
End-to-End Schedulability Tests for Multiprocessor
Embedded Systems based on Networks-on-Chip with

Priority-Preemptive Arbitration
Leandro Soares Indrusiak

Real-Time Systems Group - Department of Computer Science
University of York - York, United Kingdom

lsi@cs.york.ac.uk

ABSTRACT

Simulation-based techniques can be used to evaluate whether a

particular NoC-based platform configuration is able to meet the

timing constraints of an application, but they can only evaluate a

finite set of scenarios. In safety-critical applications with hard

real-time constraints, this is clearly not sufficient because there is

an expectation that the application should be schedulable on that

platform in all possible scenarios. This paper presents a particular

NoC-based multiprocessor architecture, as well as a number of

analytical methods that can be derived from that architecture,

aiming to allow designers to check, for a given platform

configuration, whether all application tasks and communication

messages always meet their hard real-time constraints in every

possible scenario. Experiments are presented, showing the use of

the proposed methods when evaluating different task mapping and

platform topologies.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]: Real-

time and embedded systems.

General Terms

Performance, Design.

1. INTRODUCTION

Embedded systems typically have to fulfil timing constraints that

are related to their application domain and usage scenarios.

Constraints are usually specified as the deadline to perform

specific functions. For example, a high-definition video recorder

must be able to capture, compress and store 25 video frames per

second. In safety-critical applications, such constraints are said to

be hard real-time constraints, as there is an expectation that they

have to be met by the system in all possible scenarios. Therefore,

embedded systems designers must be able to evaluate which

design alternatives can fulfil those constraints and, for safety-

critical applications, guarantee real-time behaviour.

In this paper, we present analytical methods to evaluate whether a

multicore embedded system based on a Network-on-Chip (NoC)

can fulfil all its timing constraints. A NoC-based system can have

tens to hundreds of processing cores interconnected by an on-chip

packet-switching network that allows data to be transferred

between the local caches of each core and from/to external

memory. Section 2 of the paper provides more detail on this type

of system architecture. It will then become clear that the

performance of the NoC interconnect is as critical as the

performance of the processing cores when it comes to meet timing

constraints.

Throughout this paper, we will use the terms end-to-end timing

constraint or end-to-end deadline of an application task-chain.

Those terms denote constraints derived from the application

domain (e.g. every video frame must be processed in 40 ms or

less) that must be met by specific components of the application

(i.e. chains of communicating tasks). Our goal is to establish

whether all task-chains of an application have their end-to-end

deadlines met by a particular NoC-based platform configuration,

and this problem is referred in this paper as end-to-end

schedulability test. Such test must consider the end-to-end latency

of each task of a task-chain: the time it takes for a processing core

to execute that task (computation latency) plus the time it takes

for the NoC to transfer all data produced by that task to the next

one on the chain (communication latency). In Section 3, precise

definitions of all those concepts will be given, followed in Section

4 by formulations of end-to-end schedulability tests that are

tailored to NoC-based multicores with priority arbitration.

Some of the schedulability tests presented in this paper are based

on classic Response Time Analysis (RTA) [1] and on NoC traffic

flow schedulability analysis [2]. Individually, those analyses

cannot be used to evaluate and improve the schedulability of a

NoC system. For example, the traffic flow schedulability analysis

from [2] has been used in [3] to produce fully schedulable task

mappings, but authors had to artificially limit the number of tasks

mapped to each core, as the analysis does not directly consider the

different interference patterns resulting from mapping the source

of the traffic flows to different cores. Without a limitation on the

maximum number of tasks per core, the mapping optimisation

process would lead to solution with all tasks mapped to the same

core (so all communications are local, instantaneous and therefore

schedulable). Likewise, the evaluation of NoC schedulability

using only RTA would be oblivious to the delays caused by

network contention. Therefore, in this paper we discuss how to

compose those two analytical methods to achieve correct upper

bounds to the end-to-end latency, and show that the resulting

analytical model is useful as a test to evaluate whether a specific

task mapping is schedulable.

Schedulability tests are not always used in industry and academia.

Often, system designers address the schedulability problem by

simulating the system under different scenarios and checking if

the obtained figures for computation and communication latencies

meet the constraints. There are two main limitations to that

approach. Firstly, for a complex multicore embedded system, the

simulation of a few seconds of an application’s execution may

take hours or days [4], limiting the number of design alternatives

that can be evaluated and the portion of the application lifetime

that can be considered. Secondly, simulation can only verify

whether constraints are met within the scenarios that are explicitly

simulated. In complex embedded systems, the set of possible

scenarios is too vast to be exhaustively covered, so it is not

possible to check whether constraints are always met. For

example, if application tasks can suffer release jitter, it would be

necessary to simulate each and every possible value of jitter for

each task in order to make sure that the timing constraints are met

in every case. In Section 5, we use a number of benchmarks to

evaluate the proposed schedulability tests, we compare the

obtained figures with those obtained with simulation, and propose

a design flow that benefits from the joint use of both techniques.

2. NOC-BASED MULTICORES

NoCs are a common architectural template for processors with

dozens of cores, and it has the potential to scale with the increase

of the core count up to hundreds or thousands. Figure 1 shows a

simplified representation of a NoC architecture. It has 16 cores,

each of them represented together with their own local cache as a

white rectangle. Cores are directly connected to NoC switches

(grey rectangles), which route data packets towards a destination

(which may be another core, an interface to off-chip memory, a

custom hardware accelerator, etc.).

Many components of the NoC template can be parameterized to

better meet design goals, such as the number and type of cores,

buffering, routing and arbitration policies, among others. In this

paper, our choice of a specific subset within such a large number

of alternatives was based on three criteria: (i) adopt architectural

features that are widely used in industry and academia, (ii) use on-

chip resources efficiently, and (iii) privilege techniques that are

amenable to the type of schedulability tests we are investigating.

