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Falk Brockmann, Héctor Nebot, Francisco Alarcón, Andrea Kropp,
Konstantin Kondak, Marc Schwarzbach, Antidio Viguria Jiménez,
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HIGHLIGHTS

• The distributed simulation of heterogeneous cooperat-
ing objects is addressed.

• The proposed framework allows the interaction be-
tween real and simulated hardware.

• Parts of the application logic can be simulated during
the debugging of live systems.

• The framework allows to plan and evaluate system
changes before deploying them.
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Margarita Mulero-Pázmány‖, Gianluca Dini∗∗, Jesús Capitán††, Pedro José Marrón∗
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Abstract—To address the heterogeneity and scalability issues of simu-
lating Cooperating Objects (COs) systems, we propose KASSANDRA,
a conceptual framework for enabling distributed COs simulation by
integrating existing simulation tools. Moreover, KASSANDRA exploits the
communication middleware used by real-world COs as underlying com-
munication mechanism for integrating KASSANDRA-enabled simulation
tools. In this way, real-world COs can be included with simulated objects
in a seamless way to perform more accurate system performance eval-
uation. Moreover, such a hardware-in-the-loop approach is not limited
to pre-deployment performance analysis, and can offer possibilities to
analyse performance at different phases of CO applications. The con-
cept of KASSANDRA has been carried out in the EU PLANET project.
In this paper, we introduce the KASSANDRA framework components

While working on the paper, Marc Schwarzbach was associated with the
German Aerospace Center (DLR), marc.schwarzbach@dlr.de. Nowadays, he
is working for Autel Europe GmbH, Friedrichshafener Str. 2, 82205 Gilching,
Germany, marc@autel.com

and show their interactions at different phases for node deployments
in PLANET use cases. The result demonstrates the applicability of
KASSANDRA to facilitate the development of CO applications.

Index Terms—heterogeneous simulation, distributed simulation, hard-
ware in the loop simulation, live debugging of distributed systems,
cooperating objects

1 INTRODUCTION

Orchestrating heterogeneous Cooperating Objects (COs) can
enrich application scenarios by exploiting different char-
acteristics specific to each type of COs, e.g., wireless sen-
sors, Unmanned Ground- and Aerial Vehicles (UGVs and
UAVs) [1]. Stationary Wireless Sensor Networks (WSNs)
are typically used for providing physical parameter mea-
surements in a monitored area [2] . UGVs can complement
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a static WSN with their mobility to act as mobile sensing
element, allowing to have precise measurements at various
locations [3], to collect data from a stationary WSN [4] or to
maintain an existing deployment [5]. Rotary- or fixed wing
UAVs are not limited by the topography of the area and can
have similar mobility capability regarding surveying wide
areas [6], data collection [7] and node deployment [8], [9],
but with different limitations on accuracy, data collection
bandwidth and operating ranges.

While clear advantages can be foreseen with Cooperat-
ing Objects, developing such CO systems is not a trivial
task, specially if the CO deployment environment is hostile
or unattended [10]. The system complexity and deployment
cost can be dramatically unaffordable with increasing het-
erogeneity and scalability. Thus, performance evaluation of
system design and implementation is required throughout
the lifecycle of CO applications. Simulation offers a simple
and pragmatic solution for pre-deployment system analysis.
However, traditional simulator tools are often tailored to
specific systems and thus do not match the requirements
for heterogeneous COs Networks. It is not possible and
infeasible to develop a monotheistic simulation environ-
ment that comprises all necessary models to meet different
types of simulation requirements. Moreover, it is extremely
complicate to evaluate the efficiency of deployment process
and deployed CO application performance in a simulated
environment in contrast to dynamic environment situa-
tions. Furthermore, such performance analysis is performed
typically prior to the actual deployment. However, with
vulnerable embedded COs and dynamic deployment envi-
ronments, performance analysis can be required during the
deployment or post-deployment phase in order to flexibly
reconfigure the CO deployment to be resilient from dynamic
changes.

To address these issues, we propose a conceptual frame-
work, KASSANDRA for enabling distributed heterogeneous
CO simulations by integrating different simulators for their
specific COs. The integration of these KASSANDRA-enabled
simulators is achieved by using the very same communi-
cation middleware that is used by the real-world COs. The
simulators are modified to use the actual communication
mechanism, e.g., the same application messages. Therefore,
the real COs can interact with the simulated COs to evalu-
ate the system performance during different phases of the
application lifecyle. Such a hardware-in-the-loop distributed
simulation environment, with operating COs in a real-world
environment, can greatly increase accuracy of system perfor-
mance evaluation. Moreover, this can significantly reduce
the time and cost for CO deployments. In summary, our
contribution is three-fold: First, the KASSANDRA framework
outlines a flexible mechanism to integrate existing simula-
tors for imitating interactions among heterogeneous COs.
The simulation capability of KASSANDRA can be easily
extended with a newly integrated simulator to meet more
simulation requirements on application performance analy-
sis. Second, the integration of the simulators is achieved by
exploiting the communication middleware used by the real-
world COs. This enables hardware-in-the-loop simulation
for more accurate performance analysis during different
phases of CO deployments. Finally, KASSANDRA defines
a set of simulation-specific modules, such as simulation

control and simulation logging, which ensure a controlled
simulation environment for all simulated COs.

The design of KASSANDRA was motivated by the EU
project PLANET, a framework “to create an integrated plat-
form that supports the efficient deployment, maintenance
and operation of large-scale deployments of heterogeneous
Cooperating Objects” [11]. A prototype implementation of
KASSANDRA has been carried out as a proof of concept with
the deployment framework developed in PLANET. Partic-
ularity, the PLANET communication middleware is used
to achieve distributed simulation with real- and simulated
COs. With the PLANET application scenarios, we show that
the KASSANDRA approach is applicable in different phases
of the CO application lifecycle.

The remainder of the paper is organised as follows.
Section 2 discusses existing simulation tools related to KAS-
SANDRA for simulation of various COs. Section 3 presents
an overview of the KASSANDRA framework and describes
how KASSANDRA components work in the lifecycle of CO
applications; a prototype implementation of KASSANDRA is
detailed in Section 4; Section 5 demonstrates the applicabil-
ity of KASSANDRA in PLANET application use cases; finally
we conclude our work in Section 6 .

