
This is a postprint version of the following published document:

Basanta-Val, Pablo, García-Valls, Marisol. A library for developing
realtime and embedded applications in C. Journal of Systems Architecture,
(2015), 61(5-6), 239-255.

DOI: https://doi.org/10.1016/j.sysarc.2015.03.003

© 2015 Elsevier B.V. All rights reserved

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License

https://doi.org/10.1016/j.sysarc.2015.03.003
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Systems Architecture
A library for developing real-time and embedded applications in C
and mo

nt costs

 high lev

ysical C

s roots

rnature

essors

e Java a

 sharin

erforma

e over
Pablo Basanta-Val, Marisol García-Valls

Universidad Carlos 111 de Madrid, Avda de la Universidad no 30, 28911 Leganés. Madrid, Spain

ABSTRACT
Next generation applications will dern

increasing maintenance and developrne

an efficient programming language and

abstraction is called Embedded Cyber Ph

tions directly on C. The abstraction has it

ming languages, which benefited from

languages. It also targets embedded proc

ming abstractions described in real tim

extensions for multi threading, resource

memory access. It also reports on the p

check ECP C, providing clues on th

infrastructures.
re cost effective programming abstractions to reduce

. In this context, the article explores the integration of

el real time programming abstractions. The resulting

 (ECP C) and it is useful for designing real time applica

on the real time Java: one of the most modero program

 programming patterns previously developed for other

running on limited hardware. ECP C takes the program

nd reflects them into a C application system. providing

g. rnemory management. externa(event, signaling, and

nce results obtained in a set of infrastructures used to

head introduced by these mechanisrns on limited
1. lntroduction

Next generation real time applications require abstractions to
hide the complexity of the underlying infrastructure
[31,.39,16,9,56). Among the multiple options included in the
state of the art one identifies the use of MOA (model driven archi
tecture) [16,51,36,50) and increasing the portability of different
pieces of software with patterns as two complementary ways to
reduce the complexity involved in the development of next
generation real time systems. The use of these two methodologies
comes with advantages in maintenance and development costs.
However, they are also sources of inefficiency and overhead that
have to be properly quantified as designing applications.

Recently, low cost hardware infrastructures such as Arduino
[4,48,26), and Raspberry Pi [17.49) have appeared, guaranteeing
universal access to replicable infrastructures. This type of plat
forms represents an opportunity to embedded systems designers
to developed with extraordinarily cheap, replicable, and accessible
hardware (less than 5€ per node costs). Another common feature of
this type of infrastructure is that they have a very reduced amount
of resources available: for instance, sorne versions of Arduino offer
only 32 Kbytes. Therefore, they demand specific adaptations of
existing real time technology, like operating systems and pro
gramming frameworks, to be efficiently deployed on them.
Running heavy infrastructures like the RTSJ (The Real Time
Specification for Java) [7) in these small computation infrastruc
tures seems prohibitive.

This type of constraint is not new in the embedded community
where the use of microcontrollers running minimalistic real time
operating systems such as SimpleRTK [23) and ChibiOS [14) has a
long tradition. However, the use of programming abstractions
and generic real time programming models like those available
in real time Java which include high level facilities for
multithreading programming, scheduling policies, and schedulers
are not properly supported by these ad hoc kernels, which are
mainly focused on accessing resources.

To alleviate this lack, it is proposed a programming library for
real time systems in the context of the C language, which is the
main programming language in most embedded infrastructures.
The approach takes its computational model from the program
ming models described in RTSJ [27,10), which has benefited from
the integration of high level programming facilities into its API.
Also, it is partially inspired in other high integrity profiles such
as Ravenscar Java [30) and SCJ (Safety Critical Java) [28)
that produced computational subsets for different application
domains.

Another advantage ofC is the efficiency in the amount of mem
ory and speed processor required to implement the application. lt
also has practical advantages in terms of compilers and runtimes

available and an important number of programming libraries writ
ten in C.

The definition of a programming framework for developing
real time systems is not new in the context of the C language.
This idea appeared in several works [32,32,51,15] that addressed
lacks in concurrent support for real time systems, other low level
facilities, and also in the real time POSIX standard [37].

The proposed approach, called ECP C (Embedded Cyber
Physical C), addresses different limitations of the C programming
model, borrowing architectonical elements defined in RTSJ. It also
incorporates low level facilities required for a cyber physical sys
tem, in terms of ‘‘connectivity’’ via I/O interfaces [21,49,52].

ECP C imitates real time Java because it is one of the most mod
ern real timeprogramming languages. It is commonly accepted [10]
that there are three real time programming languages: C, Ada, and
Java.Among them,C is themostpopular language for embeddedsys
tems but it lacks many high level programming facilities. It is also
the most primitive and currently it lacks some building blocks
required in a real time system such as a scheduler, threading, and
real time synchronization protocols. Ada addressed many of lim
itations of C like the lack of a proper definition for types and it also
standardized the programming language and the real time exten
sions. Real time Java was the last programming language to enter
the scene, learning from previous C and Ada experience. Therefore,
throughout this article ECP C is compared with real time Java.

The rest of the article describes the library (Sections 2 and 3),
provides an application example developed with the library
(Section 4), and evaluates the performance of the library
(Section 5) on a small microcontroller running on a naked imple
mentation and on top of an embedded operating system. Then,
the article connects the approach with the related work
(Section 6). Finally, Section 7 draws conclusions and introduces
future work.
2. Enhancement areas and profiles in ECP-C

Before entering the description of the API of ECP C, this section
lays the foundations necessary to understand ECP C from a high
level perspective. This architecture is based on the concept of
enhancement areas, borrowed from RTSJ, where each area refers
to a set of facilities required to develop applications. ECP C also
includes the possibility of having constrained profiles, each one
targeting to a different end system.

ECP C targets at real time applications with support for fixed
priority scheduling systems theory, typically used to support many
real time applications [43,33]. Taking as a starting point the stan
dard libraries included in a plain C tool chain like (AVR GCC, 2014),
ECP C defines seven enhancement areas. Each enhancement area
refers to a specific set of drawbacks or lacks in the support offered
by the standard C library to a real time system developer.

The list of areas that potentially may be improved includes effi
cient support for multi threading abstractions; resource sharing
policies in charge of controlling the access to shared information;
efficient memory management algorithms with constrained mem
ory; external events connecting ECP C to external events; asyn
chronous signaling in charge of providing notifications among
threads via signals; and mechanisms to access physical memory
positions with read write support. These facilities are analyzed in
Section 3.
2.1. Enhancement areas in ECP C

2.1.1. Threading
This enhancement area refers to the lack of support in the C

standard library to multithreading programming, which is an
essential building block to develop real time systems. Currently,
to develop concurrent programs in C one has to resort to other
libraries such as POSIX threads. To address this drawback, ECP C
offers a concurrency model by means of real time threads, which
may be grouped into periodic, sporadic, and aperiodic, following
the classical activation patterns, which may be optionally mapped
to POSIX threads when they are available. In ECP C threads may be
implicitly allocated, removed, and use at least 28 preemptive
priorities as in RTSJ. This minimum set of priorities is required to
guarantee that most of the scheduling algorithms may run prop
erly [43,57 59].

2.1.2. Resource sharing
The threading model is complemented by a set of mechanisms

to perform efficient thread synchronization, which are not avail
able in the standard library. In some cases, they may be supported
with POSIX mutexes and variable conditions. This type of support
is required by many state of the art algorithms which use specific
policies to reduce priority inversion when threads share informa
tion. In ECP C, threads may share information by using safe
synchronization functions. The list of mechanisms supported in
ECP C includes non blocking queues, semaphores, signals, and an
atomic block primitive which is not included in RTSJ. ECP C does
not support the synchronized statement of Java because of its
inherent complexity.

2.1.3. Memory management
The memory allocation is also part of the set of enhancement

areas and it is in charge of offering efficient memory management
algorithms. The current support included in many tool chains may
be insufficient when the application has to make an extensive use
of the dynamic memory allocation and deallocation. The allocators
included in a plain tool chain, like AVR GCC, were not specifically
designed for real time performance and they require specific algo
rithms. Therefore ECP C offers facilities to intercept these mecha
nisms and use more efficient alternatives. ECP C allocates and
deallocates memory blocks into two allocation contexts: its private
stack, storing information in the record allocated in each function;
and the heap via specific malloc() and free() statements, shared
by all threads.

Optionally, ECP C enables other types of strategies that are
similar to the scoped memory of RTSJ (with malloc()/free() and
free all() functions) that may offer special behaviors like low
fragmentation, rawmemory allocation, and special memory alloca
tors (see [6,35,29]). The definition of this type of manager is out of
the scope of the article which only defines the interface that
accesses these resources.

2.1.4. External events
Another generic limitation in a plain tool chain for C is the lack

of generic mechanisms to connect external events, typically trig
gered by interrupts, to the application. To address these limitations
properly, ECP C provides a way to connect external events (essen
tially, interrupts) to functions handled by the application.