Figure 1. NoC architecture with detail of the router structure

Following criterion (i), we concentrate on the widely used 2D

mesh topology [5][6][7][8]. Criterion (ii) motivates the use of

wormhole switching, as its buffer overhead is much smaller than

store-and-forward (SAF) approaches, and its link allocation is

more efficient than circuit switching approaches: there is no need

to reserve the complete path of a packet, and NoC links are only

allocated on the segments of the path where there is data ready to

be transferred. Finally, criterion (iii) requires some level of

predictability on resource sharing policies, so we limit our

approach to NoCs with non-adaptive routing and priority

arbitration such as QNoC [7] or Hermes [9]. The most common

implementation of priority arbitration is based on virtual channels

(VCs) [10], which allow packets with higher priority to preempt

the transmission of low priority ones, making it easier to predict

the outcome of network contention scenarios. Figure 1 shows a

detailed view of a NoC switch with priority-arbitrated VCs: in

each input port, a different FIFO buffer stores data words (flits) of

packets arriving through different VCs (one for each priority

level). The routing component assigns an output port for each

incoming packet according to their destination. A credit-based

approach [10] guarantees that data is only forwarded from a router

to the next when there’s enough buffer space to hold it at the right

VC. At any time, a flit of a given packet will be sent through its

respective output port if it has the highest priority among the

packets being sent out through that port, and if it has credits (that

is, buffer space on the respective buffer of the neighbouring node

connected to that output port). If the highest priority packet can’t

send data because it is blocked elsewhere in the network, the next

highest priority packet can access the output link.

3. SYSTEM MODEL AND NOTATION

In this paper, we investigate ways to determine whether

application tasks executing and communicating over a specific

NoC-based multicore can meet all application-specific timing

constraints. Therefore, we need a system model that covers the

application as well as the NoC-based platform and its

configurations.

For the application model, we recall the sporadic task model and

define an application as a taskset Γ = {τ1, τ2,…, τn} where each

task τi is a 6-tuple {Ci, Ti, Di, Ji, Pi, φi} indicating respectively its

worst case computation time, period (i.e. minimum inter-release

time interval), deadline, release jitter and priority. The sixth

element of the tuple is the only proposed addition to the sporadic

task model, and represents a communication message sent by τi.

Our initial assumption is that each task produces a single message

φi which is sent immediately after it finishes its computation. The

message is defined as a 3-tuple {τd , Zi, Ki} representing its

destination task, size and maximum release jitter. A task-chain Χ

= {τ1, τ2,…, τx} is an ordered subset of Γ where each task sends a

message to the subsequent task in X, and all of them have the

same period Tx. We assume that all task-chains in a particular

application Γ are disjoint subsets of Γ, and that loops are not

allowed (i.e. the sixth element of the tuple of the final task τx of

every task-chain is the empty set ø).

The model of the NoC platform is composed of a set of processing

cores Π = {πa, πb,…, πz}, a set of switches Ξ = {ξ1, ξ2,…, ξm}, and

a set of unidirectional links Λ = {λa1, λ1a, λ12, λ21,…, λzm, λmz}.

Links can connect cores to switches, or switches with each other,

allowing for all possible direct and indirect NoC topologies. For

example, the architecture shown in Fig. 1 has 16 cores πa … πp,

each of them connected to one of the 16 switches ξ1 … ξ16 via two

unidirectional links (e.g. λa1 and λ1a). The switches, in turn, are

priority ID

…

highest priority
with remaining credit

data_in data_out

credit_in

…

routing
&

transmission
control

 e f h g

 i j l k

 a b d c

priority ID

…

highest priority
with remaining credit

…

routing
&

transmission
control

 m n p o

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

credit_out

connected to each neighbouring switch by two links (e.g. λ21, λ12,

λ23, λ32, λ26 and λ62 are the links attached to switch ξ2).

NoCs forward packets from source to destination according to a

routing algorithm. We define a function route(πa, πb) = {λa1,

λ12,…, λmb} denoting the subset of Λ used to transfer packets from

core πa to core πb. A route will include links connecting the source

and destination cores to their respective switches, and all the links

between switches along the way. The cardinality of a route is

defined as |route(πa, πb)| and will be informally referred as its hop

count. For the example in Fig. 1, route(πe, πg) = {λe5, λ56, λ67, λ7g}

and |route(πe, πg)| = 4 for most commonly used routing

algorithms.

Task mapping is a critical part of the design of multicore systems.

It defines which application tasks should be mapped onto which

processing core (i.e. on which core each task will execute). Many

different approaches to task mapping have been proposed, taking

into account the time when the mapping occurs, whether tasks can

be remapped (or migrated) during execution, and which metrics

should be considered when making a mapping decision. We

therefore define a surjective function map(τi) = πa to denote the

core onto which a task is mapped. Its inverse is defined as

map-1(πa) = {τi,…, τn} and represents the tasks mapped to a given

core. Likewise, the mapping of a message map(φi) =

route(map(τi), map(τd)) denotes the route of its packets over the

NoC, and the inverse map-1(λ) = {φi,…, φn} represents the

messages mapped over a given link.

Once the mapping of all tasks of Γ is defined, it is possible to

calculate the basic communication latency Li of every message φi.