2 RELATED WORK

Simulation has been widely performed to imitate the phys-
ical characteristics of COs or the operations of COs sys-
tems, and to estimate the approximated performance of
real-world CO systems. Numerous simulation tools have
been developed to serve various simulation purposes for
different levels of system components. We focus in this
section on the related work regarding the simulation tools
for COs including wireless sensors and UAVs.

For simulating networks and protocols, ns2 [12] and
OMNeT++ [13] are widely accepted simulation tools that
can be adopted for testing WSN applications. Castalia [14],
which is based on OMNeT++, can be used to test node
behaviour, algorithms or networking protocols in realistic
wireless channels with different radio models. The common
issue with these tools is that the native application can-
not directly be deployed without prior modifications like
NesCT [15]. Moreover, the system and environment models
are typically generic, lacking the credibility for simulating
WSNs in dynamic environments.

The above limitations motivate the development of
WSN-specific simulators. TOSSIM [16], Avrora [17] and
COOJA [18] are well-known simulation tools for WSNs.
TOSSIM allows to run native TinyOS [19] applications by
emulating the operating system behaviour for each node.
Avrora provides cycle-accurate simulation by emulating the
hardware of the node and thus can run the code image
for a specific sensor node platform. COOJA enables the
simulation of networks at different abstraction levels and
thus allows to trade off speed for accuracy. These solutions
perform simulations on one single machine, which may in-
cur a scalability issue as the number of simulated nodes in-
creases. To address this, DiSenS [20] introduces a distributed
architecture to simulate WSN applications on several hosts.
Another evaluation framework, WISEBED [21], allows to
run simulated and emulated nodes from several testbeds
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in a shared environment, and thus enables hardware-in-the-
loop simulation for WSNs.

While the aforementioned simulators offer useful envi-
ronments for developing WSN applications, they do not
support simulating the interaction between sensor nodes
and external vehicles. Even though some tools can be aug-
mented with mobility models, these models merely simulate
the moving patterns instead of the physical behaviour of
real vehicles. Thus, they are not fully applicable for support-
ing practical and effective evaluation of COs applications.

For simulating vehicle physics, simulink [22], integrated
with MATLAB, was developed to model and simulate
dynamic systems. It has been widely used in automatic
control and digital signal processing for a broad range of
autonomous aerial- and ground vehicles [23], [24]. Regard-
ing autonomous aerial vehicles (UAVs), there exist many
Flight Dynamics Models (FDMs) which allow to estimate
the physical forces (e.g., thrust, lift and drag) on simulated
aircraft. JSBSim [25] and YASim can be used in many
higher-level simulation engines. Both differ in the kind of
parameters required to produce a realistic outcome. While
JSBSim requires parameters about the aircraft itself (e.g.,
derived from a wind tunnel test), YASim focuses on the
physical characteristics of the aircraft (e.g., wings, engines)
to simulates the airflow on the different parts of the plane.

FlightGear [26] and Openeagles [27] are sophisticated
simulation environments that target realistic aircraft simu-
lation. They allow simulating a large-size personal aircraft
and offer a huge set of real planes and airfield models. They
are also employed as training tools for pilots. Both support
hardware-in-the-loop as well as distributed simulation with
each aircraft being simulated on a different PC host. Both
environments allow integrating JSBSim and YaSim as FDMs.

Other solutions, such as Stage Gazebo [28] and V-Rep
[29] in the robotics field, support simulating the interactions
of different vehicles among themselves and with their envi-
ronment. Program debugging is available by using on-board
sensor inputs like GPS, cameras, 2D/3D laser scanners.
While Stage supports UGVs in a 2D environment, Gazebo
and V-Rep support also UAVs in 3D environments. The
Robotic Operating System (ROS) [30] enables the interaction
between different devices and an application orchestrating
their behaviour. However, it is only specific to robotic plat-
forms, which limits the scope of applicability.

Similarly to WSN simulators, these tools do not sup-
port simulating the interaction with the external wireless
sensors. That is, it is impossible to process data coming
from an external sensor network and to physically interact
with single sensor devices for node deployment or data
collection. KASSANDRA is developed to bridge this gap and
to enable such CO interaction. This is achieved by integrat-
ing existing simulation tools in a simple and yet effective
way. Furthermore, KASSANDRA emphasizes hardware-in-
the-loop, allowing more simulation scenarios to assist CO
system development at different phases.

3 APPROACH

While employing heterogeneous Cooperating Objects (COs)
has clear advantages, it makes deployment planning and
debugging an extremely difficult task. KASSANDRA aims to

Fig. 1: The Conceptual framework of KASSANDRA with
Real- and Simulated COs.

outline a framework for enabling distributed simulations for
Cooperating Objects (COs) Systems. Moreover, to estimate
more realistic application performance, KASSANDRA adopts
the concept of hardware-in-the-loop for interacting with
real COs at different phases of the application development
lifecycle. We first elaborate the KASSANDRA framework and
then describe its role in the lifecycle of COs applications.

3.1 KASSANDRA Framework

KASSANDRA introduces a framework architecture to achieve
distributed COs simulations with real hardware-in-the-loop.
The framework specifies the integration of existing simu-
lators and the communication mechanism required for the
interaction between real- and simulated COs. An overview
of KASSANDRA is illustrated in Figure 1. For integrating
the simulators, KASSANDRA employs the very same com-
munication middleware used for the interactions among
real devices. In that way, further simulators can be seam-
lessly incorporated like their real counterparts, as long as
the corresponding simulation models guarantee a real-time
execution. As a result, it becomes possible to concurrently
execute multiple simulated and real sub-systems if their
interactions happen exclusively through the middleware.

In order to enable the analysis of system behaviours in
a controlled environment, KASSANDRA defines simulation
contexts for the different types of Cooperating Objects (the
gray area in Figure 1). In addition, it can link the simulation
contexts with the real-world COs, allowing the realistic
evaluation of possible changes to an operational system
before deploying them, thus saving time and resources. To
address these, the KASSANDRA framework specifies several
components including: Communication Middleware, Simula-
tion Engines, Middleware Connectors, Application Modules, Sim-
ulation Control and Event-specific Modules.

For a typical CO application, KASSANDRA assumes that
heterogeneous COs are interacting with each other via a
Communication Middleware. To integrate a normal simulator
(represented by a Simulation Engine) for distributed CO sim-
ulation, KASSANDRA requires the simulator to implement
a Middleware Connector module. This module adopts the
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same communication protocols of their real counterparts, in
order to enable simulated COs interacting with real ones.
This module also specifies application-specific messages
used by the real COs for carrying on application tasks
and thus enforces the simulator to simulate the COs with
the same messaging scheme. Therefore, no adaptation is
required for the real components for hardware-in-the-loop
simulation. Furthermore, in this way, the application logic
(represented as an Application Module) can be applied to both
real- and simulated COs depending on the specific needs.