2.1.5. Asynchronous thread signaling
Another limitation of a typical GCC tool chain, which is shared

with a Java infrastructure, is the lack of mechanisms that enable
transference of signals from one thread into another. This mecha
nism enables the development of richer applications. In the
ECP C infrastructure, threads may communicate via asynchronous
signals.

2.1.6. Raw memory access
Lastly, many embedded systems require direct access to physi

cal memory positions to perform low level I/O communications.

2

ECP C standardizes this low level access required to read/write a
certain memory address in an 8/16/32 bits format, following the
RTSJ model.

2.2. Three profiles

ECP C defines profiles as a subset of a whole infrastructure
called general ECP C profile. Each profile defines operational units
in the infrastructure that are typically targeted to different specific
application domains. Currently, it defines three profiles called
micro, mini, and general profile.

2.2.1. Micro ECP C profile
This profile includes a minimal support for systems that do not

require resource deallocation facilities. This type of profile is useful
for embedded systems with an initialization followed by a mission
phase running forever. It is also the simplest profile from the
perspective of the implementation, because it does not require
deallocation support.

2.2.2. Mini ECP C profile
This profile refers to a micro subset with support for resource

deallocation. This type of profile is targeted to applications that
require efficient and dynamic resource management.

2.2.3. General ECP C profile
This profile refers to a more general API, with an expressiveness

power similar to the support included in the RTSJ specification.
This profile targets at a platform similar to the whole RTSJ API
but intended for C developers.

Each different profile interprets (i) portability; (ii) scalability;
and (iii) extendibility in a different way. Currently, in ECP C porta
bility is given by the C language and there are no specific mappings
to real time POSIX, which may be developed to increase applica
tions portability when running on top of an operating system.
Scalability is not a major issue in the micro and mini profiles which
run in very constrained execution environments; this concern is
more related to the general ECP C. However, this type of support
is more in tune with the general profile, which may require the
Listing 1. Periodic thread creation (

Listing 2. Sporadic thread allocation in EC
use of pluggable schedulers. Mini and micro profiles, which do
not demand that support, target to smaller infrastructures.
Regarding extendibility, several approaches to increase and extend
the functionality currently offered by ECP C. One may define new
functions and additionally and anther should be to specify object
attributes to configure the behavior of the underlying algorithms.

The rest of the article refers to the mini and micro subsets, only.
3. Micro and mini ECP-C profiles

This section covers the main functions designed for the mini
and micro profiles and it also establishes analogy with the RTSJ
whenever possible. In addition, the differences among RTSJ and
ECP C are also properly explained.
3.1. Threading API

From the perspective of real time Java, the ECP C threading
model included in the micro and mini profiles is a reduced version
of the API included in RTSJ. This restriction reduces the flexibility of
ECP C easing the programming model and reducing the efforts
required to implement the infrastructure.

As RTSJ does, the proposed library supports three types of
threads [12]: periodic, sporadic, and aperiodic (described in Listing
1, Listing 2, and Listing 3).

The main difference between the two ECP C profiles and RTSJ is
that they do not define the scheduler as an entity included in the
API. The RTSJ decouples the creation of thread from its nature:
i.e., any RTSJ’s RealTimeThread from its periodic, sporadic or aper
iodic behavior and from the scheduling algorithms (stored in the
Scheduler entity). The two ECP C profiles are simpler; they define
one allocator function per type of thread (periodic, sporadic and
aperiodic) only. This way, ECP C promotes de use of a simple
scheduling system, based on off line analysis techniques that
assign a priority to each task of the system.

Another relevant difference among RTSJ and ECP C is that ECP C
defines (see Listing 1, Listing 2, and Listing 3) the size of the stack
used in each thread. RTSJ does not include this type of support and
by default the stacks are by 64 Kbytes, which are not acceptable for
micro profile, and mini profile).

P-C (micro profile, and mini profile).

3

small devices with reduced memory footprints (with less than
32 Kbytes).

The periodic thread allocation function (Listing 1) defines the
function invoked in each activation (entry), a pointer to the appli
cation thread parameters (params and data) available for the
thread, a pointer to the stack (stack), the size of the stack
(stack size), the priority of the thread (priority), an initial
offset with respect to the global clock of the system (offset) in
microseconds, and a minimum period (period us) also in
microseconds. It also allows the definition of a deadline
(max deadline us) which is checked at runtime and a maximum
cost per invocation (max cost us) in microseconds. In RTSJ, this
type of information is offered in a more generic object oriented
programming model, which may be extended by means of generic
scheduling, release, memory, and processing group parameters.
Therefore, ECP C constrains the programming model of RTSJ to a
more specific set of scenarios.

Optionally, developers may define an error handler
(error handler) invoked in cost overruns and as a thread
receives a signal from another thread (see Section III E). This func
tionality is executed in the signaled thread who should take into
account this extra cost as a part of its execution time. In RTSJ,
the thread may use an event handler that runs in another thread
to handle this signal, while the micro and mini profiles offer a more
rudimentary workaround. In ECP C, the worst case execution time
of the handler is added to the cost of the signaled thread. This is
another difference with RTSJ, where these handlers are asyn
chronously executed in other threads. ECP C provides a simpler
mechanism which does not require another thread.

There is no support for the execution budget enforcement
technology in ECP C, which is also an optional feature in RTSJ
[54]. RTSJ allows the specification of a budget via
ProcessingGroupParameters that allow assigning a periodic
budget to a group of tasks. RTSJ does not specify the type of server
used to enforce this basic policy; it only describes its period (T), a
cost (C), a priority (P), and a deadline (D).

The sporadic thread (see Listing 2) resembles the periodic
thread: there is a function, which is invoked in its activation, and
a set of initialization parameters. The main difference between
both models is within the activation pattern. For sporadic threads,
it does not depend on the system clock, but on an external signal,
typically coming from another concurrent entity and triggered via
a thread signal function. This queue of external events is con
trolled via SAVE, EXCEPT, IGNORE, and REPLACE policies (see
Listing 6) taken from the RTSJ specification. These policies are use
ful to: (1) control the minimum inter arrival (max period us)
among activations; and (2) to decide what to do when the maxi
mum number of events (queue length max) is reached. In the
initialization, the programmer creates a mask for these policies
(see example in Section 4). The meaning of these policies is the
same in RTSJ specification and in ECP C.

In both cases, the motivation is to control the behavior of the
events received in the sporadic thread through asynchronous
Listing 3. Aperiodic thread allocation in E
signals, sent via thread signal. These asynchronous signals trig
ger the activation of sporadic tasks from another thread.

Lastly, the aperiodic thread refers to threads that cannot offer
bounds on a minimum inter arrival time (Listing 3). In essence,
aperiodic threads do not define a minimum inter arrival time
among two activations. As in the sporadic case, the activation of
the task is triggered by a thread signal function from an exter
nal thread. Likewise, the aperiodic thread includes a maximum
number of events which are pending to be processed. All these
policies (i.e. OVER SAVE, OVER EXCEPT, OVER IGNORE, and/or
OVER REPLACE) follow the behaviors prescribed in RTSJ.

Following the RTSJ’s model, ECP C aperiodic activities may
define a maximum deadline and cost for applications. If the cost
and deadline are unbounded, they should be set to the maximum
deadline of the system (i.e. MAX INT).

Threads may be removed from the system by using a
thread remove function. This option is only available in the mini
profile to avoid burdens related to dynamic task allocation (i.e.,
memory fragmentation, and extra run time overhead due to deal
location costs).

In addition, there are general functions (see Listing 4) included
to access to the information of the thread, to sleep a thread for a
certain amount of time (sleep), to force a scheduling event
(yield), and to access the global clock of the system (get time

and get error in time). These functions help the programmer
access to system information; RTSJ behaves in the same way. ECP C
also includes functions for starting the scheduling subsystem
(threads subsystem start), and signaling (thread signal)
sporadic and aperiodic tasks.

In a real time application, threads subsystem start

defines the beginning of the application and it has no equivalent
in RTSJ. However, other embedded programming frameworks
include this functionality to mean the beginning of the scheduling
subsystem.

The error handler (Listing 4) of each thread predefines a set of
codes used to deal with overruns (0x03), memory exhaustion
(0x02), deadline (0x01) and period (0x00) misses. If the handle
function is invoked with a 0x04 code, then the thread has been sig
naled for another thread with application specific purposes. The
remaining defined codes (i.e., SAVE, IGNORE, REPLACE and
EXCEPT) are for sporadic, and aperiodic threads to configure their
input queue of pending activations. Lastly, there is also a specific
symbol (PIP POLICY) to describe a PIP (Priority Inheritance
Protocol) policy.
3.2. Communication and synchronization

The library offers basic mechanisms to share data among the
threads of an application. The list of high level mechanisms
includes non blocking queues and real time semaphores. In addi
tion, it also offers a mechanism to perform atomic blocks executed
without interference from other tasks.
CP-C (micro profile, and mini profile).

4

Listing 4. Main functions related to the threading API (micro and mini profiles). It also includes the main symbols defined in ECP-C (⁄⁄=available in the mini profile only).

