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ABSTRACT 

Simulation-based techniques can be used to evaluate whether a 

particular NoC-based platform configuration is able to meet the 

timing constraints of an application, but they can only evaluate a 

finite set of scenarios. In safety-critical applications with hard 

real-time constraints, this is clearly not sufficient because there is 

an expectation that the application should be schedulable on that 

platform in all possible scenarios. This paper presents a particular 

NoC-based multiprocessor architecture, as well as a number of 

analytical methods that can be derived from that architecture, 

aiming to allow designers to check, for a given platform 

configuration, whether all application tasks and communication 

messages always meet their hard real-time constraints in every 

possible scenario. Experiments are presented, showing the use of 

the proposed methods when evaluating different task mapping and 

platform topologies.  

Categories and Subject Descriptors 

C.3 [Special-purpose and Application-based Systems]: Real-

time and embedded systems. 

General Terms 

Performance, Design. 

 

1. INTRODUCTION 

Embedded systems typically have to fulfil timing constraints that 

are related to their application domain and usage scenarios. 

Constraints are usually specified as the deadline to perform 

specific functions. For example, a high-definition video recorder 

must be able to capture, compress and store 25 video frames per 

second. In safety-critical applications, such constraints are said to 

be hard real-time constraints, as there is an expectation that they 

have to be met by the system in all possible scenarios. Therefore, 

embedded systems designers must be able to evaluate which 

design alternatives can fulfil those constraints and, for safety-

critical applications, guarantee real-time behaviour.  

In this paper, we present analytical methods to evaluate whether a 

multicore embedded system based on a Network-on-Chip (NoC) 

can fulfil all its timing constraints. A NoC-based system can have 

tens to hundreds of processing cores interconnected by an on-chip 

packet-switching network that allows data to be transferred 

between the local caches of each core and from/to external 

memory. Section 2 of the paper provides more detail on this type 

of system architecture. It will then become clear that the 

performance of the NoC interconnect is as critical as the 

performance of the processing cores when it comes to meet timing 

constraints.  

Throughout this paper, we will use the terms end-to-end timing 

constraint or end-to-end deadline of an application task-chain. 

Those terms denote constraints derived from the application 

domain (e.g. every video frame must be processed in 40 ms or 

less) that must be met by specific components of the application 

(i.e. chains of communicating tasks). Our goal is to establish 

whether all task-chains of an application have their end-to-end 

deadlines met by a particular NoC-based platform configuration, 

and this problem is referred in this paper as end-to-end 

schedulability test. Such test must consider the end-to-end latency 

of each task of a task-chain: the time it takes for a processing core 

to execute that task (computation latency) plus the time it takes 

for the NoC to transfer all data produced by that task to the next 

one on the chain (communication latency). In Section 3, precise 

definitions of all those concepts will be given, followed in Section 

4 by formulations of end-to-end schedulability tests that are 

tailored to NoC-based multicores with priority arbitration. 

Some of the schedulability tests presented in this paper are based 

on classic Response Time Analysis (RTA) [1] and on NoC traffic 

flow schedulability analysis [2]. Individually, those analyses 

cannot be used to evaluate and improve the schedulability of a 

NoC system. For example, the traffic flow schedulability analysis 

from [2] has been used in [3] to produce fully schedulable task 

mappings, but authors had to artificially limit the number of tasks 

mapped to each core, as the analysis does not directly consider the 

different interference patterns resulting from mapping the source 

of the traffic flows to different cores. Without a limitation on the 

maximum number of tasks per core, the mapping optimisation 

process would lead to solution with all tasks mapped to the same 

core (so all communications are local, instantaneous and therefore 

schedulable). Likewise, the evaluation of NoC schedulability 

using only RTA would be oblivious to the delays caused by 

network contention. Therefore, in this paper we discuss how to 

compose those two analytical methods to achieve correct upper 

bounds to the end-to-end latency, and show that the resulting 

analytical model is useful as a test to evaluate whether a specific 

task mapping is schedulable. 

Schedulability tests are not always used in industry and academia. 

Often, system designers address the schedulability problem by 

simulating the system under different scenarios and checking if 

the obtained figures for computation and communication latencies 

meet the constraints. There are two main limitations to that 

approach. Firstly, for a complex multicore embedded system, the 

simulation of a few seconds of an application’s execution may 

take hours or days [4], limiting the number of design alternatives 



that can be evaluated and the portion of the application lifetime 

that can be considered. Secondly, simulation can only verify 

whether constraints are met within the scenarios that are explicitly 

simulated. In complex embedded systems, the set of possible 

scenarios is too vast to be exhaustively covered, so it is not 

possible to check whether constraints are always met. For 

example, if application tasks can suffer release jitter, it would be 

necessary to simulate each and every possible value of jitter for 

each task in order to make sure that the timing constraints are met 

in every case. In Section 5, we use a number of benchmarks to 

evaluate the proposed schedulability tests, we compare the 

obtained figures with those obtained with simulation, and propose 

a design flow that benefits from the joint use of both techniques.  

