
This is a repository copy of A Review of Priority Assignment in Real-Time Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/99190/

Version: Accepted Version

Article:

Davis, Robert Ian orcid.org/0000-0002-5772-0928, Cucu-Grosjean, Liliana, Bertogna,
Marko et al. (1 more author) (2016) A Review of Priority Assignment in Real-Time
Systems. Journal of systems architecture. pp. 64-82. ISSN 1383-7621

https://doi.org/10.1016/j.sysarc.2016.04.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Other licence.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Review of Priority Assignment in Real-Time Systems

Robert I. Davis
1,2

 Liliana Cucu-Grosjean
2
, Marko Bertogna

3
, Alan Burns

1

1Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
2AOSTE Team, INRIA Paris-Rocquencourt, France.

3University of Modena, Italy.

rob.davis@york.ac.uk, liliana.cucu@inria.fr, marko.bertogna@unimore.it, alan.burns@york.ac.uk

Abstract - It is over 40 years since the first seminal work on

priority assignment for real-time systems using fixed priority

scheduling. Since then, huge progress has been made in the

field of real-time scheduling with more complex models and

schedulability analysis techniques developed to better

represent and analyse real systems. This tutorial style review

provides an in-depth assessment of priority assignment

techniques for hard real-time systems scheduled using fixed

priorities. It examines the role and importance of priority in

fixed priority scheduling in all of its guises, including: pre-

emptive and non-pre-emptive scheduling; covering single- and

multi-processor systems, and networks. A categorisation of

optimal priority assignment techniques is given, along with the

conditions on their applicability. We examine the extension of

these techniques via sensitivity analysis to form robust priority

assignment policies that can be used even when there is only

partial information available about the system. The review

covers priority assignment in a wide variety of settings

including: mixed-criticality systems, systems with deferred

pre-emption, and probabilistic real-time systems with worst-

case execution times described by random variables. It

concludes with a discussion of open problems in the area of

priority assignment.

Categories and Subject Descriptors: C.3 [Real-time and

embedded systems]

General Terms: Performance, Design, Algorithms

Additional Key Words and Phrases: survey; review; priority

assignment; priority order; fixed priority; real-time scheduling;

schedulability analysis; optimal priority assignment; deadline

monotonic; rate monotonic, robust priority assignment;

Controller Area Network (CAN); multiprocessor; uniprocessor.

PREAMBLE

Many presentations are written as a consequence of first

writing a paper. This paper was written as a consequence of

the first author giving the Keynote talk at the 20th

International Conference on Real-Time and Network

Systems (RTNS) in 2012, thus a presentation of much of the

material in this paper can be found at

http://rtns2012.loria.fr/#page=Invitedtalk.

I. INTRODUCTION

Hard real-time systems are characterised by the need for

both functional and temporal correctness. Such systems are

required not only to produce appropriate responses or outputs

to their stimuli or inputs (functional correctness), but to do so

within specified time constraints (temporal correctness).

These time constraints are typically expressed in terms of

deadlines on the elapsed time between a stimulus or input

and the corresponding response or output.

Today, hard real-time systems are found in many

different application areas including; aerospace, automotive,

and railway systems, space and satellite systems, medical

monitoring and imaging systems, industrial process control,

and robotics. The majority of these systems are multitasking

and use a scheduler within the Real-Time Operating System

(RTOS) to determine which one of many tasks is given

access to the processor or processors at any given time.

The vast majority of commercial Real-Time Operating

Systems use a fixed priority scheduler; indeed, automotive

standards such as OSEK [1] and AUTOSAR [2] mandate the

use of fixed priority scheduling. With fixed priority

scheduling, each task is assigned a static priority offline, then

at runtime, each job of that task competes for the processor

on the basis of its priority, with the highest priority job

selected for execution. One of the most common questions

asked regarding the scheduling of such systems is:

“How should I assign priorities?”

This is an important question, since a poor priority

assignment will mean that the scheduler may run jobs in an

order that is far from optimal1, leading to missed deadlines,

even though the overall workload or utilisation of the system

is low. This can have significant commercial consequences.

If a system can only utilise a small fraction of its overall

processing or network capacity before deadlines start being

missed, then as further functionality is added, it will become

unreliable, or will need upgrading to more expensive

hardware.

A. Why is Priority Assignment Important?

In real-time systems that use fixed priority scheduling,

appropriate priority assignment is essential to avoid

overprovisioned hardware, to provide headroom for

additional functionality, and to avoid reliability issues caused

by intermittent failures due to deadline misses.

To illustrate this point, we use an example from the

automotive industry. Controller Area Network (CAN) [27],

[46] is a broadcast bus that is widely used for in-vehicle

networking. Communications over CAN are effectively

1 We define what is meant by an optimal priority assignment in Section II.

scheduled using fixed priority non-pre-emptive scheduling,

with the message identifiers (IDs) used as priorities during

arbitration to determine the order in which messages are sent

on the bus. In his keynote talk at ECRTS 2012 [35], Darren

Buttle of ETAS remarked on the myth of CAN bus

utilisation believed by many in industry:

“You cannot run CAN reliably at more than 35%

utilisation
2
”

This myth comes from a general practice of assigning

message IDs (i.e. priorities) in an ad-hoc way reflecting the

data content of the message, ECU supplier and other legacy

issues. The effect of assigning message IDs in an ad-hoc way

that has no correlation with message deadlines was

highlighted by Davis et al. [51]. Figure 1 shows the

frequency distribution of the breakdown utilisation [68] of

10,000 typical automotive CAN configurations with 80

messages (10ms to 1 second periods). The breakdown

utilisation is computed by scaling the bus speed until the

message set is only just schedulable and then recording the

overall bus utilisation (i.e. message transmission times

divided by periods) at that speed. From the graph it is clear

that priority assignment is important. Figure 1 shows that

assigning priorities in an optimal way leads to typical

breakdown utilisations of 80% or more, whereas ad-hoc or

random priority assignment leads to typical bus utilisations

of 35% or less, hence the myth described by Buttle [35].

Figure 1: Breakdown Utilisation

B. How to Assign Priorities?

In this paper, we provide a tutorial-style review of

answers to the question, “How to assign priorities?”

We survey work on priority assignment through the

ages. We look at simple task models where Deadline

Monotonic priority assignment is optimal and see how

departures from these models break this optimality. We

review Audsley’s algorithm for Optimal Priority

Assignment (OPA), including the rules for when it can and

cannot be used – as well as a catalogue of situations where it

2 Figure may vary but not significantly.

is useful. We look at how this algorithm has been extended

to form Robust Priority Assignments (RPA), and how they

can be used to define priority orderings when only partial

information is available about a system. For systems and

schedulability analyses where Audsley’s algorithm cannot

be directly applied, we examine what can be done to avoid

checking all possible priority orderings. We also recount

how the basic OPA algorithm can be modified to obtain

priority assignments that minimise the number of priority

levels needed, and also how it can be used to minimise the

lexicographical distance or the reverse lexicographical

distance from any desired priority ordering.

This review covers priority assignment for fixed priority

scheduling in all of its guises, including: pre-emptive, non-

pre-emptive, and deferred pre-emption scheduling; for

single-processor, multi-processor, and networked systems.

As well as conventional systems, we review priority

assignment in mixed criticality systems, and probabilistic

real-time systems where worst-case execution times are

described by random variables.

At the end of the review, we set out a number of open

problems in priority assignment, including priority

assignment in systems with Cache Related Pre-emption

Delays, and dual-priority scheduling [33].

The review ends with a summary of the key results and

current challenges, and provides recommendations for those

wanting to know “How to assign priorities?”

Note, the focus of this review is on priority assignment,

we deliberately do not go into depth on the closely related

topic of schedulability analysis. For more information on

that topic, the interested reader is directed to reviews and

surveys on single processor [12], [83], [53] and

multiprocessor [50] scheduling.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we consider types of systems scheduled

using fixed priorities. In this section, we outline a basic task

model that is capable of extension in a variety of different

ways. Some of these extensions are also detailed here,

whereas others are specific to particular problem domains

and are discussed later. We also define the terminology used

in schedulability analysis. We note that a similar system

model also applies to communications on CAN with ‘task’

replaced by ‘message’ and ‘execution time’ replaced by

‘transmission time’.

A. System model

The system model used in this paper focuses on the

fixed priority scheduling of a set of n statically defined tasks

which together make up a task set. Each task i is identified

by its index i from 1 to n. Each task is assumed to have a

unique priority. The notation)(ihp (and)(ihep) is used to

denote the set of tasks with priorities higher than (higher

than or equal to) i. Similarly,)(ilp (and)(ilep) are used to

denote the set of tasks with priorities lower than (lower than

or equal to) i.

Optimal
Priorities

Ad-hoc
Priorities

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

F
re

q
u

e
n

c
y

Breakdown Utilisation %

35% or less v 80% or more

Each task i is assumed to have a bounded worst-case

execution time iC , a minimum inter-arrival time or period

iT , and a relative deadline iD . Note, we assume a discrete

time model, with all of these task parameters represented by

positive integers. Each task i may generate a potentially

unbounded sequence of invocations (or jobs). Each job of

task i has an execution time that is upper bounded by iC ,

an arrival time at least iT after the arrival of the previous

job of the same task, and a relative deadline iD after its

arrival.

A task set is referred to as periodic if each job of every

task i arrives exactly iT after the previous job of the same

task. A task set is referred to as sporadic if each job of a

task i may arrive at any time that is at least iT after the

arrival of the previous job of the same task. Thus the

sporadic task model forms a generalisation of the periodic

one. In this paper, unless explicitly stated, we refer to

sporadic tasks sets.

Task sets may be further classified according to the

deadlines of their component tasks. If all tasks have

deadlines equal to their periods (ii TD), then we have an

implicit-deadline task set. If instead, all tasks have deadlines

that are less than or equal to their periods, then that

constitutes a constrained-deadline task set. Finally, in an

arbitrary-deadline task set, task deadlines may be smaller

than, the same as, or larger than their periods.

The utilisation iU of a task i is equal to its execution

time divided by its period (iU = iC / iT). The total utilisation

U of a task set is the sum of the utilisations of all its tasks.

This task model permits a number of simple extensions

as follows.

Tasks may make mutually exclusive access to shared

resources, thus task i may be blocked from executing for at

most the blocking time iB due to lower priority tasks that

access shared resources (e.g. via the Stack Resource Policy

[15]) . Otherwise, tasks are assumed to be independent, and

not to self-suspend.

For periodic task sets, the first arrival of a job of task i

is assumed to take place at an offset iO from time 0t .

(Note offsets are assumed to be normalised so that the

minimum offset of any task is zero). If 0 iOi , then the

task set is referred to as synchronous, since all tasks have a

synchronous arrival at time 0t . Otherwise it is referred to

as asynchronous, or simply as having offsets.

There may be a delay of up to the release jitter iJ

between the notional arrival and the release of each job of

task i at which point it becomes ready to execute.

The worst-case response time iR [64] of a task is

defined as the longest possible time from the release of a job

of the task until that job completes execution. Calculation of

a task’s worst-case response time allows its schedulability to

be trivially checked by comparison with its deadline and

release jitter: iii JDR .

There are a number of different forms of fixed priority

scheduling, depending on if and when pre-emption is

permitted. With Fixed Priority Pre-emptive Scheduling

(FPPS), when a high priority task become ready to execute,

a lower priority job that is currently running will be

suspended (pre-empted) in order to allow the higher priority

job to execute. With Fixed Priority Non-pre-emptive

Scheduling (FPNS) such pre-emption is not permitted, and

the higher priority job has to wait until the lower priority job

completes before it can access the processor. Between these

two extremes, is deferred pre-emption (FPDS), where pre-

emption may be deferred for some interval of time after a

higher priority task becomes ready, either by the RTOS

[16], or due to non-pre-emptable regions in the task’s code

(co-operative scheduling) [31].

With FPDS, each task is assumed to have a final non-pre-

emptive region of length iF in the range],1[iC . This model

of FPDS subsumes both fully pre-emptive and fully non-pre-

emptive scheduling, since if 1 iFi , then FPDS equates

to FPPS, whereas if ii CFi we have FPNS. (Note that

with a discrete time model, the minimum possible length of a

non-pre-emptive region is 1, since a task cannot be pre-

empted during a single processor clock cycle).

With fixed priority scheduling each job of a task i has

the same priority given by the priority assigned to the task.

This is sometimes referred to as fixed task priority

scheduling, as distinct from fixed job priority scheduling

where each individual job of a task can have a different

priority. An example of fixed job priority scheduling is

Earliest Deadline First (EDF) where job priorities correspond

to absolute deadlines. In the remainder of this paper when we

refer to fixed priority scheduling, we mean fixed task priority

scheduling.