All the simulation engines are controlled by the Simula-
tion Control component. It specifies the management regis-
tration procedure and the control commands (e.g, start/stop
of the simulation or the simulator configuration) for the
user to interact with the KASSANDRA-enabled simulation
engines. This provides higher flexibility and more accurate
control over the simulation sequence. This module also
specifies logging or replay mechanisms for tracking the
progress of the simulation. While being controlled centrally,
the interaction is realised through the communication mid-
dleware, allowing a direct exchange of messages between
all components during a simulation.

To simulate environment properties or sensing events,
KASSANDRA also defines Event-specific Modules, which spec-
ify the interaction between the COs and a phenomena.

The proposed design of KASSANDRA has the following
three advantages: First, it provides the flexibility to support
a wide range of applications by orchestrating simulated
modules together with real COs. Second, its modular design
simplifies the extension with further simulation engines.
Third, it simplifies the analysis of the system with real
software, hardware and humans in the loop.

3.2 KASSANDRA in the Lifecycle of a Heterogeneous
Network Deployment

The development and deployment of CO applications nor-
mally undergoes the following phases: In the pre-deployment
phase, user requirement specification and deployment plan-
ning are the main tasks; in the deployment phase, the actual
deployment operation is performed; finally in the post-
deployment phase, the deployed CO network is monitored
and recovery actions are required in response to CO or
network failures. For these phases, different CO simula-
tions are required to meet different evaluation objectives.
We describe below how KASSANDRA can serve different
simulation purposes in the lifecyle of CO applications.

The vision of KASSANDRA is to enable the analysis of
the target system (or parts of it) in a controlled environ-
ment where the behaviour of the different Cooperating
Objects can be investigated. During the pre-deployment phase,
KASSANDRA allows to test alternative CO candidate con-
figurations prior to deployment and to identify the COs
satisfying the application requirements. This is achieved by
orchestrating an arbitrary set of simulated COs with the real
application logic. In this phase, potential simulated WSN
deployments will be tested, together with the simulated
autonomous vehicles as mobile data collectors, or mobile
sinks. In order to increase the simulation fidelity, hardware-
in-the-loop simulation of single COs can also be considered
in this phase. During the actual deployment phase, KASSAN-
DRA can estimate the energy consumption involved in the

Fig. 2: KASSANDRA modules (top) and PLANET communi-
cation middleware (bottom). Modules in grey are specific
to the simulation, while the other modules are used also in
real-life scenarios.

process and evaluate the most effective deployment proce-
dure also with respect to possible restrictions regarding the
use of unmanned vehicles. Simulated and real vehicles are
used as deployment tools for a simulated sensor network,
to evaluate the deployment procedure itself. In this phase
KASSANDRA-based CO subsystems can be integrated into a
partly deployed network to estimate its performance with
different resource configurations to achieve higher deploy-
ment efficiency. Finally, when the network is deployed, the
KASSANDRA-based CO systems can be integrated into the
network for two different purposes: First, it enables the
validation of the monitored performance against the pre-
dicted one, identifying and evaluating maintenance actions.
Second, it allows to evaluate potential reconfiguration plans,
by adding additional resources in simulation.

4 IMPLEMENTATION

We have carried out a prototype of the KASSANDRA frame-
work in the PLANET project. The implementation of KAS-
SANDRA uses as communication medium the same com-
munication middleware used in PLANET, which was de-
veloped for inter-connecting heterogeneous COs including
wireless sensors and UAVs/UGVs.

Figure 2 summarizes the KASSANDRA modules and their
interactions through the PLANET middleware. Modules in
grey are specific to the simulation environment, while the
others are used also in real-life scenarios. In KASSANDRA,
each individual CO can be instantiated as either simulated
components, real components or various combinations of
both. We elaborate the used PLANET middleware, the im-
plemented KASSANDRA modules and their interactions in
the following subsection.

4.1 Communication Middleware

The main purpose of the communication middleware in a
real scenario is to enable all involved devices to exchange
information and synchronize on common tasks. In the con-
text of KASSANDRA, the same middleware also integrates
the simulation-specific modules into the network of real-life
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devices, in order to allow real and simulated devices to co-
operate with each other. The following paragraph describes
the communication middleware employed in the PLANET
project, which was used also for the implementation of
KASSANDRA.

In PLANET, a publish/subscribe middleware was devel-
oped to enable the inter-communication between the differ-
ent sub-systems and Cooperating Objects , implemented in
C++, C# and Java. Typical data exchanged includes gathered
sensing data provided by the COs or delivered CO status
information. Additional commands are used to manage COs
based on the application logic or the PLANET CO control
policies.

The implementation of the middleware follows a two
layered approach (as shown in the bottom part of Figure
2). The upper layer defines the CO registration routine,
the PLANET messaging scheme and the default PLANET
message channels, which could be extended on demand.
Default message channels were defined to separate between
different kinds of messages, e.g., for registration, commands
and status information. On top of this, a further channel for
the synchronization of the specific simulation modules was
defined for KASSANDRA. The platform already included a
set of pre-defined message types, e.g., for sending telemetry
information. Further customized messages can be defined in
Google Protocol Buffer format. The registration was imple-
mented through a PLANET component to provide unique
IDs to each participating device. During the registration,
a module provides information about its type, status and
capabilities. The user could request the list of active modules
to plan operations involving any combination of real and
simulated devices.