Listing 5. Controlling shared resources in ECP-C (micro profile and mini profile). (⁄⁄= available in the mini profile only).
Regarding queues, ECP C (Listing 5) allows the programmer to
create the queue (queue create), to remove it (queue delete),
to get (get element) and store (set element) elements, and to
access the number of stored elements (queue stored) and its size
(queue size). Queue deallocation is only feasible in the mini sub
set (via queue delete). The basic model for queues is fully non
blocking in get/set functions. It returns �1 as the queue is full in
a write operation, and NULL in a read operation as the queue is
empty. This model is similar to the non blocking queues included
in RTSJ that approach the problem in a similar way.

In ECP C semaphore acquire() and semaphore release()
functions support semaphores. Semaphores are initialized with a
PCE (Priority Ceiling Emulation) policy as in RTSJ and with a PIP
policy when PCE is �1.

RTSJ offers the synchronized statement as the basic element
to control the concurrency. However, this mechanism, which is
the default synchronization statement in Java, is quite complex
to be the default concurrency control mechanism for ECP C, which
opts for a simpler approach.
There is also a macro to mark a piece of code as an atomic piece
of code. The idea behind is that the code is not to be interrupted for
its execution, so the code contained within this macro has to con
sist of a reduced number of statements. This macro is useful for
low level access to specific hardware and for simple read/write
operations. Currently, RTSJ does not offer an atomic section in its
API but it could benefit from the inclusion of this functionality
within its API. In ECP C implementations, a typical implementation
for this facility uses enable and disable interrupts to support
atomicity in the macro.

3.3. Memory management API

ECP C (Listing 6) supports dynamic memory allocation via mal

loc and free statements that allocate and deallocate memory.
With the malloc and free statements defined in ECP C, the appli
cation gains low level control on the type of allocation carried out.
As in the previous case, deallocation facilities are not available in
the micro profile because this profile does not deallocate resources.
5

These functions may implement efficient memory allocators like
[6,35].

3.4. External events API

To standardize low level access, the library includes functions
that attach and detach interrupt handlers from to the system.
The approach taken in the mini profile is to offer a simple support
to this functionality. This minimum functionality allows both
operations: (i) interrupt attachment, and (ii) interrupt detachment,
while the micro profile includes interrupt attachment only. When
attached, each interrupt has a mode that refers to rising (0), falling
(1), or changes (2) in the source of the interrupt. This type of sup
port is sufficient to attach low level interrupts to well known
ports.

RTSJ offers an interaction with the external ecosystem with
specific POSIX signals mapped to specific Java methods.
Therefore, the RTSJ specification may be extended to support the
model described for ECP C, to enable a low level access to
hardware resources.

3.5. Asynchronous thread signaling

Another feature of the ECP C profile taken from RTSJ is the abil
ity to send signals from one thread into another asynchronously.
The API includes functions to enable the reception of signals, and
the definition of a maximum bound for the number of pending sig
nals. These signals are processed by a handler in each thread. To be
able to receive them, the receiver thread enables its reception in
advance via an ATS enable function.
Listing 6. Memory management, external events, and asynchronou

Listing 7. Raw Mem
The communication model for the ATS is a signal transferred
from one thread into another. The thread that signals and the han
dler of the signaled thread may run in parallel (i.e. the signaler
does not have to wait for the end of the signaled thread).
Likewise, the handler function of the signaled thread is executed
as a segment of code in the signaled thread.

RTSJ uses exceptions to implement this type of functionality,
while the micro and mini ECP C use callback functions for a similar
functionality.

3.6. Raw memory access

In general, threads are not aware of the type of memory used to
store their data. Only in some specific cases (e.g., to access low
level I/O mechanisms mapped to memory positions) it is necessary
to offer support to this functionality. To regularize the access to
raw memory, the micro and mini ECP C profile (Listing 7) offer
methods to read and write basic data types. The model provided
by RTSJ offers unique types of memory that may be mapped to dif
ferent positions as blocks. ECP C does not typically run on a virtual
machine. Therefore, it does not need the specific objects included
in Java to offer access to memory positions, which are already
accessed from hardware.

4. Example application

This section shows a simple example application that uses the
major properties of ECP C micro and mini frameworks. Listing 8
and Listing 9 provide a sample application with two threads devel
oped in the ECP C described in Section 3. Its goal is to show a
s thread signaling APIs. (⁄⁄=available in the mini-profile only).

ory Access API.

6

Listing 8. Two tasks: one periodic task reading from the serial port device and a sporadic task that writes on the serial port.
simple application with two threads (sporadic and periodic) that
exchange information (see Fig. 1). To activate the sporadic thread,
the periodic thread sends signals with the ECP C API.

The application has the following features:
Listing 9. Main code in charge of allocating the tw
The first thread in the listing (Listing 8: 04) has a sporadic
behavior. In each activation, the sporadic task sends the new
counter information via the serial interface with
Serial print (Listing 8: 09).
o tasks and starting the scheduling subsystem.

7

B
Periodic

Thread

s
1: Read data

2: Counter++

3: signal ST

wait4

period

Shared

counter

Sporadic

Thread

s
1: Counter read

2: Writa counter

[�••o�� J
wait4

signal

ECP-C

Fig. 1. ECP-C example appliG1tion with two threads sharing information.
The second thread is a periodic thread (Listing 8: 05). It reads
data from the serial interface via Serial read (Listing 8:
09). The infrastructure calls this method periodically.
Both threads share a global counter (Listing 8: 03). It is incre
mented by the periodic task (when it reads data from the serial
interface), and read from the sporadic task when there are data.
To avoid race conditions, the access to shared data is protected
via a PIP semaphore (initialized in Listing 8: 03 to 1) with a PIP
policy and used by the first (Listing 8: 06) and the second thread
(Listing 8: 16).
The periodic task sends a signal to the second sporadic thread to
control its sporadic activation (Listing 8: 19). The infrastructure
controls the activation of the second thread so that its activa
tion pattem is the one defined in the instantiation (Listing 8:
02 15i
Each thread has a handler method, invoked by the infrastruc
ture in a case of a deadline miss, a cost overrun, memory
exhaustion and when an asynchronous signal is received.

Lastly, to run the example, a main function is necessary to setup
the whole real time infrastructure. The main function is in charge
of allocating and setting up the two threads and starting the
scheduling subsystem:

The first thread is initialized as sporadic (Listing 15: 02 15)
with a 200 bytes stack and runs a 30 priority. It also has a mini
mum inter arrival time of 1 second with OVER EXCEPT and
EXCEPT policies.
The second thread is periodic (Listing 15: 17 26) and its stack
has 220 bytes, and runs at a 40 priority. It does not need to con
figure its activation because it is driven by the system dock.
Lastly, to start the scheduling system, it is necessary that main

invoke the thread subsystem start function Since that
time on, the multithreading runs. Besides, the infrastructure
activates context switching, overrun control, and dock abstrae
tions. The developer cannot use this function to define back
ground activities; which are supported by an aperiodic thread
running at a lower priority.

5. Empirical evaluation

The goal of this section is to provide an evaluation of the abso
tute overhead introduced by the micro and mini framework
running on constrained hardware. From the application perspec
tive, the ECP C is a source of overhead and indeterminism.
Threads need space in memory and take sorne time to perform
context switching, which are sources of overhead.

A prototype of the library was developed (see Fig. 2) to analyze
the performance of ECP C. The evaluation consisted of two ditfer
ent infrastructures: a raw implementation running on AVR GCC,
and another on an embedded operating system. This dual infras
tructure is representative for two common cases: applications run
ning directly on raw hardware, and applications using the services
of an operating system to build their logic. In both cases, the
empirical evaluation sheds light on the extra time required for
each configuration.

In a raw infrastructure, ECP C runs directly on the hardware
which is, a priori, an optimal approach in performance terms.
With a real time operating system as an intermediate element,
ECP C reduces its implementation costs but increasing the
overhead instead. The ditference in performance represents the
cost benefit relationship offered by the abstraction.

Two ditferent prototypes (Fig. 2) were developed for an
ATmega328 microcontroller [1]:

One for the naked AVR GCC tool chain included in its develop
ment kit (AVR GCC, 2014).
Another for a minimal real time operating system called
ChibiOS [14].

In addition, the prototype includes an RS 232 interface to
communicate the microcontroller with other systems. De facto,
the RS 232 is the 1/0 interface for the ECP C framework:

In the naked implementation, the RS 232 interface is directly
accessed from the tools included in the AVR GCC tool chain.
In ChibiOS, it has a driver controlling the access to the RS 232
serial communications.

On this infrastructure, the empirical goals are the following:

(i) To measure the absolute footprint introduced by ECP C
when it is directly implemented on a naked microprocessor
and when there is a real time operating system in between.
The evaluation comprises a double perspective: absolute
CPU time and memory.
8

T esting
Application

........................

....................................

ATmega328 tool ch ain 1
Se

r
ial Port

1 Lib
r

ary

ATmega328

B�M-
i
-c-

r
oc_

o

_

nt

_
r

_
º

_
"

_

e

_
r

� �-M-
e

_

m

_

o

_

r y

�
RS232

- (16
M

hz) - (32 Kb)

(a) naked ECP-C stack

T esting
Appl ication

...............................