The critical instant [69] for a task i refers to a scenario

or pattern of job releases that result in a job of the task

exhibiting the worst-case response time.

We use the term priority level-i busy period to mean an

interval of time),[21 tt during which tasks, of priority i or

higher, that were released at the start of the busy period at 1t ,

or during the busy period but prior to its end at 2t , are either

executing or ready to execute. We note that by definition, the

worst-case response time of a task at priority i must occur

within a priority level-i busy period.

B. Schedulability Analysis

Definition: Schedulable: A task set is said to be schedulable

with a priority assignment Q, under some fixed priority

scheduling algorithm G, if all valid sequences of jobs that

may be generated by the task set can be scheduled by

algorithm G using priority ordering Q without any missed

deadlines.

A schedulability test for some fixed priority scheduling

algorithm G is referred to as sufficient, if all the task sets and

priority orderings that are deemed schedulable according to

the test are in fact schedulable under the scheduling

algorithm. Similarly, a schedulability test is referred to as

necessary, if all the task sets and priority orderings that are

deemed unschedulable according to the test are in fact

unschedulable under the scheduling algorithm. A

schedulability test that is both sufficient and necessary is

referred to as exact.

C. Priority Assignment Policies

The goal of a priority assignment policy is to provide a

schedulable priority order whenever such an ordering exists.

This leads to a definition of optimal priority assignment. We

note that the optimality of a particular priority assignment

policy is with respect to a particular task model (for

example constrained-deadline, sporadic tasks), and a

scheduling policy (e.g. FPPS). It is also useful to define

optimality with respect to the schedulability test used, which

may be exact or only sufficient. Hence, in general the

optimality of a priority assignment policy is with respect to

a given configuration comprising (i) the task model, (ii) the

scheduling algorithm, and (iii) the schedulability test used.

Definition: Optimal Priority Assignment: A priority

assignment policy P is said to be optimal with respect to a

configuration (task model M, fixed priority scheduling

algorithm G, and schedulability test S), if and only if every

set of tasks that is compliant with the task model and is

deemed schedulable under algorithm G by test S with some

priority assignment policy is also deemed schedulable under

algorithm G by test S using policy P.

In other words, P is optimal if it is at least as good as any

other priority assignment policy.

In the remainder of the paper, when we refer to the

optimality of a priority assignment policy with respect to a

particular configuration, giving only the task model and

scheduling algorithm, then we are implicitly also referring to

an exact test.

III. EARLY WORK ON PRIORITY ASSIGNMENT

The first work on priority assignment considered fixed

priority pre-emptive scheduling (FPPS) on a single

processor, for a simple periodic task model without blocking

or release jitter.

In 1967, Fineberg and Serlin [56] considered two

synchronous periodic tasks with implicit-deadlines scheduled

using FPPS. They showed that it is better to assign the higher

priority to the task with the shorter period. In 1973, Liu and

Layland [69] extended this result and showed that Rate-

Monotonic Priority Ordering (RMPO) is optimal for

synchronous periodic task sets with implicit-deadlines.

(Rate-Monotonic priority assignment assigns priorities in the

same order as task periods, with the task with the shortest

period having the highest priority).

Liu and Layland’s famous result was generalised in 1982

by Leung and Whitehead [67] who showed that Deadline-

Monotonic Priority Ordering (DMPO) is optimal for

synchronous periodic task sets with constrained-deadlines.

However, minor changes to the task model (e.g. offset

release times, or arbitrary deadlines) or to the scheduling

algorithm (e.g. non-pre-emptive rather than pre-emptive

fixed priority scheduling) are enough to break the optimality

of DMPO. Leung and Whitehead [67] showed that DMPO is

not optimal for periodic tasks with constrained deadlines and

offset release times as illustrated in Figure 2 for the set of

tasks in Table I below.

TABLE I: TASK PARAMETERS

Task C D T O

A 2 3 4 2

B 3 4 8 0

(a)

(b)

Figure 2: Deadline Monotonic priority ordering is not optimal for tasks with

offset release times.

With Deadline Monotonic priority ordering, task A has the

higher priority. In this case, jobs of task B miss their

deadlines (Figure 2(a)). However, if the priority ordering is

reversed, then it is easy to see that the task set is schedulable

(Figure 2(b)). (Note, Leung and Whitehead [67] showed that

in order to check schedulability for periodic tasks with

constrained deadlines and offsets, it is sufficient to check all

deadlines in an interval of length (max2 OH) where H is

the hyperperiod (Least Common Multiple of task periods)

and maxO is the largest offset).

Goossens and Devilliers [60] showed in 1997 that

DMPO is also not optimal for so called offset free systems

where both offsets and priorities may be freely chosen with

the aim of finding a schedulable system.

In 1990, Lehoczky [66] showed that DMPO is also not

optimal for synchronous periodic task sets with arbitrary

deadlines as illustrated in Figure 3 for the set of tasks in

Table II below. With Deadline Monotonic priority ordering,

task A has the higher priority. In this case, the first job of

task B in the priority level-i busy period misses its deadline

(Figure 3 (a)). However, if the priority ordering is reversed,

then all jobs meet their deadlines (Figure 3 (b)). Note that in

this case, the second job of task A has a longer response

time than the first).

TABLE II: TASK PARAMETERS

Task C D T

A 52 110 100

B 52 154 140

(a)

(b)

Figure 3: Deadline Monotonic priority ordering is not optimal for tasks with

arbitrary deadlines.

In 1996, George et al. [59] showed that Deadline

Monotonic priority ordering is not optimal for constrained-

deadline periodic tasks under fixed priority non-pre-emptive

scheduling, as illustrated in Figure 4 for the set of tasks in

Table III below. In this case, with the tasks in DMPO, the

second job of task C in the priority level-i busy period

misses its deadline (Figure 4 (a)). However, if the priority

ordering of tasks B and C is reversed, then all jobs meet

their deadlines (Figure 4 (b)). Note that here similar to the

task set with arbitrary deadlines, the second job of the lowest

priority task has a longer response time than the first.

Thereby emphasizing that in these cases, it is not sufficient

to only check that the first job in the busy period meets its

deadline.

TABLE III: TASK PARAMETERS

Task C D T

A 4 10 10

B 4 12 16

C 4 13 14

In 1995, Davis and Burns [43] showed that the optimal

priority assignment for Aperiodic3 jobs (with firm deadlines)

arriving in a system with hard deadline sporadic or periodic

tasks is to assign each aperiodic job the highest priority such

that no task with an earlier next absolute deadline has a

3 Aperiodic jobs may arrive at any time and have a relative deadline that is

referred to as firm, that is either the job must be completed by this deadline

or it is of no value to the system.

higher priority (effectively a hybrid between DMPO and

Earliest Deadline First (EDF) scheduling).

(a)

(b)

Figure 4: Deadline Monotonic priority ordering is not optimal for fixed

priority non-pre-emptive scheduling.

IV. PROVING THE OPTIMALITY OF PRIORITY ASSIGNMENT

POLICIES

The optimality of a priority assignment policy such as

Deadline Monotonic priority ordering derives from

schedulability analysis. Below, we recapitulate response

time analysis for sporadic tasks with constrained deadlines

under fixed priority pre-emptive scheduling. Based on this

analysis, the optimality of DMPO is shown using a standard

technique for proving the optimality of priority assignment

policies.

The worst-case response time iR for task i corresponds

to the length of the priority level-i busy period starting with

synchronous release, and where all higher priority tasks are

then released again as soon as possible. The length of the

busy period iw , can be calculated using the following

recurrence relation [11], [64], where the summation term

gives the total interference over the busy period due to the

set of higher priority tasks.

j

ihpj j

m
i

i
m
i C

T

w
Cw

)(

1 (1)

Iteration starts with an initial value for 0
iw , typically

ii Cw 0 , and ends either when m
i

m
i ww 1 in which case the

worst-case response time iR is given by 1m
iw , or when

i
m
i Dw 1 in which case the task is unschedulable. The

fixed point iteration is guaranteed to converge provided that

the overall task set utilisation is less than or equal to 1.

The standard technique for proving that a priority

assignment policy is optimal is as follows:

To show that priority assignment policy P is optimal,

we must prove that any task set (that complies with the task

model) that is schedulable (under the scheduling algorithm

considered) using some priority assignment policy Q is also

schedulable using priority ordering P.

Proof is obtained by transforming priority order Q

(which is known to be schedulable) into priority order P

while ensuring that no tasks become unschedulable during

the transformation. The proof is by induction.

Base case: Priority order
k

Q is schedulable, since we

set
k

Q Q and Q is the schedulable priority ordering

assumed in the theorem.

Inductive step: A pair of tasks that are at adjacent

priorities in priority ordering
k

Q , but in the opposite

relative priority order under policy P are chosen and their

priorities swapped to produce a new priority order
1k

Q

(see Figure 5). It is then demonstrated that there is no loss of

schedulability, i.e. all the tasks remain schedulable under

priority order
1k

Q .

At most 2/)1(nnk such steps are needed to

complete the reordering (effectively a bubble sort) such that
PQ 1

, and since there is no loss of schedulability on any

step, that proves the task set is also schedulable under

priority ordering P. Hence there can be no task sets that are

schedulable under some other priority ordering Q that are

not also schedulable under the priority ordering given by

policy P, which proves that P is an optimal priority

ordering.

Figure 5: Swapping the priorities of tasks at adjacent priority levels.

We now demonstrate the use of this technique using the

exact analysis given in (1) and so provide a standard proof

(derived from that given in [67]) of optimality for DMPO.

Theorem 1: DMPO is an optimal priority assignment policy

for sporadic tasks with constrained deadlines under fixed

priority pre-emptive scheduling on a single processor.

Proof: We show that any task set compliant with the model

that is schedulable under some priority order Q is also

schedulable under priority order P (= DMPO).

Base case: The task set is schedulable with priority

order Q.

Inductive step: We select a pair of tasks that are at

adjacent priorities (i and j where j = i + 1) in priority

ordering
k

Q , but out of Deadline Monotonic relative

priority order. Let these tasks be A and B , with A

having the higher priority in
k

Q (see Figure 5). Note that

BA DD as the tasks are out of Deadline Monotonic

relative order. Let i be the priority of task A in
k

Q and j be

the priority of task B . We need to prove that all of the

tasks remain schedulable with priority order
1k

Q . There

are four groups of tasks to consider:

)(ihp : tasks in this set have higher priorities than both

A and B in both
k

Q and
1k

Q . Since the schedulability

of these tasks is unaffected by the relative priority ordering

of A and B , they remain schedulable in
1k

Q .

Task A : Let BRy be the response time of task B in

priority order
k

Q . Since task B is schedulable in
k

Q , we

have AABB TDDRy , hence in (1), the contribution

to interference from A within the response time of B is

exactly one job (i.e. AC), and there is also a contribution of

BC from B itself. Now consider the response time of task

A under priority order
1k

Q . This response time is yRA ,

as there is exactly the same contribution from tasks A , B

and all the higher priority tasks. Since ADy , task A

remains schedulable.

Task B : as the priority of B has increased, its

response time is no greater in
1k

Q than in
k

Q , since the

only change to the response time calculation for B is the

removal of the interference from task A . Hence B

remains schedulable.

)(jlp : tasks in this set have lower priorities than both

A and B in both
k

Q and
1k

Q .

Since the schedulability of these tasks is unaffected by

the relative priority ordering of A and B , they remain

schedulable.

All tasks therefore remain schedulable in
1k

Q .

At most 2/)1(nnk steps are required to transform

priority ordering Q into P without any loss of

schedulability □

We note that DMPO remains optimal [26] when tasks

are permitted to share resources according to the Stack

Resource Policy (SRP) [15] or the Priority Ceiling Protocol

(PCP) [82], and that Deadline Minus Release Jitter

Monotonic Priority Order is optimal for sporadic tasks with

constrained deadlines and release jitter [96]. As previously

noted; however, it only takes some minor changes to the

task model or scheduling algorithm to undermine the

optimality of DMPO. Examples of such changes include,

offset release times [67], non-pre-emptive scheduling [59],

arbitrary deadlines [66], and deadlines prior to completion

[30].

V. AUDSLEY’S OPTIMALITY PRIORITY ASSIGNMENT

(OPA) ALGORITHM

To address the non-optimality of DMPO for tasks with

offset release times, Audsley developed a more

sophisticated approach to priority assignment. This

approach, now commonly referred to as Audsley’s Optimal

Priority Assignment (OPA) Algorithm, solves the problem

of priority assignment for all of the four cases cited above

where DMPO is no longer optimal. It was first published in

a technical report in 1991 [10] and formally published some

10 years later in [13].

for each priority level k, lowest first
{

for each unassigned task
{
 if is schedulable at priority k according to

 schedulability test S with all unassigned tasks assumed
 to have higher priorities

 {
 assign to priority k
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

Algorithm 1: Audsley’s Optimal Priority Assignment Algorithm

The pseudo code for Audsley’s algorithm, using some

compatible schedulability test S is shown in Algorithm 1.