The lower communication layer provides a set of com-
munication APIs for underlying communication protocols.
This layer is especially responsible for discovery as well as
message filtering and transportation. Currently, the mid-
dleware is built on the Data Distributed Service (DDS)
implemented by RTI [31], but does not depend on it. DDS
is an open standard, defined by the Object Management
Group (OMG) [32], it provides efficient discovery, message
filtering and transportation. It is highly customisable though
a variety of QoS parameters. The RTI implementations is
available for many platforms and languages, such as C, C++,
C#, Java. Commercial alternatives to DDS are the Advanced
Message Queuing Protocol (AMQP) [33], Java Message Ser-
vice (JMS) [34] and Message Queue Telemetry Transport
(MQTT); instead, related research projects are, e.g., Amigo
[35], RUNES [36] and iLand [37]. While all of these middle-
ware solutions fulfil the basic requirements from PLANET
for communication, the choice of DDS based on two rea-
sons: 1) the RTI implementation of DDS is available for all
required programming languages (C++, C# and Java), while
other solutions like Amigo, RUNES, iLand and JMS do not
provide implementations in all these languages. 2) DDS
provides the richest set of configuration and thus was the
most flexible option for PLANET. For example AMQP and
its implementations like RabbitMQ always utilize TCP/IP
and thus does not offer best effort communication. MQTT
as a standard defined by OASIS, is an appropriate choice
for IoT but it requires a central component (Broker), unlike
DDS that acts in a fully distributed fashion. Furthermore,

Fig. 3: Visualisation and Command Centre (VCC), used to
control the waypoints for a UGV and for displaying images
from the onboard camera.

using DDS as lower layer enabled the PLANET middleware
to efficiently filter out messages, through DDS topics and
domains.

4.2 Real COs, Application Modules and Visualizer

In addition to the PLANET middleware, other PLANET
components are used as non-simulation specific KASSAN-
DRA modules, including real COs, application modules and
the visualization tool (Visualisation and Command Centre,
VCC). The VCC acts as the user interface and it allows to
configure the other components and to view the status of a
simulated or real operation. The COs are controlled by the
VCC to fulfil a common task. If included into a simulation,
the real COs behave in the exact same way as in real life. For
these modules, the interaction is independent of whether
they are utilised in a real or a simulated scenario.

In PLANET, three types of CO platforms are employed to
support application scenarios: sensor nodes, rotary/fixed-
wing UAVs and UGVs. The sensor nodes are the Prospeckz-
5 board based on the EFM32 microcontroller with the
NRF24L01 radio module, and they are mainly built for
pollution detection and animal monitoring. UAVs (Viewers,
X-Vision, etc.) and UGVs (Jaguar-4x4-wheel Mobile Robotic
Platform) are used as deployment tools or mobile data
collection stations for sensor networks.
Vehicle integration. Instead of controlling the vehicles di-
rectly through the PLANET middleware, each vehicle was
controlled by a Ground Control Station (GCS) that ac-
cepted commands through the PLANET middleware and
forwarded them to the autopilot of the vehicle. The main
reason for having GCSs was safety regulation, since the GCS
allowed us to filter out commands that could be dangerous
for the vehicle, its surrounding or living human beings close
to the vehicle. Furthermore the GCS could initiate a safety
routine, e.g., for landing, and drop all further incoming
messages. Commands that can be sent to all vehicles are
routeplans, that include a list of waypoints and actions
to perform, like starting, landing, deploying a sensor or
turning an integrated sensor on or off. The UGV also allows
more direct control, like sending just a single command to
specify the next location to go to. In return, the vehicles pro-
vide constant output about their status, e.g., the telemetry.
Sensor node integration. In PLANET, sensors are not directly
communicating through the PLANET middleware, instead,
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data provided by the sensors is collected centrally at a Data
Collection Station (DCS), which acts as a gateway between
the low power sensor network and the IP based PLANET
network. The DCS was implemented in two versions, one
implemented in C++ and another one in Java. Both imple-
mentations could either just store collected messages in a log
file, or forward single or buffered messages received. The
Java implementation could also store collected messages
in a Derby database, allowing to request data on demand
via the PLANET middleware. If combined with a GCS, a
vehicle could be used as a mobile Data Collection Station.
Commands sent to the DCS can change the reporting period
or the powering of the USB ports to reset all sensor nodes
directly attached to the DCS; they can also request historical
data and the status of the DCS itself, like the number of
buffered messages.
Visualisation and Control Centre. This PLANET component,
shown in Figure 3, acts as the bridge between the user
application and other PLANET components. In the context
of KASSANDRA, it is specifically used to configure the
simulation modules and to allow the user to control the
simulation progress. It is implemented as a web application
using the Silverlight technology. VCC offers a set of user
interfaces through the web browser for application input
and framework output. The most prominent part of the VCC
is a map that can be used in two ways. First, it can display
the location and status of COs. This includes the trajectory
of vehicles as well as a description of the COs, their battery
level, telemetry, or readings of sensors. Second, it allows to
define waypoints and actions to be sent as commands to the
vehicles. The user can interact with the map for changing its
zoom level or its centre and to choose which information
should be displayed. The left part of the VCC provides
more control over the other components, e.g., for sending a
landing command to a UAV or to enable or disable a sensor.
In the context of KASSANDRA, the VCC provides a con-
figuration dialogue to configure all involved components.
The bottom part of the VCC shows logging information,
which includes sent and received messages. More complex
information like video streams are not integrated directly
into the VCC, but can be opened in a separate window.

Several application scenarios have been defined and car-
ried out in PLANET. We describe these application modules
in Section 5.

4.3 Simulation-Specific Components

For simulation, we tried to utilise as much as possible real
hardware and software components (upper part of Figure 2).
This allowed us on the one hand to enable a more realistic
simulation, while on the other hand it also allowed us to
test the real hardware and software logic in simulation. All
simulation-specific components have to be configured prior
a simulation with the state of the component they simulate,
like number of nodes to be simulated, initial position of a ve-
hicle, maximum speed allowed. This configuration is done
through a dedicated simulation channel. For the following
communication, however, the simulated COs use the very
same message channels as their real counterparts. Therefore,
during operation, it is possible to interact with a simulated
CO in the same way as with a real one.

Vehicle Simulation. Based on the PLANET middleware,
the implementation of KASSANDRA integrates a variety of
simulation engines. To simulate UAVs or UGVs physics,
a common solution is to develop Matlab/Simulink models
corresponding to the process controlling the vehicle as well
as the vehicle itself. The former is responsible for the gen-
eration of the required signals for the onboard sensors and
actuators. It receives information about the vehicle state as
well as about the intended flight or driving plan. By com-
puting the deviation between the current and the desired
state, the commands for the actuators are generated follow-
ing appropriate manoeuvres. These types of controllers are
based on classical PID control methodologies and can either
be modelled as Simulink blocks or directly executed in the
same implementation used by the final system. The other
component necessary to allow the simulation of the vehicle
is a model of the platform itself as well as its response to
actuation commands under different environmental condi-
tions.