.

ChibiOS fo r
ATmega328 1

Se
r
ial Port

1 Lib ra ry

ATmega328

B�M-
i
-c-r

o

_

c

_
º

_
"

_

t
r
o
_n

_

e

_
r
�

�-M-
e

_

m

_
ory

-�

RS232
- (16

M
hz) - (32 Kb)

(b) ECP-C for ChibiOS

Fig. 2. The two ECP-C implementations: naked ATmega328 and ChibiOS for AT mega328.

Table 1
Resource aUocation functions performance (Atmega328 running at 16 MHz and 32 Kbytes). Worst-<:ase execution times. Maximum precision error: 0.3 µs.

Function Time naked (µs) Time ChibiOS (µs) Memory naked (bytes) M emory ChibiOS (bytes)

x thread create(size) 187.7 195.2
queue create(ele m s) 10.1 15.1
semaphore create() 7.1 7.4
malloc(x) 6.4 6.8

74 + stacksize 56 + stacksize
18 +elem•2 18 +elem•2
4 4
X X

Table 2

Run-time function performance (Atmega328 running at 16 MHz and 32 Kbytes).
Worst-<:ase execution-times. Maximum precision error: 0.3 µs.

Function lime naked (µs) Time ChibiOS (µs)

thread signal 9,8 10,1
queue set element 7,7 8,0

queue get element 6,7 7,1
semaphore P() 2,3 2,1
semaphore V() 2,7 2.4
ECP i'RAME ATOMIC 4,1 6.2
get time (bytes) 3,9 3,9
get error in time 1,6 1,8

yield() 1,7-36 2-36
sleep(x) X X

thread ATS enable 3,1-36 3,1-36
thread ATS disable 3,1 3,0
thread ATS signal 2,8-36 3,1-36
read byte 1.2 1.4
read uintl6 1.2 1.4

read uint32 1,6 1,7
read float 1,6 1,7
write byte 1.2 1,3
write uintl6 1,6 1.4
(ii) To evaluate the performance from the perspective of real
time applications. To this end, a specific benchmark was

developed for ECP C, adapting previous benchmarks to the
new type of applications.

Ali these results contribute to evaluate the trade off among the
use of ECP C directly on a naked microprocessor and with embed
ded real time operating systems.

The benchmark consists of two subsets targeting different
aspects of the infrastructure. The first subset is a microbenchmark
related to the footprint of the main functions of the library
(Section 5.1), and the second is an evaluation of the overhead intro
duced by the scheduling subsystem in charge of allocating the CPU
(Section 5.2). The microbenchmark explores the performance of
the main functions in the API of ECP C. The second subset refers
to applications with operational frequencies ranging from 83 Hz

to 200 Hz, which have been derived from a previous AUTOSAR
benchmark. This AUTOSAR benchmark evaluated the overhead
introduced by the scheduler and the RS 232 communications on

a set of tasks.

write uint32 1,6 1,8
write float 1,6 1,8
5.1. Microbenchmark results

The results for the footprint (Tables 1 4) show the cost in time

and memory for the naked ECP C implementation and for ECP C
running on ChibiOS. The results show how sorne functions take a
variable amount of time and memory, which depends on the
parameters sent during the allocation of resources, while others
are constant time. For ali functions, this section analyzes the
performance of the different policies defined for resource reserva
tion/deallocation in ECP C.

The analysis starts with resource reservation for the allocation
functions (see Table 1). Both implementations, i.e. the naked
implementation and ChibiOS provide similar performance in CPU
and the memory tests.

The most remarkable exceptions are the thread allocations and
queue creation, which are more efficient in ECP C than in ChibiOS.

The queuing model in ECP C is minimalistic, while in ChibiOS is
more sophisticated, with features not required in ECP C. The same
is true for the threading model of ECP C running on ChibiOS;
ChibiOS performs sorne type of operations that are not required
for the micro and mini profiles.

Another exception is the memory required to represent the
thread, which in the naked implementation of ECP C is not
9

Table 3
Resource removal performance (Atmega328 running at 16 MHz and 32 Kbytes). Worst-case execution times. Maximum precision error: 0.3 ls.

Function Time Naked (ls) Time ChibiOS (ls) Released memory (Naked) Released memory (ChibiOS)

Thread deallocate 9.8 14.6 74 + stack_size 56 + stack_size
Queue remove 8.0 12.0 18 + elements⁄sizeof(void⁄)
Sem free 6.2 10 4
Free(x) 3.2 4.6 Allocated bytes

Table 4
ROM sizes for different configurations. Results for the Naked Implementation and
ChibiOS on Atmega328 (16 MHz–32 Kbytes). All cases use a minimal application to
maximize the performance.

Configuration ROM size in bytes

Minimum application on AVR-GCC 444
Minimum application on ChibiOS 1004
Minimum application on naked ECP-C 1684
Minimum application on ECP-C (ChibiOS) 2226
optimized like in ChibiOS. The reason why that happens is because
ChibiOS uses a specific data representation for threads with 8 bits
format. The raw implementation uses a 16 bits format, resulting in
higher computational overheads.

The results (see Table 1) show that thread allocation takes less
than 188 ls in the naked prototype and less than 196 ls in the
ChibiOS. Likewise, the memory required in the queues is 74 bytes
in the naked implementation and 56 bytes in ChibiOS. The differ
ence in the memory required to store the state of the thread is
because ChibiOS uses an optimized implementation, while naked
ECP C does not. The memory required to allocate the stack in sim
ple cases (like example shown in Section 4) is 200 bytes, which is
the main overhead of a thread.

Queues require an internal array allocated during its initializa
tion, which takes by 10 ls in the naked implementation and 16 ls
when the implementation runs on ChibiOS default queuing sys
tems. The two implementations require a variable amount of
memory. This memory depends on the number of stored elements:
18 bytes for the internal queue representation, and 2 bytes per
each additional element.

The results show that the semaphore allocation takes about
7 ls in both implementations, and requires an internal counter (a
4 bytes integer) to store the information.

Lastly, the memory management implementation provided by
the naked implementation, which is the default included in the
GCC, and ChibiOS are constant time (7 ls) provided that no mem
ory reallocations occur for run time. Note that this assumption is
true for the micro profile which prohibits resource deallocation
functions.

Regarding run time functions (Table 2), it should be highlighted
that all functions are memory safe (i.e., they do not allocate
dynamic memory during its execution). They also show that in
terms of overhead the evaluation identified three main behaviors.
The first refers to simple and lightweight access (read/write) func
tions, which take less than 4 ls. The second refers to complex
methods (like ATS methods, thread signaling, and queuing meth
ods) which are all in the 4 36 ls range depending on the type of
signaling carried out. The third type refers to special functions with
special behaviors. One of them is sleep which stops a thread for
certain amount of microseconds. Another is yield which forces
an internal context switch.

The evaluation showed the following remarkable results:

The signal sent from one thread into another has a constant
time cost in ChibiOS and the naked implementation of 10 ls
because in both cases they are implemented from scratch.
ChibiOS does not offer such support in its tasking model.
All get and set queue operations in the framework response
under 8 ls for both the naked and the ChibiOS queues because
they use similar implementation strategies. The naked imple
mentation of ECP C is also a bit more efficient than the imple
mentation running on ChibiOS.
The implementation of the P() and V() mechanisms in the
semaphore take different times for the V() functionality. The
operating system support offered by ChibiOS outperforms the
implementation provided by the naked implementation. The
reason why that difference happens is that the implementation
provided by ChibiOS is optimized while the naked imple
mentation does not.
The macro used to mark a piece of code as atomic
(ECP FRAME ATOMIC) is more efficient in the naked imple
mentation than on ChibiOS because the naked implementation
has assembler optimizations while ChibiOS uses a less efficient
API for interrupt inhibition.
The functions that access time (gettime and get error in

time) offer similar performance in the naked implementation
and when running on ChibiOS.
The yield function takes different costs depending on the type
of operation carried out. The minimum cost refers to a yield()

function that does not switches the thread: 1,7 ls. The second
cost, 36 ls, refers to a new thread taking the CPU.
The sleep function sleeps a thread for a certain amount of
time. In both stacks, the amount of time taken by the sleep
function is the time requested in the invocation.
The mechanisms (enable, disable, and signal) used for
controlling when a thread is asynchronously interrupted from
another thread demand a variable amount of time. In all cases,
there is a minimum cost referred to the time required to per
form a change in the state of the thread: 3 ls. This cost
increases to 36 ls as a notification to another thread is require.
All mechanisms required for reading and writing data take less
than 2 ls for the two ECP C implementations

Results obtained for the resource deallocation (Table 3) show
the following patterns:

The deallocation of a thread takes a bit more in the ChibiOS
(14.6 ls) than in the naked implementation (9.8 ls). This is
because ChibiOS has to remove internal elements not required
to implement the thread.
The same rationale is valid for the removal of queues and sema
phores: the model of ChibiOS performs additional operations
not required in the naked implementation. This extra effort
transforms costs from 8.0 to 12.0 ls, for a queue; and from
6.2 to 10 ls, for a semaphore.
Lastly, the free operation in the naked implementation takes
less time (3.2 ls) than in ChibiOS (4.6 ls). This difference in
costs has to do with the default memory allocator of the naked
implementation and the implementation included in ChibiOS,
which are slightly different.
10

Lastly, Table 4 shows the minimum ROM size for different
stacks that report the size of the image of a program when it is
used a raw GCC infrastructure and it uses ECP C in combination
with ChibiOS. Results show that the footprint of ECP C is better
when it is compiled in a naked GCC infrastructure than on
ChibiOS, which adds a 126% memory overhead. This difference in
performance is because ChibiOS includes libraries that are not
really used in ECP C.