For n tasks, Audsley’s algorithm (Algorithm 1) makes at

most n(n+1)/2 calls to a compatible schedulability test S.

The algorithm is guaranteed to find a priority assignment

that is schedulable according to test S, if such an assignment

exists. The complexity of Audsley’s algorithm is a

significant improvement over checking all n! possible

priority orderings. For n = 25, a maximum of 325

schedulability tests are required, instead of >1025. Note that

the OPA algorithm does not specify the order in which the

schedulability of unassigned tasks should be checked at

each priority level.

Audsley’s algorithm has been proven to be applicable

in a variety of different situations, including the following:

 Periodic tasks with offset release times [10].

 Sporadic tasks with arbitrary deadlines – see section 7

of [89]
 Sporadic task sets under non-pre-emptive scheduling –

see Theorem 17 in [59].

 Tasks with mixed criticalities and an execution time

budget per criticality level [90].

 Generalised Multi-frame tasks, where jobs of a task

follow a fixed sequence with different worst-case

execution times, deadlines and inter-arrival times

between the different types of job – see section 7.1 of

[97].

 The Diagraph Real-time Task (DRT) model [85]. In

this case, Stigge and Yi [86] showed that Audsley’s

algorithm can effectively be applied to both the

problem of assigning Static Priorities (SP) to tasks, and

the problem of assigning Static Job-type Priorities (SJP)

to the job types (vertices) that characterise each task.

 Periodic tasks with worst-case execution times

described by random variables [71].

We note that Audsley’s algorithm is also applicable to the

(m-k) firm task model [75] as can easily be shown by

considering the three conditions for applicability discussed

below.

In 2009, Davis and Burns [49] proved an important

result about the applicability of Audsley’s OPA algorithm.

They showed that three simple Conditions are both sufficient

and necessary for Audsley’s algorithm to provide optimal

priority assignment with respect to a given schedulability test

S. This is a powerful result since it enables the OPA

algorithm to be applied in a wide range of scenarios, while

lowering the burden of proof of optimality to one of showing

compliance with the three Conditions, something that is

typically easily proved or disproved.

The three Conditions are reproduced below from [49] .

They refer to properties of a task that are independent of its

assigned priority. For example the worst-case execution time,

deadline, and minimum inter-arrival time of a task are

typically independent of its priority. By contrast a task’s

worst-case response time is typically highly dependent on its

relative priority.

Condition 1: “The schedulability of a task k may,

according to test S, depend on any independent properties of

tasks with priorities higher than k, but not on any properties

of those tasks that depend on their relative priority ordering.”

Condition 2: “The schedulability of a task k may,

according to test S, depend on any independent properties of

tasks with priorities lower than k, but not on any properties

of those tasks that depend on their relative priority ordering.”

Condition 3: “When the priorities of any two tasks of

adjacent priority are swapped, the task being assigned the

higher priority cannot become unschedulable according to

test S, if it was previously schedulable at the lower priority.

(As a corollary, the task being assigned the lower priority

cannot become schedulable according to test S, if it was

previously unschedulable at the higher priority).”

Detailed proof that these conditions are sufficient and

necessary for the applicability of the OPA algorithm is given

in [49].

A. Applying Audsley’s OPA Algorithm to Global Fixed

Priority Scheduling on a Multiprocessor

Davis and Burns [49] used the above three Conditions to

categorise schedulability tests for global fixed priority

scheduling on identical multiprocessors (with m processors)

according to their compatibility or otherwise with Audsley’s

algorithm.

The following schedulability tests were shown to be

incompatible with OPA:

 Any exact test for global fixed priority pre-emptive

scheduling [7] such as those for periodic task sets given

by Cucu and Goossens [39], [40].

 Response time analysis (RTA test) of Bertogna and

Cirinei [20].

 Improved RTA-LC test of Guan et al. [61].

While the following tests were shown to be compatible:

 Deadline Analysis (DA test) of Bertogna et al. [21].

 Improved DA-LC test (based on the RTA-LC test) [49].

 Response Time test of Andersson and Jonsson [7].

Below we give the schedulability equations for the DA test

[21]; by simple inspection of the terms in these equations, it

is clear that the three Conditions hold, since there is only a

dependency on the set of higher priority tasks, but not on

their relative priority order, and the interference becomes

strictly smaller with increasing priority.

)(

),(
1

khpi

kk
D
ikk CDI

m
CD (2)

where:

)1),(min(),(kkk
D

ikk
D
i CDDWCDI

))(,min()()(i
D
iiiii

D
i

D
i TLNCDLCCLNLW

i

iiD
i

T

CDL
LN)(

By contrast, inspection of the equations given below for the

RTA test [20] shows that this test is incompatible with

Audsley’s algorithm. This is because there is a dependency

on the upper bound response times (
UB
iR) of higher priority

tasks which in turn depends on their relative priority

ordering.

)(

),(
1

khpi

k
UB
k

R
ik

UB
k CRI

m
CR (3)

where:

)1),(min(),(k
UB
k

UB
k

R
ik

UB
k

R
i CRRWCRI

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW

i

i
UB

R
i

T

CRL
LN i)(

The incompatibility of the stronger schedulability tests

for global fixed priority scheduling (the RTA test strictly

dominates the DA test) raises the interesting question,

which is more powerful, better priority assignment or a

better schedulability test. In other words, when faced with

the choice, should we use a weaker schedulability test for

which we can determine an optimal priority assignment or a

stronger test where priority assignment can only be

accomplished by using a heuristic.

Figure 6: The effect of priority assignment on task set schedulability for

global fixed priority scheduling.

Figure 6 shows the success ratio (percentage of schedulable

task sets) for a 16 processor system, with 80 tasks

reproduced from [49]. Results for the RTA test are shown as

dashed lines, while those for the DA test are shown as solid

lines. What is striking from the graph is that the difference

between the two schedulability tests is small, but the

difference between the different priority assignment

heuristics (DMPO, DCMPO, DkC) and optimal priority

assignment (OPA) is large. In particular, DMPO is shown to

be a poor heuristic for global fixed priority scheduling,

while the DkC heuristic (based on TkC [6] – see later in this

section) has much better performance. The best performance

was obtained using the weaker DA schedulability test

combined with optimal priority assignment, rather than the

stronger RTA test and the DkC priority assignment

heuristic.

The above findings raise the question, what to do if we

have a schedulability test that is effective (like the RTA

test), but is not compatible with Audsley’s algorithm?

Clearly a brute force approach, searching all n! distinct

priority orderings is intractable. One viable approach is to

direct a backtracking search by identifying partial priority

orderings that are definitely schedulable (using a weaker

OPA-compatible test) and others that are definitely

unschedulable (using an OPA-compatible necessary

condition). This approach, introduced in [48] has

subsequently been applied in the analysis of real-time flows

over a wireless network [84].

A different approach to obtain improvements to the

joint schedulability / priority assignment problem for global

fixed priority scheduling was taken by Pathan and Jonsson

[73] in 2011. Their Hybrid Priority Assignment (HPA)

method takes account of the parameters of particular tasks

and the intrinsic pessimism in the RTA-LC and DA-LC

tests. It assigns the highest priority to a subset of k tasks

with high density (execution time divided by deadline) so

that they effectively occupy a processor each, and then

0%

20%

40%

60%

80%

100%

120%

P
e

rc
e

n
ta

g
e
 o

f
ta

s
k

s
e

ts
 s

c
h

e
d

u
la

b
le

Utilisation

DA (OPA)

RTA (DKC)

DA (DKC)

 RTA (DCMPO)

DA (DCMPO)

RTA (DMPO)

DA (DMPO)

applies the DA-LC or RTA-LC tests to the remaining tasks

on (m-k) processors using Audsley’s algorithm and a

heuristic priority assignment policy respectively. The

approach results in better schedulability by effectively

trading a small increase in interference due to assuming that

k heavy tasks each utilize a complete processor, for a larger

reduction in interference due to a decrease in the number of

tasks considered as causing carry-in interference from m-1

to m-k-1. This approach dominates DA-LC+OPA and RTA-

LC + heuristic priority assignment.

In 2012, Chwa et al. [38] noted that the state-of-the-art

schedulability tests for global fixed (task) priority

scheduling appeared to outperform those for global fixed

job priority scheduling (for example gEDF). They remarked

that this was most likely due to ineffective approaches to

assigning job priorities in the latter case. They adapted

Audsley’s OPA algorithm to the problem of assigning job

priorities in the form of pseudo deadlines, a task-level

parameter used along with the job release times to determine

job-level priorities. The resulting Optimal Pseudo Deadline

Assignment algorithm, and a heuristic adaptation of it,

provide substantially improved schedulability compared to

schedulability tests for gEDF, and also compared to the DA-

LC / OPA test for global fixed priority scheduling.

The work of Pathan and Jonsson [73] effectively

combined ideas from earlier research into priority

assignments aimed at combatting the so called “Dhall

Effect” [54] with the more sophisticated schedulability tests

and Audsley’s algorithm applied to a subset of tasks As an

aside, we now give a brief summary of that early work.

In 1978, Dhall and Liu [54] showed that with Rate

Monotonic priority order (RMPO), the utilisation bound for

implicit deadline periodic tasks under global fixed priority

scheduling on m processors is 1 , for arbitrarily small .

Hence RMPO and similarly DMPO can be poor priority

assignments to use with global fixed scheduling on an

identical multiprocessor system. In 2000, Andersson and

Jonsson [6] designed the TkC priority assignment policy to

avoid the Dhall effect which results in the poor performance

of RMPO. TkC assigns priorities based on ii kCT where k

depends on the number of processors. Via an empirical

investigation, Andersson and Jonsson [6] demonstrated the

effectiveness of their TkC priority assignment policy for

implicit deadline periodic tasksets. (Note the DkC heuristic

used in Figure 6 is a simple extension of TkC using ii kCD

to determine the priority order).

Andersson et al. [8] also proposed the RM-US[]

priority assignment algorithm. This algorithm assigns the

highest priority to tasks with utilisation greater than the

threshold and otherwise assigns priorities in RMPO.

They showed that RM-US[)23/(mm] has a utilisation

bound of)23/(2 mm . In 2005, Bertogna et al. [23] proved

an improved bound of 3/)1(m for RM-US[3/1].

Subsequently, in 2008, Andersson [9] proposed a ‘slack

monotonic’ algorithm, called SM-US that works in the same

way as RM-US but assigns priorities according to the slack

(ii CT) of each task (DCMPO in Figure 6 similarly uses

ii CD). SM-US has a utilisation bound of
mm 382.0)53/(2 . This bound is better than the

corresponding one for RM-US[3/1] when 7m .

B. Minimising the number of priority levels

So far, we have only considered systems where each task

has a unique priority; however, in practice, there may be

good reasons for minimising the number of priority levels

used. For example an RTOS may support only a limited

number of priority levels (e.g. 8 or 16 in OSEK [1]), or there

may be many priority levels available, but the system

designer may want to minimise the number of priority levels

used to reduce the overall stack usage.

for each priority level i, lowest first {
 Z = empty set
 for each unassigned task {
 if is schedulable at priority i assuming all
 unassigned tasks have higher priorities {
 add to Z
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {
 assign all tasks in Z to priority i
 }
 if no unassigned tasks remain {
 break (exit outer loop)
 }
}
return schedulable

Algorithm 2: Audsley’s Algorithm modified to minimize the number of

priority levels required

Audsley’s algorithm permits a simple adaptation (see

Algorithm 2 above) described in [13] that minimises the

number of priority levels required.

We note that Algorithm 2 remains an optimal priority

assignment algorithm, since it finds a schedulable priority

ordering whenever one exists; however, it also has the

useful side effect of minimising the number of priority

levels required.

C. Minimising lexicographical distance

Audsley’s OPA algorithm can also be used to minimise

the perturbation needed to obtain a schedulable priority

ordering from any specified desired ordering. Such

perturbations can be measured in terms of either

lexicographical distance or reverse lexicographical

distance. To illustrate these terms, let us assume that a set of

tasks have been labelled (A, B, C) representing the desired

priority ordering from highest to lowest priority. The set of

all possible orderings in lexicographical (dictionary) order is

given by: (A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B),

(C,B,A). Thus the lexicographical distance between the

desired ordering (A,B,C) and the ordering (B,A,C) is 2. In

reverse lexicographical order, we have instead: (C,B,A),

(B,C,A), (C,A,B), (A,C,B), (B,A,C), (A,B,C). This

dictionary is constructed by reversing the letters in each

word, sorting them in normal (lexicographical) dictionary

order and then reversing the letters again. Note the reverse

lexicographical distance between the desired ordering

(A,B,C) and the ordering (B,A,C) is 1. (This illustrates that

lexicographical distance and reverse lexicographical

distance are different).

