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Cloud computing and virtualization technology have revolutionized general-purpose computing applica-
tions in the past decade. The cloud paradigm offers advantages through reduction of operation costs, ser-
ver consolidation, flexible system configuration and elastic resource provisioning. However, despite the
success of cloud computing for general-purpose computing, existing cloud computing and virtualization
technology face tremendous challenges in supporting emerging soft real-time applications such as online
video streaming, cloud-based gaming, and telecommunication management. These applications demand
real-time performance in open, shared and virtualized computing environments. This paper identifies the
technical challenges in supporting real-time applications in the cloud, surveys recent advancement in
real-time virtualization and cloud computing technology, and offers research directions to enable
cloud-based real-time applications in the future.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The widespread availability for the masses of high-speed Inter-
net connections at affordable rates, by means of DSL and more
recently optical technologies, paired with an unprecedented con-
nectivity through cellular and wireless technologies, is enabling
an inescapable shift towards distributed computing models. Appli-
cations relying merely on physical resources and data available in
the local personal computer (PC) are slowly but consistently becom-
ing part of the history, as the PC declines leaving the way to a new
era of distributed computing. This is subsumed into the recently
expanding paradigm of Cloud Computing [87], in which resources
are rented in an on-demand and pay-per-use fashion from cloud
providers. Just as a huge hardware machine, cloud computing data
centres deliver an infrastructure, platform, and software applica-
tions as services that are available to consumers. Such services
are referred to as IaaS (infrastructure as a service), PaaS (platform
as a service), and SaaS (software as a service), respectively [88].
Cloud applications are capable of running and spreading out their
computations and data on as many nodes as needed, and they
can access huge amounts of data directly available within the pre-
mises of cloud data centers. Shortly, cloud computing is enabling
the next generation of computing services, heavily geared towards
massively distributed and on-line computing, as well as enabling a
new model of on-demand high performance computing (HPC) acces-
sible to anyone from anywhere, whenever needed.

As new application domains enter the cloud world progres-
sively, real-time systems are also expected to move in this direc-
tion due to the tremendous possibilities and augmented utility
that this paradigm could bring about. Examples are both on the
hard and soft sides of real-time systems, such as military distrib-
uted control systems applied to remote surveillance, early
response and warning systems, unmanned vehicles with aug-
mented intelligence from the sensor cloud, or cloud gaming,
among others.

Cloud computing, and particularly the use of public clouds,
brings advantages on the technical, environmental and business
sides, allowing multiple under-utilized systems to be consolidated
within fewer physical servers hosting them. A cloud provider can
manage physical resources in a very efficient way by scaling on
the several hundreds and thousands of customers (a.k.a., tenants)
with dynamically changing workload requirements, by re-optimiz-
ing the infrastructure in a completely automated (or semi-
automated) fashion whenever needed, providing high levels of
availability and reliability. One of the most important technologies
that enabled this paradigm shift in computing is virtualization, and
particularly machine virtualization.

Machine virtualization (also referred to as processor virtualiza-
tion) allows a single physical machine to emulate the behavior of
multiple machines, with the possibility to host multiple and
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Table 1
Delay tolerance in traditional gaming [4].

Game type Delay threshold (ms)

First person shooter 100
Role playing game 500
Real-time strategy 1000
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heterogeneous operating systems (called guest operating systems or
guest OSs) on the same hardware. A virtual machine monitor
(VMM), or hypervisor, is the software infrastructure running on
(and having full control of) the physical host and which is capable
of running such emulation.

Virtualization allows for server consolidation in data centers,
where multiple operating systems that would leave their underly-
ing hosts under-utilized can be moved to the same physical
resources. This enables the achievement of a reduction of the num-
ber of required physical hosts, and their improved exploitation at
higher saturation levels, thus saving costs and energy [86].

The multi-tenant nature of cloud computing has a great influ-
ence on the increasingly rich and challenging user requirements
on cloud infrastructures. Users demand not only access to on-line
storage, but also to real-time and interactive applications and ser-
vices. This is also witnessed by visionary products already on the
market, such as lightweight computers which are almost incapable
of doing anything locally, unless they are connected to the ‘‘Cloud’’.

In a high-performance cloud computing (HPCC) environment,
applications have much stronger temporal requirements; as such,
the characteristic of performance, including resource guarantees
and timely provisioning of results, becomes critical. It is actually
an open research area to match such requirements with virtualized
environments due to I/O overhead and jitter of the required dura-
tion of executed instructions. Moreover, activities or jobs are
mostly allocated to a specific core, but they often have synchroni-
zation dependencies with respect to other activities.

Merging cloud computing with real-time is a complex problem
that requires to also focus on (among others) the efficient access to
the physical platform. Although real-time hypervisors typically
may allow applications to access to the physical machine, in virtu-
alized environments for cloud computing, it is clear that the hard-
ware is typically not directly accessible by the user-level
application software layers. With the current available technology,
it could be possible to improve service response times from a cloud
platform using high performance techniques. The main problems
lie on the multi-tenancy of the cloud computing platforms that
execute on heavy loaded servers the requests of several indepen-
dent users. Currently, there are a number of commercial real-time
hypervisors (some providing hierarchical scheduling) for safety
critical systems of different origins such as WindRiver, Acontis
Technology, SysGO, OpenSynergy, LynuxWorks, or Real Time
Systems GmbH. However, it is not likely to see them among the
mainstream cloud technology in the immediate future due to
performance levels and compatibility problems at the low level
execution layer. Mainstream and real-time ones were created with
different objectives. For example, real-time hypervisors were not
invented for maximizing throughput of user requests and provid-
ing statistical guarantees on service contracts, but to preserve tem-
poral isolation and determinism.

Cloud computing technology is, in origin, not targeted at hard
real-time applications which typically run in closed environments.
This paper targets at the significant challenges in applying cloud
computing technologies to soft real-time applications. Examples of
soft real-time domains are, for instance, online video streaming
(e.g. Netflix on Amazon EC2), cloud-based gaming, and telecommu-
nication management. Such applications can benefit significantly
from cloud computing due to their highly dynamic workloads that
desire elastic allocation of resources. Cloud-based gaming is gaining
momentum in the market. Concrete instances such as Netflix run-
ning in Amazon EC2, and both Xbox and Playstation are planning
to offer cloud-based gaming. For example, Microsofts Xbox One
game console allows computation of environmental elements to
be offloaded to the cloud; Sony recently acquired Gaikai, a major
open cloud gaming platform. As more latency-sensitive games
and players move toward the cloud, it is becoming increasingly
important to meet varying latency requirements in the cloud
computing environment. User studies [3], for example, show that
networked games require short response delay, even as low as
100 ms, e.g., for first-person shooter games [2]. Table 1 provides
delay tolerance for on-line gaming applications.

In the telecommunication industry, there is a major shift from
hardware-based provisioning of network functions to a software-
based provisioning paradigm where virtualized network functions
[94] are deployed in private or hybrid clouds of network operators
[89]. For example, IP Multimedia Subsystem (IMS) components are
traditionally designed and calibrated to run on specific hardware
platforms with precise real-time and reliability requirements,
given a target maximum workload specification, such as maximum
number of supported subscribers or call attempts per second.
Matching the same requirements in a virtualized context where a
multitude of virtual machines (VMs) share the same physical
hardware for providing a plethora of services with highly heteroge-
neous performance requirements to independent customers/end-
users brings many challenges, some of which can be tackled as
summarized in this paper.

For soft real-time applications, bypassing system software and
directly exposing the hardware to applications is neither needed
nor it may be the most productive approach. However, the integra-
tion of real-time scheduling policies within virtualization
platforms produces a direct benefit, and the system can deliver
real-time performance to the application in a hierarchical manner.
In this paper, we describe the problems arising from mixing the
requirements of soft real-time workloads when deployed in the
context of distributed and virtualized physical infrastructures,
such as in cloud computing. We describe the service level agree-
ment notion and the challenges to support real-time attributes in
them. The paper provides a survey that focuses on soft real-time
applications that demand certain degrees of service level agree-
ments in terms of real-time performance, but does not require hard
real-time performance guarantees. We describe some of the avail-
able approaches to integrate the real-time model in a virtualized
application model. We provide some approaches to HPCC, and
the challenges introduced by the network communication as it
requires I/O access incurring in extra delays; some solutions for
improving the efficiency of the network are presented.

