
A Server-based Approach for Predictable GPU Access with

Improved Analysis

Hyoseung Kim1, Pratyush Patel2, Shige Wang3, and Ragunathan (Raj) Rajkumar4

1University of California, Riverside , hyoseung@ucr.edu

2Carnegie Mellon University , pratyusp@andrew.cmu.edu

3General Motors R&D , shige.wang@gm.com

4Carnegie Mellon University , rajkumar@cmu.edu

Abstract

We propose a server-based approach to manage a general-purpose graphics processing unit

(GPU) in a predictable and efficient manner. Our proposed approach introduces a GPU server

that is a dedicated task to handle GPU requests from other tasks on their behalf. The GPU

server ensures bounded time to access the GPU, and allows other tasks to suspend during

their GPU computation to save CPU cycles. By doing so, we address the two major limita-

tions of the existing real-time synchronization-based GPU management approach: busy waiting

within critical sections and long priority inversion. We have implemented a prototype of the

server-based approach on a real embedded platform. This case study demonstrates the prac-

ticality and effectiveness of the server-based approach. Experimental results indicate that the

server-based approach yields significant improvements in task schedulability over the existing

synchronization-based approach in most practical settings. Although we focus on a GPU in this

paper, the server-based approach can also be used for other types of computational accelerators.

1 Introduction

The high computational demands of complex algorithmic tasks used in recent embedded and cyber-

physical systems pose substantial challenges in guaranteeing their timeliness. For example, a self-

driving car [28, 40] executes perception and motion planning algorithms in addition to running

tasks for data fusion from tens of sensors equipped within the vehicle. Since these tasks are compu-

tationally intensive, it becomes hard to satisfy their timing requirements when they execute on the

same hardware platform. Fortunately, many of today’s embedded multi-core processors, such as

NXP i.MX6 [4] and NVIDIA TX1/TX2 [3], have an on-chip, general-purpose graphics processing

1

ar
X

iv
:1

70
9.

06
61

3v
2

 [
cs

.D
C

]
 1

1
M

ay
 2

01
8

unit (GPU), which can greatly help in addressing the timing challenges of computation-intensive

tasks by accelerating their execution.

The use of GPUs in a time predictable manner brings up several challenges. First, many

of today’s commercial-off-the-shelf (COTS) GPUs do not support a preemption mechanism, and

GPU access requests from application tasks are handled in a sequential, non-preemptive manner.

This is primarily due to the high overhead expected on GPU context switching [39]. Although

some recent GPU architectures, such as NVIDIA Pascal [2], claim to offer GPU preemption, there

is no documentation regarding their explicit behavior, and existing drivers (and GPU programming

APIs) do not offer any programmer control over GPU preemption at the time of writing this paper.

Second, COTS GPU device drivers do not respect task priorities and the scheduling policy used

in the system. Hence, in the worst case, the GPU access request of the highest-priority task may

be delayed by the requests of all lower-priority tasks in the system, which could possibly cause

unbounded priority inversion.

The aforementioned issues have motivated the development of predictable GPU management

techniques to ensure task timing constraints while achieving performance improvement [15, 16, 17,

20, 21, 27, 41]. Among them, the work in [15, 16, 17] introduces a synchronization-based approach

that models GPUs as mutually-exclusive resources and uses real-time synchronization protocols to

arbitrate GPU access. This approach has many benefits. First, it can schedule GPU requests from

tasks in an analyzable manner, without making any change to GPU device drivers. Second, it allows

the existing task schedulability analysis methods, originally developed for real-time synchronization

protocols, to be easily applied to analyze tasks accessing GPUs. However, due to the underlying

assumption on critical sections, this approach requires tasks to busy-wait during the entire GPU

execution, thereby resulting in substantial CPU utilization loss. Note that semaphore-based locks

also experience this problem as the busy waiting occurs within a critical section after acquiring the

lock. Also, the use of real-time synchronization protocols for GPUs may unnecessarily delay the

execution of high-priority tasks due to the priority-boosting mechanism employed in some protocols,

such as MPCP [37] and FMLP+ [10]. We will review these issues in Section 4.2.

In this paper, we develop a server-based approach for predictable GPU access control to address

the aforementioned limitations of the existing synchronization-based approach. Our proposed ap-

proach introduces a dedicated GPU server task that receives GPU access requests from other tasks

and handles the requests on their behalf. Unlike the synchronization-based approach, the server-

based approach allows tasks to suspend during GPU computation while preserving analyzability.

This not only yields CPU utilization benefits, but also reduces task response times. We present the

schedulability analysis of tasks under our server-based approach, which accounts for the overhead

of the GPU server. Although we have focused on a GPU in this work, our approach can be used

2

for other types of computational accelerators, such as a digital signal processor (DSP).

We have implemented a prototype of our approach on a SABRE Lite embedded platform [1]

equipped with four ARM Cortex-A9 CPUs and one Vivante GC2000 GPU. Our case study using this

implementation with the workzone recognition algorithm [31] developed for a self-driving car demon-

strates the practicality and effectiveness of our approach in improving CPU utilization and reducing

response time. We have also conducted detailed experiments on task schedulability. Experimental

results show that while our server-based approach does not dominate the synchronization-based

approach, it outperforms the latter in most of the practical cases.