For the UAV simulation, the GCS and the vehicles au-
topilot software are the same as in a real life scenario. How-
ever, instead of using the actual vehicle peripherals (sensors
and actuators), a Matlab-based model is used for simulating
the physical behaviour of the vehicle and its interaction with
the environment. This model also considers dynamics and
errors of the different on-board sensors, which allows to ver-
ify the autopilot commands under various conditions. For
simulating a UAV, the according GCS needs to both redirect
the received commands to the corresponding model and
provide the models output as status information through
the communication middleware. Furthermore, using the
real GCS also for simulation allows to seamlessly integrate
various simulated vehicles into KASSANDRA similarly to
real devices.

The UGV simulation has two modes: The first one offers
a motion model for the mobility of the UGV. This motion
model provides accurate information about the internal
state of the vehicle during movement (momentum, spin,
etc.). This model could be controlled in the same way,
providing the same output, as a real UGV. The other mode
allows to provide a trace of a former UGV run for a simula-
tion.
WSN Simulation. Concerning wireless sensor nodes, COOJA
is a flexible Java-based simulator that enables cross-level
simulation at different levels of the system, at a low level
through an instruction-level TI MSP430 emulator or at a
higher level by executing Java programs. The result is the
possibility to combine different abstraction levels in one
single simulation, trading off simulation speed by executing
Java nodes for accuracy by emulating deployable Contiki or
TinyOS code. In addition, COOJA provides a large range of
communication models to properly represent the properties
of the wireless signal propagation in different environments.
We integrate COOJA in KASSANDRA by extending it with
the PLANET messaging schemes to interact with other
components. In this way, COOJA basically replaces a single
DCS, or several ones from a real deployment. In case of
multiple separated networks, each one can be simulated in
its own COOJA instance. We augmented COOJA with the
status information of the autonomous vehicle to give the
possibility to interact with single sensor nodes: modify a
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node position, as in the case of a UAV carrying a wireless
sensor node, acting as a mobile DCS, and to add or remove
nodes from a deployment with a vehicle as deployment
tool. This mobile DCS or deployment tool could either be a
simulated or a real vehicle. In case of multiple simulated net-
works, a vehicle could interact with each of them. However,
since the different WSN simulators do not share any internal
state of the sensors, it is not possible to create direct wireless
links between devices belonging to different simulations. In
addition, an interface was added to manipulate the virtual
environment of the simulation, e.g., if a Cooperating Object
affects an event or a phenomenon to be sensed.
Simulation Control. In addition to the above simulators, the
Simulation Control component is implemented to coordinate
the execution of the different simulation engines. It also
receives commands from VCC to control the simulation
progress by starting, stopping, pausing a process or config-
uring it. In order to start a simulated sub-system, an appro-
priate configuration must be provided to define the initial
state, e.g., number and position of Cooperating Objects and
event timings.

A Simulation Replay component, embedded into the Sim-
ulation Control, is also able to replay recorded traces by
injecting previously collected messages exchanged through
the PLANET middleware, either in a real-life scenario or in
a simulated one. By subscribing to the different communi-
cation channels of the middleware, it is possible to trace the
content and timings of the exchanged messages between the
(real or simulated) COs. This is essential to provide logging
and support debugging of the system, as well as enable the
replay of messages and events at a later point in time.
Event Simulation. The Event Simulation module defines the
type, the position and the time of a phenomena within a
simulation. It could either be used to trigger a reaction
within the WSN Simulation, or to notify about the sensed
event in a corresponding status message. This module also
subscribes to the telemetry information of any simulated
or real COs to create a bridge between the existence of a
phenomena and the corresponding position of the vehicles
(e.g., to simulate obstacle detection).

4.4 KASSANDRA Modules Interaction

The following subsection provides information on how the
KASSANDRA modules interact with each other. The first part
describes which kind of information is exchanged during
the different stages of a simulation. The second part includes
examples about how the PLANET Platform API is used by
the KASSANDRA modules.

4.4.1 KASSANDRA stages
The interaction between the different modules is dependent
on the actual scenario to be simulated. However, each sim-
ulation can be separated into the following four stages.
Registration. During the registration stage, all components
(simulated or real) register at the PLANET Control through
a dedicated channel by providing information about their
type, their status and their capabilities. The actual regis-
tration message depends on the type of component. For
instance, a UAV could register as rotary wing UAV with
a payload of 3 additional wireless sensor devices. The infor-
mation about all registered components is stored centrally.

Component Configuration Phase
(Received Data)

Runtime Phase
(Sent Data)

Vehicles

Waypoints
Actions
Initial position (sim)
Battery Level (sim)
Deploy Load (sim)
Max Speed (sim)

Position
Timestamp
Velocity
Accelerometer
Euler Angle
Gyrometer

Sensors
Sampl. Period
Sensor Count (sim)
Sensor program (sim)

Sensor Readings

VCC Acknowledgements
Start/Stop Sim.
Sampl. Period (Sensors)
Waypoints & Actions (Veh.)

TABLE 1: Example of interactions during the configuration
and runtime stage for different COs and for the VCC.

Furthermore, each of them receives a unique id that can be
later used for addressing.
Configuration. All components are configured through the
VCC. The middle column in Table 1 provides a summary of
the configuration messages exchanged between the different
involved modules. In this stage, a real UAV can receive
a user-defined route plan with waypoints and actions to
perform. The simulation modules will be configured with
status information, such as number of sensors, type of
applied models, conditions for reporting events. An excerpt
for a message used to configure a WSN simulator is shown
in Listing 1. Other modules are configured through specific
messages defined with Google Protocol Buffer. Furthermore,
simulated modules can be configured to register to the
status messages of other simulated or real modules. This
allows, for example, to simulate a mobile DCS by sharing
the status of a vehicle with the WSN simulator, or to
make a phenomena dependent on a vehicles position. This
stage ends when the VCC starts the simulation through the
Simulation Control.
Runtime. During simulation, all simulation modules behave
like their real counterpart. Additionally, the Simulation Con-
trol starts recording all exchanged messages. These collected
messages, an example of which is reported in the right
column of Table 1, can be used to either debug or replay
a scenario. At any time, the user can reconfigure or control
single simulated or real components, e.g., controlling a
vehicle, changing the list of nodes to be simulated or starting
a phenomena.
Analysis. As soon as the user decides, the simulation can be
stopped. Data logged by the Simulation Control can be used
to replay the simulation in the VCC. Furthermore, the data
of single devices, e.g., the real-life trace of a UAV, can also
be extracted and replayed into another simulation.

message TopConfigurationSimulator {
opt iona l s t r i n g i d e n t i f i e r = 1 ;
opt iona l i n t 3 2 randomSeed = 2 ;
. . .
opt iona l RadioMedium medium = 8 ;
repeated simulatedNode nodeList = 9 ;

}

message simulatedNode {
opt iona l i n t 3 2 id = 1 ;
opt iona l s t r i n g a p p l i c a t i o n = 2 ;
opt iona l P o s i t i o n p o s i t i o n = 3 ;
opt iona l bool isMobile = 4 ;
. . .
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}
Listing 1: Excerpt of a configuration example specific to a
WSN simulator written in Google Protocol Buffer. Node
specific configuration like application and type are given
through additional embedded information (not reported in
this example).