This survey is complementary to a recent review on real-time
virtualization for embedded systems [98]. While [98] focused on
hard real-time embedded systems, we address predictable and
real-time performance issues in not only embedded systems, but
also cloud computing systems, including approaches to soft real-
time performance and QoS issues. The paper is structured as fol-
lows. Section 2 offers an overview of the virtualization technology
for cloud computing focusing on the real-time issues that appear
therein. Also, the type of virtualization approaches and their per-
formance levels are provided to give an idea of the suitability for
real-time domains. Section 3 presents the challenges for merging
real-time and cloud computing: we provide a mapping of terminol-
ogy between the cloud computing and the real-time worlds; we
present specific issues concerning the access to the platform
resources faced by virtual machine monitors and hypervisors; we
overview different approaches proposed in the literature for sched-
uling virtual machines; and we explain the network challenges for
achieving real-time support and some HPC techniques to tackle
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them. Section 4 describes how some example projects have
approached the design and development of virtualization solutions
for cloud computing. Finally, Section 5 presents possible future
directions of research in this area.

2. Cloud computing and virtualization

The cloud computing paradigm provides a number of benefits
through the presence of its enabler, i.e., the virtualization technol-
ogies. Firstly, this section provides a high level overview of the
benefits of cloud computing. In practice, the specific virtualization
type is always a trade-off among the proximity of control and
access to the actual underlying hardware platform, the perfor-
mance offered to the hosted software, and the flexibility of the
development and deployment. Before describing the different
types of virtualization that is provided within this section, it is nec-
essary to explain the architecture of virtual machines that is, in
fact, closely related to the architecture of a hardware platform.

2.1. Benefits of virtualization

Virtualization technology offers applications an abstract view
through interfaces of the underlying hardware platform and
resources. As described in [10,11], virtualization has several bene-
fits for enabling cloud computing:

� Functional execution isolation. The hypervisor handles the
protection among virtual machines (VMs) and, therefore,
among the applications on different VMs. Users can be
granted privileges within their virtual machine without com-
promising the isolation or host integrity.

� Virtualization enables the provisioning of highly specialized
and customized environments that may contain specific pur-
pose operating systems, libraries, and run-time execution
environments. In fact, virtualization offers functional isola-
tion therefore enabling multiple views over the same physi-
cal hardware.

� Easier management. Customized run-time environments can
be started up, migrated, shut down, in a very flexible way,
depending on the needs of who provides the underlying
hardware.

� Coexistence of legacy applications with brand new ones. VMs
help to preserve binary compatibility in the run-time envi-
ronments for legacy applications.

� Testing and debugging parallel applications can leverage virtu-
alized environments, as a full distributed system may be
emulated within a single physical host.

� Hypervisors and their live-migration capabilities allow for
enhancing reliability of hosted virtualized applications, making
them independent of the reliability of the underlying hard-
ware, in a seamless and transparent manner for applications.

Nevertheless, the multi-tenancy nature of cloud computing,
along with its higher consolidation level, constitutes also one of
the factors raising many challenges still to be properly tackled.
The increased level of sharing of physical resources among multi-
ple software components and applications to be hosted on behalf
of different customers makes it more and more difficult to provide
stable and predictable performance levels to each one of them.
Indeed, virtual machines (VMs) can be executed concurrently in
a virtualized platform simultaneously competing for physical
resources that are scheduled by an underlying hypervisor. VMs
and activities/tasks within VMs adjust to a hierarchical scheduling
view where time can be partitioned among VMs; within VMs, the
processor is further granted to tasks or threads according to the
guest OS specific scheduling policy.
The real-time domain can benefit from the same advantages of
general purpose applications in the cloud, despite the drawbacks of
the above mentioned characteristic of server consolidation. An
example can be the construction of a private cloud for a remote
control and operation of an industrial automation plant. The plant
operation can be monitored through sensors and the information
can be stored and analyzed in a private cloud. Also, the operation
logic of some machines/instruments can be outsourced to a private
cloud easing maintenance and remote control of the plant floor.
Due to the real-time constraints of some operations, the latencies
of the virtual nodes as well as the communication jitter have to
be controlled.
2.2. Virtual machine architectures

2.2.1. Hardware–software interfacing
Software systems continue to evolve despite being imple-

mented on top of hardware architectures that are increasingly
complex. This is possible since computer systems follow a hierar-
chical design with well-defined interfaces that establish cleanly-
separated levels of abstraction. It is well known that well struc-
tured and defined interfaces facilitate independent subsystem
development by engineering teams targeting both software and
hardware systems. An instruction set architecture (ISA) is a clear
example of this.

However, there are some limitations to the pure usage of inter-
facing. For example, a binary format of an application is tied to a
specific ISA and operating systems libraries. This was found limit-
ing specially in a ultra-connected world where there is a clear ben-
efit in the possibility of easily moving pieces of code from one
machine to another. Machine virtualization [1] overcomes this lim-
itation by adapting the interface and visible resources of a system
onto the interface and resources of an underlying, possibly differ-
ent, real system. The goal of virtualization technology is not to sim-
plify or hide the internal details of a physical system. The goal of
virtualization is to use the interfacing abstraction of the real hard-
ware resources or subsystems as a way to map the virtual resource
to the actual one.
2.2.2. Development of virtual execution environments
There are different approaches to develop virtual execution

environments that depend on the fidelity with which they imple-
ment the different interfaces provided within the architecture of
a computer system, i.e., hardware or instruction set architecture,
operating system interface, application binary interface, or applica-
tion programming interface. For example, in the case of JVM or Java
Virtual Machine, a different instruction set architecture is provided
that contains a dynamic translator or interpreter of the code pro-
grammed in a high level language as Java.

Therefore, a VM is an execution environment that is a software
implementation of a physical execution platform, machine, or
computer that can run programs just as the physical machine
would do. A VM provides an abstraction of a hardware platform,
a given operating system, and even a set of libraries/applications
to be run. The VM then executes extra software layers that may
introduce temporal penalties.

The design of virtual environments can be approached from two
different sides [5]: hardware partitioning or hypervisor technology.
Hardware partitioning subdivides the physical machine into differ-
ent partitions each of which can execute a different operating sys-
tem. Such partitions are typically created with coarse units of
allocation [5], such as whole processor or physical board. This type
of virtualization allows for hardware consolidation, but does not
have the full benefits of resource sharing and emulation offered
by hypervisors.



Fig. 1. Type 1 (bare metal) hypervisors versus Type 2 hypervisors.
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2.2.3. Hypervisor types
The design and implementation of the hypervisor is of para-

mount importance because it has a direct influence on the
throughput of VMs, which can be very close to that of the native
hardware. Hypervisors are the primary technology of choice for
system virtualization since it is possible to achieve high flexibility
in how virtual resources are defined and managed. The replication
provided by hypervisors is achieved by partitioning and/or virtual-
izing platform resources. As explained in [8], there are two main
types of hypervisors (Fig. 1):

� Bare metal or type 1 that runs directly on the physical hardware
platform. It virtualizes the critical hardware devices offering
several independent isolated partitions. It also provides basic
services for inter-partition control and communication. Type 1
hypervisors are suitable for real-time systems since virtual
environments using type 1 hypervisors are close to the hard-
ware and are able to use hardware resources directly.1

� Type 2 hypervisors that run on top of an operating system that
acts as a host. These are hosted hypervisors since they run
within a conventional operating system environment. The
hypervisor layer is typically a differentiated software level on
top of the host operating system (that runs directly above the
hardware), and the guest operating system runs at a different
level.2

The open-source Xen [9] hypervisor brought in the concept of
para-virtualization, a technique allowing for replacing the trap-
based emulation of privileged instructions and virtualized periph-
erals with direct calls to hypercalls provided by the hypervisor.
Namely, the virtualized machine is enriched with a special API that
can be used by modified guest operating systems to communicate
efficiently with the hypervisor, similarly to how an application
uses system calls to communicate with the kernel of an operating
system. The code running inside partitions (normally, the guest
operating system) must be aware of being running in a virtualized
environment, and accordingly use the hypercalls whenever
needed. Running on bare metal, the Xen hypervisor supports guest
operating systems in VMs named domains, where domain 0 is used
for physical I/O. Xen reduces the overhead of full system virtualiza-
tion which consists of fully emulating the underlying hardware to
run unmodified operating systems. Consequently, para-virtualiza-
tion is more suitable for real-time cloud computing since it identi-
fies the specific components of an operating system that have to be
virtualized in order to optimize performance. However, this brings
in other challenging points such as virtualizing and sharing mem-
ory between guest operating systems. Examples are guest operat-
ing systems that leverage characteristics built in hardware (e.g.,
TLB of x86) or handing privileged instruction calls made by guests
1 Examples of Type 1 are VMWare ESX, WindRiver Hypervisor
�
, Xen, XtratuM, etc