This paper is an extended version of our conference paper [25], with the following new contri-

butions: (i) an improved analysis for GPU request handling time under the server-based approach,

(ii) a discussion on task allocation with the GPU server, and (iii) new experimental results with

the improved analysis.

The rest of this paper is organized as follows: Section 2 reviews relevant prior work. Section 3

describes our system model. Section 4 reviews the use of the synchronization-based approach for

GPU access control and discusses its limitations. Section 5 presents our proposed server-based ap-

proach. Section 6 evaluates the approach using a practical case study and overhead measurements,

along with detailed schedulabilty experiments. Section 7 concludes the paper.

2 Related Work

Many techniques have been developed to utilize a GPU as a predictable, shared computing re-

source. TimeGraph [21] is a real-time GPU scheduler that schedules GPU access requests from

tasks with respect to task priorities. This is done by modifying an open-source GPU device driver

and monitoring GPU commands at the driver level. RGEM [20] allows splitting a long data-copy

operation into smaller chunks, reducing blocking time on data-copy operations. Gdev [22] provides

common APIs to both user-level tasks and the OS kernel to use a GPU as a standard computing

resource. GPES [41] is a software technique to break a long GPU execution segment into smaller

sub-segments, allowing preemptions at the boundaries of sub-segments. While all these techniques

can mitigate the limitations of today’s GPU hardware and device drivers, they have not considered

the schedulability of tasks using the GPU. In other words, they handle GPU requests from tasks in

a predictable manner, but do not formally analyze the worst-case timing behavior of tasks on the

CPU side, which is addressed in this paper.

Elliott et al. [15, 16, 17] modeled GPUs as mutually-exclusive resources and proposed the

use of real-time synchronization protocols for accessing GPUs. Based on this, they developed

GPUSync [17], a software framework for GPU management in multi-core real-time systems. GPUSync

3

supports both fixed- and dynamic-priority scheduling policies, and provides various features, such as

budget enforcement, multi-GPU support, and clustered scheduling. It uses separate locks for copy

and execution engines of GPUs to enable overlapping of GPU data transmission and computation.

The pros and cons of the synchronization-based approach in general will be thoroughly discussed

in Section 4.

Server-based software architectures for GPU access control have been studied in the context

of GPU virtualization, such as rCUDA [14] and vCUDA [38]. They implement an RPC server

to receive GPU acceleration requests from high-performance computing applications running on

remote or virtual machines. The received requests are then handled by the server on a host machine

equipped with a GPU. While our work uses a similar software architecture to these approaches, our

work differs by providing guaranteed bounds on the worst-case GPU access time.

The self-suspension behavior of tasks has been studied in the context of real-time systems [7, 8,

13, 27]. This is motivated by the fact that tasks can suspend while accessing hardware accelerators

like GPUs. Kim et al. [27] proposed segment-fixed priority scheduling, which assigns different

priorities and phase offsets to each segment of tasks. They developed several heuristics for priority

and offset assignment because finding the optimal solution for that assignment is NP-hard in the

strong sense. Chen et al. [13] reported errors in existing self-suspension analyses and presented

corrections for the errors. Those approaches assume that the duration of self-suspension is given

as a fixed task parameter. However, this assumption does not comply with the case where a task

accesses a shared GPU and the waiting time for the GPU is affected by other tasks in the system.

In this work, we use the results in [8, 13] to take into account the effect of self-suspension in task

schedulability, and propose techniques to bound the worst-case access time to a shared GPU.

Recently, there have been efforts to understand the details of GPU-internal scheduling on some

NVIDIA GPUs. Otterness et al. [35] report that multiple GPU execution requests from different

processes may be scheduled concurrently on a single NVIDIA TX1 GPU but the execution time

of individual requests becomes longer and less predictive compared to when they run sequentially.

Amert et al. [6] discuss the internal scheduling policy of NVIDIA TX2 for GPU execution requests

made by threads sharing the same address space, i.e., those belonging to the same process. While

these efforts have potential to improve GPU utilization and overall system efficiency, it is unclear

whether their findings are valid on other GPU architectures and other types of accelerators. Al-

though we do not consider these recently-found results in this work as our goal is to develop a

broadly-applicable solution, we plan to consider them in our future work.

4

GPU

CPU

Normal exec.
segment

Normal exec.
segment

GPU access segment

� Copy data

to GPU

� Trigger GPU computation � Copy results

to CPU

GPU kernel execution

� Notify completion

Figure 1: Execution pattern of a task accessing a GPU

3 System Model

The work in this paper assumes a multi-core platform equipped with a single general-purpose GPU

device.1 The GPU is shared among multiple tasks, and GPU requests from tasks are handled in

a sequential, non-preemptive manner. The GPU has its own memory region, which is assumed to

be sufficient enough for the tasks under consideration. We do not assume the concurrent execution

of GPU requests from different tasks, called GPU co-scheduling, because recent work [35] reports

that “co-scheduled GPU programs from different programs are not truly concurrent, but are mul-

tiprogrammed instead” and “this (co-scheduling) may lead to slower or less predictable total times

in individual programs”.