It represents the time taken by the message to be completely

transferred from its source to its destination, assuming no

contention over the NoC links (i.e. as if the message is the only

one using the NoC). The actual value of Li will depend on

implementation-specific characteristics of the NoC (e.g. link

width, time required for a packet header to cross a router, and for

a flit to cross a link). A common formulation is the following:

Li = |map(φi)| . lhop + (|map(φi)| -1) . lrouter + (Zi / width). lhop,

where the first term represents the time it takes for the packet

header to traverse all the NoC links, expressed as the product of

the message hop count and the latency lhop for the header to

traverse a single link; the second term represents the time it takes

for the packet header to traverse all NoC routers, and is expressed

as the product of the number of routers along the path (which is

usually the number of hops minus one in most direct networks)

and the latency lrouter for the header to traverse a router; the third

term represents the time taken by the packet payload to follow the

header in a wormhole fashion all the way to the destination,

expressed by the message length Zi (in bits) divided by the link

width (which results in the number of payload flits), multiplied by

the single link latency lhop.

4. END-TO-END SCHEDULABILITY

TESTS FOR NOC-BASED MULTICORES

A schedulability test is able to discern system configurations that

are schedulable, that is, able to meet their timing constraints even

in the worst case scenario. In this paper, we assume that a system

is schedulable iff all its task chains meet their end-to-end

deadlines. To check this property, we first revisit a number of

existing techniques that can be used as necessary schedulability

tests.

4.1 Schedulability of tasks over a processing

core

A processor utilisation test can be used to check whether all tasks

mapped to a particular core πa do not exceed its capacity:

∑
𝐶𝑖

𝑇𝑖
τ𝑖 ∈ 𝑚𝑎𝑝−1(π𝑎)

≤ 1

This test is necessary but obviously not sufficient because even

though the core πa may be capable to run all the tasks, it may not

be able to run all of them within their deadlines. Response Time

Analysis (RTA) [1] is the standard technique to evaluate how

much the interference from higher priority tasks can delay the

completion time of task τi:

𝑅𝑖 = 𝐶𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉

∀τ𝑗 ∈ ℎ𝑝(τ𝑖)

𝐶𝑗

where the function hp(τi) denotes the set of all tasks that can

preempt τi: those mapped to the same core and that have a higher

priority. Formally, hp(τi) includes every task τj ∈ Γ where map(τi)

= map(τj) and Pi < Pj. With the help of Eq. 2, it is possible to

calculate the longest possible time interval between the release of

τi and its termination. This is done by adding τi‘s computation

time 𝐶𝑖 and the computation times 𝐶𝑗 of all releases of tasks τj that

could preempt it. The result of that sum is referred as τi’s worst

case response time and is represented by 𝑅𝑖. As 𝑅𝑖 appears in both

sides of Eq. 2, an iterative solution was proposed in [1]. RTA has

been widely used to test schedulability of uniprocessor and

statically mapped multiprocessor systems with fixed priorities.

More advanced tests have been reviewed in [11], considering

more advanced task models that support task migration (global

scheduling), dynamic priorities and different constraints on

deadlines. However, the tests described and referenced above do

not explicitly consider inter-task communication. Instead, most

assume that all communication latencies can be combined with

the worst case computation time Ci of the respective tasks. For

uniprocessor systems with uniform memory access times, such

assumption can be acceptable as the communication overhead can

be predictable and usually small compared with the computation

time. In NoC-based systems, however, the communication latency

introduced by the NoC when tasks access memory or exchange

messages depends heavily on the task mapping, the application

communication patterns and resulting network congestion (which

is particularly hard to predict in the case of wormhole switching

NoCs). This leads to high variability in communication latencies,

which can be of the same order of magnitude of the computational

time Ci of the tasks (or even higher). Therefore, we make a case to

explicitly consider communication times when analysing

schedulability of NoC-based systems.

4.2 Schedulability of packets over a NoC and

end-to-end schedulability of communicating

tasks

To address the schedulability of packets transmitted over a NoC,

we rely on the work proposed by Shi and Burns [2], which in turn

builds on RTA. Their work assumes that packets are released into

the NoC sporadically, i.e. a series of packets (referred in [2] as a

traffic flow) has a minimum inter-release interval which is known

at design time. The maximum size of each packet is also known a

priori. On the platform side, the main assumption is that the NoC

(2)

(1)

(3)

routers perform deterministic routing, and that the link arbiters

can preempt packets when higher-priority packets request the

output link they are using. Such assumption is valid for the type of

NoC architectures described in Section 2. The worst case latency

𝑆𝑖 of a packet transmitted over such a NoC can be found using Eq.

3, which has been rewritten from the original in [2] to follow the

notation presented in Section 3. To simplify the notation, we

assume that there is a one-to-one relationship between application

messages and packets sent over the NoC, and therefore use the

same symbol φ for both.

𝑆𝑖 = ∑ ⌈
𝑆𝑖 + 𝐾𝑗 + 𝐾𝑗

𝐼

𝑇𝑗
⌉ 𝐿𝑗 + 𝐿𝑖

∀φ𝑗 ∈ interf(φ𝑖)

The function interf(φi) denotes the direct interference set of φi,

which is the set of all packets that can preempt φi, which are those

whose routes at have at least one NoC link in common with φi‘s

route and that have higher priority. Formally, interf(φi) includes

every packet φj where map(φi) ∩ map(φj) ≠ ∅ and Pi < Pj. The

intuition behind Eq. 3 is similar to what was presented for Eq. 2.

The value of 𝑆𝑖 can be found by adding φi‘s basic latency 𝐿𝑖 and

the latencies 𝐿𝑗 of all releases of packets φj that could preempt it.

The same iterative solution proposed in [1] can be used here.

