOL.htm
http://software.intel.com/sites/products/documentation/hpc/mkl/vslnotes/8_4_9_SOBOL.htm

[20] Echeverria P, Lopez-Vallejo M. Fpga gaussian random number gener-
ator based on quintic hermite interpolation inversion. In: Circuits and
Systems, 2007. MWSCAS 2007. 50th Midwest Symposium on. 2007, p.
871–4.

[21] Tian X, Benkrid K. Mersenne twister random number generation on
FPGA, CPU and GPU. In: 2009 NASA/ESA Conference on Adaptive
Hardware and Systems. IEEE; 2009, p. 460–4.

[22] Box G, Muller M. A note on the generation of random normal deviates.
The Annals of Mathematical Statistics 1958;29(2):610–1.

[23] Okten G, Goncu A. Generating low-discrepancy sequences from the
normal distribution: Box-muller or inverse transform? Mathematical
and Computer Modelling 2011;53(5-6):1268 –81.

[24] Altera C. Floating-Point Megafunctions User Guide.
http://www.altera.com/literature/ug/ug_altfp_mfug.pdf; 2011.

[25] Fu M, Dilip B, Wang T. Pricing continuous asian options: a comparison
of monte carlo and laplace transform inversion methods. Journal of
Computational Finance 1998;2:49–74.

[26] Seghiouer H, Lidouh A, Nqi FZ. Parallel Monte Carlo method for pricing
Asian options using trapezium scheme. Appl Math Sci 2011;5.

[27] Campolieti G, Makarov R. Path integral pricing of asian options on
state-dependent volatility models. Quantitative Finance 2008;8(2):147–
61.

[28] Tian X, Benkrid K, Gu X. High performance monte-carlo based option
pricing on fpgas. Engineering Letters 2008;16(3):434–42.

[29] Joshi MS. Graphical asian options. Wilmott Journal 2010;2(2):97–107.

[30] El-Araby E, Merchant SG, El-Ghazawi T. A framework for evaluat-
ing high-level design methodologies for high-performance reconfigurable
computers. IEEE Transactions on Parallel and Distributed Systems
2011;22:33–45.

23

http://www.altera.com/literature/ug/ug_altfp_mfug.pdf

[31] El-Araby E, Nosum P, El-Ghazawi T. Productivity of high-level lan-
guages on reconfigurable computers: An hpc perspective. In: Field-
Programmable Technology, 2007. ICFPT 2007. International Conference
on. 2007, p. 257 –60.

[32] El-Araby E, Taher M, Abouellail M, El-Ghazawi T, Newby G. Compar-
ative analysis of high level programming for reconfigurable computers:
Methodology and empirical study. In: Programmable Logic, 2007. SPL
’07. 2007 3rd Southern Conference on. 2007, p. 99 –106.

[33] Impulse Acelerated Technologies . Impulse-C.
http://www.impulseaccelerated.com; 2010.

[34] Sanchez-Roman D, Sutter G, Lopez-Buedo S, Gonzlez I, Gomez-Arribas
F, Aracil J. ”An Euler solver accelerator in FPGA for computational
fluid dynamics applications”. VII Southern Programmable Logic Con-
ference, SPL2011 2011;.

[35] Xu J, Subramanian N, Alessio A, Hauck S. Impulse c vs. vhdl for accel-
erating tomographic reconstruction. In: Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on. 2010, p. 171 –4.

[36] Sanchez-Roman D, Lopez-Buedo S, Sutter G, Gonzalez I, Gomez-
Arribas F, Aracil J. FPGA Acceleration of a Monte Carlo method
for pricing Asian Options using High Level languages. In: XI Edicion
Jornadas de Computacion Reconfigurable y Aplicaciones (JCRA2011).
2011,.

[37] Butenhof DR. Programming with POSIX threads. Addison-Wesley
Longman Publishing Co., Inc.; 1997.

[38] Pellerin D, Thibault S. Practical FPGA programming in C. Prentice
Hall Press Upper Saddle River, NJ, USA; 2005. ISBN 0131543180.

[39] Marsaglia G. Seeds for random number generators. Commun ACM
2003;46(5):90–3.

[40] Bradley T, du Toit J, Tong R, Giles M, Woodhams P. Parallelization
Techniques for Random Number Generators. In: Hwu , editor. GPU

24

http://www.impulseaccelerated.com

Gems: Emerald Edition. Amsterdam: Morgan Kaufman; 2011, p. 231–
46.

[41] Dagum L, Menon R. ”OpenMP: an industry standard API for shared-
memory programming”. IEEE Computational Science and Engineering
Jan-Mar 1998;.