We consider sporadic tasks with constrained deadlines. The execution time of a task using a

GPU is decomposed into normal execution segments and GPU access segments. Normal execution

segments run entirely on CPU cores and GPU access segments involve GPU operations. Figure 1

depicts an example of a task having a single GPU access segment. In the GPU access segment, the

task first copies data needed for GPU computation, from CPU memory to GPU memory (Step 1○

in Figure 1). This is typically done using Direct Memory Access (DMA), which requires no (or

minimal) CPU intervention. The task then triggers the actual GPU computation, also referred

to as GPU kernel execution, and waits for the GPU computation to finish (Step 2○). The task

is notified when the GPU computation finishes (Step 3○), and it copies the results back from the

GPU to the CPU (Step 4○). Finally, the task continues its normal execution segment. Note that

during the time when CPU intervention is not required, e.g., during data copies with DMA and

GPU kernel execution, the task may suspend or busy-wait, depending on the implementation of

the GPU device driver and the configuration used.

Synchronous and Asynchronous GPU Access. The example in Figure 1 uses synchronous

mode for GPU access, where each GPU command, such as memory copy and GPU kernel execution,

1This assumption reflects today’s GPU-enabled embedded processors, e.g., NXP i.MX6 [4] and NVIDIA
TX1/TX2 [3]. A multi-GPU platform would be used for future real-time embedded and cyber-physical systems,
but extending our work to handle multiple GPUs remains as future work.

5

can be issued only after the prior GPU command has finished. However, many GPU programming

interfaces, such as CUDA and OpenCL, also provide asynchronous mode, which allows a task

to overlap CPU and GPU computations. For example, if a task sends all GPU commands in

asynchronous mode at the beginning of the GPU access segment, then it can either perform other

CPU operations within the same GPU access segment or simply wait until all the GPU commands

complete. Hence, while the sequence of GPU access remains the same, the use of asynchronous

mode can affect the amount of active CPU time in a GPU segment.

Task Model. A task 𝜏𝑖 is characterized as follows:

𝜏𝑖 := (𝐶𝑖, 𝑇𝑖, 𝐷𝑖, 𝐺𝑖, 𝜂𝑖)

• 𝐶𝑖: the sum of the worst-case execution time (WCET) of all normal execution segments of

task 𝜏𝑖.

• 𝑇𝑖: the minimum inter-arrival time of each job of 𝜏𝑖.

• 𝐷𝑖: the relative deadline of each job of 𝜏𝑖 (𝐷𝑖 ≤ 𝑇𝑖).

• 𝐺𝑖: the maximum accumulated duration of all GPU segments of 𝜏𝑖, when there is no other

task competing for a GPU.

• 𝜂𝑖: the number of GPU access segments in each job of 𝜏𝑖.

The utilization of a task 𝜏𝑖 is defined as 𝑈𝑖 = (𝐶𝑖 +𝐺𝑖)/𝑇𝑖. Parameters 𝐶𝑖 and 𝐺𝑖 can be obtained

by either measurement-based or static-analysis tools. If a measurement-based approach is used, 𝐶𝑖

and 𝐺𝑖 can be measured when 𝜏𝑖 executes alone in the system without any other interfering tasks

and they need to be conservatively estimated. A task using a GPU has one or more GPU access

segments. We use 𝐺𝑖,𝑗 to denote the maximum duration of the 𝑗-th GPU access segment of 𝜏𝑖, i.e.,

𝐺𝑖 =
∑︀𝜂𝑖

𝑗=1 𝐺𝑖,𝑗 . Parameter 𝐺𝑖,𝑗 can be decomposed as follows:

𝐺𝑖,𝑗 := (𝐺𝑒
𝑖,𝑗 , 𝐺

𝑚
𝑖,𝑗)

• 𝐺𝑒
𝑖,𝑗 : the WCET of pure GPU operations that do not require CPU intervention in the 𝑗-th

GPU access segment of 𝜏𝑖.

• 𝐺𝑚
𝑖,𝑗 : the WCET of miscellaneous operations that require CPU intervention in the 𝑗-th GPU

access segment of 𝜏𝑖.

𝐺𝑒
𝑖,𝑗 includes the time for GPU kernel execution, and 𝐺𝑚

𝑖,𝑗 includes the time for copying data, launch-

ing the kernel, notifying the completion of GPU commands, and executing other CPU operations.

6

The cost of triggering self-suspension during CPU-inactive time in a GPU segment is assumed to

be taken into account by 𝐺𝑚
𝑖,𝑗 . If data are copied to or from the GPU using DMA, only the time

for issuing the copy command is included in 𝐺𝑚
𝑖,𝑗 ; the time for actual data transmission by DMA

is modeled as part of 𝐺𝑒
𝑖,𝑗 , as it does not require CPU intervention. Note that 𝐺𝑖,𝑗 ≤ 𝐺𝑒

𝑖,𝑗 + 𝐺𝑚
𝑖,𝑗

because 𝐺𝑒
𝑖,𝑗 and 𝐺𝑚

𝑖,𝑗 are not necessarily observed on the same control path and they may overlap

in asynchronous mode.

CPU Scheduling. In this work, we focus on partitioned fixed-priority preemptive task scheduling

due to the following reasons: (i) it is widely supported in many commercial real-time embedded

OSs such as OKL4 [18] and QNX RTOS [5], and (ii) it does not introduce task migration costs.

Thus, each task is statically assigned to a single CPU core. Any fixed-priority assignment, such as

Rate-Monotonic [32] can be used for tasks. Each task 𝜏𝑖 is assumed to have a unique priority 𝜋𝑖. An

arbitrary tie-breaking rule can be used to achieve this assumption under fixed-priority scheduling.