Minimising lexicographical distance is typically the most

useful, since optimising this metric is a way of placing the

most important tasks at the highest priority levels while still

maintaining schedulability. This provides a simple means of

ensuring that should an overload occur, then the most

important tasks will still meet their deadlines.

In 2008, Chu and Burns [37] showed that Audsley’s

algorithm minimises the reverse lexicographical distance to

the desired priority ordering if the unassigned tasks are

always examined in the reverse of the desired order. In other

words, if the desired priority order is (A,B,C), then the task

labelled C is the first to be examined at the lowest priority

level, followed by task B and so on.

Minimising lexicographical distance is a more difficult

problem that was initially addressed by Soto and Bernat [3]

in 2006. They used a branch and bound approach to search a

tree of possible priority orderings, starting by assigning

tasks at the highest priority, and then checking if a branch

was schedulable by assuming DMPO for all of the lower

priority (unassigned) tasks in that branch. We note that this

approach only works when DMPO provides an optimal

priority ordering.

Below, we introduce a more general algorithm which

minimises the lexicographical distance, we refer to this as the

OPA-MLD algorithm.

The OPA-MLD algorithm (Algorithm 3) works as

follows: For each priority level i, highest first, the algorithm

tries to assign the highest importance unassigned task (i.e.

the first such task in lexicographical order) to that priority

level. It checks if the task itself is schedulable at priority i

and if so, uses the OPA algorithm to determine if there exists

a schedulable priority ordering for the other unassigned tasks

at lower priority levels. If this is the case, then the trial task is

assigned to priority level i, otherwise the algorithm continues

with the task of next highest importance and so on until it

finds a task to assign, or the system has been found to be

unschedulable. Assuming that a task is assigned then the

algorithm continues with the next highest priority level.

for each priority level i, highest first {

for each unassigned task in lexicographical
 order {

 if a schedulable ordering exists for the

 unassigned tasks by using the OPA

 algorithm on them, assuming that is
 assigned priority i and the other

 previously assigned tasks have priorities

 higher than i

 if so {

 assign priority i
 break (continue outer loop)

 }

 }

}

if no tasks schedulable at priority i {

 return unschedulable

}

}

return schedulable

Algorithm 3: Optimal Priority Assignment Minimising Lexicographical

Distance (OPA-MLD)

Since each task is only assigned if there exists some

schedulable ordering for the unassigned tasks at lower

priority levels, then it is easy to see that the algorithm is

optimal (i.e. it always finds a schedulable priority ordering if

such an ordering exists). Further, the algorithm constructs an

ordering that minimises lexicographical distance. This is the

case because it assigns the task with the highest importance

(i.e. first in the lexicographical order) whenever there exists

a schedulable partial ordering for the unassigned tasks, and it

does so in order, highest priority first.

The worst-case complexity of the MLD algorithm can

be determined as follows. Let n be the number of tasks, p of

which are currently unassigned. Consider the (n – p + 1)th

iteration of the algorithm. There are p tasks each of which is

itself schedulable at priority n – p + 1. (This is the case, since

for the first iteration, every task is valid and therefore

schedulable at the highest priority; further on each

subsequent iteration it is known from the previous iteration

that a schedulable priority order exists for those tasks that

remain unassigned, which implies that each of unassigned

task must be schedulable at the highest unassigned priority

level). For each of the p tasks, there are p – 1 other

unassigned tasks that need their schedulability checked using

the OPA algorithm. Hence the number of single task

schedulability tests required on this iteration of the algorithm

is given by:

22
2/)1(

23
pp

ppp (4)

Hence the overall complexity of the algorithm is given by:

n

p

pp

1

23

22
 (5)

Using the standard formulae for sums of squares and cubes,

we have:

24/))(2)(3(

12/)12)(1(8/)1(

22

324

22

1

23

nnnn

nnnnn

ppn

p

 (6)

The overall complexity of the MLD algorithm is therefore
)(4

nO single task schedulability tests, compared to)(2
nO

such tests required to find the reverse lexicographical

ordering or simply any schedulable ordering using Audsley’s

algorithm. We note that this higher complexity remains

tractable for reasonable sized task sets. For example, for n =

10 tasks, 1320 schedulability tests would be required,

compared to n! = 3,628,800 combinations of possible

priority orderings. For n = 100 tasks, 1.25x107 schedulability

tests would be required, which remains viable, compared to

n! = 10158 combinations of possible priority orderings, which

certainly is not.

We note that when the class of task set being considered

has a simple optimal priority assignment, for example

DMPO, then that partial ordering can be used in place of the

OPA algorithm in the inner loop. This reduces the

complexity of each iteration to:

pppp 2)1((7)

And hence overall complexity to 6/)(2 3
nn single task

schedulability tests, or)(3
nO : This reduction transforms the

OPA-MLD algorithm into the equivalent of the algorithm

given by Soto and Bernat [3].

D. Task importance and period transformation

Audsley’s OPA algorithm focuses on achieving

schedulability for all of the tasks in a system under

assumptions of normal operation. In some applications;

however, there are tasks that are of much higher importance

than others, which require preferential treatment under

overload conditions. These important tasks should not be

impacted by execution time overruns in less important tasks.

Appropriate run-time monitoring and budget enforcement is

one way to achieve this behaviour; however, in simple

systems fixed priority scheduling alone may be sufficient

assuming a priority assignment that reflects task importance,

with tasks of higher importance given higher priority. We

have already seen that the OPA-MLD algorithm provides a

means of constructing such a priority assignment when it is

viable without compromising schedulability. However, if the

important tasks have long execution times relative to the

deadlines of other tasks then this may not be possible. In

such systems, one simple technique that may be used is

period transformation [81]. Here, important tasks with long

periods are subdivided e.g. into two parts each with half the

execution time and half the period. While this subdivision

has the disadvantage that it requires changes to the code and

increases scheduling overheads, it has the advantage that the

task may then be represented as having a shorter period (and

deadline) and thus becomes amenable to being given a

higher priority without compromising the schedulability of

other tasks.

VI. ROBUST PRIORITY ASSIGNMENT

While Audsley’s OPA algorithm can be applied in a broad

range of cases, it has one significant drawback. It makes an

arbitrary choice of which schedulable task to assign at each

priority level. Such an arbitrary assignment can easily leave

the system only just schedulable, and thus fragile to any

minor changes in task parameters or under estimations of

interference or execution budgets. This is a problem in

practice, since tasks may be subject to additional

interference in the form of execution time budget overruns,

interrupts occurring at ill-defined rates, ill-defined RTOS

overheads, ill-defined critical sections, and cycle stealing by

peripheral devices (e.g. DMA). What is really needed is a

robust priority ordering that is able to tolerate the maximum

amount of such additional interference.

This problem was addressed by Davis and Burns in their

work on Robust Priority Assignment [45]. They assumed a

general additional interference function),,(iwE , where

is a scaling factor, used to model variability in the amount of

interference, w is the length of the time interval over which

the interference occurs and i is the priority level affected by

the interference. The function),,(iwE is required to be a

monotonically non-decreasing function of its parameters. In

practice, this represents little restriction, since almost all

sources of interference are (i) greater in longer intervals of

time than shorter ones, (ii) affect lower priority tasks if they

also affect higher priority ones, and (iii) are in any case

guaranteed to be monotonic in since that is the scaling

factor.

Robust Priority Assignment is defined as follows:

Definition (from [45]): robust priority assignment policy:

“For a given system model and additional interference

function, a priority assignment policy P is referred to as

robust if there are no systems, compliant with the system

model, that are both schedulable and can tolerate additional

interference characterized by a scaling factor using

another priority assignment policy Q that are not also both

schedulable and can tolerate additional interference

characterized by the same or larger scaling factor using

priority assignment policy P.”

Stated otherwise, of all schedulable priority orderings,

the robust priority ordering tolerates the most additional

interference (i.e. largest value of).

The Robust Priority Assignment (RPA) algorithm (see

Algorithm 4) is based on Audsley’s OPA algorithm and

requires exactly the same three Conditions to be applicable.

(Since the additional interference function is monotonically

non-decreasing in its parameters, if the three Conditions

hold for OPA, then they continue to do so when additional

interference is considered in RPA). This means that the

RPA algorithm is compatible with any schedulability test

that is compatible with OPA. The RPA algorithm provides a

priority ordering that is both optimal (easily seen by

equivalence to Audsley’s algorithm) and robust, as proven

in [45].

for each priority level i, lowest first {
 for each unassigned task {

 determine the largest value of for which task is
 schedulable at priority i assuming that all unassigned
 tasks have higher priorities
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {
 assign the schedulable task that tolerates the max at
 priority i to priority i
 }
}
return schedulable

Algorithm 4: Robust Priority Assignment (RPA) Algorithm

It is instructive to compare the robust priority ordering

with both DMPO and that generated by OPA on an example.

The following example taken from [45] considers robust

priority assignment for the tasks in Table IV assuming fixed

priority non-pre-emptive scheduling (FPNS) and the

simplest possible additional interference function

),,(iwE . Such an interference function might

represent the unknown execution time of an interrupt

handler that runs infrequently (at most once in any busy

period).

TABLE IV: TASK PARAMETERS

Task C T D

A 125 450 450

B 125 550 550

C 65 600 600

D 125 1000 1000

E 125 2000 2000

Table V gives the values of computed4 by the RPA

algorithm as it iterates from the lowest to the highest

priority level. (‘NS’ indicates that a task was not

schedulable at that particular priority even without any

additional interference). The values highlighted in bold

indicated the task that tolerated the maximum value of at

a particular priority level, and hence was assigned that

priority. The robust priority ordering for this example is

therefore (A , C , B , D , E) which tolerates a maximum

amount of additional interference of 110 time units. By

comparison, DMPO (A , B , C , D , E) results in values

of of (200, 175, 74, 120, 354) and hence tolerates a

maximum amount of additional interference of 74 time units.

As a number of priority orderings are schedulable without

additional interference, the ordering chosen by the OPA

algorithm depends upon the order in which the tasks are

checked. If this order is A , B , C , D , E then the priority

ordering produced by OPA would be (C , B , A , D , E)

4 Via binary search down to a granularity of 1 time unit.

which tolerates a maximum amount of additional

interference of just 10 time units. This example serves to

illustrate the practical importance of not just selecting any

schedulable priority ordering, but one that is robust.

TABLE V: COMPUTED VALUES OF

 Task

Priority A B C D E

5 NS NS NS 120 354

4 NS NS NS 120 -

3 10 110 74 - -

2 135 - 199 - -

1 200 - - - -

Davis and Burns [45] proved the negative result that in

general, the robust priority ordering depends on the form of

the additional interference function and can therefore only be

precisely determined if is the only unknown in the

function),,(iwE). Nevertheless, this is often the case, and

in practice, it can be instructive to use a simple additional

interference function such as),,(iwE to obtain a

robust priority assignment. Further, they showed that in the

case of systems where the scheduling policy (e.g. FPPS) and

task parameters (e.g. constrained deadlines, resource

accesses according to SRP or PCP, no offset release times),

are such that DMPO is optimal, then DMPO is also the

robust priority ordering irrespective of the form of the

additional interference function, provided only that it is

monotonically non-decreasing in its parameters.

Classifying tasks into those whose parameters are

compatible with DMPO being optimal, so called DM tasks,

and tasks whose parameters do not meet those criteria (non

DM tasks), Davis and Burns proved the following result5 for

fixed priority pre-emptive scheduling.

Theorem 3: (from Theorem 4 in [45]). For a system of DM

and non DM tasks, where a schedulable priority ordering

exists, there is a robust priority ordering P with the DM tasks

in Deadline Monotonic partial order.

Theorem 3 effectively says that we may always place DM

tasks in Deadline Monotonic order and only need to

determine how the non-DM tasks should be interleaved

among them.

This result can be used to improve the efficiency of

Audsley’s algorithm and the RPA algorithm. Theorem 3 tells

us that of all the DM tasks, the task with the longest deadline

is the one that is able to tolerate the most additional

interference at any given priority level, hence in the OPA

and RPA algorithms, only one DM task need be checked at

each priority level, the one with the longest deadline of all

unassigned DM tasks. This reduces the number of single task

schedulability tests needed from 2/)1(nn to

2/))1()1((kknn when there are n tasks in total, of

5 This also applies to tasks with release jitter and Deadline minus Jitter

Monotonic Priority Ordering. We state the simpler form here.

which k are DM tasks. For example, in a system with n = 50

sporadic tasks, 46 of which have constrained deadlines, and k

= 4 of which have arbitrary deadlines, a maximum of 240

schedulability tests are needed instead of 1275.