2 Examples of Type 2 are the Kernel Based Virtual Machine (KVM), VMware
Workstation, VirtualBox, Oracle VM Server, etc.

3 <http://www.fentiss.com/en/products/xtratum.html>.
4 <http://www.virtuallogix.com>.
5

.

operating systems and exceptions generated by the hardware.
There have been recent efforts on virtualization for real-time

and embedded systems. For example, both XtratuM3 [6,7] and
VLX4 are bare metal hypervisors designed to support embedded sys-
tems through para-virtualization, and RT-Xen5 is an open-source
real-time virtualization platform. XtratuM is based on Xen, and it
supports partitioned systems following the principles of hierarchical
scheduling; it complies with the ARINC standard and guarantees
temporal and spatial isolation targeted at critical software systems.
RT-Xen extends the Xen hypervisor by introducing real-time VM
schedulers designed based on hierarchical and compositional real-
time scheduling [46,47]. RT-Xen also features a novel communica-
tion architecture in the manager domain to support real-time com-
munication among VMs sharing a physical host [55]. On the other
hand, outside of the embedded world in the context of predictable
cloud computing, the IRMOS European project investigated on how
to enable predictability in cloud services by proper use of develop-
ment tools, modeling techniques and real-time scheduling on the
underlying physical resources [27]. More details on IRMOS will fol-
low in Section 4.

2.3. Virtualization techniques and performance characteristics

The various techniques to virtualization environments are used
in different works in slightly different ways and even with some
semantic overlapping. In this section, the different types of virtual-
ization classifications that can be found in the literature are put
forward and summarized, and references to their different perfor-
mance characteristics are given.

2.3.1. Full virtualization
Full virtualization allows for running unmodified guest operat-

ing systems by full emulation of the hardware that they believe
to be running on top of, e.g., network adapters and other peripher-
als. This way, it is easily possible to run multiple operating sys-
tems, even heterogeneous ones, on the same hardware. Then, the
hypervisor takes care of the necessary network emulation, in order
to let the VMs communicate with the outside world and with each
other. Full virtualization is often too expensive, causing continuous
traps to the hypervisor that intercepts the special privileged
instructions that a guest operating system kernel believes to exe-
cute, but whose effect is actually solely emulated by the hypervi-
sor. Examples of such privileged instructions are accesses to
peripheral registers. The implied performance issues may be miti-
gated by recurring to hardware-assisted virtualization [57] and/or to
para-virtualization.

2.3.2. Hardware assisted virtualization
Hardware-assisted virtualization is a technique where the hard-
<https://sites.google.com/site/realtimexen/>.
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ware provides additional features that speed-up the execution of
VMs. For example, an additional layer for translation in hardware
of virtualized to physical memory addresses enables unmodified
guest operating systems to manipulate their page tables without
trapping; this is provided by the former Extended Page Tables
(EPT) [73] and later VT-x [72] technologies from Intel, as well as
by the Nested Page Tables (NPT) [77] and AMD-v [78] technologies
from AMD, among others. With these modifications, VMs can actu-
ally manipulate only virtual page tables, while the physical page
tables are under the control of the hypervisor. Another remarkable
example is the one of a physical network adapter capable of behav-
ing as multiple logical ones, each with its own MAC address and
send/receive queues, to be used by different VMs running on the
same physical system (e.g., as allowed by the Virtual Machine
Device Queues – VMDq – technology by Intel [74]). These are par-
ticularly effective when coupled with additional mechanisms for
I/O MMU virtualization, allowing for direct and safe access to (vir-
tualized) hardware from VMs, without hypervisor mediation for
each access. For example, the Virtualization for Directed I/O from
Intel [75] and IOMMU/Vi from AMD technologies realize this con-
cept. The Single-Root I/O Virtualization (SR-IOV) technology from
Intel [76] goes beyond network peripherals, allowing for extending
the concept to any PCIe peripheral. For example, this is extremely
useful for virtualizing access to (GP) GPU accelerators. Such hard-
ware capabilities enable to host multiple VMs on the same hard-
ware by largely reducing the need for intervention of the
hypervisor, and for the use of software emulation techniques, when
VMs need to access physical resources.

2.3.3. Para-virtualization
Para-virtualization is a technique by which the guest operating

system is modified so as to be aware to be running within a VM.
This results in avoiding the wasteful emulation of virtualized hard-
ware. Rather, the modified kernel and drivers of the guest operat-
ing system are capable of performing direct calls to the hypervisor
(a.k.a., hypercalls) whenever needed.6 The evolution of hardware-
assisted virtualization, coupled with para-virtualization techniques,
allow virtualized applications nowadays to achieve an average per-
formance only slightly below the native one. However, due to the
increase in software and/or hardware complexity, the responsive-
ness of virtualized systems keeps suffering of much more pronounced
tail-latency problems (i.e., a much worse worst-case performance) as
compared to natively running software.

2.3.4. Operating System level virtualization
OS-level virtualization is a technique by which a single operating

system gives to user-space software the illusion of multiple oper-
ating system instances, or containers, each one behaving as an
independent operating system. For example, each operating sys-
tem container has its own space of process IDs (PID), its own mem-
ory, (virtual) CPUs, private file system, etc. For example, LXC for
Linux7 and Jails for FreeBSD8 are examples of OS-level virtualization.
These can be thought of as the evolution of the old UNIX chroot con-
cept [59].

2.3.5. Application-level virtualization
Application-level virtualization, or process-level virtualization, is a

software technique allowing an application to be developed for,
and run on top of, a virtual instruction set which is independent
of the actual underlying hardware. A special software program is
6 The performance advantages of para-virtualization over full-virtualization have
to face the weakened isolation from a security perspective, but these aspects are
outside the scope of this paper.

7 More information is available at: http://lxc.sourceforge.net/.
8 More information is available at: http://www.freebsd.org/doc/handbook/

jails.html.
capable of interpreting at run-time such instructions, executing
them on the real hardware. This is for example the case of Java
applications, which are compiled to bytecode and need a Java Vir-
tual Machine (JVM) at run-time for being run. A similar situation
is the one of .NET applications. A recurrent optimization used at
run-time to avoid the performance penalty due to interpretation
of the virtual instructions, is the one of just-in-time compilation
(JITC), in which the instructions are compiled into native instruc-
tions of the underlying instruction set architecture (ISA) on the fly.
JITC improves greatly the average-case performance. However, it
also introduces further predictability issues, namely the first exe-
cution of a code segment may be greatly slower than the subse-
quent executions.
2.3.6. Network virtualization
Tightly coupled with the recalled machine virtualization tech-

niques are network virtualization techniques [35], which allow to
emulate network set-ups in software. These are useful for example
for allowing multiple VMs to run on the same physical host, with
their own IP addresses, connected together in a virtual bridge
topology. Another example, is the one of a set of VMs deployed
on a set of physical hosts, which have all IP addresses belonging
to the same sub-net/LAN as they belong to the same application
or customer. However, the physical hosts that the VMs run within
may be arranged in a completely independent topology; hosts may
not even be deployed in the same LAN similarly to VPN set-ups.
Network virtualization raises issues in predictability of hosted
time-sensitive applications. Indeed, software components of an
application running within different VMs may experience very
short communication latencies when the VMs reside in the same
physical host; the hypervisor is also designed to optimize such
communication paths avoiding wasteful processing of packets
within virtualized network stacks. However, they may also exper-
iment very long communication latencies when the VMs actually
reside in different hosts, different racks, different LANs or, in
extreme cases, different data centres of the same cloud provider.
3. Real-time challenges in cloud computing

3.1. Terminology mapping

In essence, both real-time and cloud computing communities
have the goal of guaranteeing the assigned resources or levels of
contracted services between users and the execution platform or
between VMs and the platform. However, what it means to a cloud
computing person (typically coming from the fields of networking,
distributed systems, or operating systems) may be somehow dif-
ferent from the idea conceived from a real-time systems point of
view. Therefore, a clarification of concepts and terminology map-
ping is proposed in this section as shown in Table 2.