4 Limitations of Synchronization-based GPU Access Con-

trol

In this section, we characterize the limitations of using a real-time synchronization protocol for

tasks accessing a GPU on a multi-core platform. We consider semaphore-based synchronization,

where a task attempting to acquire a lock suspends if the lock is already held by another task. This

is because semaphores are more efficient than spinlocks for long critical sections [29], which is the

case for GPU access.

4.1 Overview

The synchronization-based approach models the GPU as a mutually-exclusive resource and the

GPU access segments of tasks as critical sections. A single semaphore-based mutex is used for

protecting such GPU critical sections. Hence, under the synchronization-based approach, a task

should hold the GPU mutex to enter its GPU access segment. If the mutex is already held by

another task, the task is inserted into the waiting list of the mutex and suspends until the mutex

can be held by that task. Some implementations like GPUSync [17] use separate locks for internal

resources of the GPU, e.g., copy and execution engines, to achieve parallelism in GPU access, but

we focus on a single lock for the entire GPU for simplicity.

Among a variety of real-time synchronization protocols, we consider the Multiprocessor Priority

Ceiling Protocol (MPCP) [36, 37] as a representative, because it works for partitioned fixed-priority

scheduling that we use in our work and it has been widely referenced in the literature. We shall

briefly review the definition of MPCP below. More details on MPCP can be found in [30, 36, 37].

7

1. When a task 𝜏𝑖 requests an access to a resource 𝑅𝑘, it can be granted to 𝜏𝑖 if it is not held

by another task.

2. While a task 𝜏𝑖 is holding a resource that is shared among tasks assigned to different cores,

the priority of 𝜏𝑖 is raised to 𝜋𝐵 + 𝜋𝑖, where 𝜋𝐵 is a base task-priority level greater than that

of any task in the system, and 𝜋𝑖 is the normal priority of 𝜏𝑖. This “priority boosting” under

MPCP is referred to as the global priority ceiling of 𝜏𝑖.

3. When a task 𝜏𝑖 requests access to a resource 𝑅𝑘 that is already held by another task, 𝜏𝑖 is

inserted to the waiting list of the mutex for 𝑅𝑘 and suspends.

4. When a resource 𝑅𝑘 is released and the waiting list of the mutex for 𝑅𝑘 is not empty, the

highest-priority task in the waiting list is dequeued and granted 𝑅𝑘.

4.2 Limitations

As described in Section 3, each GPU access segment contains various operations, including data

copies, notifications, and GPU computation. Specifically, a task may suspend when CPU interven-

tion is not required, e.g., during GPU kernel execution, to save CPU cycles. However, under the

synchronization-based approach, any task in its GPU access segment (i.e., running within a critical

section after acquiring the lock) should “busy-wait” for any operation conducted on the GPU in

order to ensure timing predictability. This is because most real-time synchronization protocols and

their analyses, such as MPCP [37], FMLP [9], FMLP+ [10] and OMLP [12], assume that (i) a crit-

ical section is executed entirely on the CPU, and (ii) there is no suspension during the execution of

the critical section. Hence, during its GPU kernel execution, the task is not allowed to suspend even

when no CPU intervention is required.2 For example, while the GPUSync implementation [17] can

be configured to suspend instead of busy-wait during GPU kernel execution at runtime, its analysis

uses a suspension-oblivious approach that does not incorporate benefits from self-suspension during

GPU execution. As the time for GPU kernel execution and data transmission by DMA increases,

the CPU time loss under the synchronization-based approach is therefore expected to increase. The

analyses of those protocols could possibly be modified to allow suspension within critical sections,

at the potential expense of increased pessimism.3

Some synchronization protocols, such as MPCP [37], FMLP [9] and FMLP+ [11], use priority

boosting (either restricted or unrestricted) as a progress mechanism to prevent unbounded priority

2These protocols allow suspension while waiting for lock acquisition.
3The analyses for MPCP [29] and FMLP+ [10] under partitioned scheduling show that, whenever a task resumes

from suspension, it may experience priority inversion from local tasks with higher boosted priorities. Hence, allowing
self-suspension within critical sections under these protocols will likely increase chances of priority inversion and
requires a change in the task model to limit the number of suspensions. Note that this however does not affect the
asymptotic optimality of FMLP+, as reported in [11].

8

Î�

Î�

Î�

GPU

CPU

Core

1

CPU

Core

2

Normal exec. segment Misc. GPU operation GPU computation Busy waiting

GPU req.

Response time of task ìÛ: 9

GPU req.

GPU req.

Busy wait

Busy wait

Busy wait

Global priority
ceiling

0 1 2 3 4 5 6 7 8 9 10 11 12

Global priority ceiling

s� s� s�

Global priority
ceiling

Figure 2: Example schedule of GPU-using tasks under the synchronization-based approach with
MPCP

inversion. However, the use of priority boosting could cause another problem we call “long priority

inversion”. We describe this problem with the example in Figure 2. There are three tasks, 𝜏ℎ, 𝜏𝑚,

and 𝜏𝑙, that have high, medium, and low priorities, respectively. Each task has one GPU access

segment that is protected by MPCP and executed between two normal execution segments. 𝜏ℎ and

𝜏𝑚 are allocated to Core 1, and 𝜏𝑙 is allocated to Core 2.

Task 𝜏𝑙 is released at time 0 and makes a GPU request at time 1. Since there is no other task

using the GPU at that point, 𝜏𝑙 acquires the mutex for the GPU and enters its GPU access segment.