Comparing the real time operating system and the naked
implementations for ECP C, the main conclusion is that the most
inefficient approach is the use of an intermediate operating system
like ChibiOS. However, given the infrastructure used in the evalua
tion, this inefficiency is not mainly in the support given to basic
programming models, which are close in performance. The
microbenchmark showed that most of the inefficiency comes from
the memory required for the infrastructure, which is more reduced
in the naked implementation than in ChibiOS.

5.2. Application evaluation

The last part of the empirical evaluation deals with the evalua
tion of ECP C on a benchmark for AUTOSAR [3] applications. This
benchmark was initially proposed in (Guoqiang [24] and extended
later in [5] to different Java architectures. For the particular case of
ECP C, the previous use cases have been extended with two inter
ests in mind:

The first is to assess the overhead introduced by the scheduling
subsystem implemented in ECP C. This scheduling mechanism
limits the number of tasks that may be integrated within the
system.
M
ax

im
um

 fr
eq

ue
nc

y
 in

 ta
sk

se
ts

Internal Timer frequency

Maximum number of tasks feasible
(naked ECP C)

15-20

10-15

5-10

0-5

83 Hz

100 Hz

200 Hz

250 Hz

25
 k

H
z

21
 k

H
z

17
 k

H
z

15
 k

H
z

12
 k

H
z

10
 k

H
z M

ax
im

um
 fr

eq
ue

nc
y

 in
 ta

sk
 s

et
s

Internal Timer frequency

Maximum number of tasks feasible
(ECP C on ChibiOS)

15-20

10-15

5-10

0-5

83.3 Hz

0.10 kHz

0.20 kHz

0.25 kHz

25
 k

H
z

21
 k

H
z

17
 k

H
z

15
 k

H
z

12
 k

H
z

10
 k

H
z

Fig. 3. Maximum number of threads allowed in the system. (16 MHz-ATmega328).
The second was to evaluate the communication overhead intro
duced by the software stack on an RS 232 link, which is the
basic I/O mechanism offered by the development infrastructure.

In both cases, the goal is to assess the performance of the naked
ECP C and ChibiOS. Therefore, the first set of results refers to the
maximum number of tasks feasible in the system (Fig. 2). In ECP
C, the number of tasks depends on the frequency of the tasks of
the system and the maximum frequency of the timer interruption
used to support the clock and scheduling facilities. The results
show the influence of the frequency of the tasks (y axis) and the
timer frequency (x axis) on the number of tasks allowed in the sys
tem. For low frequencies (task set operational frequency= 83 Hz,
and internal update timer frequency = 10kHz) the naked ECP C
implementation may support 15 tasks running in parallel. For the
same configuration, ChibiOS supports 14 only. The difference in
performance is mainly due to the internal algorithms included in
ChibiOS that performs additional checks in the context switch of
a task which are not required by ECP C.

The experiment showed the following results:

In the naked implementation and on ChibiOS (y axis in Fig. 3),
the maximum number of tasks decreases as their frequency
increases because each task has a context switching overhead
that depends on the frequency. This is the reason why increas
ing the number of tasks, the available computational time
decreases.
In addition, the ECP C implementation includes a timer that
performs small updates (x axis in Fig. 3) in the system. As in
the case of several tasks running in the system, the higher the
frequency of this timer is, the lower the number of tasks that
may be hosted in the system.

The second set of results indicates that the higher the frequency
of the interrupt, the higher the amount of CPU required for internal
system updates (Figs. 4 7). The performance results show that the
ECP C naked platform is not able to support 32 tasks with an inter
nal timer with a 25 kHz timer for any frequencies in the evaluation
range (from 83 to 250 Hz). ECP C on ChibiOS offers lower perfor
mance as in the previous case. In general terms, this lack in perfor
mance is attributed to the duplication of functions related to the
ChibiOS real time operating system.

The analysis continues by providing detailed information on the
cost of the scheduling system (which depends on the number of
tasks, their frequency, and the frequency of the timer). For the
low frequency frequencies (results included in Figs. 4 and 5) the
following results are remarkable:

The benchmark is not able to offer low overhead (<10% of the
total) for the operational frequencies of the benchmark. Even
when the number of tasks is reduced (e.g.: 1), the timer (run
ning at 8.3 kHz) takes an important amount of CPU time. The
rationale is valid for the ChibiOS and also for the naked imple
mentation of ECP C.
For this low frequency timer (8.3 kHz), the number of tasks that
may be feasible in the system is relatively high (up to 32 tasks)
in ChibiOS and the naked implementation.
On the other extreme of the benchmark, the results for the
update timer, with a 25 kHz frequency, show how the number
of feasible tasks reduces from 32 to only 4. The main reason for
this low performance is the overhead introduced by the work
associated to the timer task.

The results for high frequency task sets (from 200 Hz to 250 Hz)
show how the time required executing the sub tasking system
increases with respect to the previous results. Fig. 6 shows the
11

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
83 Hz tasks (naked ECP C)

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
100 Hz tasks naked

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Fig. 4. Benchmark results. Scheduling System Overhead (16 MHz-ATmega328)
with naked implementation.

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
83 Hz tasks ChibiOS

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
100 Hz tasks ChibiOS

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Fig. 5. Benchmark results. Scheduling System Overhead (16 MHz-ATmega328)
with a ChibiOS implementation.
amount of CPU required for the naked implementation of ECP C
and Fig. 7 for the ChibiOS implementation. By combining the infor
mation of the two experiments, the following results are
remarkable:

The scenarios with less overhead, those with tasks running at
83 Hz frequency and internal timer with 8.3 kHz, take more
than 40% of the available time to perform task switching and
internal ECP C updates. This type of overhead means an
increase of 20 points in relationship with the previous low
frequency scenario.
The previous results for low frequency task sets show that the
systemmay support up to 32 tasks, which in this high overhead
scenarios reduces to a maximum of 8 tasks with applications
running at 250 Hz.
As in the previous case, the worst case scenarios refer to those
with the highest frequency in timers (e.g. 21 kHz). Previous
low level frequency results showed that the maximum of 8
tasks reduces now to 4 or 2 tasks depending on the frequency
of the specific subset.
Although the naked implementation is more efficient than the
implementation running on ChibiOS, these differences are not
very meaningful. The main motivation comes from the over
head introduced by the internal task model of ChibiOS, which
performs some type of functionality not strictly required for
ECP C.

The last set of results refers to the overhead introduced by the
RS 232 interface which represents the basic I/O interface for the
ECP C library. In this experiment the evaluation infrastructure
has been modified, including a new real time Java node that
communicates with ECP C by means of an RS 232 interface (see
Fig. 8). For this last experiment, a 2.5 GHz machine with Oracle
Real Time Java 1.5 [8] and a 16 MHz ATmega382 microcontroller
connected via a RS232 link at 9600 bauds were used.

On the experiment, it has been measured the overhead intro
duced by the infrastructure on the different frequencies of the
application. Basically, ECP C echoes all information sent from the
Java infrastructure. Fig. 9 shows the main results obtained for
naked and ChibiOS infrastructures:

For a reduced amount of data (1 4 bytes), the overhead intro
duced by the RTSJ and the ECP C naked implementation is
40% of the available bandwidth.
This overhead diminishes to less than 10% for 128 bytes, which
is an acceptable performance.
Lastly, in serial communications, ECP C for ChibiOS is 3.5% bet
ter than on a naked infrastructure because the communication
with the serial port uses an optimized implementation
for ChibiOS that allows buffer optimizations. This type of
facility is not currently implemented in the naked ECP C
implementation.

The evaluation analyzes the impact on the benchmarked appli
cations, which range from 83 Hz to 250 Hz frequency band, per
forming some I/O operations on the RS 232 device. For all these
frequencies, the test measures the total overhead from the total
time. The results for the naked implementation and ChibiOS show
that I/O operations introduce a high penalty in applications (see
Fig. 10):
12

Fig. 6. Benchmark results. Scheduling System Overhead (16 MHz-ATmega328)
with naked implementation.