2. NOC-BASED MULTICORES 

NoCs are a common architectural template for processors with 

dozens of cores, and it has the potential to scale with the increase 

of the core count up to hundreds or thousands. Figure 1 shows a 

simplified representation of a NoC architecture. It has 16 cores, 

each of them represented together with their own local cache as a 

white rectangle. Cores are directly connected to NoC switches 

(grey rectangles), which route data packets towards a destination 

(which may be another core, an interface to off-chip memory, a 

custom hardware accelerator, etc.).  

Many components of the NoC template can be parameterized to 

better meet design goals, such as the number and type of cores, 

buffering, routing and arbitration policies, among others. In this 

paper, our choice of a specific subset within such a large number 

of alternatives was based on three criteria: (i) adopt architectural 

features that are widely used in industry and academia, (ii) use on-

chip resources efficiently, and (iii) privilege techniques that are 

amenable to the type of schedulability tests we are investigating. 

  

Figure 1. NoC architecture with detail of the router structure 

Following criterion (i), we concentrate on the widely used 2D 

mesh topology [5][6][7][8]. Criterion (ii) motivates the use of 

wormhole switching, as its buffer overhead is much smaller than 

store-and-forward (SAF) approaches, and its link allocation is 

more efficient than circuit switching approaches: there is no need 

to reserve the complete path of a packet, and NoC links are only 

allocated on the segments of the path where there is data ready to 

be transferred. Finally, criterion (iii) requires some level of 

predictability on resource sharing policies, so we limit our 

approach to NoCs with non-adaptive routing and priority 

arbitration such as QNoC [7] or Hermes [9]. The most common 

implementation of priority arbitration is based on virtual channels 

(VCs) [10], which allow packets with higher priority to preempt 

the transmission of low priority ones, making it easier to predict 

the outcome of network contention scenarios. Figure 1 shows a 

detailed view of a NoC switch with priority-arbitrated VCs: in 

each input port, a different FIFO buffer stores data words (flits) of 

packets arriving through different VCs (one for each priority 

level). The routing component assigns an output port for each 

incoming packet according to their destination. A credit-based 

approach [10] guarantees that data is only forwarded from a router 

to the next when there’s enough buffer space to hold it at the right 

VC. At any time, a flit of a given packet will be sent through its 

respective output port if it has the highest priority among the 

packets being sent out through that port, and if it has credits (that 

is, buffer space on the respective buffer of the neighbouring node 

connected to that output port). If the highest priority packet can’t 

send data because it is blocked elsewhere in the network, the next 

highest priority packet can access the output link. 

3. SYSTEM MODEL AND NOTATION 

In this paper, we investigate ways to determine whether 

application tasks executing and communicating over a specific 

NoC-based multicore can meet all application-specific timing 

constraints. Therefore, we need a system model that covers the 

application as well as the NoC-based platform and its 

configurations.  

For the application model, we recall the sporadic task model and 

define an application as a taskset Γ = {τ1, τ2,…, τn} where each 

task τi is a 6-tuple {Ci, Ti, Di, Ji, Pi, φi} indicating respectively its 

worst case computation time, period (i.e. minimum inter-release 

time interval), deadline, release jitter and priority. The sixth 

element of the tuple is the only proposed addition to the sporadic 

task model, and represents a communication message sent by τi. 

Our initial assumption is that each task produces a single message 

φi which is sent immediately after it finishes its computation. The 

message is defined as a 3-tuple {τd , Zi, Ki} representing its 

destination task, size and maximum release jitter. A task-chain Χ 

= {τ1, τ2,…, τx} is an ordered subset of Γ where each task sends a 

message to the subsequent task in X, and all of them have the 

same period Tx. We assume that all task-chains in a particular 

application Γ are disjoint subsets of Γ, and that loops are not 

allowed (i.e. the sixth element of the tuple of the final task τx of 

every task-chain is the empty set ø). 

The model of the NoC platform is composed of a set of processing 

cores Π = {πa, πb,…, πz}, a set of switches Ξ = {ξ1, ξ2,…, ξm}, and 

a set of unidirectional links Λ = {λa1, λ1a, λ12, λ21,…, λzm, λmz}. 

Links can connect cores to switches, or switches with each other, 

allowing for all possible direct and indirect NoC topologies. For 

example, the architecture shown in Fig. 1 has 16 cores πa … πp, 

each of them connected to one of the 16 switches ξ1 … ξ16 via two 

unidirectional links (e.g. λa1 and λ1a). The switches, in turn, are 
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connected to each neighbouring switch by two links (e.g. λ21, λ12, 

λ23, λ32, λ26 and λ62 are the links attached to switch ξ2).  

NoCs forward packets from source to destination according to a 

routing algorithm. We define a function route(πa, πb) = {λa1, 

λ12,…, λmb} denoting the subset of Λ used to transfer packets from 

core πa to core πb. A route will include links connecting the source 

and destination cores to their respective switches, and all the links 

between switches along the way. The cardinality of a route is 

defined as |route(πa, πb)| and will be informally referred as its hop 

count. For the example in Fig. 1, route(πe, πg) = {λe5, λ56, λ67, λ7g} 

and |route(πe, πg)| = 4 for most commonly used routing 

algorithms.  

Task mapping is a critical part of the design of multicore systems. 