4.4.2 PLANET Platform API
The PLANET Platform provides an API to support KASSAN-
DRA in each of the aforementioned stages. This API enables
the modules to publish messages, subscribe to message-
types and channels, and to register to the PLANET Con-
trol. The following provides a description of a basic set of
functions used by KASSANDRA.
Publication of Messages. Listing 2 shows how the Java
implementation of the PLANET Platform can be exploited
to publish a message (e.g., the TopConfigurationSimulator
data shown in Listing 1). It first obtains an instance of the
PLANET Platform, which allows to create a channel by
providing the corresponding id (“SIM CHL”, in this case).
As soon as the message is created, the module can use
the publish method of the channel to distribute it to the
subscribed modules.

publ ishSimulatorConf igurat ion ( ){
PlanetPlat form platform =

PlanetPlat form . g e t I n s t a n c e ( ) ;
PlanetChannel channel =

platform . joinChannel ( ChannelType . SIM CHL ) ;

TopConfigurationSimulator simConf =
createConfigurat ionMessage ( ) ;

channel . publ ish ( simConf ) ;
}
Listing 2: Example of publication of a simulator configura-
tion.

Subscription. Listing 3 depicts the code necessary
to subscribe to UAV telemetry information on the
“CO DATA CHL” channel. The channel object is created
similarly to the previous case. However, for a subscription,
an additional handler is necessary to be notified at the
reception of messages matching the subscription filter. This
handler is initialised with the type of message it should
receive. The initialised handler is the only parameter for
the subscribe method of the channel object. The second part
of the example shows how the handler can be created by
extending the according PLANET class.

subscribeToTelemetryInformation ( ){
PlanetPlat form platform =

PlanetPlat form . g e t I n s t a n c e ( ) ;
PlanetChannel returnChannel =

platform . joinChannel ( ChannelType .CO DATA CHL) ;

COHandler handler =
new COHandler ( TopUAVTelemetryStatus . newBuilder ( ) ) ;

returnChannel . subscr ibe ( handler ) ;
}
. . .

//handler f o r te lemetry
c l a s s COHandler extends PlanetMessageHandler {

. . .
@Override
publ ic void handleMessage ( GeneratedMessage arg0 ,

PlatformHeader arg1 ) {
TopUAVTelemetryStatus te lemetry =

( TopUAVTelemetryStatus ) arg0 ;
// do something with te lemetry

}
}
Listing 3: Example of a subscription to telemetry informa-
tion.

Registration. Listing 4 shows how a module can register
to the PLANET Control. After obtaining an instance of the
PLANET Platform, for a registration the module might have
to provide some specific configuration. This has to be put in
the according Registration message (TopRegistrationInfo, in
this case). Since the communication is asynchronous in a
publish/subscribe system, it also has to specify a handler to
be notified as soon as the PLANET Control has successfully
integrated the according module into the PLANET system.
To finalise the registration, the module has to call the reg-
isterCo method of the platform, providing the registration
message and the handler as parameters. For the sake of
brevity, the implementation of the handler is not shown in
this example.
startCO ( ){

PlanetPlat form platform =
PlanetPlat form . g e t I n s t a n c e ( ) ;

TopRegis t ra t ionInfo i n f o = createRegis t ra t ionMsg ( ) ;

Regis t ra t ionHandler handler =
new Regis t ra t ionHandler (

TopDCSRegistrationConfig . newBuilder ( ) ) ;
platform . r e g i s t e r C o ( info , handler ) ;

}
Listing 4: Example of a module registration.

5 KASSANDRA IN PLANET
In this section, we first elaborate different modules that are
included in KASSANDRA to support testing and validating
CO operations in two PLANET application scenarios. We
then discuss several implementation issues for simulating
PLANET COs in KASSANDRA with the PLANET middle-
ware. Additionally, we discuss the lessons learned during
the realisation and use of KASSANDRA.

5.1 DDS-Configuration

The performance of the middleware highly depends on the
settings of the underlying DDS configuration. While the
performance of the simulator could be improved by using
an optimised DDS-configuration, we relied on the very
same configuration that was specified by the real PLANET
applications.

For the experiments, we used RTI DDS Version 5.1.0.00
and the QoS configuration was given through an XML file.
For the simulation in KASSANDRA, we used the parameter
RELIABLE RELIABILITY QOS, which enforces a reliable
communication, while still using UDP. The data length
was increased to 30000 elements through the parameter
“sequenceSize”. This was necessary since some of the sen-
sor transmitted visual information in one single message.
Furthermore, to enable better debugging in simulation, we
stored all messages through the KEEP ALL HISTORY op-
tion.
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Fig. 4: An operator is remotely requesting for AMS resources
(UAVs, UGVs). The AMS additionally manages a heteroge-
neous set of sensors and services: Obstacle Detection System
(ODS) and Intrusion Detection System (IDS) services.

5.2 PLANET Application Scenarios

The PLANET framework supports efficient deployment,
maintenance and operation of large scale distributed sys-
tems of heterogeneous COs. To prove its flexibility, the
PLANET framework was tested in two fundamentally dif-
ferent scenarios: An automated airfield (AIR) and a bio-
logical reserve (DBR). In this section, we describe how the
different simulation modules are integrated in KASSANDRA

to carry out specific simulation scenarios.

5.2.1 AIR-Scenario: Automated Mission Service Provision

In the context of PLANET, an Airfield Management System
(AMS) was developed to manage UAVs of an unattended
airfield and to provide these UAVs to a remote operator.

However, in case of the absence of any human supervi-
sion, it is important that the AMS can automatically detect
any incident that could endanger safe airfield operations,
such as taxiing, takeoff or landing. Critical incidents can be
an obstacles on the runway, or an unauthorized person in
the airfield perimeter. For that reason, PLANET included
a system for automated obstacle detection and removal as
shown in Figure 4.