25

Diego Sanchez-Roman is a PhD student at the Autonomous
University of Madrid, Spain. He received the degree in com-
puter science and mathematics in 2009. In 2011, he has
obtained the master’s degree in in Computer Science and
Telecommunication Engineering. His research interests in-
clude computer architecture and high performance comput-
ing.

Victor Moreno is a PhD student at the Universidad Aut-
noma de Madrid, Spain. He joined the High Performance
Computing and Networking group of the same university
in year 2008, where he participated in the European Union
project OneLab2. He received his degrees in Computer Sci-
ence and Mathematics both in year 2010. In 2011, while
finishing his studies of master’s degree in Computer Science

and Telecommunication Engineering, he has been awarded with a four-year
fellowship by the Ministry of Education of Spain (F.P.U scholarship). His
research interest areas include High Performance Heterogenous Computing
(with GPUs, FPGAs, etc.), Computer Architecture and performance tuning.

Sergio Lopez-Buedo received in 2003 his Ph.D. in Com-
puter Engineering from Universidad Autonoma de Madrid
(Spain), where he currently serves as associate professor in
the area of Computer Architecture. He was a visiting re-
searcher at University of British Columbia (2005) and at The
George Washington University (2006, 2007), and he has also
collaborated in the doctorate program of Universita degli

Studi di Trento (2007-2009). FPGA technology is his main research interest,
especially high-performance reconfigurable computing and communication
applications. Dr. Lopez-Buedo holds more than 50 publications, including
journals, conferences and books as editor, and he is also co-founder of Naudit
HPCN, a company dedicated to providing high-performance computing and
networking solutions.

26

Gustavo D. Sutter received an MS degree in Computer
Science from State University UNCPBA of Tandil (Buenos
Aires) Argentina, in 1997, and a PhD degree from the Au-
tonomous University of Madrid, Spain, in 2005. He has been
a professor at the UNCPBA Argentina and is currently a
professor at Universidad Autonoma de Madrid, Spain. His
research interests include ASIC and FPGA design, digital

arithmetic, development of embedded systems and High Performance Com-
puting. He is the author of three books and more than fifty international
papers and communications.

Ivan Gonzalez received the Computer Engineering degree
(Ms.C.) in 2000 and the Ph.D. degree in Computer Engineer-
ing in 2006, both from Universidad Autonoma de Madrid
(UAM), Spain. From October 2002 to October 2006 he was
Teaching Assistant at the Computer Engineering Depart-
ment of UAM. From November 2006 to January 2008 he

was a Postdoctoral Research Scientist at the High Performance Computing
Laboratory (HPCL), Electrical & Computer Engineering Department, The
George Washington University (Washington DC, USA). He was a faculty
member of the NSF Center of High Performance Reconfigurable Computing
(CHREC) at The George Washington University. His main research interests
are heterogeneous computing (with GPUs, FPGAs, etc.), parallel algorithms
and performance tuning. Other interests include FPGA-based reconfigurable
computing applications, with a special focus on dynamic partial reconfigura-
tion, embedded systems and robotics.

Francisco J. Gomez-Arribas received the Ph.D. from
Universidad Autonoma de Madrid (UAM), Spain, in 1996.
From October 1996 until November 2000 he was Assistant
Professor at the Computer Engineering Department of the
UAM. He is currently Professor of Computer Architecture
and Parallel Computing courses at the same university. His
research field of interest concern reconfigurable computing

applications based in FPGA circuits, with a special focus on the design of
multiprocessor systems with reconfigurable architecture. Secondary fields of
interest include network computing, cryptographic coprocessors, embedded

27

system on-a-chip and experimental support of C.S. and E.E. education on
Internet.

Javier Aracil received the M.Sc. and Ph.D. degrees (Hon-
ors) from Technical University of Madrid in 1993 and 1995,
both in Telecommunications Engineering. In 1995 he was
awarded with a Fulbright scholarship and was appointed as
a Postdoctoral Researcher of the Department of Electrical
Engineering and Computer Sciences, University of Califor-
nia, Berkeley. In 1998 he was a research scholar at the Center

for Advanced Telecommunications, Systems and Services of The University
of Texas at Dallas. He has been an associate professor for University of
Cantabria and Public University of Navarra and he is currently a full pro-
fessor at Universidad Autonoma de Madrid, Madrid, Spain. His research
interest are in optical networks and performance evaluation of communi-
cation networks. He has authored more than 100 papers in international
conferences and journals.

28

	Introduction
	Asian options and Monte-Carlo simulations
	Asian options
	Monte-Carlo simulations
	Mersenne Twister
	Box-Muller transform

	Related work

	High Level Languages
	Impulse C

	Implementation
	Option price calculation
	Random number generation
	Floating-point arithmetic cores

	Results
	Conclusions