In real-time and embedded systems design, there is an increas-
ing need for recurring to virtualization in order to enhance flexibil-
ity and isolation among independent run-time environments. It is
needed to find direct ways to translate cloud service level agree-
ments (SLAs) to resource assignment and enforcement at the plat-
form level. SLAs typically deal with bandwidth, latency, memory,
etc., that are in fact platform resources. However, a real-time per-
spective needs to step in the scene to provide actual execution
mechanisms that guarantee and enforce execution (temporal and
spatial) isolation to meet the timing requirements of real-time
applications. Virtualization of the resources should remain at an
equivalent distance from the application execution and platform
level control over the computational resources. Providing an
integrated resource management framework may be especially
complicated in this domain specifically for resources as networks.

http://lxc.sourceforge.net/
http://www.freebsd.org/doc/handbook/jails.html
http://www.freebsd.org/doc/handbook/jails.html


Table 2
Terminology mapping for the domains of cloud computing and real-time.

Cloud terminology Real-time concern

Multi-tenancy Avoidance of interference of
multiple workloads in the same
platform

Spatial and temporal
isolation

Applications must not interfere either on the processor resource
(to avoid deadline misses) nor on the usage of memory (to avoid
synchronization delays that may cause deadline misses)

Dynamic provisioning Autonomous configuration,
allocation, and deployment of
virtual cluster resources

Dynamic resource
management

Resource managers are typically implemented close to (and even
as part of) the real-time operating system. They include the
needed policies to temporarily scale up/down resource
assignments if it does not cause any temporal or spatial conflict

Service Level
Agreements

Guaranteed QoS levels for
applications that include the
computational resources and
networking performance.

Resource contracts and
budget enforcement

Applications negotiate with the resource managers their required
resource assignments. Resource managers have admission
policies that are able to determine whether a specific assignment
can be fulfilled. If the contract is set, the system will guarantee it
at all times

QoS guarantees Quality of service with respect to
network performance
parameters that guarantee the
level of service for multiple users

Temporal guarantees Timeliness of the execution is required in real-time systems.
Results, i.e., either operations or communications, must fulfill
specific deadlines. QoS is also considered as trading-off assigned
resources for the quality of the output
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In this line, one may think of the increasingly importance of net-
work functions virtualization [61], including virtualized base sta-
tions [60]. As a consequence, there is an increasing need for
controlling the temporal behavior of virtualized software, making
their behavior more predictable. In other words, these is an
increasing need for real-time virtualization techniques, enabling
the existence of real-time virtual machines (RT-VMs) [48].
3.2. Control and access to the execution platform

From the general cloud computing perspective, RT-VMs are an
enabling technology allowing virtualized applications to meet
QoS constraints (in terms of, e.g., throughput, latency, memory,
computational and networking capabilities) as stated in contrac-
tual agreements among customers and providers, formalized in
proper SLAs. Nowadays cloud computing is still in an early devel-
opment stage in which best-effort techniques dominate the pano-
rama, with their difficulties in achieving predictable behaviors. As
a consequence, real-time and QoS requirements on cloud applica-
tions have some laxity, and QoS in real SLAs is almost a myth. How-
ever, the situation is rapidly changing, and the full potential of
cloud technologies will be unveiled only when real-time design
methodologies will be widely deployed, so to achieve predictable
execution of software in the cloud. This is expected to be pushed
by increased and quickly evolving customers needs and expecta-
tions, with more and more interactive services available on-line.

The challenges for integrating real-time in virtualization are
specially related to the role and design of a real-time hypervisor
as sketched in Fig. 2. Following, the specific challenges of such a
task are listed:
Fig. 2. Real-time virtualization view based on partitions. Hardware components are
drawn as slashed circles. Software components are drawn as rounded boxes.
� Translation of interrupts is done by the hypervisor. Hard-
ware interrupts are translated to software interrupts and for-
warded to the operating system that must detect their
priority. Once the interrupt is queued to be delivered to a
VM, it will be up to the hypervisor scheduler to decide when
to schedule the VM allowing it to handle its pending inter-
rupt(s). In a moment in which there are more ready-to-run
VM virtual CPUs than available physical CPUs, this may very
well happen after tens of milliseconds.

� Access to time. Timers and clock should be readily available
to applications that require to manage time. Also, guest real-
time operating systems need it in order to perform the clas-
sical tasks of resource management such as resource
accounting, enforcement and prediction [19,20,23,63]. How-
ever, the vision of time by guest operating systems may be
largely affected by the schedule of VMs performed by the
hypervisor, introducing further unpredictable behaviors.

� When dealing with multi-processor or multi-core VMs, the
hypervisor might schedule the multiple virtualized CPUs
(vCPUs) on the underlying physical CPUs in a way that does
not ensure a uniform progress rate among the vCPUs. Fur-
thermore, not all vCPUs are ensured to be scheduled at the
same time. This may introduce further challenges that need
to be handled in the software design; an example of this is
the typical code segment within a guest operating system
kernel in which a spin-lock operation is attempted, assuming
the other vCPUs would free the lock in a few microseconds,
while it has actually been scheduled out by the hypervisor.

� In distributed real-time virtualized environments, unpredict-
ability of the network performance is one of the greatest
challenges, especially in presence of virtualized networking
set-ups. An interesting line of investigation is the one about
tuning a hypervisor configuration so as to achieve certain
performance goals for virtualized network function, e.g., as
found in [83].

VMs must be scheduled for execution in a similar way that
threads are scheduled by the operating system. VMs have schedul-
ing attributes that are typically set statically and used by the
hypervisor (or equivalent virtualization facilities) to schedule the
execution of the VMs. For real-time scheduling, a RT-VM will set
its attributes according to the real-time parameters needed or
the QoS requirements so that it is scheduled with higher priority
than others. In real-time scheduling theory, this can be combined
with hierarchical scheduling algorithms/policies that define
time partitions to execute sets of tasks that could be VMs. Some



Fig. 3. Increased complexity in the architectural definition of resource managers
(RMs).
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standards like ARINC-653 [43] define temporal partitions for
virtual machines that run in the same physical platform avoiding
temporal and spatial interference.

In cloud computing for real-time embedded environments, the
hypervisor is then in charge of managing the hardware resources
and enforcing the spatial and temporal isolation of the guest oper-
ating systems. Para-virtualization is, therefore, the technique that
better fits the requirements of embedded real-time systems. It pro-
vides faster execution and a simplified interface. The guest operat-
ing system must be customized in the para-virtualization case.

3.3. Real-time scheduling and resource management

Virtualization brings a number of challenging issues for real-
time workloads. First, the increased level of resource sharing
among multiple operating systems makes it difficult to run soft-
ware in predictable ways, as the performance of each virtual
machine (VM) depends on the amount of resources (e.g., comput-
ing, storage or networking) other VMs are consuming. What is
worse, in a cloud computing environment multiple VMs sharing
the same physical hosts and networks are often hosted on behalf
of different and independent tenants (customers). Furthermore,
dynamic creation and migration of VMs introduces potentially high
and bursty work-loads that can greatly interfere with the perfor-
mance of VMs sharing the same physical resources. This makes
the problem of temporal interferences among VMs even more crit-
ical and important, as the performance exhibited by one VM does
not only depend on the workload imposed within the cloud infra-
structure by the same tenant, but also on the one imposed by VMs
of other tenants. A situation that, albeit acceptable in an infantry
stage of cloud computing, is not destined to last for too long, as
users will gain confidence in the technology and evolve their still
primitive requirements. We report below some of the most impor-
tant contributions in the area of real-time scheduling and resource
management for QoS-sensitive virtualized workloads.

3.3.1. Distributed resource management
Techniques and algorithms for real-time scheduling and

resource management in general are able to provide temporal exe-
cution guarantees. As a means to introduce QoS-based resource
management to trade-off execution quality by the assigned
resources, a number of contributions on resource management
architectures such as [19–21,63] appeared for centralized systems.
Also, specific algorithms for real-time task management based on
QoS levels were developed [23,24]. In these contributions, the exis-
tence of a resource broker that guarantees application resources
and contracts lies clearly inside the operating system. For distrib-
uted environments, resource managers lie in a partially central-
ized/partially distributed mode [44]. All these ideas have to be
modified to suit the virtualization technology in real-time
domains. There is no centralized point for the location of the
resource manager. Instead, it will have to rely on the principles
of hierarchical scheduling [45] and the associated realizations as
ARINC-653 in order to identify the architectural placement of the
different modules of a distributed resource manager that is also
distributed inside the node itself, as shown in Fig. 3.

Fig. 3 shows this transition to a more complex design in the
architecture of resource management, i.e., schedulers placement.
The scheduler of the host operating system will define and arbi-
trate the temporal partitions among the virtual machines (or par-
titions). In guest OSs, there will be a local scheduler that, in the
case of real-time systems, must be synchronized in design with
the host/global scheduler. The exact placement in actual imple-
mentations may differ according to various parameters, e.g., place-
ment of the scheduling queues, access to the processor time which
will depend on the type of hypervisor used, etc.
3.3.2. Real-time scheduling of virtual machines
The problem of performance isolation in cloud computing, and

especially the one of controlling the interferences at the computing
level, can be partially mitigated by using proper scheduling algo-
rithms at the hypervisor or host operating system level.