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
200 Hz tasks ChibiOS

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

1

4

16

25
kHz

21
kHz

17
kHz

15
kHz

12
kHz

10
kHz

8.3
kHz

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

Internal �mer frequency

Overhead due the scheduling subsystem
250 Hz tasks ChibiOS

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Fig. 7. Benchmark results. Scheduling System Overhead (16 MHz-ATmega328)
with a ChibiOS implementation.
Even for low level frequencies running at 83 Hz and reduced
amount of data of 1 single byte, the amount of time required
to process data is relatively high (43% for the naked imple
mentation, and 39% for ChibiOS). For this reason, the bench
mark has been extended with new lower frequencies, 10 Hz,
where the overhead is relatively low (<10%): 6% for the naked
implementation of ECP C, and 4% for the scenario with ChibiOS.
Another relevant result is that the benchmark collapses at 0.2
kHz. Applications with higher frequencies may not be running
on ECP C because the time they require for I/O surpasses the
application deadline. Applications threads running above this
operational frequency should not use I/O. This low level facility
has to be delegated to low frequency threads.
In addition, the previous trends on the performance of I/O with
ChibiOS and the naked implementation upheld in the new sce
nario. The ChibiOS I/O outperforms the naked ECP C in all
experiments.

6. Related work

The related work comprises real time operating systems, and
other frameworks proposed for several Java and non Java program
ming languages.

Real time operating systems have long tradition [47] and there
are many operating systems could be integrated to offer support to
the proposed ECP C profiles (as done with the ChibiOS in the
empirical section of the article). Nevertheless, the initial ECP C
choice was to be created from scratch directly on the libraries
included with the GCC [2]. Theoretically, this choice reduces
footprint to a minimum but at the cost of having to implement
low level facilities, such as context switch, as part of the infras
tructure. Among all these real time operating systems, two
motivating kernels were ORK [18] and SimpleRTK [23]. ORK pro
poses a small Ada C kernel useful to develop high integrity appli
cations. However, ORK does not provide support for periodic,
sporadic and aperiodic tasks that are implemented by the
programmer with specific patterns. In ECP C, these patterns are
provided by the infrastructure as its core programming abstraction
in addition to mechanisms to access raw memory positions and
interrupts. The second motivational approach is SimpleRTK, which
is based on a previous microkernel described in [34]. The
SimpleRTK footprint is similar to the ECP C footprint. However,
SimpleRTK is silent on how to support different activation patterns
in its core, which is a main goal in ECP C.

Although the proposed models are based on real time Java,
other frameworks from other communities should be taken into
consideration in the related work section. One of these communi
ties is Ada. This community has extended the basic Ada runtime
with support for concurrent facilities [11,40,53]. The subset
described in this article has commonalities with previous Ada’s
work in a wide sense since both ECP C and Ada frameworks pro
vide developers with a programming abstraction. Nevertheless,
the mini and micro ECP C profiles are more particular in goals
and in functionality than the concurrency facilities proposed for
Ada.

Another important part of the community develops C applica
tions. In the state of the art several frameworks have been pro
posed for the C programming language [15,38,32], and [51]
addressing different programming issues. The language support
for concurrency defined for RTC [32] includes a framework based
13

Testing Appli c ation
RS232 module

--

ECP-C

--·

ATmega328
M icrocontrol ler

(16 Mhz)

Memory
(32Kb)

RS232

L

·--

RTJava
(Oracle Re al-Time Java 2.3)

RS232

J

- - - - - - - - - - - - - --
Memory
(8 Gb)

2,5Ghz
lntel CPU

Fig. 8. Stack used to benchmark the RS-232 inteñace when it is used to communicate a Java application with an ECP-C application.

Overhead in RS 232 communic at ions

�
100%

80%

70%
e

60%

50%

�
30%

t 20%
.. 10% c3

0%
1 2 4 8 16 32

Data exchanged

64 128 256

•Naked

•ChibiOS

Fig. 9. Peñormance results. Overhead (16 MHz-ATmega328-2.5 Ghz Real-time Java stack vía a 9600 RS-232 link) due to end points {CPU and runtimes).

10

10

Overhead dueto RS 232

9600 bau ds (n aked impl)

83 100 200
Appllcatlonfrequency (In Hz)

Overhead dueto RS 232

9600 bauds (on ChibiOS)

83 100 200
Appllcatlonfrequency (In Hz)

high(64) _

e
..

med(8)

low(l)
250

high(64) -

l
1 med(8) �

low(l)
250

�
!

• 0.8-1

• 0.6-0.8

a 0.4-0.6

• 0.2-0.4

• 0-0.2

•0.8-1

•0.6-0.8

•0.4-0.6

a0.2-0.4

•0-0.2

Fig. 10. Benchmark results. Overhead {16 MHz-ATmega328-2.5 Ghz Real-time Java
stack vía a 9600 RS-232 link). Application maximum frequencies ranging from
1 O Hz to 0.25 kHz.
on transactions, resources, and constraints that may be formally
validated. RTC requires changes on the C compiler to offer a proper
implementation. Sorne limitations of RTC have been addressed in
[38] where the authors produced experience based extensions
used to enhance real time C applications in the context of the
HARTIK [13] and SHARK [22] kernels for robotics applications.
The bottom up approach in HARTIK and SHARK defines a high
leve) computational model that extends the kernel model into
the user programming space. ECP C follows a top down approach,
defining a programming model taken from a set of high leve)
requirements mapped to a low leve) infrastructure. Recently [15]
addressed this issue handling timing constraints in soft real time
applications. ECP C and [15] share the idea of detecting and han
dling timing constraints. The main difference among both
approaches is that ECP C is more focused on the underlying con
currency model than in [15]. The last piece of related work is
mbeddr [51] which is an extensible C based programming frame
work for embedded systems. In mbeddr, developers use a
cleaned up C language with the goal of producing C code able to
be integrated with IDEs to perform checks. In this context, ECP C
does not introduce constraints in the C programming language
but it provides a model for developing C based applications.

The last look into the related work returns back to the real
time Java community and two major efforts: RTSJ and SCJ. In
RTSJ, the API used to access raw memory and underlying hard
ware is under refinement [20]. The API proposed in [20] is sim
pler and enables a wide access to devices mapped to memory.
14

Ta
bl
e
5

Co
m
pa

ri
ng

th
e
EC

P-
C
ag

ai
ns

t
ot
he

r
M
os

t
Re

la
te
d
A
pp

ro
ac
he

s
A
va

ila
bl
e
in

th
e
St
at
e-
O
f-
Th

e-
A
rt
.

Fr
am

ew
or
k
/O

pe
ra
ti
n
g
Sy

st
em

/
Te

ch
n
iq
ue

Pr
og

ra
m
m
in
g

La
n
gu

ag
e

Pr
og

ra
m
m
in
g

Pa
tt
er
n
s
su

pp
or
t

Im
pl
em

en
ta
ti
on

ov
er
h
ea

d
C
om

pu
ta
ti
on

al
Ef
fi
ci
en

cy
C
om

m
on

al
ti
es

w
it
h
EC

P-
C

EC
P-
C
C
on

tr
ib
u
ti
on

R
TS

J:
G
en

er
al

fr
am

ew
or
k
fo
r
re
al
-t
im

e
pr
og

ra
m
m
in
g

Ja
va

H
ig
h

H
ig
h

Lo
w

B
ot
h
ta
ke

th
e
fo
rm

of
a
fr
am

ew
or
k

of
fe
ri
n
g:

re
al
-t
im

e
m
u
lt
it
hr

ea
di
n
g,

pr
io
ri
ty

in
h
er
it
an

ce
pr
ot
oc

ol
s,

ra
w

m
em

or
y
ac
ce
ss
.B

ot
h
in
te
gr
at
e
th
e

co
n
ce
pt

of
en

h
an

ce
m
en

t
ar
ea

s

Ta
rg
et
ed

to
sm

al
l
m
ic
ro
co

n
tr
ol
le
rs

ru
n
n
in
g

w
it
h
C
li
br
ar
ie
s
In

th
e
m
in
i
an

d
m
ic
ro

pr
ofi

le
s,

th
e
A
PI

is
sh

or
te
r
an

d
cl
os

er
to

C

SC
J:
A
sa
fe
ty

cr
it
ic
al

pr
ofi

le
fo
r
re
al
-

ti
m
e
pr
og

ra
m
m
in
g

Ja
va

M
ed

M
ed

Lo
w
/M

ed
B
ot
h
of
fe
r
si
m
pl
e
A
PI
s
th
at

m
ay

be
u
se
d
to

de
ve

lo
p
re
al
-t
im

e
ap

pl
ic
at
io
n
s

EC
P-
C
is

m
or
e
ge

n
er
al

in
go

al
s.