𝜏𝑙 then executes with the global priority ceiling associated with the mutex (priority boosting). Note

that while the GPU kernel of 𝜏𝑙 is executed, 𝜏𝑙 also consumes CPU cycles due to the busy-waiting

requirement of the synchronization-based approach. Tasks 𝜏𝑚 and 𝜏ℎ are released at time 2 and

3, respectively. They make GPU requests at time 3 and 4, but the GPU cannot be granted to

either of them because it is already held by 𝜏𝑙. Hence, 𝜏𝑚 and 𝜏ℎ suspend. At time 5, 𝜏𝑙 releases

the GPU mutex, and 𝜏ℎ acquires the mutex next because it has higher priority than 𝜏𝑚. At time

8, 𝜏ℎ finishes its GPU segment, releases the mutex, and restores its normal priority. Next, 𝜏𝑚

acquires the mutex, and preempts the normal execution segment of 𝜏ℎ because the global priority

ceiling of the mutex is higher than 𝜏ℎ’s normal priority. Hence, although the majority of 𝜏𝑚’s GPU

segment merely performs busy-waiting, the execution of the normal segment of 𝜏ℎ is delayed until

the GPU access segment of 𝜏𝑚 finishes. Finally, 𝜏ℎ completes its normal execution segment at time

12, making the response time of 𝜏ℎ 9 in this example.

9

GPU Server Task

GPU request queue

Task Î�

Data

Command

GPU

Code

J Order reqs.

 in task priority

GPU access
segment

Memory region info

(e.g., shared mem ID)

Shared
memory

region

Î�

Î�

� Request to the

 GPU server task

� Execute the highest

 priority GPU request

Figure 3: GPU access procedure under our server-based approach

5 Server-based GPU Access Control

We present our server-based approach for predictable GPU access control. This approach addresses

the two main limitations of the synchronization-based approach, namely, busy waiting and long

priority inversion.

5.1 GPU Server Design

Our server-based approach creates a GPU server task that handles GPU access requests from other

tasks on their behalf. The GPU server is assigned the highest priority in the system, which is

to prevent preemptions by other tasks. Figure 3 shows the sequence of GPU request handling

under our server-based approach. First, when a task 𝜏𝑖 enters its GPU access segment, it makes

a GPU access request to the GPU server, not to the GPU device driver. The request is made by

sending the memory region information for the GPU access segment, including input/output data,

commands and code for GPU kernel execution to the server task. This requires the memory regions

to be configured as shared regions so that the GPU server can access them with their identifiers,

e.g., shmid. After sending the request to the server, 𝜏𝑖 suspends, allowing other tasks to execute.

Secondly, the server enqueues the received request into the GPU request queue, if the GPU is

being used by another request. The GPU request queue is a priority queue, where elements are

ordered in their task priorities. Thirdly, once the GPU becomes free, the server dequeues a request

from the head of the queue and executes the corresponding GPU segment. During CPU-inactive

time, e.g., data copy with DMA and GPU kernel execution, the server suspends to save CPU

cycles in synchronous mode. In asynchronous mode, the server performs remaining miscellaneous

CPU operations of the request being handled, i.e., asynchronous execution part, and suspends after

completing them. This approach allows the GPU server to offer the same level of parallelism as

10

GPU req.

GPU req.

GPU req.

Suspend

Suspend

Suspend

Response time of task ìÛ: 6+4x
x

Î� Î� Î�

Î�

Î�

Î�

GPU

CPU

Core

1

CPU

Core

2

GPU

server

0 1 2 3 4 5 6 7 8 9 10 11 12

Normal exec. segment Misc. GPU operation GPU computation Svr. overhead

Figure 4: Example schedule under our server-based approach

in the asynchronous mode of the synchronization-based approach.4 When the request finishes, the

server notifies the completion of the request and wakes up the task 𝜏𝑖. Finally, 𝜏𝑖 resumes its

execution.

The use of the GPU server task inevitably introduces the following additional computational

costs: (i) sending a GPU request to the server and waking up the server task, (ii) enqueueing the

request and checking the request queue to find the highest-priority GPU request, and (iii) notifying

the completion of the request to the corresponding task. We use the term 𝜖 to characterize the

GPU server overhead that upper-bounds these computational costs.

Figure 4 shows an example of task scheduling under our server-based approach. This example

has the same configuration as the one in Figure 2 and uses synchronous mode for GPU access.5

The GPU server, which the server-based approach creates, is allocated to Core 1. Each GPU access

segment has two sub-segments of miscellaneous operations, each of which is assumed to amount to

𝜖.

At time 1, the task 𝜏𝑙 makes a GPU access request to the server task. The server receives the

request and executes the corresponding GPU access segment at time 1 + 𝜖, where 𝜖 represents the

overhead of the GPU server. Since the server-based approach does not require tasks to busy-wait,

4Note that achieving parallelism beyond this level is not in the scope of this paper. For example, if one wants to
develop a task utilizing more than one CPU cores during its GPU execution, the corresponding GPU segment needs
to be programmed with multithreads, which is different from our task model and needs additional research efforts to
guarantee real-time predictability.

5The GPU server supports both synchronous and asynchronous GPU access.