It is worth noticing that the release jitter of φj can influence how

many times it can preempt φi. In Eq. 3, we consider two types of

release jitter: 𝐾𝑗 which is caused by the execution of the task τj

that releases φj, and 𝐾𝑗
𝐼 which is caused by indirect interference

(i.e. packets that can preempt φj but cannot interfere on φi because

they don’t share any links, see [2] for a detailed definition).[2][1]

Since the value of 𝐾𝑗 must be the maximum amount of time

elapsed between the start of φj‘s period and its actual release, and

since we have defined that a packet is released immediately after

its respective task has finished computation, we can clearly state

that 𝐾𝑗 = 𝑅𝑗. Finally, from [2] we have that 𝐾𝑗
𝐼 = 𝑆𝑗 − 𝐿𝑗.

Thus, the worst case end-to-end response time of a task τi is given

by 𝐸𝐸𝑅𝑖 = 𝑅𝑖 + 𝑆𝑖, which composes its worst-case computation

response time and its worst case communication latency (Figure

2). Its end-to-end schedulability can be tested by checking

whether 𝐸𝐸𝑅𝑖 ≤ 𝐷𝑖.

4.3 End-to-end schedulability of task chains

To test the schedulability of a task chain X, we need to consider

the individual end-to-end response times of all tasks τ𝑖 ∈ 𝑋.

Before we can do that, we must discriminate three modes of

execution for task chains over multiple processing elements:

sequential, parallel and pipelined.

In a sequential execution, a task chain will be executed

completely, in one or more processors, before it can be executed

again. In other words, only a single task τ𝑖 ∈ 𝑋 can be executing

at a given point in time.

In a parallel execution over multiple processors, there are no

constraints over the execution of task chains, and arbitrarily many

jobs of a task chain can be executing at the same time.

Figure 2. End-to-end response time of a communicating task

A pipelined execution is a special kind of parallel execution which

allows multiple jobs of the same task chain to be executed

simultaneously over different processors, but disallows the

simultaneous execution of more than one job of the same task. A

common pattern for pipelined execution is to have a number of

jobs of a task chain X running concurrently, each of them released

after Tx time units after the preceding one, in a phase-shifted way.

We refer to this pattern as a synchronous pipeline. Figure 3 shows

an example of a task chain executing as a synchronous pipeline. It

includes three tasks τ1, τ2 and τ3 running on separate cores (each of

them represented on a separate timeline), their respective

communications over NoC links (also shown over separate

timelines), occasionally suffering interference from higher priority

tasks and packets (not shown in the figure). Curved arrows show

the functional dependencies between the computation and

communication components of one chain, making it easier to see

that those dependencies will always be satisfied as long as each

task meets its end-to-end deadline constraint.

Figure 3. Example of a 3-task chain executed in a synchronous

pipeline over 3 processors

In this paper, we concentrate on the synchronous pipeline case.

We argue that it can be analysed by the end-to-end schedulability

test described in subsection 4.2. Let us assume that the end-to-end

deadline Dx of a synchronously pipelined task chain X, which is

the maximum tolerated amount of time elapsed between the

release of its first task and the delivery of the output of its last

task, is equal to the number x of tasks in the chain multiplied by

the chain period Tx. In a synchronous pipeline, we can partition

2 2 2

3 3 3

1 1 1

Dx

x x x

1 2 1 2 1 2

2 3 2 3 2 3

period T

computation
response time R

communication
latency S

end-to-end response time EER

execution time C communication time L

computation
interference

communication
interference (3)

Dx equally among all tasks of the chain, so the end-to-end

deadline Di of each individual task is equal to Tx. This enables a

task chain X with x tasks to produce its output x periods after its

release, but once the pipeline is filled each of its jobs will produce

an output at every period.

The schedulability test for this particular case is a simple check of

whether ∀ τ𝑖 ∈ 𝑋, 𝐸𝐸𝑅𝑖 ≤ 𝑇𝑥. This assumes that there will be

acceptable deadline misses for the first x jobs of the task chain X

while the pipeline is being filled, and guarantees that the system

will never miss a deadline after that. The intuition behind this

approach is that each task of the chain will be triggered every Tx

time units, and has to finish computing and communicating with

the next task of the chain before the end of the period, so that the

following task will have all the data it needs before it can run at

the next periodic tick.

4.4 Link utilisation tests

Similarly to Eq. 1, a utilisation test can be applied to each of the

NoC links, aiming to check whether the messages mapped to each

of them will not exceed their bandwidth:

∑
𝐿𝑖

𝑇𝑖
φ𝑖 ∈ 𝑚𝑎𝑝−1(λ𝑎1)

≤ 1

Again, this test is necessary but not sufficient because even

though the link λa1 may be capable to transmit all messages

mapped to it without starvation, they might not meet their

deadlines.

By considering the multi-hop nature of NoCs, we identify another

utilisation test that addresses the direct interference set interf(φi)

of a message φi:

∑
𝐿𝑗

𝑇𝑗
φ𝑗 ∈ 𝑖𝑛𝑡𝑒𝑟𝑓(φi)

≤ 1

The intuition behind this test is the following: if a message φj can

interfere and hinder the progress of another message φi over the

NoC, this happens regardless of the link where the contention

happens. In other words, the complete route of a message can be

seen as a single resource with exclusive access, and if a higher

priority message needs to use any part of that route the whole

transmission of φi will be halted. For example, if φi is routed over

n different links and it suffers interference from φj which also uses

one or more of those links and has a higher priority, the time φi

waits for the shared link(s) will be the same if they share link λ1,

λ2, …, λn, or any combination of them, as in every case φi will not

be able to progress in a pipelined fashion towards its destination.

The same intuition can be extended to other higher priority

messages that share any possible combination of links with φi.

Therefore, we conclude that the direct interference set interf(φi)

determines all contenders for the route of a message φi, and the

overall utilisation of that route has to be less than 1 due to the

exclusive access.