It defines which application tasks should be mapped onto which 

processing core (i.e. on which core each task will execute). Many 

different approaches to task mapping have been proposed, taking 

into account the time when the mapping occurs, whether tasks can 

be remapped (or migrated) during execution, and which metrics 

should be considered when making a mapping decision. We 

therefore define a surjective function map(τi) = πa to denote the 

core onto which a task is mapped. Its inverse is defined as          

map-1(πa) = {τi,…, τn} and represents the tasks mapped to a given 

core. Likewise, the mapping of a message map(φi) = 

route(map(τi), map(τd)) denotes the route of its packets over the 

NoC, and the inverse map-1(λ) = {φi,…, φn} represents the 

messages mapped over a given link. 

Once the mapping of all tasks of Γ is defined, it is possible to 

calculate the basic communication latency Li of every message φi. 

It represents the time taken by the message to be completely 

transferred from its source to its destination, assuming no 

contention over the NoC links (i.e. as if the message is the only 

one using the NoC). The actual value of Li will depend on 

implementation-specific characteristics of the NoC (e.g. link 

width, time required for a packet header to cross a router, and for 

a flit to cross a link). A common formulation is the following:     

Li = |map(φi)| . lhop + (|map(φi)| -1) . lrouter + (Zi / width). lhop, 

where the first term represents the time it takes for the packet 

header to traverse all the NoC links, expressed as the product of 

the message hop count and the latency lhop for the header to 

traverse a single link; the second term represents the time it takes 

for the packet header to traverse all NoC routers, and is expressed 

as the product of the number of routers along the path (which is 

usually the number of hops minus one in most direct networks) 

and the latency lrouter for the header to traverse a router; the third 

term represents the time taken by the packet payload to follow the 

header in a wormhole fashion all the way to the destination, 

expressed by the message length Zi (in bits) divided by the link 

width (which results in the number of payload flits), multiplied by 

the single link latency lhop. 

4. END-TO-END SCHEDULABILITY 

TESTS FOR NOC-BASED MULTICORES 

A schedulability test is able to discern system configurations that 

are schedulable, that is, able to meet their timing constraints even 

in the worst case scenario. In this paper, we assume that a system 

is schedulable iff all its task chains meet their end-to-end 

deadlines. To check this property, we first revisit a number of 

existing techniques that can be used as necessary schedulability 

tests. 

4.1 Schedulability of tasks over a processing 

core 

A processor utilisation test can be used to check whether all tasks 

mapped to a particular core πa do not exceed its capacity: 

∑
𝐶𝑖

𝑇𝑖
τ𝑖 ∈ 𝑚𝑎𝑝−1(π𝑎)

≤ 1 

This test is necessary but obviously not sufficient because even 

though the core πa may be capable to run all the tasks, it may not 

be able to run all of them within their deadlines. Response Time 

Analysis (RTA) [1] is the standard technique to evaluate how 

much the interference from higher priority tasks can delay the 

completion time of task τi:   

𝑅𝑖 = 𝐶𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉

∀τ𝑗 ∈ ℎ𝑝(τ𝑖) 

𝐶𝑗  

where the function hp(τi) denotes the set of all tasks that can 

preempt τi: those mapped to the same core and that have a higher 

priority. Formally, hp(τi) includes every task τj ∈ Γ where map(τi) 

= map(τj)  and Pi < Pj. With the help of Eq. 2, it is possible to 

calculate the longest possible time interval between the release of 

τi and its termination. This is done by adding τi‘s computation 

time 𝐶𝑖 and the computation times 𝐶𝑗  of all releases of tasks τj that 

could preempt it. The result of that sum is referred as τi’s worst 

case response time and is represented by 𝑅𝑖. As 𝑅𝑖 appears in both 

sides of Eq. 2, an iterative solution was proposed in [1]. RTA has 

been widely used to test schedulability of uniprocessor and 

statically mapped multiprocessor systems with fixed priorities. 

More advanced tests have been reviewed in [11], considering 

more advanced task models that support task migration (global 

scheduling), dynamic priorities and different constraints on 

deadlines. However, the tests described and referenced above do 

not explicitly consider inter-task communication. Instead, most 

assume that all communication latencies can be combined with 

the worst case computation time Ci of the respective tasks. For 

uniprocessor systems with uniform memory access times, such 

assumption can be acceptable as the communication overhead can 

be predictable and usually small compared with the computation 

time. In NoC-based systems, however, the communication latency 

introduced by the NoC when tasks access memory or exchange 

messages depends heavily on the task mapping, the application 

communication patterns and resulting network congestion (which 

is particularly hard to predict in the case of wormhole switching 

NoCs). This leads to high variability in communication latencies, 

which can be of the same order of magnitude of the computational 

time Ci  of the tasks (or even higher). Therefore, we make a case to 

explicitly consider communication times when analysing 

schedulability of NoC-based systems. 