Concerning the isolation of virtualized software on the comput-
ing level, [65] proposes to use an EDF-based scheduling algorithm
for Linux on the host to schedule virtual machines (VMs). Unfortu-
nately, the authors make use of a scheduler built into a dedicated
user-space process (VSched), leading to unacceptable context
switch overheads. Furthermore, VSched cannot properly guarantee
temporal isolation in presence of a VM that blocks and unblocks,
e.g., as due to I/O. [30] investigates the performance isolation of
virtual machines, focusing on the exploitation of various schedul-
ing policies available in the Xen hypervisor [9]. Furthermore, Dun-
lap proposed [29] various enhancements to the Xen credit
scheduler in order to address various issues related to the temporal
isolation and fairness among the CPU share dedicated to each VM.
Precisely, [67] focuses on automatic on-line adaptation of the CPU
allocation in order to maintain a stable performance of VMs. The
framework needs to go beyond the common IaaS business model,
in that it needs application-specific metrics to run the necessary
QoS control loops. Also, the authors do not address how the
dynamic resource allocation is considered from a resource plan-
ning and advance reservation perspective. In contrast to heuris-
tics-based solutions discussed above, a promising approach is to
employ rigorous real-time scheduling algorithms to schedule vir-
tual machines. We provide an overview of two recent efforts in this
direction in Section 4.
3.3.3. Alternatives not based on machine virtualization
A number of works advocated a disruptive approach truncating

relationships with the nowadays practice of virtualized infrastruc-
tures for cloud computing, proposing completely alternative ways
for enabling real-time performance in distributed cloud infrastruc-
tures. These are based on completely different software architec-
ture conceptions. Indeed, various authors expressed the need for
lighter software architectures supporting cloud applications, as
compared to nowadays well-established virtualized infrastruc-
tures. In the current practice, it is easy to see replication of func-
tionality at multiple levels, for example CPU scheduling, packet
filtering/routing, memory allocation and security features at the
hypervisor and guest operating system levels. This creates inertia
in the management of the software components, impairing agility,
adaptability and often performance.

For example, MediaCloud [28] was proposed as a novel frame-
work specifically tied to multimedia processing. It is based on a
notion of extremely lightweight and almost stateless media pro-
cessing components whose location can be quickly decided and
altered at run-time, for given multimedia flows among sources
and destinations. For example, from a few measurements shown
in [28], MediaCloud is capable to support instantiation of media
processing functions, i.e., service components on distributed
cloud resources, in the time-frame of a few milliseconds, and a
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re-assignment of media processing components from one process-
ing resource onto another at service run-time in the time-frame of
2–3 ms. Such agility, achievable thanks to the specific focus of the
platform which has been designed around the idea of an
application-specific cloud, is surely a promising enabling factor for
real-time workloads and adaptive resource management policies.

Similar motivations can be found in [41,84], where the novel
Osprey operating system is proposed for predictable cloud com-
puting, and in [85], where a novel operating system architecture
for cloud computing is envisioned. Also, a similar line of reasoning
can be found in the recently proposed Mirage [58] project, revisit-
ing the idea of library operating systems for realizing high-perfor-
mance network applications for cloud computing and mobile
platforms with a highly reduced software stack optimized at com-
pile-time. The reduced size of this type of cloud applications enable
a dynamism and reactiveness in reconfiguring the system at run-
time for dealing with performance issues that would simply be
impossible with standard VMs.

Finally, in [50] it is highlighted that, in the hierarchical compo-
sition of multiple real-time schedulers, it is unavoidable to lose
computing power in order to keep schedulability guarantees for
the hosted real-time workloads. Alternatively, the authors suggest
that OS-level virtualization, such as available through the Linux
containers (LXC), may constitute valuable means to keep the most
important advantages of virtualization (including isolation from a
security perspective [70]), but with an easier and more efficient
way to achieve schedulability of the overall real-time workload.

Various other contexts exist in which OS-level virtualization is
being investigated, including network function virtualization and
others, but their exhaustive description is out of the scope of the
present paper.

As a final remark, it is worth to mention that some of the tough-
est challenges in cloud computing are due to the need for providing
SaaS offerings with stable and predictable service levels [53,89,64],
through the interaction of the multitude of business players that
may be involved, including multiple SaaS and IaaS providers and
Network Service Providers. The establishment of proper SLA mod-
els among these players may be a challenge on its own, encom-
passing technological as well as business aspects that deserve
attention in the future.

3.4. Communication network challenges

The network is a source of temporal unpredictability in real-
time systems. Real-time networking theoretical models calculate
the response times of message exchanges and the overall system
schedulability relying on the assumption that the network is highly
predictable, no messages are lost, noise effects are not present,
wired technology is used, and the system is closed so that no
dynamic interference caused by extra tasks or applications can
be considered once the system is in execution. Typical real-time
networks for critical environments are based on the time-triggered
architecture [42]. Such paradigm has been applied successfully in a
number of domains, especially in automotive. In other application
areas such as avionics, proprietary protocols have been used
depending on the company standards and target system field
(i.e., civil, military, or aerospace) such as the 1535 bus-based air-
borne data transfer systems.

In cloud computing environments, the network traffic and the
nature of the networking protocols exhibits a specific behavior
such that full predictability is not guaranteed. Instead QoS provi-
sions are utilized.

3.4.1. Network QoS guarantees in HPC
Although deadline misses would not have catastrophic results

in the main stream application domains of cloud computing,
execution performance is a critical aspect for virtualization
and cloud technology. Most cloud computing platforms do not
specifically address real-time environments; however, there are a
number of target systems with a critical requirements for service
provisioning. These are called high performance cloud (HPC)
applications. HPC applications have strong requirements for
resource assignment guarantees and timely delivery of results. It
is complex to meet such requirements in HPC applications over
virtualized platforms since the overhead caused by I/O operations
and processor cycles is very high. Moreover, activities are typically
allocated to specific processors that often require thread run-time
synchronization across cores. As a consequence, the main crucial
aspects in HPC applications are:

� Job allocation policies. Jobs are frequently bound to specific
cores.

� Network connectivity of processor clusters. Network protocols
have to merge timeliness and throughput requirements to
offer the needed performance levels.

To meet the different requirements of HPC in a virtualized envi-
ronment, the virtualization platform must contain manager enti-
ties in charge of executing resource management policies that
provide adequate trade offs for achieving the necessary perfor-
mance levels. Different contributions such as [13] have identified
network QoS as the primary problem for achieving HPC applica-
tions. Other contributions such as [14] have concluded that build-
ing high speed cluster interconnect networks as InfiniBand [15] in
the virtual machines can bring in significant improvements. Net-
work latencies can be significantly reduced as compared to other
Ethernet based solutions. This approach is similar to the
approaches delivered for distributed networked embedded sys-
tems such as the wormholes [17] though it is not focused on virtu-
alization techniques.

For HPC, computing systems are usually built around high per-
formance network interconnects that must somehow be integrated
in the virtualized platform. To implement HPC systems, special
network technologies are needed in order to guarantee a stable
and constant level of QoS. Technologies such as Ethernet cause
the network traffic to flow through the protocol stack of the guest
and host operating system therefore decreasing performance.

To overcome the drawbacks of typical Ethernet for HPC, specific
architectures for interconnection of cluster nodes are used that
bypass the operating system to achieve low latency. Also, such
technological approaches typically offload the protocol overheads
to increase bandwidth explicitly executing some of the protocol
layers inside the network board. Examples of such technologies
are InfiniBand [15] and Myrinet [18]. Architectures such as Infini-
Band do not get rid of the typical workings of protocol headers.
However, they gain performance by more aggressive protocol pro-
cessing; in fact, up to transport level is directly executed by the
network interface. InfiniBand architecture, then, offers an commu-
nication-intensive environment where applications can directly
use the network interface to transfer data without the intervention
of the operating system. Applications access the memory of the
device polling to determine the completion of their send/receive
operations.

3.4.2. Virtualization of I/O network communications
As stated in [12], there are currently three approaches to the

virtualization of I/O network communications that are suitable
for HPC environments (Fig. 4):

� PCI (peripheral component interconnect) passthrough, where
each VM in a node is granted direct access to a dedicated
PCI I/O device/slot. As such, the number of VMs per host is



Fig. 4. OS by-passing for high performance networks/communications (HSN).
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limited by the number of PCI slots since each one is used by
an operating system. To provide spatial isolation between
different VMs, an I/O MMU (memory mapping unit) is
required.