The proof that this test is tighter than the test in Eq. 4 lies on the

fact that the direct interference set interf(φi) is a superset of each

of the sets including the messages that share any of the links φi is

mapped to, and that can interfere with it: ∀ λ ∈ map(φi),

hp(map-1(λ)) ∈ interf(φi), where hp({φi … φn }) denotes the subset

of messages that have higher priority than φi. Actually, from the

definition given in Section 4.2 it is easy to see that the direct

interference set is actually the union of all those sets:

𝑖𝑛𝑡𝑒𝑟𝑓(𝜑𝑖) = ⋃ ℎ𝑝(𝑚𝑎𝑝−1(𝜆))λ ∈ 𝑚𝑎𝑝(𝜑𝑖) . Thus, the utilisation

test given in Eq. 5 will cover, when applied to the lowest priority

message of each link, the test given in Eq. 4.

In any case, both utilisation tests identified in this subsection are

necessary, but not sufficient. While they are useful to discriminate

unschedulable mappings, they cannot guarantee schedulability.

They are nonetheless useful to prune large mapping spaces, as

they are less computationally expensive than the tests described in

subsections 4.2 and 4.3.

5. EXPERIMENTAL WORK

To evaluate the correctness and usefulness of the schedulability

tests described in the previous section, we devised two types of

experiment. In subsection 5.1, we will compare the figures for

computation and communication response times found using the

proposed schedulability tests with figures obtained through

simulation of predefined configurations of a NoC-enabled

embedded system. In subsection 5.2, we will then show that the

proposed tests can be used as a fitness function within a search-

based optimisation heuristic.

5.1 Joint end-to-end schedulability analysis

and simulation

In this series of experiments, we analyse the schedulability of a

benchmark application over a specific NoC-based embedded

platform.

The platform follows the architecture described in Section 2, with

homogeneous cores running priority-preemptive task schedulers,

distributed memory, 2D-mesh NoC interconnect with XY

dimension routing, credit-based flow control, 8 virtual channels

with 3-flit input buffers per port and priority-preemptive link

arbitration. It is worth noticing that the schedulability tests

proposed in Section 4 would support alternatives on most of those

architectural choices, but priority-preemptive arbitration at the

cores and NoC links is a requirement.

The chosen benchmark application is based on the autonomous

vehicle (AV) introduced in [12], including 39 communicating

tasks performing functionality such as navigation control,

vibration control and obstacle detection through stereo

photogrammetry. Task periods vary between 0.04 to 1 second, and

communication volumes vary between 1 and 76 kbytes.

To model the benchmark as task chains, a number of tasks of the

original application had to be partitioned (i.e. to break tree-like

structures when a task receives data from multiple sources).

Furthermore, we had to introduce the notion of “sink tasks” to

model DMA transfers to the local memory of the core where

specific tasks are mapped to. In those cases, the destination task

does not require any computation overhead (e.g. last task of a

chain writes to a memory-mapped actuator, so it does not load the

destination core, but used the bandwidth of the NoC links all the

way to the destination interface).

To maintain the realism of the benchmark, we constrained all

mappings used in the paper in such a way that all partitions of a

task, as well as its respective sink, are mapped to the same core

(so that only possible mappings of the application were

considered). Table I shows the complete set of tasks, showing

which chain they belong to (chains have lengths between 2 and 5

tasks), their names (first four letters indicate the original task

name from [12], with an appendix if the task is a partition or a

sink of one of the original tasks), destination task, computation

(4)

(5)

time (in milliseconds), period (in milliseconds), priority, and

communication volume (in bytes).

Table I – Autonomous Vehicle benchmark

task

chain

name

dest

task

comp

(ms)

period

(ms)

pri

comm

(bytes)

1 A POSI-A 2 5 500 31 2048

2 A NAVC-A 3 10 500 32 4096

3 A OBDB-A 42 150 500 33 32768

4 B OBDB-B 33 150 1000 34 65536

5 C NAVC-C 40 20 100 24 1024

6 C SPES-C 5 5 100 25 1024

7 D NAVC-D 40 10 100 26 2048

8 E FBU3-E 47 10 40 1 76800

9 F FBU8-F 48 10 40 2 76800

10 G VOD1 42 20 500 3 1024

11 H VOD2 42 20 500 4 1024

12 I FBU1 20 10 40 5 76800

13 J FBU2 21 10 40 6 76800

14 K FBU3 22 10 40 7 76800

15 L FBU4 23 10 40 8 76800

16 M FBU5 24 10 40 9 76800

17 N FBU6 25 10 40 10 76800

18 O FBU7 26 10 40 11 76800

19 P FBU8 27 10 40 12 76800

20 I BFE1 28 20 40 13 4096

21 J BFE2 43 20 40 14 4096

22 K BFE3 43 20 40 15 4096

23 L BFE4 43 20 40 16 4096

24 M BFE5 29 20 40 17 4096

25 N BFE6 44 20 40 18 4096

26 O BFE7 44 20 40 19 4096

27 P BFE8 44 20 40 20 4096

28 I FDF1 30 10 40 21 16384

29 M FDF2 51 10 40 22 16384

30 I STPH 43 30 40 23 8192

31 Q POSI-Q 43 5 500 35 2048

32 R USOS 43 5 100 27 2048

33 B OBMG-B 41 20 1000 37 8192

34 S TPMS 36 5 500 36 4096

35 T VIBS 38 5 100 28 1024

36 S STAC-S 46 10 1000 38 4096

37 U SPES-U 45 5 100 29 2048

38 T STAC-T 44 10 100 30 2048

39 V OBMG-V 41 0.5 1000 39 4096

40 sink DIRC-X - - - - -

41 sink OBDB-X - - - - -

42 sink NAVC-X - - - - -

43 sink OBMG-X - - - - -

44 sink THRC-X - - - - -

45 sink STAC-X - - - - -

46 sink TPMS-X - - - - -

47 sink VOD1-X - - - - -

48 sink VOD2-X - - - - -

49 sink FDF1-X - - - - -

50 sink FDF2-X - - - - -

51 sink STPH-X - - - - -

We selected one platform configuration (a 4x4 mesh) and three

different task allocations, and applied equations 2 and 3 to find the

worst-case end-to-end response time of each of the 39

communicating tasks under each mapping. Figures 4.a, 4.b and 4.c

show the results for mappings M1, M2 and M3 respectively.