11

𝜏𝑙 suspends until the completion of its GPU request. The GPU request of 𝜏𝑚 at time 3 is enqueued

into the request queue of the server. As the server executes with the highest priority in the system,

it delays the execution of 𝜏ℎ released at time 3 by 𝜖. Hence, 𝜏ℎ starts execution at time 3 + 𝜖 and

makes a GPU request at time 4 + 𝜖. When the GPU access segment of 𝜏𝑙 completes, the server task

is notified. The server then notifies the completion of the GPU request to 𝜏𝑙 and wakes it up, and

subsequently executes the GPU access segment of 𝜏ℎ at time 5 + 2𝜖. The task 𝜏ℎ suspends until

its GPU request finishes. The GPU access segment of 𝜏ℎ finishes at time 8 + 2𝜖 and that of 𝜏𝑚

starts at time 8 + 3𝜖. Unlike the case under the synchronization-based approach, 𝜏ℎ can continue

to execute its normal execution segment from time 8 + 3𝜖, because 𝜏𝑚 suspends and the priority of

𝜏𝑚 is not boosted. The task 𝜏ℎ finishes its normal execution segment at time 9 + 4𝜖, and hence, the

response time of 𝜏ℎ is 6 + 4𝜖. Recall that the response time of 𝜏ℎ is 9 for the same taskset under

the synchronization-based approach, as shown in Figure 2. Therefore, we can conclude that the

server-based approach provides a shorter response time than the synchronization-based approach

for this example taskset, if the value of 𝜖 is under 3/4 time units, which, as measured in Section 6.2,

is a very pessimistic value for 𝜖.

5.2 Schedulability Analysis

We analyze task schedulability under our server-based approach. Since all the GPU requests of

tasks are handled by the GPU server, we first identify the GPU request handling time for the

server. The following properties hold for the server-based approach:

Lemma 1. The GPU server task imposes up to 2𝜖 of extra CPU time on each GPU request.

Proof. As the GPU server intervenes before and after the execution of each GPU segment, each

GPU request can cause at most 2𝜖 of overhead in the worst case. Note that the cost of issuing

the GPU request as well as triggering self-suspension within the 𝑗-th GPU segment of 𝜏𝑖 is already

taken into account by 𝐺𝑚
𝑖,𝑗 , as described in Section 3. �

When a task 𝜏𝑖 makes a GPU request, the GPU may be already handling a request from another

task. Since the GPU executes in a non-preemptive manner, 𝜏𝑖’s request must wait for the completion

of the currently-handled request. There may also be multiple pending requests that are prioritized

over 𝜏𝑖’s request, and it has to wait for the completion of such requests. As a result, 𝜏𝑖 experiences

waiting time for GPU access, which we define as follows:

Definition 1. The waiting time for a GPU access segment of a task 𝜏𝑖 is the interval between the

time when that segment is released and the time when it begins execution.

12

Lemma 2. The maximum handling time of all GPU requests of a single job of a task 𝜏𝑖 by the

GPU server is given as follows:

𝐵𝑔𝑝𝑢
𝑖 =

⎧⎨⎩ 𝐵𝑤
𝑖 + 𝐺𝑖 + 2𝜂𝑖𝜖 : 𝜂𝑖 > 0

0 : 𝜂𝑖 = 0
(1)

where 𝜂𝑖 is the number of GPU access segments of 𝜏𝑖 and 𝐵𝑤
𝑖 is an upper bound on the total waiting

time for all 𝜂𝑖 GPU segments of 𝜏𝑖.

Proof. If 𝜂𝑖 > 0, the 𝑗-th GPU request of 𝜏𝑖 is handled after some waiting time, and then takes

𝐺𝑖,𝑗 + 2𝜖 to complete the execution (by Lemma 1). Hence, the maximum handling time of all GPU

requests of 𝜏𝑖 is 𝐵𝑤
𝑖 +

∑︀𝜂𝑖

𝑗=1(𝐺𝑖,𝑗 + 2𝜖) = 𝐵𝑤
𝑖 + 𝐺𝑖 + 2𝜂𝑖𝜖. If 𝜂𝑖 = 0, 𝐵𝑔𝑝𝑢

𝑖 is obviously zero. �

In order to tightly upper-bound the total waiting time 𝐵𝑤
𝑖 , we adopt the double-bounding ap-

proach used in [23, 24]. The double-bounding approach consists of two analysis methods: request-

driven and job-driven. The request-driven analysis focuses on the worst-case waiting time that

can be imposed on each request of 𝜏𝑖, and computes an upper bound on the total waiting time

by adding up all the per-request waiting time. On the other hand, the job-driven analysis focuses

on the amount of waiting time that can be possibly given by other interfering tasks during 𝜏𝑖’s

job execution, and takes the maximum of this value as an upper bound of the total waiting time.

These two analyses do not dominate one another. Hence, the double-bounding approach takes the

minimum of the two to provide a tighter upper bound. The total waiting time 𝐵𝑤
𝑖 for all GPU

requests of a task 𝜏𝑖 is therefore:

𝐵𝑤
𝑖 = min(𝐵𝑟𝑑

𝑖 , 𝐵𝑗𝑑
𝑖) (2)

where 𝐵𝑟𝑑
𝑖 and 𝐵𝑗𝑑

𝑖 are the results obtained by the request-driven and job-driven analyses, respec-

tively.6 Note that 𝐵𝑟𝑑
𝑖 is the sum of the maximum waiting time for each GPU request of 𝜏𝑖, i.e.,

𝐵𝑟𝑑
𝑖 =

∑︀
1≤𝑗≤𝜂𝑖

𝐵𝑟𝑑
𝑖,𝑗 .