4.2 Schedulability of packets over a NoC and 

end-to-end schedulability of communicating 

tasks 

To address the schedulability of packets transmitted over a NoC, 

we rely on the work proposed by Shi and Burns [2], which in turn 

builds on RTA. Their work assumes that packets are released into 

the NoC sporadically, i.e. a series of packets (referred in [2] as a 

traffic flow) has a minimum inter-release interval which is known 

at design time. The maximum size of each packet is also known a 

priori. On the platform side, the main assumption is that the NoC 
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routers perform deterministic routing, and that the link arbiters 

can preempt packets when higher-priority packets request the 

output link they are using. Such assumption is valid for the type of 

NoC architectures described in Section 2. The worst case latency 

𝑆𝑖 of a packet transmitted over such a NoC can be found using Eq. 

3, which has been rewritten from the original in [2] to follow the 

notation presented in Section 3. To simplify the notation, we 

assume that there is a one-to-one relationship between application 

messages and packets sent over the NoC, and therefore use the 

same symbol φ for both. 

     

𝑆𝑖 =  ∑ ⌈
𝑆𝑖 + 𝐾𝑗 + 𝐾𝑗

𝐼

𝑇𝑗
⌉ 𝐿𝑗 + 𝐿𝑖

∀φ𝑗 ∈ interf(φ𝑖)   

  

 

The function interf(φi) denotes the direct interference set of φi, 

which is the set of all packets that can preempt φi, which are those 

whose routes at have at least one NoC link in common with φi‘s 

route and that have higher priority. Formally, interf(φi) includes 

every packet φj where map(φi) ∩ map(φj) ≠ ∅ and Pi < Pj. The 

intuition behind Eq. 3 is similar to what was presented for Eq. 2. 

The value of 𝑆𝑖 can be found by adding φi‘s basic latency 𝐿𝑖 and 

the latencies 𝐿𝑗  of all releases of packets φj that could preempt it. 

The same iterative solution proposed in [1] can be used here. 

It is worth noticing that the release jitter of φj can influence how 

many times it can preempt φi. In Eq. 3, we consider two types of 

release jitter: 𝐾𝑗  which is caused by the execution of the task τj 

that releases φj, and 𝐾𝑗
𝐼 which is caused by indirect interference 

(i.e. packets that can preempt φj but cannot interfere on φi because 

they don’t share any links, see [2] for a detailed definition).[2][1]  

Since the value of 𝐾𝑗  must be the maximum amount of time 

elapsed between the start of φj‘s period and its actual release, and 

since we have defined that a packet is released immediately after 

its respective task has finished computation, we can clearly state 

that 𝐾𝑗  = 𝑅𝑗. Finally, from [2] we have that 𝐾𝑗
𝐼 =  𝑆𝑗 − 𝐿𝑗.      

Thus, the worst case end-to-end response time of a task τi is given 

by 𝐸𝐸𝑅𝑖 = 𝑅𝑖 + 𝑆𝑖, which composes its worst-case computation 

response time and its worst case communication latency (Figure 

2). Its end-to-end schedulability can be tested by checking 

whether 𝐸𝐸𝑅𝑖 ≤ 𝐷𝑖. 

4.3 End-to-end schedulability of task chains  

To test the schedulability of a task chain X, we need to consider 

the individual end-to-end response times of all tasks τ𝑖 ∈ 𝑋. 

Before we can do that, we must discriminate three modes of 

execution for task chains over multiple processing elements: 

sequential, parallel and pipelined.  

In a sequential execution, a task chain will be executed 

completely, in one or more processors, before it can be executed 

again. In other words, only a single task τ𝑖 ∈ 𝑋 can be executing 

at a given point in time.  

In a parallel execution over multiple processors, there are no 

constraints over the execution of task chains, and arbitrarily many 

jobs of a task chain can be executing at the same time. 

 

Figure 2. End-to-end response time of a communicating task 

A pipelined execution is a special kind of parallel execution which 

allows multiple jobs of the same task chain to be executed 

simultaneously over different processors, but disallows the 

simultaneous execution of more than one job of the same task. A 

common pattern for pipelined execution is to have a number of 

jobs of a task chain X running concurrently, each of them released 

after Tx time units after the preceding one, in a phase-shifted way. 

We refer to this pattern as a synchronous pipeline. Figure 3 shows 

an example of a task chain executing as a synchronous pipeline. It 

includes three tasks τ1, τ2 and τ3 running on separate cores (each of 

them represented on a separate timeline), their respective 

communications over NoC links (also shown over separate 

timelines), occasionally suffering interference from higher priority 

tasks and packets (not shown in the figure). Curved arrows show 

the functional dependencies between the computation and 

communication components of one chain, making it easier to see 

that those dependencies will always be satisfied as long as each 

task meets its end-to-end deadline constraint. 

 

Figure 3. Example of a 3-task chain executed in a synchronous 

pipeline over 3 processors  

In this paper, we concentrate on the synchronous pipeline case. 

We argue that it can be analysed by the end-to-end schedulability 

test described in subsection 4.2. Let us assume that the end-to-end 

deadline Dx of a synchronously pipelined task chain X, which is 

the maximum tolerated amount of time elapsed between the 

release of its first task and the delivery of the output of its last 

task, is equal to the number x of tasks in the chain multiplied by 

the chain period Tx. In a synchronous pipeline, we can partition 
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Dx equally among all tasks of the chain, so the end-to-end 

deadline Di of each individual task is equal to Tx. This enables a 

task chain X with x tasks to produce its output x periods after its 

release, but once the pipeline is filled each of its jobs will produce 

an output at every period.  