The worst-case end-to-end response time of each task is plotted

with a brown cross, and their individual deadline is shown as a red

horizontal line. Mappings M2 and M3 are fully schedulable, as all

EER values are below the respective deadlines. M1, however, has

a number of unschedulable tasks, denoted by the brown crosses

plotted at the upper margin of Figure 4.a (the actual worst case

response times in those cases were not found, as our

implementation stops iterating towards a solution once a deadline

is missed).

 (a)

 (b)

 (c)

Figure 4. End-to-end response times (in ms) for all 39

communicating tasks under alternative mappings: (a) M1, (b)

M2 and (c) M3.

We then used the tool flow presented in [13] and the simulation

models presented in [14] to obtain latency figures for the

execution of the benchmark application over the platform under

all three mappings. We simulated each scenario for a target time

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

deadline wc max avg min

of 200 seconds, which allows for a good coverage of the

application lifetime (the shortest period is of the video processing

tasks, that must execute every 0.04 seconds to achieve 25 VGA

frames per second, and the longest period is of 1 second for the

tyre pressure control task). Figure 4 also shows, for each mapping,

the best, worst and average end-to-end latency observed during

simulation for each of the 39 communicating tasks. The plots

show that the worst case response times found by our

schedulability tests are effectively an upper bound to all results

found with simulation. They also show that while M2 and M3 are

fully schedulable mappings, M2 has higher worst case and

maximum observed latencies (specially in communications 4, 7

and 37). Taking that into account, mapping M3 would be

preferable as its results allow for larger safety margins.

5.2 Using end-to-end schedulability tests as

fitness within search-based optimisation

As shown in Figure 4, the end-to-end timeliness of applications is

affected by the way tasks and flows are mapped onto the NoC

platform. Finding optimal mappings, or even acceptable ones, is a

challenge in most NoC systems, and a significant amount of

research was dedicated to this topic [15]. Heuristic search-based

mapping is one of the mapping techniques reviewed by [15], and

its distinctive feature is a fitness function to evaluate solutions

over a given search space, aiming to converge towards solutions

with increasing fitness. A common practice in such cases is to

simulate the NoC platform with a given mapping for a specific

amount of time, and use some aggregate of the latencies of all

packets obtained through the simulation as the fitness of that

mapping [16]. This process is then repeated for many different

mappings across the search space until a mapping is found that

fulfils the requirements (e.g. average latency of all packets below

a given threshold).

In this subsection, we show that the schedulability tests described

in Section 4 can be used to solve two problems found in search-

based mappers with simulators as fitness function, specifically

when it comes to optimise hard real-time systems. As discussed in

Section 1, simulators cannot easily find worst-case packet

latencies, and the time they take to run can be very high when

evaluating complex NoCs. In search-based mappers, the second

problem is particularly severe, because the search heuristic may

have to simulate hundreds or thousands of different mapping

before an acceptable solution can be found.

To solve those problems, we have implemented a search-based

algorithm that uses the approach described in subsection 4.3 to

find whether, given a particular mapping, how many of an

application’s tasks are end-to-end schedulable. Like in [16], our

search-based heuristic follows an evolutionary approach,

modelling a particular mapping as a chromosome representing on

each gene the processing core where each task should be mapped

(Figure 5.a). The evolution is performed across generations of a

population of 100 individuals, each represented by one of such

chromosomes. The initial population can be randomly generated,

but subsequent generations are produced by applying crossover

and mutation operations over the fittest chromosomes of the

preceding one (Figure 5.b). In our implementation, crossovers

were implemented by creating a new chromosome from the first

and second halves of two existing chromosomes. Similarly,

mutations created new chromosomes by swapping the contents of

any two genes of an existing chromosome. The chosen

chromosomes for crossover and mutation were those that, when

evaluated using the technique described in 4.3, would have the

lowest number of unschedulable tasks.

Ideally, after a number of generations the population will contain

at least one individual with a chromosome representing a mapping

that meets our constraints, i.e. has zero tasks that are end-to-end

unschedulable. A detailed study on how different chromosome

formats, population sizes, mutation and crossover styles and rates

affect the convergence of the genetic algorithm towards a full

schedulable solution can be found in [17].

τ1 τ2 τ3 τ4 … τn

πc πa πk πc … πb

(a)

(b)

Figure 5. Evolutionary mapping: (a) chromosome format and

(b) evolutionary search process.

We have used this evolutionary mapping algorithm to search for

schedulable mappings of the AV application over 3x3, 4x4 and

5x5 mesh NoC platforms. Figure 6 shows the number of end-to-

end unschedulable tasks of the best mapping of each generation. It

can be seen that mappings for the 5x5 platform can be found very

easily (as there are more resources and therefore less

interference), reaching a fully schedulable mapping in 8

generations. For the 4x4 platform, the situation is slightly more

difficult, but the evolutionary mapper is capable to find a fully

schedulable mapping in 11 generations. Finally, for a 3x3

platform, the evolutionary mapping cannot find a fully

schedulable mapping after 50 generations (because the utilization

of the application exceeds the available capacity of the 3x3

platform), but it can clearly show improvements over generations,

reaching a minimum of 12 end-to-end unschedulable tasks.