In PLANET, the final implementation for the automated
airfield was tested in ATLAS (Air Traffic Laboratory for
Advanced unmanned Systems) [38], a test flight centre,
intended for the development of experimental flights with
UAVs. However, the development process of the AMS logic
required continuous testing and thorough evaluation to en-
sure safe operations. This development process could not be
performed with real devices to avoid costly and potentially
dangerous tests.

For this reason, a use case was simulated, in which
the core system for the automatic airfield management was
tested, together with obstacle detection and removal. In this
use case, the AMS should stop any UAV operation as soon
as the weather condition is considered to be bad, or if an
obstacle is detected on a runway.

To simulate this use case, the real AMS logic was or-
chestrated together with a set of UAVs, following ran-
domized operations, a single UGV for removing obstacles
and two event-specific modules: A Weather Station Module,
which reports information regarding the weather conditions
through a predefined sequence of measurement values and
an Obstacle Detection System, which is in charge of detecting
any unexpected object in the runway that could endanger
UAV operations. The second module allows to report the
detection of an obstacle at random positions on the runway,
at a predefined or random point in simulation time. The
module was configured so that it stopped reporting an
obstacle as soon as a UGV was nearby (to simulate the
removal process of an obstacle). As soon as an obstacle was
detected, the control logic for the UGV should command the
UGV to remove the obstacle.

With these two additional event-specific modules KAS-
SANDRA allowed us to: 1) stress the logic of the real AMS
to check whether it could properly and timely react on
different events (bad weather, detected obstacles), during
normal airfield operations, guaranteeing safe UAV opera-
tions. 2) Test the UGV control logic, to find appropriate
routes at different initial positions of the UGV and vary-
ing obstacle positions. The scenarios could be tested with
accurate timings and provided valuable information for
the design of the AMS, which allowed us to evaluate the
effectiveness of the Obstacle Detection System, regarding
the delay of removing an obstacle (including the routing of
the UGV) and its impact on the UAV operations.

5.2.2 DBR-Scenario: Pollution Monitoring in Doñana

Doñana National Park is a world heritage site in the south
west of Spain. The park features a great variety of ecosys-
tems and shelters abundant wildlife, including endangered
species such as the Iberian lynx (Lynx pardinus) or the
Spanish imperial eagle (Aquila adalberti). This biodiversity
hotspot is of special interest for biological research, utilizing
more and more sensors and UAVs for environmental moni-
toring and animal tracking [39].

In contrast to the airfield scenario, it was important
to ensure a minimal impact on the environment. For that
reason, combustion engines were prohibited to operate in
the national reserve. In result, a sensor deployment has to
be planned carefully for the requirements of the specific use
case, especially a long lifetime is necessary to ensure that
no regular management operations are necessary. One of
the major problems for planning and preparations for the
PLANET-operations is that the access to the Doñana park is
highly restricted and experiments inside of the park had to
be performed in just a few days per year.

For this scenario, we simulated a use case in which a pol-
lution monitoring system was tested. Pollution is one of the
biggest threats to the preservation of a natural environment.
A sever incident was the disaster due to the heavy metals
coming from the dam breakage of the Boliden Aznalcóllar
mine (April 25, 1998)) [40], which resulted in thousands of
animals killed and severe pollution of this privileged natural
landscape.

In case of the event of a pollution spill in the national
park, it is important to know where the event started and
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Fig. 5: Left: The VCC showing a (water) sensor network
(green dots), with two nodes to be replaced (red dots). Right:
The automatic deployment of an additional water sensor
through a rotary wing UAV.

how it distributed in the environment. This allows to effec-
tively concentrate counter measurements at the locations of
the incident. Using wireless sensors for a pollution detection
system is ideal, since they can organise autonomously and
provide regular readings about the environment to the user.
In PLANET, a WSN was envisioned as an early detection
component for a pollution detection system. Sensors de-
ployed in the marshes of Doñana provided regular readings
about the pH-value of the water, the temperature and oxy-
gen level, which serve as an indicator in case of a pollution
incident. In this use case, the proper functionality of the
network is of crucial importance. Single failing nodes might
lead to undetected events, or to disconnected sub-networks
and thus uncovered sub-areas. In PLANET, a WSN moni-
toring logic was checking the received WSN data for errors
or missing nodes. In case of a detected node failure, a rotary
wing UAV platform was used to deploy additional nodes,
if a failing node endangered the functionality of the system
[8].

To simulate this use case, the real monitoring logic was
orchestrated together with a simulated rotary wing UAV
and a WSN, running a simple data collection application.
Node failures could either be triggered on demand, or a
trace, collected from a real reference WSN could be used as
input for the monitoring logic. As soon as a node failure was
detected, this incident was reported to the VCC to allow
the user to start an automated deployment procedure. A
simulated rotary wing UAV could then deploy an additional
note into the WSN simulator. The deployment procedure
and final WSN performance was shown in the VCC.

In this use case KASSANDRA allowed, before the real
deployment in Doñana, to evaluate the deployment pro-
cedure, timing and healing performance (especially energy
consumption), when using a rotary wing UAV as deploy-
ment tool, as well as the VCC to show the status of any
operation as depicted in Figure 5.

5.3 Discussion

During the implementation of Kassandra, we paid attention
to simulation efficiency, which can be affected by the scala-
bility of the different simulation modules. Another influen-
tial factor is the scalability of the underlying communication
framework. We show in this section how we perform these
scalability analysis regarding these two aspects.

5.3.1 Simulation Scalability
In PLANET, KASSANDRA integrates simulators that pro-
vides simulation capabilities for rotary wing UAVs, fixed
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Fig. 6: Simulation speed for different sending intervals de-
pending on the node count. Values at: 9, 100, 400, 900, and
1600 nodes.
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wing UAVs, UGVs and WSNs. Since UAV and UGV simu-
lation engines just simulate a single device, the scalability
of a system with more vehicles can be easily supported
by adding more processing resources for each simulation
engine, e.g., one dedicated simulator for each isolated sys-
tem. However, if single sensors are tightly connected with
each other in a stand-alone network, adding more sensors
requires stronger processing capabilities of the WSN sim-
ulation engine. For that reason, we performed evaluation
analysis on the WSN simulator (COOJA) in terms of number
of nodes to be simulated or number of messages to be
handled inside the WSN simulator.