The schedulability test for this particular case is a simple check of 

whether ∀ τ𝑖 ∈ 𝑋, 𝐸𝐸𝑅𝑖 ≤ 𝑇𝑥. This assumes that there will be 

acceptable deadline misses for the first x jobs of the task chain X 

while the pipeline is being filled, and guarantees that the system 

will never miss a deadline after that. The intuition behind this 

approach is that each task of the chain will be triggered every Tx 

time units, and has to finish computing and communicating with 

the next task of the chain before the end of the period, so that the 

following task will have all the data it needs before it can run at 

the next periodic tick.  

4.4 Link utilisation tests  

Similarly to Eq. 1, a utilisation test can be applied to each of the 

NoC links, aiming to check whether the messages mapped to each 

of them will not exceed their bandwidth: 

∑
𝐿𝑖

𝑇𝑖
φ𝑖 ∈ 𝑚𝑎𝑝−1(λ𝑎1)

≤ 1 

Again, this test is necessary but not sufficient because even 

though the link λa1 may be capable to transmit all messages 

mapped to it without starvation, they might not meet their 

deadlines. 

By considering the multi-hop nature of NoCs, we identify another 

utilisation test that addresses the direct interference set interf(φi) 

of a message φi:  

∑
𝐿𝑗

𝑇𝑗
φ𝑗 ∈ 𝑖𝑛𝑡𝑒𝑟𝑓(φi)

≤ 1 

The intuition behind this test is the following: if a message φj can 

interfere and hinder the progress of another message φi over the 

NoC, this happens regardless of the link where the contention 

happens. In other words, the complete route of a message can be 

seen as a single resource with exclusive access, and if a higher 

priority message needs to use any part of that route the whole 

transmission of φi will be halted. For example, if φi is routed over 

n different links and it suffers interference from φj which also uses 

one or more of those links and has a higher priority, the time φi 

waits for the shared link(s) will be the same if they share link λ1, 

λ2, …, λn, or any combination of them, as in every case φi will not 

be able to progress in a pipelined fashion towards its destination. 

The same intuition can be extended to other higher priority 

messages that share any possible combination of links with φi. 

Therefore, we conclude that the direct interference set interf(φi) 

determines all contenders for the route of a message φi, and the 

overall utilisation of that route has to be less than 1 due to the 

exclusive access. 

The proof that this test is tighter than the test in Eq. 4 lies on the 

fact that the direct interference set interf(φi) is a superset of each 

of the sets including the messages that share any of the links φi is 

mapped to, and that can interfere with it: ∀ λ ∈ map(φi),        

hp(map-1(λ)) ∈ interf(φi), where hp({φi … φn }) denotes the subset 

of messages that have higher priority than φi. Actually, from the 

definition given in Section 4.2 it is easy to see that the direct 

interference set is actually the union of all those sets: 

𝑖𝑛𝑡𝑒𝑟𝑓(𝜑𝑖) =  ⋃ ℎ𝑝(𝑚𝑎𝑝−1(𝜆))λ ∈ 𝑚𝑎𝑝(𝜑𝑖) . Thus, the utilisation 

test given in Eq. 5 will cover, when applied to the lowest priority 

message of each link, the test given in Eq. 4. 

In any case, both utilisation tests identified in this subsection are 

necessary, but not sufficient. While they are useful to discriminate 

unschedulable mappings, they cannot guarantee schedulability. 

They are nonetheless useful to prune large mapping spaces, as 

they are less computationally expensive than the tests described in 

subsections 4.2 and 4.3.   

5. EXPERIMENTAL WORK 

To evaluate the correctness and usefulness of the schedulability 

tests described in the previous section, we devised two types of 

experiment. In subsection 5.1, we will compare the figures for 

computation and communication response times found using the 

proposed schedulability tests with figures obtained through 

simulation of predefined configurations of a NoC-enabled 

embedded system. In subsection 5.2, we will then show that the 

proposed tests can be used as a fitness function within a search-

based optimisation heuristic. 

5.1 Joint end-to-end schedulability analysis 

and simulation   

In this series of experiments, we analyse the schedulability of a 

benchmark application over a specific NoC-based embedded 

platform.  

The platform follows the architecture described in Section 2, with 

homogeneous cores running priority-preemptive task schedulers, 

distributed memory, 2D-mesh NoC interconnect with XY 

dimension routing, credit-based flow control, 8 virtual channels 

with 3-flit input buffers per port and priority-preemptive link 

arbitration. It is worth noticing that the schedulability tests 

proposed in Section 4 would support alternatives on most of those 

architectural choices, but priority-preemptive arbitration at the 

cores and NoC links is a requirement. 

The chosen benchmark application is based on the autonomous 

vehicle (AV) introduced in [12], including 39 communicating 

tasks performing functionality such as navigation control, 

vibration control and obstacle detection through stereo 

photogrammetry. Task periods vary between 0.04 to 1 second, and 

communication volumes vary between 1 and 76 kbytes. 