53 2
9 41 9

5 3 6
4 7

8

5
9 9

5 6
7

8

initialisation termination

evaluate fitness

select the fittest

breed pairs / crossover

mutations

replace old population

Figure 6. Number of end-to-end unschedulable tasks at each

generation of the evolutionary mapping, for three different

NoC platforms: 3x3, 4x4 and 5x5.

5.2.1 Performance comparison

The performance of the proposed schedulability test, when used as

a fitness function of a search-based heuristic, shows a significant

improvement over simulation-based fitness functions such as

those used by [16]. A simple Java-based implementation of the

proposed test takes 0.13 seconds to evaluate the schedulability of

a single mapping of the AV application over a 4x4 NoC. This is at

least one order of magnitude faster than simulation, as reported in

[14], and consistently reinforced by our experiments reported in

subsection 5.1. The time it takes to simulate 2 seconds of a single

mapping of the AV application is 7.89 seconds, for a fast

simulator operating at TLM (Transaction Level Modelling) level.

For a cycle-accurate simulation of the same scenario, the time

elapsed is 2895.69 seconds.

Such numbers show that even if it would be feasible to identify

the worst-case release scenario for all tasks and packets, a state-

of-the-art NoC simulator would take 60 times longer (or up to

20000 times longer, if full accuracy must be achieved) to evaluate

the fitness of one specific mapping. Recalling that in a typical

search-based mapping heuristic one must check the fitness of

thousands of mappings, we can clearly see the advantage of the

proposed approach (e.g. in the experiments described above we

needed 1100 application of the fitness function to find a fully

schedulable mapping for a 4x4 platform, i.e. 11 generations of a

population of 100 individuals).

6. RELATED WORK

Besides RTA and its derivatives, other analytical models have

also been used to evaluate schedulability in NoCs.

Beekooij et al. [18] have proposed an extension to dataflow

analysis (originally proposed by Lee and Messerschmitt [19]) that

can model the behaviour of a homogeneous synchronous dataflow

(HSDF) application performing computation and communication

over a specific type of NoC (i.e. statically scheduled time-division

multiplexing of links). They assume that the worst-case

computation time of each application task is known (just like in

this paper, as referred as Ci in Section 3). However, due to the

nature of their underlying NoC architecture, they can assume that

there is no contention over NoC links, and thus the delay

introduced by the NoC to each data transfer can be established

independently for each task chain. Therefore, the worst case end-

to-end latency of a task-chain can be found by dataflow analysis,

which can calculate the latest arrival time of the data token at the

output of the last task of the chain.

Qian et al. [20] proposed the use of network calculus [21] to

calculate worst-case packet latency bounds in wormhole NoCs, as

long as all traffic can be modelled as an arrival curve and all NoC

routers can be modelled by a service curve. Such curves abstract

the actual behaviour of the application and the NoC by the

bandwidth required or provided, respectively, at each point in

time. The calculation of latency bounds is done through algebraic

operations over all arrival curves at a given router, as well as the

router’s service curve. The main challenge of this approach is to

represent the behaviour of a sequence of specific routers (with

their particular buffering and arbitration schemes) as a service

curve. The modelling of the application traffic as arrival curves is

also challenging, specially if the variations on the source task’s

execution are taken into account (e.g. execution time variability or

interference from tasks running on the same core), and this is

currently an open problem preventing the use of network calculus

on the evaluation of NoC end-to-end schedulability.

Other approaches to evaluate NoC schedulability are surveyed by

in [22], all of them based on dataflow analysis, network calculus

or RTA. The survey also states the difficulty to compare different

analytical methods based on distinct formalisms, as they have

fundamentally different assumptions. Still, they provide a

summary of strengths and weaknesses of each type of analysis.

Their assessment of dataflow and network calculus models has

similar views as the ones we provided above, emphasizing the

restrictions that must be imposed on the application behaviour and

the NoC resource sharing disciplines. Their assessment of RTA

and its derivatives, however, states that the main weakness is the

inability to represent dependencies between flows, which is an

issue that we have directly addressed in this paper and solved for

the restricted case of synchronous pipelines.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated ways to determine whether

application tasks executing and communicating over a specific

NoC-based multicore can meet all application-specific timing

constraints. We have identified a number of schedulability tests,

and have shown their utility within distinct steps of an embedded

system design flow. By combining them with simulation,

designers can obtain a more detailed understanding of the

overheads that are needed to guarantee performance in the worst

case, as opposed to the average case. And by using them as fitness

in search-based optimisation, we enabled a faster coverage of the

typically large design spaces given by the multiple design

alternatives in this kind of system.

For the sake of simplicity, we assumed an application model

where tasks require all data to be available locally before they

execute, and can send a single message only after they finish their

computation. While restrictive, this model supports the widely

used Actor model (i.e. read-execute-write) and can represent

applications based on task chains. A more general formulation

that allows tasks to send an arbitrary number of messages can be

easily derived, but was left to future work, and would enable the

representation of and tree-like structures. Even in the case of

simple task chains, we have only addressed the restricted case of

0

5

10

15

20

25

30

1 3 5 7 9 1113151719212325272931333537394143454749

e

n
d

-t
o

-e
n

d
 u

n
sc

h
e

d
u

la
b

le
 t

as
ks

generation

3x3

4x4

5x5

synchronous pipelines. Extensions to the presented tests to

address general pipeline and sequential execution are currently

under investigation, and so is the use of deadline decomposition

approaches (such as in [23] and [24]) and schedulability tests

supporting release offsets (such as [25]).

Additional future work can take advantage of the utilisation tests

presented in subsections 4.1 and 4.4 to accelerate the design space

exploration by quickly pruning away mappings with over-utilised

cores or links. Such approach could improve even further the

performance reported in subsection 5.2.1, where the substantially

heavier schedulability test presented in subsection 4.3 was used

throughout the whole optimisation.