The performance evaluation consisted of a various num-
ber of Java-based sensor nodes. Each node was installed
with the application RimeABC, which is a default appli-
cation provided by COOJA. This application was slightly
modified in order to prevent any additional terminal- or log-
ging output that could have altered the performance results.
The application RimeABC transmits a 6 byte packet periodi-
cally to all surrounding nodes. Furthermore, it indicates the
reception of a packet by raising an LED. We used a grid
based topology for each scenario and the communication
range was adjusted so that each node had a maximum of
four neighbours. The reporting time initiated after a random
initial sending time for the first message.

Each simulated sensor node has its own state and mem-
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ory, it produces additional messages for transmission and it
is able to receive transmissions from surrounding nodes. In
result, the simulation time is highly affected by the number
of simulated nodes, as reported in Figure 6. In this test,
we measured the runtime of the simulator with respect to
an increasing number of simulated nodes. Each value was
generated by using 5 test runs with identical configuration
but different random seeds. The simulation time for each
test was 30 minutes.

Figure 6 shows the speed of a simulation with respect
to the real time passed. A value below “1” means that the
simulation could be performed faster than real time. For
the evaluation, different numbers of nodes and different
sending periods of the node applications were considered.
The figure shows that the runtime of a simulation exhibit
quadratic growth in terms of the number of nodes. How-
ever, increasing the sending period to 1 message per minute
with a deployment of 1600 nodes can still be simulated
faster than real time. This number represents the maximum
number of sensor nodes, to be simulated by a single simula-
tion engine. If several networks have to be simulated, with
each of them just connected through the middleware but not
through low power communication, the total number can be
much higher (see also Section 5.3.2).

The number of messages managed by a simulation
highly affects the simulation speed, since each message sent
during the runtime of the simulation must be stored and
maintained within the simulator and must be processed by
all receiving nodes. The application RimeABC transmits a
message in periodic intervals. For testing the scalability of
the simulator, we used different message intervals. Figure 7
shows the result of the evaluation with different message
intervals and nodes. As shown by the figure the speed is
inverse dependant on the message interval.

5.3.2 Communication Middleware Performance

As mentioned before , the performance of the communica-
tion middleware can affect the simulation performance. To
understand such impact for KASSANDRA, we show the scal-
ability analysis on the PLANET middleware with increasing
number of messages to represent increasing number of in-
teracting actors (both real- and simulated COs). We test the
middleware in terms of sending frequency and the payload
of a message. It is important to notice that the number of
actual messages sent by a module strongly depends on the
actual application. For example, in the Doñana Pollution
Detection scenario, each sensor reported a reading every
15 minutes to a base station connected to the PLANET
middleware. We took the biggest status information sent by
a Cooperating Object as reference message for estimating
the number of devices that can be simulated.

The performance tests were performed on an ad-hoc
testbed, in order to facilitate the measurement of the re-
quired metrics. The machines used were two identical
IBM ThinkPad T60 laptops with Windows 8.1 as operating
system. The network connectivity was established using
wired Gigabit LAN. To analyse the achievable throughput,
messages were sent for 10 minutes, containing a payload
between 1 Byte and 10000 Byte and with a sending rate
between 10 messages/s and 200 messages/s.
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Fig. 8: Evaluation of the percentage of the theoretical
throughput achieved for different message frequencies de-
pending on the payload size. Values at: 1, 64, 100, 6400, and
10000 bytes.
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sages/s.

Figure 8 shows the percentage of the throughput
achieved in the experiments compared to the theoretically
ideal maximum throughput. The ideal maximum through-
put is the theoretical number of messages sent in the 10
minutes of the experiments duration. In most cases, the
PLANET middleware performs with values greater than
90% of the theoretical maximum, with a minimum at around
83%. During that experiment, we noticed a slight number of
message losses when sending big messages at a high fre-
quency. However, considering our assumption of a message
of 155 bytes sent every 5 seconds, the Platform put no strong
limitations on the number of COs to be simulated.

Figure 9 shows the performance of the PLANET middle-
ware according to the payload size of a message. It shows
that the payload size mostly has a constant overhead, which
is due to the PLANET middleware and the DDS encoding
and decoding of messages.

Absolute numbers for the throughput are depicted in
Figure 10 (for different payloads) and in Figure 11 for
different message frequencies. Both figures show a linear
increase in throughput for the tested parameter range. In-
deed, this is confirmed by official benchmarks provided by
RTI, that identified the network capabilities as the limiting
factor for the throughput and not the protocol overhead
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Fig. 10: Evaluation of the absolute throughput achieved
for different sending frequencies depending on the payload
size. Values at: 1, 64, 100, 6400, and 10000 bytes.
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Fig. 11: Evaluation of the absolute throughput achieved for
different payload sizes depending on the sending frequency.
Values at 10, 25, 50, 100, and 200 messages/s.

[41]. For the limited number of devices required for tar-
get scenarios, KASSANDRA never reached the limits of the
PLANET communication middleware, or the underlying
DDS middleware respectively. Readers interested in more
detailed information are referred to further publications on
DDS performance evaluation for wired communication [42],
or for wireless communication [43].

The performance analysis results indicates that neither
the WSN simulation nor the middleware place a strong lim-
itation on the number of COs to be simulated in KASSAN-
DRA. With this, we ensure CO simulations can be performed
smoothly in KASSANDRA for our application scenarios.

6 CONCLUSION

Achieving high simulation accuracy for performance analy-
sis of Cooperating Objects applications require multidomain
considerations regarding node heterogeneity, simulation ex-
tensibility and dynamic environments. In this paper, we
address these issues and propose the KASSANDRA frame-
work that enables COs application simulation using hetero-
geneous real- and simulated COs. The architecture of KAS-
SANDRA expploits the existing communication middleware
based on DDS to seamlessly interconnect real and simulated
modules. We believe that such approach do not only allow
more application simulation scenarios, but also improves

the simulation accuracy with real-world objects in actual
environments. As a result, it makes also possible to analyse
the system behaviour at each stage of the application life-
cycle, validating application requirements and identifying
effective system configurations.

We demonstrated the scalability of KASSANDRA, which
allows to simulate a deployment of 1600 sensor nodes, each
sending one message per minute, faster than real time.
Moreover, the communication middleware could deal with
200 messages per second, with each message composed of
10.000 bytes, assuming a stable network connection. Finally,
the use of the KASSANDRA prototype in the PLANET ap-
plication scenarios demonstrated the applicability of our
approach.
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