To model the benchmark as task chains, a number of tasks of the 

original application had to be partitioned (i.e. to break tree-like 

structures when a task receives data from multiple sources). 

Furthermore, we had to introduce the notion of “sink tasks” to 

model DMA transfers to the local memory of the core where 

specific tasks are mapped to. In those cases, the destination task 

does not require any computation overhead (e.g. last task of a 

chain writes to a memory-mapped actuator, so it does not load the 

destination core, but used the bandwidth of the NoC links all the 

way to the destination interface).  

To maintain the realism of the benchmark, we constrained all 

mappings used in the paper in such a way that all partitions of a 

task, as well as its respective sink, are mapped to the same core 

(so that only possible mappings of the application were 

considered). Table I shows the complete set of tasks, showing 

which chain they belong to (chains have lengths between 2 and 5 

tasks), their names (first four letters indicate the original task 

name from [12], with an appendix if the task is a partition or a 

sink of one of the original tasks), destination task, computation 

(4) 

 

(5) 

 



time (in milliseconds), period (in milliseconds), priority, and 

communication volume (in bytes). 

 

Table I – Autonomous Vehicle benchmark   

task 

 

chain 

 

name 

 

dest 

task 

comp  

(ms) 

period 

(ms) 

pri 

 

comm  

(bytes) 

1 A POSI-A 2 5 500 31 2048 

2 A NAVC-A 3 10 500 32 4096 

3 A OBDB-A 42 150 500 33 32768 

4 B OBDB-B 33 150 1000 34 65536 

5 C NAVC-C 40 20 100 24 1024 

6 C SPES-C 5 5 100 25 1024 

7 D NAVC-D 40 10 100 26 2048 

8 E FBU3-E 47 10 40 1 76800 

9 F FBU8-F 48 10 40 2 76800 

10 G VOD1 42 20 500 3 1024 

11 H VOD2 42 20 500 4 1024 

12 I FBU1 20 10 40 5 76800 

13 J FBU2 21 10 40 6 76800 

14 K FBU3 22 10 40 7 76800 

15 L FBU4 23 10 40 8 76800 

16 M FBU5 24 10 40 9 76800 

17 N FBU6 25 10 40 10 76800 

18 O FBU7 26 10 40 11 76800 

19 P FBU8 27 10 40 12 76800 

20 I BFE1 28 20 40 13 4096 

21 J BFE2 43 20 40 14 4096 

22 K BFE3 43 20 40 15 4096 

23 L BFE4 43 20 40 16 4096 

24 M BFE5 29 20 40 17 4096 

25 N BFE6 44 20 40 18 4096 

26 O BFE7 44 20 40 19 4096 

27 P BFE8 44 20 40 20 4096 

28 I FDF1 30 10 40 21 16384 

29 M FDF2 51 10 40 22 16384 

30 I STPH 43 30 40 23 8192 

31 Q POSI-Q 43 5 500 35 2048 

32 R USOS 43 5 100 27 2048 

33 B OBMG-B 41 20 1000 37 8192 

34 S TPMS 36 5 500 36 4096 

35 T VIBS 38 5 100 28 1024 

36 S STAC-S 46 10 1000 38 4096 

37 U SPES-U 45 5 100 29 2048 

38 T STAC-T 44 10 100 30 2048 

39 V OBMG-V 41 0.5 1000 39 4096 

40 sink DIRC-X - - - - - 

41 sink OBDB-X - - - - - 

42 sink NAVC-X - - - - - 

43 sink OBMG-X - - - - - 

44 sink THRC-X - - - - - 

45 sink STAC-X - - - - - 

46 sink TPMS-X - - - - - 

47 sink VOD1-X - - - - - 

48 sink VOD2-X - - - - - 

49 sink FDF1-X - - - - - 

50 sink FDF2-X - - - - - 

51 sink STPH-X - - - - - 

 

We selected one platform configuration (a 4x4 mesh) and three 

different task allocations, and applied equations 2 and 3 to find the 

worst-case end-to-end response time of each of the 39 

communicating tasks under each mapping. Figures 4.a, 4.b and 4.c 

show the results for mappings M1, M2 and M3 respectively. 

The worst-case end-to-end response time of each task is plotted 

with a brown cross, and their individual deadline is shown as a red 

horizontal line. Mappings M2 and M3 are fully schedulable, as all 

EER values are below the respective deadlines. M1, however, has 

a number of unschedulable tasks, denoted by the brown crosses 

plotted at the upper margin of Figure 4.a (the actual worst case 

response times in those cases were not found, as our 

implementation stops iterating towards a solution once a deadline 

is missed). 

                      (a) 

 
                      (b) 

 
                    (c) 

 

Figure 4. End-to-end response times (in ms) for all 39 

communicating tasks under alternative mappings: (a) M1, (b) 

M2 and (c) M3. 