Robust Priority Assignment has been extended to

messages on Controller Area Network [47], showing how the

RPA algorithm can be used to maximise the number of

errors that could be tolerated on the network before any

messages missed their deadlines, or to maximise the delay

(bus unavailability) that could be tolerated. Schmidt [80] also

used RPA as the basis for an algorithm which assigns

message priorities (IDs) on CAN when a subset of the IDs

are already fixed.

Prior to the work on Robust Priority Assignment, related

research by Lehoczky et al. [68], Katcher et al. [65],

Punnekkat et al. [74], and Regehr [76] used the critical

scaling factor as a metric for determining task set

schedulability. (The critical scaling factor was defined by

Lehoczky et al. [68] as the largest scaling factor by which the

worst-case execution time of every task could be increased

without the task set becoming unschedulable). Regehr

showed that for task sets where DMPO is the optimal

priority assignment policy, it also maximises the critical

scaling factor.

A. Priority assignment in Mixed Criticality Systems

Theorem 3 has subsequently been used to achieve a

significant simplification of the problem of priority

assignment in mixed criticality systems scheduled using

fixed priorities [17].

In the standard task model for mixed criticality systems,

introduced by Vestal in 2007 [90], tasks have different

criticality levels (e.g. HI and LO) equating to the level of

assurance required for their correct and timely operation. HI-

criticality tasks have different execution time bounds

)(LOCi and)(HICi for these criticality levels, representing

estimates of the WCET of the task with different levels of

assurance. For example a certification authority may require

that highly conservative WCET estimates are used for

)(HICi for the flight-control software of a Unmanned

Aerial Vehicle (UAV), whereas the system designer may use

less conservative methods perhaps based on measurements to

find)(LOCi for the same software ()()(LOCHIC ii).

Mixed criticality systems operate in different criticality

modes: In LO-criticality mode, all tasks must meet their

deadlines, assuming LO-criticality execution times for all

tasks. In HI-criticality mode, all HI-criticality tasks must

meet their deadlines assuming HI-criticality execution times,

while LO-criticality tasks may be abandoned to ensure

timely operation of the HI-criticality tasks.

The system starts in LO-criticality mode and transitions

to HI-criticality mode when a HI-criticality task exceeds its

LO-criticality execution budget. (Transition back to LO-

criticality mode may take place when the processor becomes

idle).

The analysis for Adaptive Mixed Criticality (AMC)

scheduling based on fixed priorities [17] is formulated in the

equations below:

)(
)(

)()(
)(

LOC
T

LOR
LOCLOR j

ihpHj j

i
ii

)(
)(

)(

LOC
T

LOR
k

ihpLk k

i

 (8)

where)(ihpL ()(ihpH) is the set of LO-criticality (HI-
criticality) tasks with priorities higher than that of task i .

)(
)(

)()(
)(

HIC
T

HIR
HICHIR j

ihpHj j

i
ii

)(
)(

)(

LOC
T

LOR
k

ihpLk k

i

 (9)

For LO-criticality tasks, the LO-criticality response time
)(LORi computed via (8) must be no greater than the task’s

deadline. For HI-criticality tasks, the HI-criticality response

time computed via (9) must also be no greater than the
deadline. Notice that in (9) the interference term for higher

priority LO-criticality tasks is limited to releases within
)(LORi , since that is an upper bound on the time that can

be spent in LO-criticality mode since task i was released

(otherwise task i would itself cause a transition to HI-

criticality mode).

Given the previous discussion about robust priority

assignment, (8) and (9) can be interpreted in a different way.

For LO-criticality tasks, the first summation term in (8) can

be considered as additional interference and the LO-

criticality tasks, as a set of DM tasks. Similarly for the HI-

criticality tasks the second summation term in (9) can be

interpreted as additional interference, and the HI-criticality

tasks considered as a set of DM tasks. (Note that for a HI-

criticality task, (9) is always a stricter test than (8)). It
follows from Theorem 3 that a robust priority ordering exists

that has the LO-criticality tasks in DM partial order, and also

the HI-criticality tasks in DM partial order. Thus robust

priority assignment reduces to a merge between the two sets,

each sorted in DM order, as shown in [17]. This merge is

accomplished by a variant of the OPA or RPA algorithms

which checks only the longest deadline, unassigned HI-

criticality task and the longest deadline, unassigned LO-

criticality task at each priority level. Thus the maximum

number of schedulability tests required is reduced from

quadratic (2/)1(nn) to linear (12 n).

An alternative simple approach to scheduling mixed

criticality systems is to partition the priorities, such that all

HI-criticality tasks have higher priorities than all the LO-

criticality tasks. This approach, referred to as Criticality
Monotonic Priority Ordering (CrMPO) has the advantage

that run-time policing of LO-criticality execution budgets

may not be required, and there is no need to abandon LO-

criticality tasks (or prevent new releases) when a HI-

criticality task executes for its)(LOC execution time budget

without signalling completion. Figure 7, reproduced from

[17], shows the performance of CrMPO in relation to AMC-
rtb which uses the analysis embodied in (8) and (9), along

with a modified version of Audsley’s algorithm for priority

assignment.
Observe that the performance of CrMPO is relatively

poor, due to the priority inversion inherent in giving short

deadline LO-criticality tasks low priorities. We note that this

issue can be addressed in part by Period Transformation

techniques [81] that divide the periods of HI-criticality tasks

so that they have shorter periods and deadlines than any LO-

criticality tasks; however, this method creates additional

overheads and loses its effectiveness with more criticality

levels [57]. The relatively poor performance of CrMPO

shows the importance of appropriate priority assignment in

mixed criticality systems.

Note that the lines in Figure 7 labelled SMC-NO, SMC,

and AMC-max, represent other fixed priority mixed

criticality scheduling schemes and analyses, while UB-H&L

represents an upper bound on the performance of any such
scheme that uses fixed priorities, for full details see [17].

Figure 7: Poor performance of Criticality Monotonic Priority Ordering

(CrMPO).

VII. OPTIMAL FIXED PRIORITY SCHEDULING WITH

DEFERRED PRE-EMPTION

In the previous section on robust priority assignment, we saw
how Audsley’s optimal priority assignment algorithm can be

augmented to also optimise an additional criterion, in that

case robustness in terms of maximising the amount of

additional interference that the system can tolerate before a

deadline is missed. Davis and Bertogna [52] showed that

Audsley’s algorithm can be adapted in a similar way to

optimise fixed priority scheduling with deferred pre-emption

(FPDS) [31].

Recall that with FPDS, each task has a final non-pre-

emptive region of length iF . If for all tasks, this region is of

the minimum possible length i.e. 1iF , then FPDS equates

to fixed priority pre-emptive scheduling (FPPS), whereas if
for all tasks, it is equal to the task’s worst-case execution

time i.e. ii CF , then FPDS equates to fixed priority non-

pre-emptive scheduling (FPNS). Thus FPDS subsumes and
strictly dominates both FPPS and FPNS, since it can

schedule any task set that is schedulable according to either

of those policies.

TABLE VI: TASK PARAMETERS

Task C D T

A 100 175 250

B 100 300 400

C 100 325 350

0 200 400 600

Task B

Task A

Task C

0 200 400 600

0 200 400 600

(a)

(b)

Figure 8: Deadline Monotonic priority ordering is not optimal for fixed

priority non-pre-emptive scheduling.

The dominance of FPDS is illustrated by the example set
of tasks in Table VI (reproduced from [52]) and the

schedule of their execution shown in Figure 8. It is

interesting to consider the different possible priority

orderings and scheduling policies for this example. With

any form of fixed priority scheduling (FPPS, FPNS, or

FPDS), then the short deadline of 175 for task A means

that it must necessarily be assigned the highest priority,

otherwise it will be unschedulable. (Assigning task A a

lower priority would result in a response time of at least 200

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

S
c

h
e

d
u

la
b

le
 T

a
s

k
s
e

ts

Utilisation

UB-H&L

AMC-max

AMC-rtb

SMC

SMC-NO

CrMPO

due to interference from whichever of tasks B or C was

given the highest priority).

Considering fully non-pre-emptive scheduling (FPNS),

there is clearly no schedulable priority ordering since task

A cannot tolerate blocking of 100 from either of tasks B

or C . Considering fully pre-emptive scheduling (FPPS),

we know that deadline monotonic priority order (DMPO) i.e.

(A , B , C) is optimal [67]; however, in this case task C

would miss its deadline at time 325 due to interference from

the second job of task A released at time 250. Similarly, if

task B were placed at the lowest priority, it would miss its

deadline at time 300, hence there is no schedulable priority

ordering for FPPS.

Considering FPDS, we might try either task B or C at

the lowest priority. Figure 8(a) illustrates what happens with

deadline monotonic priority order (DMPO) i.e. with task C

at the lowest priority. In this case, the best possible

schedulability for task C is obtained if it has the longest

possible final non-pre-emptive region, i.e. 100 CC CF

even so, the second job of task C still misses its deadline at

time 675. Hence the system is unschedulable under FPDS

with DMPO. Finally, we consider priority ordering (A , C ,

B) and thus task B at the lowest priority. In this case,

with a final non-pre-emptive region of length 51BF , both

jobs of task B in the busy period meet their deadlines, as

illustrated in Figure 8(b). Assuming the minimum non-pre-

emptive region lengths (i.e. 1AF , 1CF) for tasks A

and C , then all three tasks are schedulable under FPDS,

with worst-case response times of 150, 250, and 300

respectively. This example serves to show the strict

dominance of FPDS over both FPPS and FPNS, and also the

non-optimality of DMPO for fixed priority scheduling with

deferred pre-emption. It also shows that to obtain the best

possible performance from FPDS then it is necessary to

determine an appropriate assignment of both task priorities

and final non-pre-emptive region lengths.

Building upon exact schedulability analysis for FPDS

derived by Bril et al. [24], Davis and Bertogna [52] modified

Audsley’s algorithm to assign both priorities and final non-

pre-emptive region lengths. They proved that the Final Non-

pre-emptive Region and Priority Assignment (FNR-PA)

algorithm (Algorithm 5) is optimal for FPDS, stating that “it

is guaranteed to find a combination of priority assignment

and final non-pre-emptive region lengths that result in a

schedulable system under FPDS whenever such a

schedulable combination of these parameters exists”.

for each priority level k, lowest first {
for each unassigned task {
 determine the smallest value for the final

 non-pre-emptive region length F(k) such that task is
 schedulable at priority k, assuming all other
 unassigned tasks have higher priorities.

 Record as task Z the unassigned task with the
 minimum value for the length of its final
 non-pre-emptive region F(k).

}
if no tasks are schedulable at priority k {
 return unschedulable
}
else {
 assign priority k to task Z and use the value of F(k) as

 the length of its final non–pre-emptive region.
}

}
return schedulable

Algorithm 5: FNR-PA Algorithm

Figure 9 (reproduced from [52]) illustrates the

comparative performance in terms of the proportion of

schedulable task sets for using the optimal FNR-PA

Algorithm (red line), FPPS assuming deadline monotonic

priority (blue line), and FPNS assuming an optimal priority

ordering found using Audsely’s algorithm (green line).

Comparison is also made against Fixed priority Pre-emption

Threshold Scheduling (FPTS) (dashed orange line) [91], [79].

The difference between FPDS(OPT) – solid red line –and

the dashed red line which shows the performance of FPDS

using DMPO [22] highlights the improvement that jointly

optimizing both priority assignment and final non-pre-

emptive region lengths brings.

Figure 9: Success ratio for n = 10, D = T

Research into fixed priority scheduling with deferred

pre-emption has one of its practical applications in

automotive systems. The automotive RTOS standards

OSEK [1] and AUTOSAR [2] mandate fixed priority

scheduling, and support co-operative scheduling of tasks

made up of multiple non-pre-emptive regions. According to

Buttle [35] in automotive systems there are often large

numbers of separate functions (or runnables) that execute

one after another within relatively few tasks (typically 50-
300 functions per task). To avoid issues with access to

global variables and to reduce stack usage, these functions

need to be executed non-pre-emptively with re-scheduling
only permitted between them. Davis and Bertogna [52]

showed how the FNR-PA algorithm can be adapted to

optimise task priorities and final non-pre-emptive region

lengths, taking into account the constraints on when pre-

emption is permitted due to the separate functions that make

up each task. Thus FPDS provides an approach that can be

implemented in automotive systems that use an OSEK [1]

or AUTOSAR [2] compliant RTOS, improving upon the

performance of FPPS and FPNS.

Other methods of limiting pre-emption include Pre-

emption Thresholds (FPTS) [91], [79] and Non-pre-emption

Groups [44], which were implemented as internal resources

in the OSEK [1] and AUTOSAR [2] automotive RTOS

standards. Here, each task has a base priority at which it

initially competes for the processor; however, once it starts
to execute, then it assumes a threshold or dispatch priority.