Finally, the proposed platform model assumes homogeneous

cores, switches and links. Interesting avenues of research can also

be opened by lifting such restrictions.

8. ACKNOWLEDGEMENTS

The author would like to thank Zheng Shi, Alan Burns, Osmar

Marchi dos Santos and Borislav Nikolic for the discussions on the

tests presented in Section 4; and Paris Mesidis, Adrian Racu and

Norazizi Sayuti for the discussions and help with the experimental

work supporting subsection 5.2.

9. REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static priority pre-

emptive scheduling,” Software Engineering Journal, vol. 8, no. 5,

pp. 284–292, 1993.
[2] Z. Shi and A. Burns, “Real-Time Communication Analysis for On-

Chip Networks with Wormhole Switching,” in ACM/IEEE Int

Symposium on Networks-on-Chip (NOCS), 2008, pp. 161–170.

[3] Z. Shi and A. Burns, “Schedulability analysis and task mapping for

real-time on-chip communication,” Real-Time Syst, vol. 46, no. 3,

pp. 360–385, Sep. 2010.
[4] N. Genko, D. Atienza, G. De Micheli, L. Benini, J. M. Mendias, R.

Hermida, and F. Catthoor, “A novel approach for network on chip

emulation,” in IEEE Int Symposium on Circuits and Systems
(ISCAS), 2005, pp. 2365–2368 vol. 3.

[5] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,

“HERMES: an infrastructure for low area overhead packet-
switching networks on chip,” Integration, the VLSI Journal, vol. 38,

no. 1, pp. 69–93, Oct. 2004.

[6] A. Agarwal, “The Tile Processor: A 64-Core Multicore for
Embedded Processing,” in 11th Annual Workshop on High

Performance Embedded Computing (HPEC), Lexington,

Massachusetts, USA, 2007.
[7] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS

architecture and design process for network on chip,” Journal of

Systems Architecture, vol. 50, no. 2–3, pp. 105–128, Feb. 2004.
[8] D. Wiklund and Dake Liu, “SoCBUS: switched network on chip for

hard real time embedded systems,” in Int Parallel and Distributed

Processing Symposium (IPDPS), 2003.
[9] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual

channels in networks on chip: implementation and evaluation on

hermes NoC,” in 18th Annual Symposium on Integrated Circuits and

Systems Design (SBCCI), Florianopolis, Brazil, 2005, pp. 178–183.

[10] T. Bjerregaard and J. Sparso, “Virtual channel designs for

guaranteeing bandwidth in asynchronous network-on-chip,” in

Norchip Conference, 2004, pp. 269–272.
[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for

multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp.

35:1–35:44, Oct. 2011.
[12] Z. Shi, A. Burns, and L. S. Indrusiak, “Schedulability Analysis for

Real Time On-Chip Communication with Wormhole Switching,”

IJERTCS, vol. 1, no. 2, pp. 1 – 22, Jun. 2010.
[13] L. S. Indrusiak, I. Quadri, I. Gray, N. Audsley, and A. Sadovykh, “A

MARTE subset to enable application-platform co-simulation and

schedulability analysis of NoC-based embedded systems,” in 2012
7th International Workshop on Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–7.

[14] L. S. Indrusiak and O. M. dos Santos, “Fast and Accurate
Transaction-Level Model of a Wormhole Network-on-Chip with

Priority Preemptive Virtual Channel Arbitration,” in Proc Design

Automation and Test in Europe (DATE), Grenoble, France, 2011,

pp. 1089–1094.

[15] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping

strategies for Network-on-Chip design,” Journal of Systems
Architecture, vol. 59, no. 1, pp. 60–76, Jan. 2013.

[16] G. Ascia, V. Catania, and M. Palesi, “A Multi-objective Genetic

Approach to Mapping Problem on Network-on-Chip,” Journal of
Universal Computer Science, vol. 12, no. 4, pp. 370–394, 2006.

[17] A. Racu and L. S. Indrusiak, “Using genetic algorithms to map hard
real-time on NoC-based systems,” in 2012 7th International

Workshop on Reconfigurable Communication-centric Systems-on-

Chip (ReCoSoC), 2012, pp. 1–8.
[18] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B.

Mesman, J. Mol, S. Stuijk, V. Gheorghita, and J. Meerbergen,

“Dataflow Analysis for Real-Time Embedded Multiprocessor
System Design,” in Dynamic and Robust Streaming in and between

Connected Consumer-Electronic Devices, 2005, pp. 81–108.

[19] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”

Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[20] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds

for best-effort communication in wormhole networks on chip,” in
3rd ACM/IEEE International Symposium on Networks-on-Chip,

2009. NoCS 2009, 2009, pp. 44–53.

[21] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Berlin, Heidelberg:

Springer-Verlag, 2001.

[22] A. E. Kiasari, A. Jantsch, and Z. Lu, “Mathematical Formalisms for
Performance Evaluation of Networks-on-chip,” ACM Comput. Surv.,

vol. 45, no. 3, pp. 38:1–38:41, Jul. 2013.

[23] T. F. Abdelzaher and K. G. Shin, “Combined task and message
scheduling in distributed real-time systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179–1191,

1999.
[24] M. Saksena and S. Hong, “An engineering approach to decomposing

end-to-end delays on a distributed real-time system,” in 4th Int

Workshop on Parallel and Distributed Real-Time Systems, 1996, pp.
244–251.

[25] I. Bate and A. Burns, “Schedulability analysis of fixed priority real-

time systems with offsets,” in 9th Euromicro Workshop on Real-
Time Systems, 1997, pp. 153–160.