It
is

n
ot

ta
rg
et
ed

to
h
ig
h
in
te
gr
it
y
ap

pl
ic
at
io
n
s

O
R
K
:
O
pe

ra
ti
n
g
Sy

st
em

fo
r
re
al
-t
im

e
pr
og

ra
m
m
in
g

A
da

M
ed

Lo
w

H
ig
h
/M

ed
B
ot
h
pr
ov

id
e
ba

si
c
pr
og

ra
m
m
in
g

ab
st
ra
ct
io
n
s
fo
r
pe

ri
od

ic
an

d
sp

or
ad

ic
ta
sk
s

EC
P-
C
is

fo
cu

se
d
on

ge
n
er
al

ap
pl
ic
at
io
n
s
th
at

re
qu

ir
e
re
al
-t
im

e
pe

rf
or
m
an

ce

C
h
ib
iO

S:
Ef
fi
ci
en

t
O
pe

ra
ti
n
g
Sy

st
em

C
Lo

w
Lo

w
H
ig
h

B
ot
h
pr
ov

id
e
th
e
ap

pl
ic
at
io
n
w
it
h

m
u
lt
it
h
re
ad

in
g

EC
P-
C
in
cl
u
de

s
a
pr
og

ra
m
m
in
g
m
od

el
th
at

of
fe
rs

su
pp

or
t
to

re
al
-t
im

e
ta
sk
s

R
ea

l-
ti
m
e
U
ti
li
ti
es

fo
r
A
da

20
05

A
da

H
ig
h

H
ig
h

M
ed

B
ot
h
of
fe
r
fa
ci
li
ti
es

to
bu

il
d
ef
fi
ci
en

t
re
al
-

ti
m
e
ap

pl
ic
at
io
n
s
th
at

co
n
si
st

of
ta
sk
s

EC
P-
C
is

m
or
e
sp

ec
ifi
c
th
an

th
e
A
da

u
ti
li
ti
es

Si
m
pl
eR

TK
:
R
ea

l-
ti
m
e
M
ic
ro
-k
er
n
el

C
M
ed

Lo
w

H
ig
h

B
ot
h
ta
rg
et

to
sm

al
l
si
ze

m
ic
ro
co

n
tr
ol
le
rs

w
it
h
re
du

ce
d
am

ou
n
t
of

m
em

or
y

Si
m
pl
eR

TK
do

es
n
ot

su
pp

or
t
a
m
od

el
ta
rg
et
ed

to
pe

ri
od

ic
ta
sk
s,
w
h
il
e
EC

P-
C
pr
ov

id
es

a
m
or
e

co
m
pl
et
e
pr
og

ra
m
m
in
g
m
od

el
Ex

ce
pt
io
n
m
an

ag
em

en
t
[1
5]

C
M
ed

Lo
w

H
ig
h

Th
is

w
or
k
an

d
EC

P-
C
h
av

e
as
yn

ch
ro
n
ou

s
m
ec
h
an

is
m
s
to

de
te
ct

C
PU

m
an

ag
em

en
t

fa
u
lt
s

EC
PC

-C
of
fe
rs

an
in
te
gr
at
ed

pr
og

ra
m
m
in
g

m
od

el

EC
P-
C
(t
h
is

w
or
k)

C
H
ig
h

Lo
w

H
ig
h

-

The proposed ECP C model may be extended with stack overflow,
and interrupt overload interrupts taken from the models
described in [20] which are still under definition. Another source
of influence for ECP C comes from a Java to C translator [44]; this
infrastructure allows programming in Java. EPC C performs a
similar translation between C and Java at a specification level
from RTSJ to ECP C.

In addition to RTSJ, this work has influence from SCJ [28,55,42].
SCJ defines three integration levels: L0, L1, and L2 for different
safety critical applications. L0 and L1 refer to simple applications
running with a cyclic executive with periodic events in the L0 case,
and with a sporadic event based behavior for L1. L2 includes the
possibility of having threads to improve the programming model.
The ECP C only includes different threads (periodic, sporadic, and
aperiodic) that may share resources. ECP C is conceptually closer
to the Ravenscar Java [30] approach than to SCJ. Ravenscar Java
[30] is a SCJ prequel that defines applications with periodic threads
and sporadic event handlers.

Associated with the infrastructure, there are also a number of
benchmarks dealing with real time systems and applications per
formance. The benchmark used in the empirical evaluation of
ECP C consists of two parts: an ad hoc microbenchmark and appli
cation scenario derived from AUTOSAR [5]. ECP C has commonali
ties with the RTBenchmark [41] which measures the infrastructure
quality. The main difference among both is that the benchmarking
checked in ECP C is more specific than in RTBenchmark. There are
also differences in the footprint of the benchmarks. Whereas the
microbenchmarks in ECP C are small, in RTbenchmark requires
89 Kbytes, which are not available in the micro or mini
infrastructures.

Some other benchmarks are more general and closer to the
application. This is the particular case of Mibench [25], which
includes a set of commercially representative embedded programs
taken from automation, industrial, consumer applications, net
working, and telecom applications. In contrast to this huge bench
mark, which requires 300 Kbytes, ECP C has a small application
test representative for AUTOSAR applications with operational fre
quencies ranging from 80 Hz to 250 Hz.
6.1. Comparative

Table 5 establishes commonalities among the ECP C and other
techniques and technologies. Among then, two works had a crucial
influence on ECP C: the SimpleRTK kernel and the real time speci
fication for Java (RTSJ). SimpleRTK proposes an efficient way to
support real time operating facilities on top of small microcon
trollers; this idea has been taken by ECP C but in a wider context.
However, ECP C is designed for a larger audience, like the real time
Java programming model, which is not targeted to any real time
application. However, the use of a virtual machine abstraction
could extremely inefficient for small microprocessors; this is the
idea why C may be more interesting for developing embedded
real time applications than Java.

In performance terms, it is difficult to establish empirical evi
dence that confirms the statement because the current infrastruc
ture does not allow a direct comparison. In some cases, the
technology and/or infrastructure are too large to fit in this small
amount of memory (e.g. with RTSJ), while in others (like in RTK)
the comparison requires a mapping that has not been carried out
to be able to compare the performance. Given that limitations,
Table 5 defines three ranges (low, medium and high) speculating
on the efficiency of the different runtimes. Java runtimes have been
classified as inefficient computational infrastructures, and C run
times as potentially the most efficient approaches, with Ada in
between.
15

7. Conclusions

Next generation applications will benefit from having program
ming frameworks that may help them to hide implementation
aspects of a real time application. To reduce the complexity of
using a plain infrastructure, it is proposed a real time threading
library for C based applications. The resulting infrastructure is
called ECP C and it is designed to offer a small footprint in compar
ison to other high level programming languages. Mimicking real
time Java, ECP C offers six enhancement areas: threading, resource
sharing, memory management, external events, asynchronous sig
naling and memory access. The empirical evaluation showed the
feasibility of the approach in terms of footprint and performance
by analyzing the overhead introduced by the abstraction into
two different infrastructures: a naked implementation and on a
small real time operating system.

Our future work is focused on extending the model to larger
environments which may require the implementation of the gen
eral ECP C profile, which will have to deal with scalability, and
portability issues and its implementation on low cost Raspberry
Pi which may run real time Linux kernels. Our ongoing work also
includes the definition of a proper distribution model for the
ECP C framework, departing from: [46,45,5,19]. In addition,
another open challenge is the efficient integration benchmarks
(mainly RTBenchmark and Mibench) in a constrained infrastruc
ture with few bytes available, by splitting and dynamically down
loading different parts of the benchmark into the constrained
infrastructure.

Acknowledgements

This work has been partially funded by Distributed Java
Infrastructure for Real Time Big Data (CAS14/00118) and by
eMadrid: Investigación y Desarrollo de tecnologías educativas en
la Comunidad de Madrid (S2013/ICE 2715). This research was sup
ported by the national project REM4VSS (TIN 2011 28339) and by
European Union’s 7th Framework Programme Under Grant
Agreement FP7 IC6 318763. The authors also acknowledge their
anonymous reviewers for their efforts in improving the quality of
the article.

References

[1] Atmel, ATMega 328 data sheet. http://www.atmel.com, 2012.
[2] AVR, The AVR GCC tool-chain. Available on-line at http://www.nongnu.org/

avr-libc/, 2014.
[3] AUTOSAR, Release 4.0 Overview and Revision History. www.autosar.org., 2012
[4] M. Banzi, Getting Started with Arduino. ‘‘ O’Reilly Media, Inc’’, 2009.
[5] P. Basanta-Val, M. Garcia-Valls, A distributed real-time Java-centric

architecture for industrial systems, IEEE Trans. Ind. Inf. 10 (2014) 27–34.
[6] P. Basanta-Val, M. García-Valls, I. Estévez-Ayres, AGC Memory: A new Real-

Time Java Region Type for Automatic Floating Garbage Recycling. ACM SIGBED.
2, 2005.

[7] Bollella G. et al., The real-time specification for Java. http://www.rtsj.org/,
2001.

[8] G. Bollella, B. Delsart, R. Guider, C. Lizzi, F. Parain, Mackinac: making hotspot
real-time, in: 8th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 2005, pp. 45–54.

[9] B. Bouyssounouse, J. Sifakis, Embedded Systems Design: the ARTIST Roadmap
for Research and Development, Springer, Secaucus, NJ, USA, 2005.

[10] A. Burns, A. Wellings, Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX, 4th ed., Addison-Wesley Educational
Publishers Inc., USA, 2009.