This limits pre-emption to those tasks that have a base

priority higher than the threshold. Recent research by Bril et

al. in 2012 [25] generalises the concepts of pre-emption

thresholds and deferred pre-emption, providing a scheme

whereby pre-emption thresholds apply between a set of

functions or sub-jobs that execute non-pre-emptively within

each task. For further information on limited pre-emption

scheduling the reader is referred to the survey by Buttazzo

et al. [34].

VIII. PRIORITY ASSIGNMENT IN PROBABILISTIC REAL-

TIME SYSTEMS

In the previous section on fixed priority scheduling with
deferred pre-emption, we saw how Audsley’s algorithm

could be adapted to simultaneously optimise both priority

assignment and final non-pre-emption region length. In this

section we see how a similar adaptation is useful in the

domain of probabilistic real-time systems.

In probabilistic real-time systems, we are interested in the

probability that tasks or messages will miss their deadlines,

rather than an absolute guarantee that they will never do so.

These probabilities arise from random events that affect the

timing behaviour of the system. These events may be

external, for example errors on a Controller Area Network

(CAN) bus modelled as a Poisson distribution [72], [47], or

internal, for example due to the behaviour of a cache that

uses a random replacement policy [19]. In the latter case, the

worst-case execution times of tasks may be expressed as a
Probability Mass Function (PMF) (referred to as a

probabilistic WCET distribution or pWCET), rather than a

single value. These distributions may be found using either

static [36], [5], or measurement-based [41] probabilistic

timing analysis. Provided that the random variables

representing the pWCET of each job of a task are

independent6 [42], then these values can be combined using

probabilistic response time analysis, based on the
convolution operator, to obtain a distribution for the worst-

case response time for each task [55].

An example of tasks with worst-case execution times
expressed as independent random variables is given in Table

VII.

TABLE VII: TASK PARAMETERS

Task C D T DMR threshold
A

3.07.0

32

5 10 0.5

B

2.08.0

43

6 10 0.05

Here, a job of task A has a probability of 0.7 that it will

not execute for more than 2 time units, and a probability of

1.0 (=0.7 + 0.3) that its execution time will not exceed 3.

Similarly a job of task B has a probability of 0.8 that it will

execute for no longer than 3 time units, and a probability of

1.0 (=0.8 + 0.2) that its execution time will not exceed 4.

In probabilistic real-time time systems, deadlines may be

missed providing the probability of this occurring is suitably

small, and so we need to redefine what we mean by

“schedulable”. Maxim et al. [71] use the Deadline Miss

Ratio7 (DMR) for this purpose, since it can be mapped to a

failure rate per hour that may be specified for a task by

multiplying by the number of jobs per hour. In this way, a

task is deemed “schedulable”, if it’s DMR does not exceed

the specified threshold . (As usual, a task set is

schedulable if all of its tasks are schedulable).

Figure 10: Exceedance function (1-CDF)

The iDMR of a task i is computed over some time

interval],[ba , typically the hyperperiod or least common

multiple of task periods. It is given by the sum of the

6 Note independence of the pWCETs of jobs is different from the

independence of their execution times as explained in [42].
7 We note that the DMR is a failure rate as distinct from a probability.

probabilities of each job of task i that runs in that interval

missing its deadline, divided by the number of jobs:

],[

1

,
],[

)(
1 ban

j

iji

ba

i DP
n

DMR (10)

Where)(, iji DP is the probability that the response time

of job j of task i exceeds its deadline. Note ji, is a

random variable representing the response time distribution

of the job.)(, iji DP may be assessed by inspecting the

Probability Mass Function of the response time and

comparing it with the deadline. Figure 10 illustrates this via a

1-CDF (Complementary Cumulative Distribution Function).

The thresholds equating to the maximum permitted
Deadline Miss Ratios are given for tasks A and B in Table

VII. Maxim et al. [71] showed that for task sets where

computation times are described by independent random

variables, but periods and deadlines are deterministic (i.e.

single) values, and deadlines are constrained, then DMPO is

not an optimal priority assignment policy for FPPS. This is

illustrated by the tasks in Table VII.

With priority ordering (A , B), i.e. DMPO, then we

have 0)(AA DP and 06.0)(BB DP (which is

the probability that A executes for 3 time units and B

executes for 4 time units). Note we dropped the job index

since in this example there is just one job of each task in the
hyperperiod. Since BBB DP)(the task set does not

meet its timing requirements, in effect it is unschedulable.

However, if we change the priority order to (B , A), then

we have AAA DP 44.0)(and

BBB DP 0)(which meets the timing

requirements.

Maxim et al. [71] showed that Audsley’s algorithm can

be used to determine an optimal priority assignment that

meets constraints on the Deadline Miss Ratio of each task.

We note that with a suitable definition of what is meant by

schedulable, then the same three Conditions, stated in

Section V are sufficient to determine if a schedulability test
for a probabilistic real-time system is compatible with

Audsley’s algorithm.

Maxim et al. [71] also showed that the maximum DMR

of any task can be minimised at the same time as finding an
optimal priority assignment by choosing the task to assign at

each priority level from the set of unassigned tasks by

selecting the schedulable one with the smallest DMR. This

approach used similar techniques to those employed by

Davis and Burns in their work on Robust Priority assignment

for messages on Controller Area Network [47]. They

examined the schedulability of networks subject to errors

according to a random process (Poisson distribution). In this

case, the key criterion to optimise was the worst-case

deadline failure probability (WCDFP) of each message.

Davis and Burns [47] adapted Audsley’s algorithm to

form a Probabilistic Robust Priority Assignment Algorithm
(Algorithm 6), with the WCDFP computed according to

analysis given by Broster et al. [28], [29]. They gave an

interesting example of the impact of priority assignment on

the WCDFP as shown in Figure 11 (reproduced from [47]).

for each priority level m, lowest first

{

 for each unassigned message M

 {

 Compute the WCDFP of message M at priority m

 }

 if no messages are schedulable at priority m

 return unschedulable

 else

 assign the message with the smallest

 WCDFP at priority m to priority m

}
return schedulable

Algorithm 6: Probabilistic Robust Priority Assignment (PRPA) Algorithm

These results are for a system of 5 messages labelled A, B,
C, D, E and hence 120 distinct priority assignments. The

graph shows the WCDFP on a log scale against the set of

120 distinct priority orders (in lexicographical, i.e.

dictionary, order) where the first priority order (A,B,C,D,E)

corresponds to Deadline minus Jitter Monotonic Priority

Order (DJMPO).

Figure 11: WCDFP as a function of Priority Ordering

It is notable that the robust priority orders have a maximum

WCDFP that equates to a failure rate of 1 in 28,500,

whereas there are 62 priority orderings with failure rates in

the range of 1 in 500 to 1 in 1000, with the remaining 54

priority orderings corresponding to failure rates of 1 in 20.

This illustrates the importance of appropriate priority

assignment in obtaining a robust system that is less likely to

result in missed deadlines in the event of errors on the bus.

IX. PROBLEMS NOT AMENABLE TO OPA

In the previous sections, we described Audsley’s algorithm

for Optimal Priority Assignment (OPA), and discussed the

three Conditions required for a schedulability test to be

compatible with it. We also saw how Audsley’s algorithm

has been adapted to optimise other criteria, such as the

number of priority levels, the robustness of the system to

additional interference or delays, the lengths of final non-

pre-emptive regions for systems using FPDS, and also the

maximum probability of deadline failure in probabilistic

real-time systems.

In this section, we list a number of interesting problems

where Audsley’s algorithm is not obviously applicable, and

so it is an open problem whether optimal priority assignment

can be achieved via an algorithm that is tractable. The

problems themselves are not open since one could in theory

try all n! priority orderings; however, that is clearly not

tractable even for moderate values of n.

 FPDS: Minimising the number of pre-emptions through

maximising the length of non-pre-emptive regions. This

can be done from highest priority down, rather than

lowest priority up, but then requires a pre-defined

priority ordering as shown by Bertogna et al. [22].

Minimising the number of pre-emptions in this way can

improve schedulability by reducing overall context

switch costs including Cache Related Pre-emption

Delays (CRPD), thus solutions to this problem are

important for single processor systems that use cache to

speed up memory accesses.

 Pre-emption thresholds: Assignment of base priorities

and pre-emption thresholds [91]. This is problematic

since appropriate pre-emption threshold assignment

depends on the relative priority ordering of higher

priority tasks. Pre-emption threshold scheduling is an

effective means of improving schedulability, that can

reduce context switch costs including CRPD and also

reduce stack usage, thus solutions to this problem are

again useful for single processor systems that use cache

to speed up memory accesses.

 Probabilistic: Minimising the total probability of

deadline failure across all tasks in a probabilistic real-

time system. Swapping tasks at adjacent priorities may

decrease this total, even if the larger of the two

probabilities of deadline failure for the individual tasks

increases as shown by Maxim et al. [71]. This problem

is interesting since in assessing the behaviour of a

system as a whole, it is the failure rate of the ensemble

of tasks implementing a particular function that is

important rather than the failure rate of a single

component task.

 Network-on-Chip (NoC) wormhole communication:

Assigning priorities to network flows. Here, the

response time of a network flow depends on the

response times of higher priority flows as shown by

Zheng and Burns [93]. Achieving optimal priority

assignment for this problem would improve

schedulability, enabling more real-time traffic to be

supported on the network.

 Abort-and-restart: This task model is used in Functional

Reactive Programming [14]. When a task is pre-empted

by a higher priority task, then it is aborted and has to be

restarted once the higher priority tasks finish executing.

Here, task response times depend on the relative priority

ordering of higher priority tasks as shown by Wong and

Burns [92]. Solutions to this problem would improve the

schedulability of systems implemented using FRP.

 Polling Periods and Event Deadlines: In this task

model, the system is defined by event deadlines, which

must be met by polling tasks which check for

occurrence of the event [32]. Hence each task’s period is

determined by its event deadline minus its worst-case

response time. Here, task response times depend on the

relative priority ordering of higher priority tasks and so

Audsley’s algorithm is not applicable. (For the restricted

case where all tasks share the same execution time, then

Event Deadline Monotonic priority ordering is optimal

[32]). Solutions to this priority assignment problem

would improve the schedulability of systems built using

this model.

The integration and analysis of overheads due to Cache

Related Pre-emption Delays (CRPD) into fixed priority pre-

emptive scheduling [4] also leads to an interesting and

difficult to solve problem of priority assignment. This is

illustrated in Figure 12, which shows the interaction between

priority assignment and CRPD.

Task A has Useful Cache Blocks (UCBs) that are

evicted by task B (i.e. the same blocks are Evicted Cache

Blocks (ECBs) of B), but not vice-versa. Thus if task A is

given higher priority, then there is no CRPD on task B as

shown in Figure 12(a); however, if we swap priorities, then

when task B pre-empts task A , task A incurs a CRPD re-

loading the cache blocks that it uses that were evicted by task

B . This has a knock-on effect on the schedulability of task

C (see Figure 12(b)). This means that the schedulability of

task C depends on the relative priority ordering of the two

higher priority tasks A and B , breaking Condition 1

required for Audsley’s algorithm to be applicable. Thus

when CRPD is integrated with schedulability analysis for

FPPS as in [4], then the schedulability tests are no longer

compatible with Audsley’s OPA algorithm.

Solutions to this priority assignment problem would

improve the schedulability of single processor systems that

use cache to speed up memory accesses.

(a)

(b)

Figure 12: Interaction between priority assignment and CRPD.

A. Distributed Systems: Allocation and Assignment

All of the priority assignment policies and algorithms

discussed so far rely for their operation on the existence of

well-defined deadlines that apply to a single operation, for

example the execution of a task or the transmission of a

message. In simple systems, directly connected to sensors

and actuators, such deadlines can be defined based on the

required behaviour (maximum time allowed from stimulus to

response) or the designed behaviour (e.g. the periods of

control algorithms) as well as requirements to avoid

buffering or other I/O issues. The latter often leading to

deadlines that are either implicit or constrained.

In complex, distributed real-time systems such as those

found in automotive applications, the timing requirements on

the system typically come from end-to-end deadlines

imposed on functionality that is implemented by tasks

distributed across a number of processors that communicate

via messages sent over one or more networks e.g. CAN.

Here, division of the end-to-end deadline into sub-deadlines

on individual tasks and messages can provide a way of

achieving schedulability for the larger problem [78], [58].

Such a divide and conquer approach enables the use of the

priority assignment policies discussed in this review for

individual processors and networks; however, such

subdivision can also potentially lead to sub-optimal

solutions.