� Para-virtualization, that is virtualization technique that pre-
sents a software interface to VMs that is similar but not iden-
tical to that of the underlying hardware. Therefore, some
special operations are executed in the non-virtualized envi-
ronment, and the operating system must be ported to run
on the VM obtaining a more efficient and higher perfor-
mance VM. Some approaches combining a high performance
network architecture [16] over a para-virtualization technol-
ogy hypervisor as Xen [9] have appeared that can achieve
excellent performance.

� Single root I/O virtualization (SR-IOV). It virtually multiplexes
the PCI device offering each one as multiple devices called
Virtual Functions (VFs). Here, a guest operating system can
have exclusive access to VF by using PCI passthrough. SR-
IOV is one of the most flexible options for some high perfor-
mance networking architectures.

4. Example approaches

Following, we present only a subset of selected examples that
illustrate some of the design decisions taken by virtualization tech-
nology to integrate real-time support.

4.1. Approaches to real-time virtual machine scheduling

Relating to Section 3.3.2, two significant lines of work dealt
with real-time scheduling of virtual machines, namely IRMOS
and RT-Xen, which are detailed in what follows.

4.1.1. IRMOS
In order to provide scheduling guarantees to individual VMs

scheduled on the same system, processor and core, in the context
of the IRMOS European project [27] a deadline-based real-time
scheduler [99] for the Linux kernel was developed. It has been inte-
grated within the Intelligent Service-Oriented Networking Infra-
structure (ISONI) [37] software prototype developed throughout
the project life-span, allowing for deployment of distributed virtu-
alized applications with real-time performance guarantees. It pro-
vides temporal isolation among multiple possibly complex
software components, such as entire VMs (with the KVM hypervi-
sor, a VM runs as a Linux process). It uses a variation of the Con-
stant Bandwidth Server (CBS) algorithm [71], based on Earliest
Deadline First (EDF), for ensuring that each group of processes/
threads is scheduled on the available CPUs for a specified time
every VM-specific period, i.e., according to a resource reservation
paradigm [62]. Interestingly, the same IRMOS scheduler may easily
be reused for providing scheduling guarantees to LXC containers,
as well as to JVM instances. Indeed, in all these cases, the scheduler
allows for associating clearly specified scheduling guarantees to a
set of processes running within the system. Additionally, the
IRMOS RT scheduler can temporally isolate a VM from additional
cloud management workload that is imposed onto the system by
the cloud provider itself, like for example workload due to moni-
toring of the infrastructure, initial provisioning/deployment of
VMs, or migration of VMs from one physical host to another. For
example, assignment of precise resources reserved for VM migra-
tion, allows for enhancing the VM migration process with
improved overall migration time and down-time [26,100]. The
IRMOS approach has been validated on use-cases focusing on dis-
tributed real-time multimedia services in the cloud, including [27]
e-Learning, high-performance video processing for film post-pro-
duction and virtual and augmented reality for automotive. More
information on the IRMOS real-time enhancements for the Linux
kernel are provided in [99] and at the URL: http://lwn.net/Arti-
cles/398470/.
4.1.2. RT-Xen
The RT-Xen project has developed a real-time VM scheduling

framework in the hypervisor. The RT-Xen scheduler [46] bridges
the gap between real-time scheduling theory and the Xen platform
by scheduling VMs using fixed-priority server algorithms designed
based on real-time scheduling theory [90–92]. The real-time VM
scheduler in the hypervisor and the schedulers in the guest
operating systems form a scheduling hierarchy whose real-time
schedulability can be formally analyzed using existing hierarchical
real-time scheduling theory. Empirical evaluation showed that RT-
Xen can provide effective real-time scheduling to guest Linux OSes
at a 1 ms quantum, while incurring only moderate overhead for
running the fixed-priority server algorithms [46]. This original
RT-Xen 1.0 scheduler has been gone through two major enhance-
ments in recent years. RT-Xen 1.1 supports compositional real-
time scheduling where the resource demand of the tasks in a VM
is represented by the VMs resource interface that can be computed
based on compositional analysis [47]. If the resource interface is
satisfied by the hypervisor scheduler, the guest operating system
of the VM guarantees the schedulability of the tasks. RT-Xen 1.1
also incorporates improved periodic server algorithms that are
work-conserving and improve task response times while preserv-
ing theoretical schedulability results. The effectiveness of RT-Xen
1.1 is demonstrated using workloads from an avionics case study
(ARINC-653) [43]. The most recent version, RT-Xen 2.0, is a new
real-time multi-core scheduler with a rich set of configurable fea-
tures including global and partitioned schedulers, static and
dynamic priority schemes, and different server algorithms [55].

With the increasing capacity of multi-core processors, there is
an ongoing trend towards integrating multiple real-time systems
as VMs co-located on a common host. It is important to properly
prioritize the communication between VMs to meet their respec-
tive timing requirements. A key feature of the Xen architecture is
that it relies on the manager domain to process packets between
VMs. As a result both the VM scheduler and the manager domain
can affect communication latency and incur priority inversion. A
real-time VM scheduler alone cannot prevent priority inversion
in inter-domain communication, as the manager domain can
become the performance bottleneck in inter-domain communica-
tion. To address those limitations, RT-Xen provides the Real-Time
Communication Architecture (RTCA) to support real-time commu-
nication between domains (VMs) co-located on a same physical
host [55]. Experimental results demonstrate that RT-Xen can dra-
matically reduce the latency of high-priority communications
between local VMs from milliseconds to microseconds through
the combination of RTCA and the real-time VM scheduler. RTCA

http://lwn.net/Articles/398470/
http://lwn.net/Articles/398470/
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has recently been extended to support real-time network commu-
nication between VMs on different physical hosts.

Several projects enhanced Xens default credit scheduler to bet-
ter support soft real-time applications. For example, [56,95] pro-
vided a strict-prioritization patch for the credit scheduler so that
real-time domains can always get resource before non real-time
domains, and [96] mitigates priority inversion when guest
domains are coscheduled with domain 0 on a same core. In [97],
similar approaches are employed to improve the credit scheduler
in the Xen ARM platform. While these works employed heuristics
to enhance Xens existing credit scheduler, RT-Xen9 provides a
new real-time scheduling framework that is separate from the exist-
ing schedulers and is designed to deliver real-time performance
based on compositional real-time scheduling theory.

4.1.3. Comparison between IRMOS and RT-Xen
RT-Xen and IRMOS share the common goal to enable predict-

able execution and real-time performance in virtualized environ-
ments. Both investigate the use of scheduling algorithms
rigorously designed based on real-time scheduling theory to pro-
vide CPU scheduling guarantees for VMs, and both advocate the
use of hierarchical scheduling techniques to assess the schedulabil-
ity of real-time workloads running within the VMs.

Due to the architectural differences between Xen and KVM,
while in RT-Xen such scheduling techniques have to be realized
by modifying directly the scheduler of the Xen hypervisor, in
IRMOS these changes are done at the level of the host operating
system, namely changing the scheduler of the Linux kernel acting
as host operating system [99]. Therefore, the IRMOS scheduler is
useful for scheduling not only VMs, but also other real-time work-
loads such as web servers, Java virtual machines, or general real-
time processes [48,49].