We then used the tool flow presented in [13] and the simulation 

models presented in [14] to obtain latency figures for the 

execution of the benchmark application over the platform under 

all three mappings. We simulated each scenario for a target time 
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of 200 seconds, which allows for a good coverage of the 

application lifetime (the shortest period is of the video processing 

tasks, that must execute every 0.04 seconds to achieve 25 VGA 

frames per second, and the longest period is of 1 second for the 

tyre pressure control task). Figure 4 also shows, for each mapping, 

the best, worst and average end-to-end latency observed during 

simulation for each of the 39 communicating tasks. The plots 

show that the worst case response times found by our 

schedulability tests are effectively an upper bound to all results 

found with simulation. They also show that while M2 and M3 are 

fully schedulable mappings, M2 has higher worst case and 

maximum observed latencies (specially in communications 4, 7 

and 37). Taking that into account, mapping M3 would be 

preferable as its results allow for larger safety margins. 

5.2 Using end-to-end schedulability tests as 

fitness within search-based optimisation 

As shown in Figure 4, the end-to-end timeliness of applications is 

affected by the way tasks and flows are mapped onto the NoC 

platform. Finding optimal mappings, or even acceptable ones, is a 

challenge in most NoC systems, and a significant amount of 

research was dedicated to this topic [15]. Heuristic search-based 

mapping is one of the mapping techniques reviewed by [15], and 

its distinctive feature is a fitness function to evaluate solutions 

over a given search space, aiming to converge towards solutions 

with increasing fitness. A common practice in such cases is to 

simulate the NoC platform with a given mapping for a specific 

amount of time, and use some aggregate of the latencies of all 

packets obtained through the simulation as the fitness of that 

mapping [16]. This process is then repeated for many different 

mappings across the search space until a mapping is found that 

fulfils the requirements (e.g. average latency of all packets below 

a given threshold). 

In this subsection, we show that the schedulability tests described 

in Section 4 can be used to solve two problems found in search-

based mappers with simulators as fitness function, specifically 

when it comes to optimise hard real-time systems. As discussed in 

Section 1, simulators cannot easily find worst-case packet 

latencies, and the time they take to run can be very high when 

evaluating complex NoCs. In search-based mappers, the second 

problem is particularly severe, because the search heuristic may 

have to simulate hundreds or thousands of different mapping 

before an acceptable solution can be found. 

To solve those problems, we have implemented a search-based 

algorithm that uses the approach described in subsection 4.3 to 

find whether, given a particular mapping, how many of an 

application’s tasks are end-to-end schedulable. Like in [16], our 

search-based heuristic follows an evolutionary approach, 

modelling a particular mapping as a chromosome representing on 

each gene the processing core where each task should be mapped 

(Figure 5.a). The evolution is performed across generations of a 

population of 100 individuals, each represented by one of such 

chromosomes. The initial population can be randomly generated, 

but subsequent generations are produced by applying crossover 

and mutation operations over the fittest chromosomes of the 

preceding one (Figure 5.b). In our implementation, crossovers 

were implemented by creating a new chromosome from the first 

and second halves of two existing chromosomes. Similarly, 

mutations created new chromosomes by swapping the contents of 

any two genes of an existing chromosome. The chosen 

chromosomes for crossover and mutation were those that, when 

evaluated using the technique described in 4.3, would have the 

lowest number of unschedulable tasks.  

Ideally, after a number of generations the population will contain 

at least one individual with a chromosome representing a mapping 

that meets our constraints, i.e. has zero tasks that are end-to-end 

unschedulable. A detailed study on how different chromosome 

formats, population sizes, mutation and crossover styles and rates 

affect the convergence of the genetic algorithm towards a full 

schedulable solution can be found in [17]. 

τ1 τ2 τ3 τ4  …  τn 

πc πa πk πc  …  πb 

 

(a) 

 

(b) 

Figure 5. Evolutionary mapping: (a) chromosome format and 

(b) evolutionary search process. 

We have used this evolutionary mapping algorithm to search for 

schedulable mappings of the AV application over 3x3, 4x4 and 

5x5 mesh NoC platforms. Figure 6 shows the number of end-to-

end unschedulable tasks of the best mapping of each generation. It 

can be seen that mappings for the 5x5 platform can be found very 

easily (as there are more resources and therefore less 

interference), reaching a fully schedulable mapping in 8 

generations. For the 4x4 platform, the situation is slightly more 

difficult, but the evolutionary mapper is capable to find a fully 

schedulable mapping in 11 generations. Finally, for a 3x3 

platform, the evolutionary mapping cannot find a fully 

schedulable mapping after 50 generations (because the utilization 

of the application exceeds the available capacity of the 3x3 

platform), but it can clearly show improvements over generations, 

reaching a minimum of 12 end-to-end unschedulable tasks. 
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Figure 6. Number of end-to-end unschedulable tasks at each 

generation of the evolutionary mapping, for three different 

NoC platforms: 3x3, 4x4 and 5x5. 

 

5.2.1 Performance comparison 

The performance of the proposed schedulability test, when used as 

a fitness function of a search-based heuristic, shows a significant 

improvement over simulation-based fitness functions such as 

those used by [16]. A simple Java-based implementation of the 

proposed test takes 0.13 seconds to evaluate the schedulability of 

a single mapping of the AV application over a 4x4 NoC. This is at 

least one order of magnitude faster than simulation, as reported in 

[14], and consistently reinforced by our experiments reported in 

subsection 5.1. The time it takes to simulate 2 seconds of a single 

mapping of the AV application is 7.89 seconds, for a fast 

simulator operating at TLM (Transaction Level Modelling) level. 