An alternative approach is to use holistic techniques [88],

to analyse the system as a whole while taking into account

propagation delays along the end-to-end flows. The problem

then becomes one of determining an appropriate allocation

of tasks to processors, (signals to messages8 on CAN) and

priority assignment for both tasks and messages that meet all

of the time constraints. Since this problem is NP-hard,

solutions proposed include the use of search and

optimisation techniques such as: Branch and Bound [77],

Simulated Annealing (SA) [87], [18], SA and geometric

programming [63], genetic algorithms [62], and Mixed

Integer Linear Programming (MILP) [94], [95]. These

techniques are typically capable of optimising other metrics,

such as different forms of extensibility or robustness [18],

[95], as well as schedulability.

X. SUMMARY AND CONCLUSIONS

This tutorial-style survey and review examined the

importance of priority assignment in systems scheduled

using fixed priorities. We started with a graphic example

based on Controller Area Network (CAN) showing how

ignoring appropriate priority assignment techniques can

reduce achievable bus utilisation from around 80% down to

below 35%. This is one of the reasons for the current myth in

some parts of the Automotive industry that CAN is only able

to operate at around 35% utilisation without missing

deadlines.

We provided a guided tour of early work on priority

assignment, showing how Deadline Monotonic priority

assignment is optimal for some simple systems; however,

small changes to the assumptions (for example allowing

offset release times, deadlines greater than periods, non-pre-

emptive, or deferred pre-emption scheduling) break this

optimality. In many cases, Audsley’s Optimal Priority

Assignment (OPA) algorithm is applicable. There are three

Conditions which schedulability tests must meet in order for

Audsley’s algorithm to apply. These conditions greatly

reduce the burden of proof required to show that a particular

schedulability test is compatible with OPA.

We also described how Audsley’s algorithm can be

modified to minimise the number of priority levels required

or to minimise the reverse lexicographical distance from any

desired priority ordering. Further, we introduced a new

variant of Audsley’s algorithm, OPA-MLD which can be

used to minimise the lexicographical distance from any

desired priority ordering, enabling important tasks to be

placed at high priority levels.

There is one significant drawback with Audsley’s

algorithm that is it only finds schedulable systems, and thus

does not care if the priority assignment results in a system

that is on the brink of unschedulability. To combat this

problem, the Robust Priority Assignment (RPA) algorithm

was introduced in [45]. RPA is also optimal, in that it is

8 Signals are small pieces of information transferred between tasks that

need to be packed into messages.

guaranteed to find a schedulable priority ordering whenever

one exists; however, it also simultaneously maximises the

amount of additional interference that the system can tolerate

without missing a deadline, thus providing robust rather than

fragile priority assignment solutions.

The concepts used in deriving the RPA algorithm have

been successfully applied to priority assignment in mixed

criticality systems (minimising the number of schedulability

tests required), in probabilistic real-time systems

(minimising the worst-case deadline failure probability and

the deadline miss ratio), and also in systems using fixed

priority scheduling with deferred pre-emption, (optimising

schedulability via final non-pre-emptive region length

assignment).

There remains a number of interesting problem areas

where OPA and RPA are not obviously applicable. These

include examples from fixed priority scheduling with

deferred pre-emption (maximising the length of final non-

pre-emptive regions to reduce the amount of pre-emption),

probabilistic real-time systems (minimising the overall

probability of deadline failure), worm-hole routing in

Network-on-Chip, the assignment of thresholds as well as

priorities in fixed priority scheduling with pre-emption

thresholds, and finally fixed priority pre-emptive scheduling

accounting for Cache Related Pre-emption Delays.

In conclusion, appropriate priority assignment is of great

importance in systems that use fixed priority scheduling.

Here, effective priority assignment can ensure that a system

is schedulable when otherwise deadlines would be missed,

that the system is robust to changes and provides headroom

for new functionality to be added without the need to

upgrade to more expensive hardware. Further, it can provide

enhanced robustness to errors [47] and resilience to failures

[70].

Returning to the frequently asked question, “How should

I assign priorities?” As a simple rule of thumb, Deadline

Monotonic priority assignment i.e. assigning priorities on the

basis of deadlines (the shorter the deadline, the higher the

priority) or Deadline minus Jitter Monotonic priority

assignment is typically effective for single processor systems

and for Controller Area Network. Somewhat surprisingly it

is however a poor heuristic to use for global fixed priority

scheduling in multiprocessor systems.

The Robust Priority Assignment (RPA) algorithm,

derived from Audsley’s OPA algorithm, is highly effective

in many cases and when applicable, this is the method we

would recommend. It uses a form of sensitivity analysis to

ensure that the priority assignments produced result in a

system that is as robust as possible to any additional

interference or timing delays.

In more complex distributed real-time systems, for

example those prevalent in the automotive domain, where

timing requirements apply to functionality that is

implemented by tasks distributed across a number of

processors communicating via messages sent over one or

more networks, priority assignment still plays a crucial role.

With these systems a divide and conquer approach may be

taken at the design stage, partitioning the overall problem

into a set of simpler ones by setting intermediate deadlines.

Such a separation of concerns means that the priority

assignment techniques discussed in this review can be

applied to each sub-problem consisting of the set of tasks on

one processor or the set of messages on a single network.

This approach has practical advantages to do with

composability, when different sub-suppliers are responsible

for different components of the system (e.g. different

Electronic Control Units or ECUs). However, the quality of

the overall solution obtained depends on the intermediate

deadlines chosen. The alternative is to take a holistic

approach and use techniques such as Simulated Annealing,

Genetic Algorithms or Mixed Integer Linear Programming to

allocate tasks and assign priorities with the aim of optimising

schedulability as well as extensibility or robustness to

change.

Finally, we note that when designing and implementing

hard real-time systems that require guarantees of timing

correctness, it is essential that the implemented system

behaviour precisely matches the system model assumed by

the schedulability analysis. Otherwise such analysis can give

no valid guarantees about the timing correctness of the actual

system. In some application areas, for example automotive,

standards such as those for CAN [27], and the OSEK [1] and

AUTOSAR [2] real-time operating systems aid in building

predictable real-time systems. They do so by mandating

functionality with which it is possible to implement

analysable systems; however, such an outcome is far from

certain, rather the system needs to be carefully designed and

engineered to comply with an appropriate, analysable system

model so that its timing behaviour can be guaranteed. Choice

of a corresponding, robust and optimal priority assignment

policy then flows from the system model chosen.

While the last two decades have seen significant progress

in priority assignment techniques, many interesting and

important problems remain. We hope that this review will

encourage other researchers to tackle some of these

problems. As a challenge, we point to a 20+ year old

conjecture and open problem in priority assignment

regarding fixed priority pre-emptive systems where each task

has two priorities and switches between them at a fixed time

(the promotion time) after it is released. The conjecture states

that the utilisation bound for an implicit deadline periodic

task system with an appropriate priority and promotion time

assignment is 100%, the same as EDF. Currently this

remains a conjecture, neither proved nor disproved. Full

details are given in [33].

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC MCC

project (EP/K011626/1), the French BGLE Departs and

LEOC Capacites projects, the EU FP7 grants P-SOCRATES

(611016) and PROXIMA (611085), and the Inria

International Chair program. EPSRC Research Data

Management: No new primary data was created during this

study

REFERENCES

[1] OSEK/VDK operating system specification, version 2.2.3.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, OSEK/VDK,
2007.

[2] AUTOSAR specification of operating system v4.10.
http://www.autosar.org/, AUTOSAR, 2010.

[3] A. Aguilar-Soto, G. Bernat, “Bi-criteria fixed-priority scheduling
in hard real-time systems: Deadline and importance”. In
Proceedings Real-Time and Network Systems (RTNS), 2006.

[4] S. Altmeyer, R.I. Davis, C. Maiza “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems” . Real-Time Systems, Volume 48, Issue 5,
Pages 499-526, Sept 2012.

[5] S. Altmeyer, L. Cucu-Grosjean, R.I. Davis. 2015. "Static
probabilistic timing analysis for real-time systems using random
replacement caches”. Real-Time Systems, Volume 51, Issue 1,
pages 77-123.

[6] B. Andersson, J. Jonsson, “Fixed-priority preemptive
multiprocessor scheduling: to partition or not to partition”, In
Proceedings Real-Time Computing Systems and Applications
(RTCSA), 2000

[7] B. Andersson, J. Jonsson, “Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling”. In
Proceedings Real-Time Systems Symposium (RTSS) – Work-in-
Progress Session, Nov. 2000.

[8] B. Andersson, S. Baruah, J. Jonsson. Static-priority scheduling on
multiprocessors. In Proceedings Real-Time Systems Symposium
(RTSS), pp. 193–202, 2001.

[9] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%.” In proceedings
International Conference on Principles of Distributed Systems,
2008.

[10] N.C. Audsley, "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK,
1991.

[11] N.C. Audsley, A. Burns, M. Richardson , A.J. Wellings.,
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5), pp 284-292,
1993.

[12] N.C. Audsley, A. Burns, R.I. Davis, K. W. Tindell and A. J.
Wellings, “Fixed Priority scheduling an Historical perspective”.
Real-Time Systems 8(3). pp. 173-198. 1995.

[13] N.C. Audsley, “On priority assignment in fixed priority
scheduling”, Information Processing Letters, 79(1): 39-44, May
2001.

[14] F. Balarin. “ Priority Assignment for Embedded Reactive Real-
Time Systems”. In Proceedings of Languages, Compilers, and
Tools for Embedded Systems (LCTES), pp.146-155, 1998.

[15] T.P. Baker, “Stack-based Scheduling of Real-Time Processes.”
Real-Time Systems Journal (3)1, pp. 67-100. 1991.

[16] S. Baruah, “The limited-preemption uniprocessor scheduling of
sporadic task systems,” In Proceedings Euromicro Conference on
Real-Time Systems (ECRTS), pp. 137-144, 2005.

[17] S.K. Baruah, A. Burns, R.I. Davis “Response Time Analysis for
Mixed Criticality Systems” . In proceedings Real-Time Systems
Symposium (RTSS) , pp 34-43, 2011.

[18] I. Bate, P. Emberson, “Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems”. In
Proceedings Real-Time and embedded Technology and
Applications Symposium (RTAS), pp. 221–230, 2006.

[19] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[20] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In proceedings
Real-Time Systems Symposium (RTSS), pp. 149-158, 2007.

[21] M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms”. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566.
April 2009.

[22] M. Bertogna, G. Buttazzo, G. Yao. "Improving Feasibility of
Fixed Priority Tasks using Non-Preemptive Regions", In
Proceedings Real-Time Systems Symposium (RTSS), 2011.

[23] M. Bertogna, M. Cirinei, G. Lipari, "New schedulability tests for
real-time task sets scheduled by Deadline Monotonic on
multiprocessors", In Proceedings of the International Conference
on Principles of Distributed Systems (OPODIS 2005), Pisa, Italy,
December 2005.

[24] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[25] R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, J.J. Lukkien,
“Generalized fixed-priority scheduling with limited
preemptions”, In proceedings Euromicro Conference on Real-
Time Systems (ECRTS), pp. 209-220., 2012.

[26] K Bletsas, N Audsley, “Optimal priority assignment in the
presence of blocking” Information Processing Letters 99 (3), 83-
86, 2006.

[27] Bosch. 1991. “CAN Specification version 2.0”. Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart.

[28] I. Broster, A. Burns , G. Rodríguez-Navas, “Probabilistic
Analysis of CAN with Faults”, In Proceedings Real-Time
Systems Symposium (RTSS), pp. 269-278, 2002

[29] I. Broster, A. Burns and G. Rodriguez-Navas, “Timing Analysis
of Real-time Communication under Electromagnetic
Interference”, Real-Time Systems, 30(1-2) pp. 55-81, May 2005.

[30] A. Burns, K. Tindell, A.J. Wellings, "Fixed priority scheduling
with deadlines prior to completion" In proceedings Euromicro
Workshop on Real-Time Systems. pp.138-142, 1994.

[31] A. Burns. “Preemptive priority based scheduling: An appropriate
engineering approach”. S. Son, editor, Advances in Real-Time
Systems, pp. 225–248, 1994.

[32] A. Burns, R.I. Davis, “Choosing Task Periods to Minimise
System Utilisation in Time Triggered Systems”. Information
Processing Letters, Vol. 58, pp. 223 - 229, Elsevier. 1996.

[33] A. Burns, “Dual Priority Scheduling: Is the Processor Utilisation
bound 100%” In proceedings Real-Time Scheduling Open
Problems Symposium (RTSOPS), 2010.

[34] G.C. Buttazzo, M. Bertogna, G. Yao. "Limited Preemptive
Scheduling for Real-Time Systems: A Survey". IEEE
Transactions on Industrial Informatics. In press. Downloadable
from http://retis.sssup.it/~marko/publi.html

[35] D. Buttle, “Real-Time in the Prime Time” Keynote talk at
Euromicro Conference on Real-Time Systems (ECRTS) 2012.
Presentation: http://ecrts.eit.uni-kl.de/index.php?id=69.