RT-Xen and IRMOS target at different application domains.
IRMOS targets at mostly predictable execution for soft real-time,
multimedia-oriented applications in virtualized cloud infrastruc-
tures, enabling a full real-time aware software life-cycle encom-
passing design, development, deployment, monitoring and run-
time adaptation of real-time services. On the other hand, RT-Xen
currently targets mainly predictable execution for both soft and
hard real-time workloads for embedded, virtualized and net-
worked embedded systems, with a focus on much lighter software
infrastructures as required in many systems belonging to the core
embedded domain. For example, to support many embedded sys-
tems with inter-VM dependencies RT-Xen enhances the real-time
performance and predictability of the VM-to-VM communication
within Xen [54] by mitigating priority inversion in the communica-
tion stack. Geared toward distributed cloud applications, IRMOS
realizes an IaaS management scheme [34] allowing for combining
various techniques for predictable execution and QoS support in
the three core resources involved in distributed cloud applications,
namely CPU scheduling, disk access and networking. This required
to face a great number of challenges related to prediction of soft-
ware performance, which have been tackled with the help of neu-
ral networks [33] and probabilistic modeling tools based on UML.
The overall outcome of IRMOS has been a holistic solution and
working prototype enabling deployment of distributed cloud
applications with strong end-to-end QoS guarantees, either in a
deterministic or in a probabilistic set-up, tackling the correspond-
ing SLA-related challenges, both from a technological and from a
business modeling viewpoint. Summarizing, IRMOS targets mostly
predictable execution for soft real-time, multimedia-oriented
applications in virtualized cloud infrastructures, enabling a full
real-time aware software life-cycle encompassing design, develop-
9 More information on RT-Xen, including documentation and open-source soft-
ware, can be found at: https://sites.google.com/site/realtimexen/.
ment, deployment, monitoring and run-time adaptation of real-
time services. On the other hand, RT-Xen targets mostly predict-
able execution for both soft and hard real-time workloads for
embedded, virtualized and networked embedded systems, with a
focus on much lighter software infrastructures as required in many
systems belonging to the core embedded domain. With the
increasing capacity of multi-core processors, there is an ongoing
trend towards integrating multiple real-time systems as VMs co-
located on a common host. It is needed to properly prioritize the
communication between VMs to meet their respective timing
requirements. A key feature of the Xen architecture is that it relies
on the manager domain to process packets between VMs. As a
result both the VM scheduler and the manager domain can affect
communication latency and incurin priority inversion. A real-time
VM scheduler alone cannot prevent priority inversion in inter-
domain communication, as the manager domain can become the
performance bottleneck in inter-domain communication. To
address those limitations, the Real-Time Communication Architec-
ture (RTCA) of RT-Xen supports real-time communication between
domains (VMs) co-located on a same physical host [55]. Experi-
mental results demonstrate that RT-Xen can dramatically reduce
the latency of high-priority communications between local VMs
from milliseconds to microseconds through the combination of
RTCA and the real-time VM scheduler. RTCA has recently been
extended to support real-time network communication between
VMs on different physical hosts.

4.2. Approaches to real-time communication

Recent research has explored approaches to support real-time
communication between VMs. In the following, we highlight the
respective approaches employed in IRMOS, RT-Xen, and iLAND to
support real-time communication.

Firstly, iLAND and ISONI are given as examples of contributions
that improve the predictability of the network traffic scheduling.
iLAND [44] offers a virtualized middleware based on DDS with
enhanced functionality in the form of a VMM, without network
bypassing. It provides a virtualized infrastructure where service-
based applications can execute in both an isolated mode or ported
to an open cloud computing setting. Applications based on iLAND
services are flexible in the sense that they are able to change their
structure, i.e., reconfigure according to a time-bounded protocol
[24] respecting the specified timing constraints entered as SLAs.
In iLAND, off-line fine-tuning of SLAs can be done with a priori per-
formance analysis of virtualized DDS implementations (the com-
munication backbone) [22,68]. Isolation of the traffic of
independent VMs within ISONI [37] is achieved by a VSN individ-
ual virtual address space and by policing the network traffic of
each deployed VSN. The two-layer address approach avoids
unwanted crosstalk between services sharing physical network
links. Mapping individual virtual links onto diverging network
paths allows for a higher utilization of the network infrastructure
by mixing only compatible traffic classes under similar predictabil-
ity constraints and by allowing selection of more than just the
shortest path. Traffic policing avoids that the network traffic going
through the same network elements causes any overload leading
to an uncontrolled growth of loss rate, delay and jitter for the net-
work connections of other VSNs. Therefore, bandwidth policing is
an essential building block to ensure QoS for the individual virtual
links. It is important to highlight that ISONI allows for the specifi-
cation of the networking requirements in terms of common and
technology-neutral traffic characterization parameters, such as
the needed guaranteed average and peak bandwidth, latency and
jitter. An ISONI transport network adaptation layer abstracts from
technology-specific QoS mechanisms of the networks, like Differ-
entiated Services [25], Integrated Services [39,40] and MPLS [36].

http://https://sites.google.com/site/realtimexen/
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The specified VSN networking requirements are met by choosing
the most appropriate transport network, among the available ones.
Furthermore, it is not excluded that a network provider may be
willing to deploy state-of-the art packet scheduling algorithms
for either deterministic or probabilistic latency control, like found
in [51,52], just to mention a few. More detailed information on QoS
provisioning between data centers within an IaaS domain is given
in [38]. Other interesting results from the research carried out in
IRMOS include algorithms for the optimum placement of distrib-
uted virtualized applications with probabilistic end-to-end latency
requirements [32], a probabilistic model for dealing with workload
variations in elastic cloud services [79,93] and the use of neural
networks for estimating the performance of virtual machines exe-
cution under different scheduling configurations [33]. The effec-
tiveness of IRMOS/ISONI has been demonstrated for example
through an e-Learning demonstrator [27].

In the domain of virtualized Telco (vTelco) services, latency-
aware placement of vTelco applications has been investigated in
[31], where application-level latency expressions have been intro-
duced to account for the correct number of expected round-trip
interactions among application components to be deployed. Also,
in [80,81] an architecture for implementing a distributed Mobility
Management Entity (dMME) in a scalable and latency-aware fash-
ion has been presented.

5. Future directions

The research community is working on cloud computing from
different perspectives, though still with a predominant distributed
and networking side to it. Future directions in those areas are typ-
ically related to faster, more reliable, and higher (guaranteed)
bandwidth networking for data bulks; security and privacy guaran-
tees on data centers and user links; more efficient data access and
analysis mechanisms and algorithms. From other domains, new
business models are also being engineered and thought out to
get the most out of this environment.

First we provide some ideas on one of the key problems in cloud
computing such as the improvement of the virtualization technol-
ogy to offer strict guarantees over the contracted resources. Later,
we focus on two of the key challenges of cloud computing as it is
the support for bulk data transfer, analysis, and storage; and virtu-
alization of network functions.

5.1. Virtualization technology

From the distributed real-time perspective, the essential target
is the improvement of the virtualization technology to guarantee
contracted resources at the level of the execution platform in order
to meet the applications timing properties. To achieve such goal,
there are different directions of interest to drive towards. On one
side, hardware support for virtualized computing has been moving
towards improving the throughput in the average case, rather than
allowing for more predictable execution. Similarly, design of oper-
ating systems for general-purpose computing is geared towards
average performance rather than predictability. In para-virtualiza-
tion it is a challenge to port existing operating systems to run in
some virtual machine schedulers. Hardware vendors are realizing
that virtualization is becoming more and more important, particu-
larly in data centres. Other important directions are the design of
scheduling and execution algorithms that enable, in the same
VM, job co-existence with temporal and spatial isolation guarantees.
Albeit the real-time research community addressed hierarchical
scheduling from a theoretical standpoint, the concrete support of
these concepts within virtualized environments is practically null,
leaving developers and practitioners clueless about the way to pos-
sibly achieve temporal isolation and performance guarantees for
critical tasks within guest operating systems. Support for dynamic
job scheduling would enable any new job to join a system in execu-
tion without altering the temporal properties of the whole system.
This requires to implement multi-level resource managers integrat-
ing general purpose network protocols as they are the mainstream in
cloud, e.g., Ethernet. One other challenge will be the real-time live
migration where VMs containing real-time applications are trans-
ferred between different physical servers.

5.2. Support for data-intensive and Big-Data workloads

One of the increasingly interesting applications of cloud com-
puting is in the context of management of massive amounts of
data, such as data analytics and real-time processing engines in
the area of Big-Data. Indeed, such applications are difficult if not
impossible to run within traditional local premises, while when
running in the cloud, it is easy to take advantage of the big storage
capacity as well as of the computational capabilities that are avail-
able within a data centre. Differently from applications tradition-
ally considered in the context of real-time systems, data-
intensive workloads exercise an unusual stress on the memory
sub-system of a computing system, as well as on its networking
capabilities, in addition to the pure CPU computing load.