For a cycle-accurate simulation of the same scenario, the time 

elapsed is 2895.69 seconds. 

Such numbers show that even if it would be feasible to identify 

the worst-case release scenario for all tasks and packets, a state-

of-the-art NoC simulator would take 60 times longer (or up to 

20000 times longer, if full accuracy must be achieved) to evaluate 

the fitness of one specific mapping. Recalling that in a typical 

search-based mapping heuristic one must check the fitness of 

thousands of mappings, we can clearly see the advantage of the 

proposed approach (e.g. in the experiments described above we 

needed 1100 application of the fitness function to find a fully 

schedulable mapping for a 4x4 platform, i.e. 11 generations of a 

population of 100 individuals). 

6. RELATED WORK 

Besides RTA and its derivatives, other analytical models have 

also been used to evaluate schedulability in NoCs.  

Beekooij et al. [18] have proposed an extension to dataflow 

analysis (originally proposed by Lee and Messerschmitt [19]) that 

can model the behaviour of a homogeneous synchronous dataflow 

(HSDF) application performing computation and communication 

over a specific type of NoC (i.e. statically scheduled time-division 

multiplexing of links). They assume that the worst-case 

computation time of each application task is known (just like in 

this paper, as referred as Ci in Section 3). However, due to the 

nature of their underlying NoC architecture, they can assume that 

there is no contention over NoC links, and thus the delay 

introduced by the NoC to each data transfer can be established 

independently for each task chain. Therefore, the worst case end-

to-end latency of a task-chain can be found by dataflow analysis, 

which can calculate the latest arrival time of the data token at the 

output of the last task of the chain. 

Qian et al. [20] proposed the use of network calculus [21] to 

calculate worst-case packet latency bounds in wormhole NoCs, as 

long as all traffic can be modelled as an arrival curve and all NoC 

routers can be modelled by a service curve. Such curves abstract 

the actual behaviour of the application and the NoC by the 

bandwidth required or provided, respectively, at each point in 

time. The calculation of latency bounds is done through algebraic 

operations over all arrival curves at a given router, as well as the 

router’s service curve. The main challenge of this approach is to 

represent the behaviour of a sequence of specific routers (with 

their particular buffering and arbitration schemes) as a service 

curve. The modelling of the application traffic as arrival curves is 

also challenging, specially if the variations on the source task’s 

execution are taken into account (e.g. execution time variability or 

interference from tasks running on the same core), and this is 

currently an open problem preventing the use of network calculus 

on the evaluation of NoC end-to-end schedulability. 

Other approaches to evaluate NoC schedulability are surveyed by 

in [22], all of them based on dataflow analysis, network calculus 

or RTA. The survey also states the difficulty to compare different 

analytical methods based on distinct formalisms, as they have 

fundamentally different assumptions. Still, they provide a 

summary of strengths and weaknesses of each type of analysis. 

Their assessment of dataflow and network calculus models has 

similar views as the ones we provided above, emphasizing the 

restrictions that must be imposed on the application behaviour and 

the NoC resource sharing disciplines. Their assessment of RTA 

and its derivatives, however, states that the main weakness is the 

inability to represent dependencies between flows, which is an 

issue that we have directly addressed in this paper and solved for 

the restricted case of synchronous pipelines. 

          

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we investigated ways to determine whether 

application tasks executing and communicating over a specific 

NoC-based multicore can meet all application-specific timing 

constraints. We have identified a number of schedulability tests, 

and have shown their utility within distinct steps of an embedded 

system design flow. By combining them with simulation, 

designers can obtain a more detailed understanding of the 

overheads that are needed to guarantee performance in the worst 

case, as opposed to the average case. And by using them as fitness 

in search-based optimisation, we enabled a faster coverage of the 

typically large design spaces given by the multiple design 

alternatives in this kind of system. 

For the sake of simplicity, we assumed an application model 

where tasks require all data to be available locally before they 

execute, and can send a single message only after they finish their 

computation. While restrictive, this model supports the widely 

used Actor model (i.e. read-execute-write) and can represent 

applications based on task chains. A more general formulation 

that allows tasks to send an arbitrary number of messages can be 

easily derived, but was left to future work, and would enable the 

representation of and tree-like structures. Even in the case of 

simple task chains, we have only addressed the restricted case of 
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synchronous pipelines. Extensions to the presented tests to 

address general pipeline and sequential execution are currently 

under investigation, and so is the use of deadline decomposition 

approaches (such as in [23] and [24]) and schedulability tests 

supporting release offsets (such as [25]). 

Additional future work can take advantage of the utilisation tests 

presented in subsections 4.1 and 4.4 to accelerate the design space 

exploration by quickly pruning away mappings with over-utilised 

cores or links. Such approach could improve even further the 

performance reported in subsection 5.2.1, where the substantially 

heavier schedulability test presented in subsection 4.3 was used 

throughout the whole optimisation. 

Finally, the proposed platform model assumes homogeneous 

cores, switches and links. Interesting avenues of research can also 

be opened by lifting such restrictions. 
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