[36] F. Cazorla, E. Quinones, T. Vardanega, L. Cucu, B. Triquet, G.
Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “Proartis: Probabilistically
analysable real-time systems,” Transactions on Embedded
Computing Systems, 2013.

[37] Y. Chu and A. Burns, “Flexible hard real-time scheduling for
deliberative AI systems”, Real-Time Systems 40(3), pp241-263,
2008.

[38] H. S. Chwa, H. Back, S. Chen, J. Lee, A. Easwaran, I. Shin, I.
Lee, "Extending Task-level to Job-level Fixed Priority
Assignment and Schedulability Analysis Using Pseudo-

deadlines," In proceedings Real-Time Systems Symposium
(RTSS), pp.51-62, 2012.

[39] L. Cucu, J. Goossens, "Feasibility Intervals for Fixed-Priority
Real-Time Scheduling on Uniform Multiprocessors", In
Proceedings Emerging Technologies and Factory Automation,
(ETFA),. 2006.

[40] L. Cucu, J. Goossens, "Feasibility Intervals for Multiprocessor
Fixed-Priority Scheduling of Arbitrary Deadline Periodic
Systems ", In Proceedings Design Automation and Test in Europe
(DATE), pp. 1635-1640, 2007.

[41] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T.
Vardanega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quiones, and
F. J. Cazorla, “Measurement-based probabilistic timing analysis
for multi-path programs.” In Proceedings Euromicro Conference
on Real-Time Systems (ECRTS), pp. 91–101, 2012.

[42] L. Cucu-Grosjean, “Independance - a misunderstood property of
and for probabilistic real-time systems,” in Alan Burns 60th
Anniversary workshop, University of York, 2013.

[43] R.I. Davis and A. Burns, “Optimal Priority Assignment for
Aperiodic Tasks with Firm Deadlines in Fixed Priority Pre-
emptive Systems”. Information Processing Letters 53(5). 10

th

March 1995.

[44] R.I. Davis, N. Merriam, N.J. Tracey, “How Embedded
Applications Using an RTOS can stay within On-chip Memory
Limits”. In proceedings Work in Progress and Industrial
Experience Sessions, Euromicro Conference on Real-Time
Systems (ECRTS), 2000.

[45] R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed
Priority Real-Time Systems”. In proceedings Real-Time Systems
Symposium (RTSS), pp. 3-14. 2007.

[46] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Volume 35, Number 3, pages 239-
272, April 2007.

[47] R.I. Davis and A. Burns "Robust priority assignment for
messages on Controller Area Network (CAN)”. Real-Time
Systems, Volume 41, Issue 2, pages 152-180, February 2009.

[48] R.I. Davis and A. Burns, “On Optimal Priority Assignment for
Response Time Analysis of Global Fixed Priority Pre-emptive
Scheduling in Multiprocessor Hard Real-Time Systems”.
University of York, Department of Computer Science Technical
Report, YCS-2009-451, April 2010.

[49] R.I. Davis and A. Burns "Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor
Real-Time Systems”. Real-Time Systems, Vol. 47, No. 1, pp.1-
40, 2011.

[50] R.I. Davis and A. Burns "A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems." ACM Computing
Surveys, 43, 4, Article 35 (October 2011), 44 pages.

[51] R.I. Davis, S. Kollmann, V. Pollex, F. Slomka, "Schedulability
Analysis for Controller Area Network (CAN) with FIFO Queues
Priority Queues and Gateways. ”. Real-Time Systems, Volume
49, Issue 1, Pages 73-116, Jan 2013.

[52] R.I. Davis, M. Bertogna "Optimal Fixed Priority Scheduling with
Deferred Pre-emption” . In proceedings Real-Time Systems
Symposium (RTSS) pp. 39-50, 2012.

[53] R.I. Davis "A Review of Fixed Priority and EDF Scheduling for
Hard Real-Time Uniprocessor Systems ”. ACM SIGBED Review
- Special Issue on the 3rd Embedded Operating Systems
Workshop (Ewili 2013). , Volume 11, Issue 1, pp. 8-19, 2014.
DOI: 10.1145/2597457.2597458.

[54] S. K. Dhall, C. L. Liu, “On a Real-Time Scheduling Problem”,
Operations Research, vol. 26, number 1, pp. 127-140, 1978.

[55] J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez, S.-
L. Min, and O. Mirabella, “Stochastic analysis of periodic real-
time systems,” In proceedings Real-Time Systems Symposium
(RTSS), pp. 289–300, 2002.

[56] M.S. Fineberg and O. Serlin, “Multiprogramming for hybrid
computation”, In proceedings AFIPS Fall Joint Computing
Conference, pp 1-13, 1967.

[57] T. Fleming and A. Burns. Extending mixed criticality scheduling.
In Proceedings 1

st
 International Workshop on Mixed Criticality

Systems (WMC), pp. 7–12, 2013.

[58] J.J.G. Garcia, M.G. Harbour. Optimized priority assignment for
tasks and messages in distributed real-time systems. In
Proceedings Workshop on Parallel and Distributed Real-Time
Systems, 1995.

[59] L. George, N. Rivierre, M. Spuri, “Preemptive and Non-
Preemptive Real-Time UniProcessor Scheduling”, INRIA
Research Report, No. 2966, September 1996.

[60] J. Goossens, R. Devillers, “The Non-Optimality of the
Monotonic Priority Assignments for Hard Real-Time Offset Free
Systems”, Real-Time Systems, Volume 13, Issue 2, pp 107-126,
1997.

[61] N. Guan, M. Stigge, W.Yi, G. Yu, “New Response Time Bounds
for Fixed Priority Multiprocessor Scheduling”. In proceedings of
the Real-Time Systems Symposium, pp. 388-397, 2009.

[62] A. Hamann, M. Jersak, K. Richter, R. Ernst “Design Space
Exploration and System Optimization with SymTA/S - Symbolic
Timing Analysis for Systems” In Proceedings Real-Time Systems
Symposium (RTSS), 2004.

[63] X. He, W. Gu, Y. Ahum “Task allocation and optimization of
distributed embedded systems with simulated annealing and
geometric programming”. Computer J. 2009.

[64] M. Joseph, P.K. Pandya, “Finding Response Times in a Real-time
System”. The Computer Journal, 29(5), pages 390–395, 1986.

[65] D.I. Katcher, H. Arakawa, J.K. Strosnider, ”Engineering and
analysis of fixed priority schedulers”. IEEE Transactions on
Software Engineering, 19(9):920–934, September 1993.

[66] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines”. In Proceedings Real-Time Systems
Symposium (RTSS), pp. 201–209, 1990.

[67] J.Y.-T. Leung, J. Whitehead, "On the complexity of fixed-priority
scheduling of periodic real-time tasks". Performance Evaluation,
2(4), pp. 237-250, 1982.

[68] J.P. Lehoczky, L. Sha, Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behaviour”. In
Proceedings Real-Time Systems Symposium (RTSS), pp. 166–
171, 1989.

[69] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1) pp. 46-61, 1973.

[70] G. de A Lima, A. Burns. An optimal fixed-priority assignment
algorithm for supporting fault-tolerant hard real-time systems.
IEEE Trans. Comput. 52, 10, pp. 1332-1346, 2003..

[71] D. Maxim, O. Buffet, L. Santinelli, L. Cucu-Grosjean, R. I. Davis
“Optimal Priority Assignment Algorithms for Probabilistic Real-
Time Systems” . In proceedings Real-Time and Network Systems
(RTNS), pp.129-138 2011.

[72] N. Navet, Y-Q. Song, F. Simonot. “Worst-case Deadline Failure
Probability in Real-time Applications distributed over controller
area network”. Journal of Systems Architecture Volume 46
Number 1. pp. 607–617. 2000.

[73] R.M. Pathan, J. Jonsson "Improved Schedulability Tests for
Global Fixed-Priority Scheduling," In Proceedings Euromicro
Conference on Real-Time Systems (ECRTS), pp.136,147, 2011

[74] S. Punnekkat, R. Davis, A. Burns, “Sensitivity analysis of real-
time task sets”. In Proceedings of the Asian Computing Science
Conference, pp72–82, Nepal, December 1997.

[75] P. Ramanathan, "Overload management in real-time control
applications using (m, k)-firm guarantee" In IEEE Transactions
on Parallel and Distributed Systems, vol.10, no.6, pp.549-559,
Jun 1999

[76] J. Regehr, “Scheduling tasks with mixed pre-emption relations
for robustness to timing faults”. In proceedings Real-Time
Systems Symposium (RTSS), pp. 315–326, 2002.

[77] M. Richard, P. Richard, F. Cottet. "Task and message priority
assignment in automotive systems." In proceedings 4th FeT IFAC
conference on fieldbus systems and their applications, pp. 105-
112. 2001.

[78] M. Saksena, S. Hong, "An engineering approach to decomposing
end-to-end delays on a distributed real-time system," In
Proceedings of the International Workshop on Parallel and
Distributed Real-Time Systems, pp.244,251, 1996.

[79] M. Saksena and Y. Wang. “Scalable real-time system design
using preemption thresholds”. In Proceedings Real-Time Systems
Symposium (RTSS), 2000.

[80] Schmidt, K.W., "Robust Priority Assignments for Extending
Existing Controller Area Network Applications," Industrial
Informatics, IEEE Transactions on , vol.10, no.1, pp.578,585,
Feb. 2014 doi: 10.1109/TII.2013.2266636

[81] L. Sha, J.P. Lehoczky, R. Rajkumar. Solutions for some practical
problems in prioritizing preemptive scheduling. In Proceedings
Real-Time Sytems Symposium (RTSS), 1986.

[82] L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”, IEEE
Transactions on Computers, Vol. 39, No. 9, 1990.

[83] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A.
Burns, G. Buttazzo, M. Caccamo, J. Lehoczky and A. Mok 2004:
“Real-Time Scheduling Theory: A Historical Perspective” Real-
Time Systems, Vol. 28, No. 2-3, pp. 101-155.

[84] A. Saifullah, Y. Xu, C. Lu, Y. Chen, “Priority Assignment for
Real-Time Flows in WirelessHART Networks”, In proceedings
Euromicro Conference on Real-Time Systems (ECRTS) 2011.

[85] M. Stigge, W. Yi, “Combinatorial Abstraction Refinement for
Feasibility Analysis”, In Proceedings Real-Time Systems
Symposium (RTSS), pp. 340-349, 2013.

[86] M. Stigge, W. Yi, “Combinatorial abstraction refinement for
feasibility analysis of static priorities”, Real-Time Systems Vol.
51, Number 6, pp.1573-1383, 2015.

[87] K.W. Tindell, A. Burns, A. J. Wellings. “Allocating hard real-
time tasks: an NP-hard problem made easy”. Real-Time Syst. 4,
2, pp. 145-165, 1992.

[88] K.W. Tindell, J. Clark. “Holistic schedulability analysis for
distributed hard real-time systems”. Microprocess.
Microprogram. 40, 2-3, pp. 117-134, 1994.

[89] K.W.Tindell, A. Burns, A.J.Wellings, “An extendible approach
for analyzing fixed priority hard real-time tasks”. Real-Time
Systems. Volume 6, Number 2, pp. 133-151, 1994.

[90] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of
Real-Time Systems Symposium (RTSS), pp. 239–243, 2007.

[91] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
pre-emption threshold. In Proceedings Real-Time Computing
Systems and Applications (RTCSA), 1999.

[92] H. C. Wong and A. Burns. “Schedulability Analysis for the
Abort-and-Restart (AR) Model”. In Proceedings International
Conference on Real-Time Networks and Systems (RTNS) 2014.

[93] S. Zheng, A. Burns, “Priority Assignment for Real-Time
Wormhole Communication in On-Chip Networks”. In
Proceedings Real-Time Systems Symposium (RTSS), pp. 421-
430, 2008.

[94] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, A. Sangiovanni-
Vincentelli. “Optimization of task allocation and priority
assignment in hard real-time distributed systems”. ACM Trans.
Embed. Comput. Syst. 11, 4, Article 85 (January 2013).

[95] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, A. Sangiovanni-
Vincentelli. “Optimizing Extensibility in Hard Real-Time
Distributed Systems”. In Proceedings Real-Time and Embedded
Technology and Applications Symposium (RTAS) 2009.

[96] A. Zuhily, A. Burns, “Optimality of (D-J)-monotonic priority
assignment”. Information Processing Letters, Vol. 103 No. 6,
2007.

[97] A. Zuhily, A. Burns: “Exact scheduling analysis of non-
accumulatively monotonic multiframe tasks”. Real-Time Systems
43(2): 119-146 (2009)