Classical techniques for temporal isolation of computing work-
loads, based on CPU scheduling, and particularly on real-time
scheduling and resource reservations, such as the IRMOS scheduler
or the RT-Xen approaches presented above, struggle at guarantee-
ing the desirable level of performance isolation in presence of data-
intensive workloads. Indeed, various open challenges arise in this
context:

� Even though VMs get precise guarantees by the hypervisor CPU
scheduler, their actual performance keeps being greatly variable
as due to the interferences happening on the memory sub-system
level; indeed, whenever scheduling in and out VMs on a CPU
core, the cache(s) may easily be wiped out when the co-sched-
uled workload is data-intensive; even though VMs are deployed
and pinned down onto separate cores, the 3rd-level and some-
times the 2nd-level caches are shared with other cores, thus
with other VMs, leading to big unpredictable interferences that
are challenging to be modeled and accounted for; on big multi-
core and NUMA machines, even with separate caches, data-
intensive workloads create massive amounts of cache misses,
thus requests to load cache lines from the memory controllers,
which are normally shared across a number of cores and phys-
ical processors, creating interferences on the level of access to
the memory controller(s).
� The VMs hosted on a big multi-core machine may need to share

access to the same physical networking hardware; when the
amounts of data to be transferred by each VM are massive, even
with 10 Gb/s Ethernet interfaces, it is challenging to design a
system that guarantees given temporal properties; for example,
the computing platform is flooded with interrupts due to the
network adapter in a way that is uncommon and affects work-
loads in a fairly unpredictable way; imagine a CPU-bound work-
load co-hosted with a data-bound workload, where interrupts
generated by the latter impact on the performance of the
former.

Clearly, from a real-time perspective, the above problems might
be addressed by proper worst-case analysis techniques that prop-
erly account for the mentioned types of interference. These types
of techniques might be effective on embedded systems with a rel-
atively known set-up and control on the hosted software; however,
on virtualized big multi-core environments hosting multi-tenant
virtualized systems that are completely independent and have
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(possibly) very heterogeneous characteristics, worst-case tech-
niques are far from being usable; they would yield a level of
under-utilization of the resources that would kill the whole con-
cept of Cloud Computing.

Interestingly, a few approaches that move along the lines of try-
ing to mitigate the above mentioned problems in presence of data-
intensive workloads have been recently proposed in the real-time
research literature, such as [66].

5.3. Real-time challenges in network functions virtualization

One of the disruptive technologies that is emerging in the area
of Cloud Computing and data centres architectures is the one of
Network Functions Virtualization (NFV) [61]. In cloud infrastruc-
tures, the hosted workloads present increasingly complex net-
working demands, and the providers also have increasing needs
for flexibility in the management of the underlying infrastructure.
Flexibility is achievable by reallocation of VMs, applications, and
data storages as needed by the run-time status of the infrastruc-
ture. Nevertheless, such flexibility must preserve a fixed (and
agreed-upon) logical view of a virtualized networked environment
with specific QoS requirements and SLAs. All this requires complex
management and an increasing use of software-based approaches,
including highly flexible and dynamic virtualization and network
virtualization techniques. Network virtualization proposes decou-
pling of functionalities in a networking environment by separating
the role of the traditional Internet Service Providers (ISPs) into
two: infrastructure providers that manage the physical infrastruc-
ture, and service providers that create virtual networks by aggre-
gating resources from multiple infrastructure providers and offer
end-to-end network services. In this context, it is interesting to
see how a hypervisor configuration may impact on the perfor-
mance of virtualized network functions [83], and how such config-
urations could be integrated within an automated framework for
QoS-aware management of a cloud infrastructure.

Network virtualization for cloud computing is focused at the
different networking layers (layer 3, 2, or 1). For example, Layer
3 VPNs or Virtual Private Networks (L3VPN) are distinguished by
their use of layer 3 protocols (e.g., IP or MPLS) in the VPN backbone
to carry data between the distributed end points with possible het-
erogeneous tunneling techniques. Quality of service with respect
to network performance has to be guaranteed even when multiple
users are sharing a specific infrastructure simultaneously. Some
studies (such as [82]) have shown that performance can improve
significantly if virtual machines are interoperated via a high-speed
cluster interconnect. There are some implementations (such as
[12]) that back up this idea based on the usage of InfiniBand
[15], providing improved networked latencies as compared to IaaS
solutions based on Ethernet. However, merging networking
research similar to the one exposed above with real-time design
and scheduling techniques is an open area of research. Typically,
passed the medium access layer that controls deterministic con-
tention and transmission, networking is typically not the focal
point of real-time research but rather of high performance net-
working. As a consequence, network virtualization merged with
cloud technology in real-time environments is an extremely
important, challenging, and open area of research.

Additionally, network equipment manufacturers and network
providers are exploring the additional virtualization techniques
to make networks more flexible and adaptable to a number of
novel and emerging scenarios, which also enable novel business
models for the networking industry. This is the case, for example,
of future virtualized base stations [60] in which the same hardware
may be shared among a number of providers, as opposed to the
current practice in which every provider deploys its own physical
infrastructure.
Similarly, there is a general trend towards providing network
functions that used to be available as separate physical equipment.
Network functions have the form of software components and ser-
vices that can be deployed on standard general-purpose computing
hardware, or sometimes even in the cloud. This is the case for
example of security services or routing logic such as OpenFlow
controllers for Software-Defined Networks (SDNs) [69]. This will
have a number of benefits such as significant reduction of equip-
ment, energy consumption, or maintenance tasks, among others.
Further investigation is also needed on the side of how to properly
distribute such functions over the network, in order to maintain
scalability of the infrastructure, following up on the architecture
proposed in [81] for cellular network functions, for example.

A last discussion in also needed for Ethernet technology as it
occupies a predominant position in local area networks and, conse-
quently, also in mainstream cloud computing data centres. Ether-
net presents problems of contention in the access to the physical
communication media. Over the last decades, this has led to a myr-
iad of research works targeted at deriving QoS performance met-
rics for estimating suitability of different actual deployments and
providing priority assignment techniques for different applica-
tions, users, or data flows, or to guarantee different levels of perfor-
mance to communication data flows. Quantitative measures of QoS
have focused on aspects of the network service such as transmis-
sion error rates, bandwidth, throughput, transmission delay, avail-
ability, jitter, packet loss/drop probability, etc. Ethernet has also
been used in real-time settings with the necessary precautions to
reduce (and even avoid) the contention over the communication
media at the cost of significantly reducing the average and peak
throughput and bandwidth. Most solutions have included the
usage of switched Ethernet. However, such a design eliminates
the contention from the communication media by transferring it
to the router queues, and it also requires the global scheduling
and synchronization of the network nodes. Real-time cloud com-
puting applications such as on-line gaming and on-line video
streaming highly demand network resources since they often
require fixed bit rate and are delay sensitive. QoS guarantees are
very important to them if the network capacity is insufficient. In
addition to the research work on improving the utilization of the
network bandwidth and fine-grain characterization of the perfor-
mance metrics of different protocols, other alternatives that aug-
ment the bandwidth of Ethernet, such as x-Gigabit solutions, will
continue to rise in the near future in order to better support the
increasing density of VMs and processor cores in cloud computing
data centres.
6. Conclusion

Although it is a reality already for some years, cloud computing
is a fairly new paradigm for dynamically provisioning computing
services located in data centers that are intensive in the use of vir-
tualization technology allowing server consolidation and efficient
resource usage in general. In the last decades, important advances
mainly at machine virtualization, network, data analysis, and stor-
age levels have contributed to the wide spread usage and adoption
of this paradigms in different domains.

Due to their strong timing requirements and needed predict-
ability guarantees, real-time application domains are still far
behind in the full adoption of cloud computing. Merging cloud
computing with real-time is a complex problem that requires
real-time virtualization technology to consolidate the predictabil-
ity characteristics that it will be able to offer in the future. Cur-
rently, there are still some barriers and important challenges for
its full adoption by real-time domains and especially hard real-
time applications. This is mainly due to the fact that predictability
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is challenged by the limited capacities offered to real-time guest
software to access to the hardware resources; the communication
latencies in distributed nodes are challenged by the Internet proto-
cols that dominate the sector and that are executed in a heavy/
thick software stack; the security of cloud and virtualization
deployments; and the need for introducing hierarchical schedulers
capable of providing temporal guarantees. Although there are
some solutions that are more advanced for embedded systems
and also provide some real-time capabilities such as Xen, still
available commercial solutions do not guarantee execution isola-
tion with a real-time software stack in a cloud computing environ-
ment. This paper has analyzed some of the problems and
challenges for achieving real-time cloud computing as a first step
towards presenting an abstract map of the situation today, identi-
fying the needed elements at all levels to make it happen. The pre-
sented concerns range from the hypervisor structure and role, the
different possible types of virtualization and their respective per-
formance, general resource management concerns and schedula-
bility of VMs related to hierarchical scheduling, and the
important role of the network in the overall picture of virtualiza-
tion technology. For the latter, this paper has described some solu-
tions of the HPCC community to bypass the bottlenecks introduced
by the protocol execution inside the different layers of the software
stack. A terminology mapping between cloud and distributed real-
time systems domains has been settled in order to connect both
areas. Lastly, we have introduced a number of future directions
that require attention from different communities to realize the
real-time cloud.
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