[11] A. Burns, A. Wellings, Concurrent and Real-Time Programming in Ada, 3Rev, Ed
ed., Cambridge University Press, New York, NY, USA, 2007.

[12] A. Burns, A. Wellings, Real-Time Systems and Programming Languages,
Addison-Wesley, 2001.

[13] G.C. Buttazzo, HARTIK: A real-time kernel for robotics applications, in: Real-
Time Systems Symposium, 1993, Proceedings., 1993, pp. 201–205.

[14] ChibiOS, The ChibiOS/RT project page. http://www.chibios.org/, 2012.
[15] T. Cucinotta, D. Faggioli, Handling timing constraints violations in soft real-

time applications as exceptions, J. Syst. Softw. 85 (2012) 995–1011.
[16] C. Cuevas, L. Barros, P.L. Martínez, J.M. Drake, MDE technology as support for
real-time systems development environments, Revista Iberoamericana de
Automática e Informática Industrial RIAI 10 (2013) 216–227.

[17] J. Dean, R. Bruce, M. Cameron, Changing the world with a Raspberry Pi, J.
Comput. Sci. Colleges 29.2 (2013) 151–153.

[18] J.A. de la Puente, J. Zamorano, J. Ruiz, R. Fernandez, R. Garcia, The design and
implementation of the open Ravenscar kernel, Ada Lett. XXI (2001) 85–90.

[19] J.A. Dianes, M. Díaz, B. Rubio, ServiceDDS: a framework for real-time P2P
systems integration, in: 13th IEEE International Symposium on Object/
Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2010, pp. 233–237.

[20] P. Dibble, J. Hunt, A.J.a. Wellings, Programming embedded systems: interacting
with the embedded platform, in: M.T. Higuera-Toledano, A.J. Wellings (Eds.),
Distributed, Embedded and Real-time Java Systems, Springer, 2012, pp. 129–
158.

[21] P. Fritzon, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach. Wiley & Sons. ISBN 1118858972,
2014.

[22] P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, A new kernel approach for modular
real-time systems development, in: Proceedings of the 13th Euromicro
Conference on Real-Time Systems (ECRTS ‘01), IEEE Computer Society,
Washington, DC, USA, 2001, pp. 199–207.

[23] D. Garcia, M. Velasco, P. Marti, SimpleRTK: Minimal Real-Time Kernel for
Time-Driven and Event-Driven Control. http://esaii.upc.edu/people/pmarti/
10RRsimpleRTK.pdf, 1-51, 2010.

[24] Guoqiang Wang, M. Di Natale, A. Sangiovanni-Vincentelli, Improving the size
of communication buffers in synchronous models with time constraints, IEEE
Trans. Ind. Inf. 5 (2009) 229.

[25] M.R. Guthaus et al., MiBench: A free, commercially representative embedded
benchmark suite, in: Proceedings of the Workload Characterization,
Washington, DC, US, 2001, pp. 3–14.

[26] J.O. Hamblen, G.M. van Bekkum, An embedded systems laboratory to support
rapid prototyping of robotics and the internet of things, IEEE Trans. Educ. 56
(1) (2013) 121–128.

[27] M.T. Higuera-Toledano, About 15 years of Real-Time Java. JTRES 2012, 2012,
34–43.

[28] JSR-302, Safety Critical JavaTM Technology. http://jcp.org/en/jsr/detail?id=
302, 2011.

[29] H. Kim, R. Rajkumar, Memory reservation and shared page management for
real-time systems, J. Syst. Architect. 60 (2) (2014) 165–178.

[30] J. Kwon, A. Wellings, S. King, Ravenscar-Java: a high-integrity profile for real-
time Java, Concurr. Comput.: Pract. Exp. 17 (2005) 681–713.

[31] E.A. Lee, Cyber Physical Systems: Design Challenges. International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2008.

[32] I. Lee, S. Davidson, V. Wolfe, RTC: Language support for real-time concurrency,
in: Proceedings of the IEEE Real-Time Systems Symposium (RTSS 91), 1991,
43–52.

[33] J. Liu, Real-time Systems, Prentice Hall, 2000, ISBN 978-0-13-099651-0.
[34] R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, P. Pedreiras, J.M. Fuertes,

Performing flexible control on low-cost microcontrollers using a minimal real-
time Kernel, IEEE Trans. Ind. Inf. 4 (2008) 125–133.

[35] M. Masmano, I. Ripoll, A. Crespo, J. Real, TLSF: a new dynamic
memory allocator for real-time systems, Euromicro Conf. Real Time Syst.
(2004) 79–86.

[36] M.A.d. Miguel, E. Salazar, Model-based development for RTSJ platforms, in:
Workshop on Java Technology for Real-Time and Embedded Systems, 2012.

[37] OpenGroup, IEEE Std1003.1-2008/Cor1-2013. Available (2014) on line at
http://pubs.opengroup.org/onlinepubs/9699919799/, 2013.

[38] L. Palopoli, G. Buttazzo, P. Ancilotti, A C language extension for programming
real-time applications. Real-Time Computing Systems and Applications, 1999.
RTCSA ‘99. Sixth International Conference on, 1999, 103–110.

[39] Rajkumar, R., Insup Lee, Lui Sha, Stankovic, J., 2010. Cyber-physical systems:
The next computing revolution. 47th ACM/IEEE Design Automation
Conference (DAC), 731.

[40] J. Real, A. Crespo, Incorporating operating modes to an ada real-time
framework, Ada Lett. 30 (2010) 73–85.

[41] RTBench, 2013. Real time micro benchmark suite. Available online, 2014, on
sourceforge.net/projects/rtmicrobench/.

[42] M. Schoeberl, H. Sondergaard, B. Thomsen, A.P. Ravn, A profile for safety
critical Java, in: 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, 2007, pp. 94–101.

[43] L. Sha et al., Real time scheduling theory: a historical perspective, Real-Time
Syst. 28 (2–3) (2004) 101–155.

[44] H. Schorrig, T. Henties, Java2C – developing in Java, deployment in C, JTRES
(2010) 73–75.

[45] E.T. Silva, M.A. Wehrmeister, F.R. Wagner, C.E. Pereira, An approach to improve
predictability in communication services in distributed real-time embedded
systems, in: 5th International Workshop on Java Technologies for Real-time
and Embedded Systems, 2007, pp. 121–126.

[46] J. Silva, T. Elias, F.R. Wagner, E.P. Freitas, C.E. Pereira, Hardware support in a
middleware for distributed and real-time embedded applications, in: 19th
Annual Symposium on Integrated Circuits and Systems Design, 2006, pp. 149–
154.

[47] J.A. Stankovic, R. Rajkumar, Real-time operating systems, Real-Time Syst. 28
(2004) 237–253.
16

(48) Petteri Teikari et al., An inexpensive Arduino-based LEO stimulator system for
vision research, J. Neurosci. Methods 211 (2) (2012} 227-236.

(49) E. Upton, G. Halfacree, Raspberry PI User Cuide. John Wiley & Sons, 2013.
[SO) Vega-Rodriguez. Methodologies and tools for the design space exploration of

embedded systems,J. Syst. Architect. (2014} 53-54.
(51 J M. Voelter, O. Ratiu, B. Schaetz. B. Kolb, Mbeddr: an extensible C-based

programming Janguage and IDE for embedded systems, in: Proceedings of the
3rd Annual Conference on Sysli!ms, Programming, and Applications: Software
for Humanity, 2012, pp. 121-140.

[52 J P. Yuemin et al., A demand response energy management scheme for
industrial facilities in smart grid, IEEETrans. lnd. lnf. 1 O (4)(2014} 2257-2269.

[53 J AJ. Wellings, A. Burns. A framework for real-time utilities for Ada 2005, Ada
Lett. XXVII (2007) 41-4 7.

(54) AJ. Wellings, G. Bollella, P.C. Oibble, O. Holmes, Cost enforcement and deadline
monitoring in the real-time specification for Java, lSORC (2004) 78-85.

(SS) A Wellings, M. Kim, Asynchronous event handling and safety critica) Java. in:
Proceedings of the 8th lnternational Workshop on Java Technologies for Real­
lime and Embedded Systems, 2010, pp. 53-62.

(56) J. White, B. Dougherty, R.E. Schantz, O.C. Schmidt, AA. Porter, A Corsaro, R&O
challenges and solutions for highly complex distributed systems: a
middleware perspective,J. Internet Serv. Appl. 3 (2012} 5-13.

(57) Andrew Burkimsher, Jain Bate, Leandro Soares Jndrusiak. A survey of
scheduling metrics and an improved ordering policy for list schedulers
operating on workloads with dependencies and a wide variation in execution
times, Future Genation Computing Systems 29 (8) (2013} 2009-2025 .

(58) Leandro Soares lndrusiak. End-to-end schedulability tests for multiprocessor
embedded systems based on networks-on-chip with priority-preemptive
arbitration, Journal of Systems Architecutre 60 (7) (2014} 553-561.

(59) Pablo. Basanta-Val, Norberto. Femandez-García,Andy. Wellings. Neil. Audsley,
lmproving the predictablity of distributed stream processors.
17