Lemma 3. [Request-driven analysis] The maximum waiting time for the 𝑗-th GPU segment of a

task 𝜏𝑖 under the server-based approach is bounded by the following recurrence:

𝐵𝑟𝑑,𝑛+1
𝑖,𝑗 = max

𝜋𝑙<𝜋𝑖∧1≤𝑘≤𝜂𝑙

(𝐺𝑙,𝑘 + 𝜖) +
∑︁

𝜋ℎ>𝜋𝑖∧1≤𝑘≤𝜂ℎ

(︃⌈︃
𝐵𝑟𝑑,𝑛

𝑖,𝑗

𝑇ℎ

⌉︃
+ 1

)︃
(𝐺ℎ,𝑘 + 𝜖) (3)

where 𝐺𝑙,𝑘 is the maximum duration of the 𝑘-th GPU segment of 𝜏𝑙 and 𝐵𝑟𝑑,0
𝑖,𝑗 = max𝜋𝑙<𝜋𝑖∧1≤𝑘≤𝜂𝑙

(𝐺𝑙,𝑘+

𝜖) (the first term of the equation).

Proof. When 𝜏𝑖, the task under analysis, makes a GPU request, the GPU may be handling a

6Our initial work in [25] uses only the request-driven analysis to bound the total waiting time, i.e., 𝐵𝑤
𝑖 = 𝐵𝑟𝑑

𝑖 .

13

request from a lower-priority task, which 𝜏𝑖 has to wait for completion due to the non-preemptive

nature of the GPU. Hence, the longest GPU access segment from all lower-priority tasks needs to

be considered as the waiting time in the worst case. Here, only one 𝜖 of overhead is caused by the

GPU server because other GPU requests will be immediately followed and the GPU server needs

to be invoked only once between two consecutive GPU requests, as depicted in Figure 4. This is

captured by the first term of the equation.

During the waiting time of 𝐵𝑟𝑑
𝑖,𝑗 , higher-priority tasks can make GPU requests to the server.

As there can be at most one carry-in request from each higher-priority task 𝜏ℎ during 𝐵𝑟𝑑
𝑖,𝑗 , the

maximum number of GPU requests made by 𝜏ℎ is bounded by
∑︀𝜂ℎ

𝑢=1(⌈𝐵𝑟𝑑
𝑖,𝑗/𝑇ℎ⌉ + 1). Multiplying

each element of this summation by 𝐺ℎ,𝑘 + 𝜖 therefore gives the maximum waiting time caused by

the GPU requests of 𝜏ℎ, which is exactly used as the second term of the equation. �

Lemma 4. [Job-driven analysis] The maximum waiting time given by the GPU requests of other

tasks during a single job execution of a task 𝜏𝑖 under the server-based approach is given by:

𝐵𝑗𝑑
𝑖 = 𝜂𝑖 · max

𝜋𝑙<𝜋𝑖∧1≤𝑘≤𝜂𝑙

(𝐺𝑙,𝑘 + 𝜖) +
∑︁

𝜋ℎ>𝜋𝑖∧1≤𝑘≤𝜂ℎ

(︂⌈︂
𝑊𝑖

𝑇ℎ

⌉︂
+ 1

)︂
(𝐺ℎ,𝑘 + 𝜖) (4)

where 𝑊𝑖 is the response time of 𝜏𝑖.

Proof. During the execution of any job of 𝜏𝑖, in the worst case, every GPU request of 𝜏𝑖 may wait

for the completion of the longest lower-priority GPU request, which is captured by the first term

of the equation. In addition, due to the priority queue of the GPU server, higher-priority GPU

requests made during the response time of 𝜏𝑖 (𝑊𝑖) can introduce waiting time to the GPU requests

of a single job of 𝜏𝑖. The second term of the equation upper-bounds the maximum waiting time

given by higher-priority GPU requests during 𝑊𝑖, and it can be proved in the same manner as in

the proof of Lemma 3. �

The response time of a task 𝜏𝑖 is affected by the presence of the GPU server on 𝜏𝑖’s core. If 𝜏𝑖

is allocated on a different core than the GPU server, the worst-case response time of 𝜏𝑖 under the

server-based approach is given by:

𝑊𝑛+1
𝑖 =𝐶𝑖 + 𝐵𝑔𝑝𝑢

𝑖 +
∑︁

𝜏ℎ∈P(𝜏𝑖)∧𝜋ℎ>𝜋𝑖

⌈︁𝑊𝑛
𝑖 + (𝑊ℎ − 𝐶ℎ)

𝑇ℎ

⌉︁
𝐶ℎ (5)

where P(𝜏𝑖) is the CPU core on which 𝜏𝑖 is allocated. The recurrence computation terminates when

𝑊𝑛+1
𝑖 = 𝑊𝑛

𝑖 , and 𝜏𝑖 is schedulable if 𝑊𝑛
𝑖 ≤ 𝐷𝑖. To compute 𝐵𝑗𝑑

𝑖 at the 𝑛-th iteration, 𝑊𝑛−1
𝑖 can

be used in Eq. (4). It is worth noting that, as captured in the third term, the GPU segments of

higher-priority tasks do not cause any direct interference to the normal execution segments of 𝜏𝑖

because they are executed by the GPU server that runs on a different core.

14

If 𝜏𝑖 is allocated on the same core as the GPU server, the worst-case response time of 𝜏𝑖 is given

by:

𝑊𝑛+1
𝑖 =𝐶𝑖 + 𝐵𝑔𝑝𝑢

𝑖 +
∑︁

𝜏ℎ∈P(𝜏𝑖)∧𝜋ℎ>𝜋𝑖

⌈︁𝑊𝑛
𝑖 + (𝑊ℎ − 𝐶ℎ)

𝑇ℎ

⌉︁
𝐶ℎ

+
∑︁

𝜏𝑗 ̸=𝜏𝑖∧𝜂𝑗>0

⌈︁𝑊𝑛
𝑖 + {𝐷𝑗 − (𝐺𝑚

𝑗 + 2𝜂𝑗𝜖)}
𝑇𝑗

⌉︁
(𝐺𝑚

𝑗 + 2𝜂𝑗𝜖)

(6)

where 𝐺𝑚
𝑗 is the sum of the WCETs of miscellaneous operations in 𝜏𝑗 ’s GPU access segments, i.e.,

𝐺𝑚
𝑗 =

∑︀𝜂𝑗

𝑘=1 𝐺
𝑚
𝑗,𝑘.

Under the server-based approach, both, the GPU-using tasks, as well as the GPU server task,

can self-suspend. Hence, we use the following lemma given by Bletsas et al. [8] to prove Eqs. (5)

and (6):

Lemma 5. [from [8]] The worst-case response time of a self-suspending task 𝜏𝑖 is upper-bounded

by:

𝑊𝑛+1
𝑖 = 𝐶𝑖 +

∑︁
𝜏ℎ∈P(𝜏𝑖)∧𝜋ℎ>𝜋𝑖

⌈︁𝑊𝑛
𝑖 + (𝑊ℎ − 𝐶ℎ)

𝑇ℎ

⌉︁
𝐶ℎ (7)

Note that 𝐷ℎ can be used instead of 𝑊ℎ in the summation term of Eq. (7) [13].

Theorem 1. The worst-case response time of a task 𝜏𝑖 under the server-based approach is given

by Eqs. (5) and (6).

Proof. To account for the maximum GPU request handling time of 𝜏𝑖, 𝐵𝑔𝑝𝑢
𝑖 is added in both

Eqs. (5) and (6). In the ceiling function of the third term of both equations, (𝑊ℎ − 𝐶ℎ) accounts

for the self-suspending effect of higher-priority GPU-using tasks (by Lemma 5). With these, Eq.(5)

upper-bounds the worst-case response time of 𝜏𝑖 when it is allocated on a different core than the

GPU server.

The main difference between Eq. (6) and Eq. (5) is the last term, which captures the worst-case

interference from the GPU server task. The execution time of the GPU server task is bounded

by summing up the worst-case miscellaneous operations and the server overhead caused by GPU

requests from all other tasks (𝐺𝑚
𝑗 +2𝜂𝑗𝜖). Since the GPU server self-suspends during CPU-inactive

time intervals, adding {𝐷𝑗−(𝐺𝑚
𝑗 + 2𝜂𝑗𝜖)} to 𝑊𝑛

𝑖 in the ceiling function captures the worst-case

self-suspending effect (by Lemma 5). These factors are exactly captured by the last term of Eq. (6).

Hence, it upper-bounds task response time in the presence of the GPU server. �

15

5.3 Task Allocation with the GPU Server

As shown in Eqs. (6) and (5), the response time of a task 𝜏𝑖 with the server-based approach is

affected by the presence of the GPU server on 𝜏𝑖’s core. This implies that, in order to achieve

better schedulability, the GPU server should be considered when allocating tasks to cores.

Under partitioned scheduling, finding the optimal task allocation can be modeled as the bin-

packing problem, which is known to be NP-complete [19]. Hence, bin-packing heuristics, such as

first-fit decreasing and worst-fit decreasing, have been widely used as practical solutions to the

task allocation problem. Such heuristics first sort tasks in decreasing order of utilization and then

allocate them to cores. In case of the GPU server, its utilization depends on the frequency and

length of miscellaneous operations of GPU access segments. Specifically, the utilization of the GPU

server is given by:

𝑈𝑠𝑒𝑟𝑣𝑒𝑟 =
∑︁

∀𝜏𝑖:𝜂𝑖>0

𝐺𝑚
𝑖 + 2𝜂𝑖𝜖

𝑇𝑖
(8)

With this utilization, the GPU server can be sorted and allocated together with other regular tasks

using conventional bin-packing heuristics. We will use this approach for schedulability experiments

in Section 6.3.

6 Evaluation

This section provides our experimental evaluation of the two different approaches for GPU access

control. We first present details about our implementation and describe case study results on a real

embedded platform. Next, we explore the impact of these approaches on task schedulability with

randomly-generated tasksets, by using parameters based on the practical overheads measured from

our implementation.

6.1 Implementation

We implemented prototypes of the synchronization-based and the server-based approaches on a

SABRE Lite board [1]. The board is equipped with an NXP i.MX6 Quad SoC that has four

ARM Cortex-A9 cores and one Vivante GC2000 GPU. We ran an NXP Embedded Linux kernel

version 3.14.52 patched with Linux/RK [34] version 1.67, and used the Vivante v5.0.11p7.4 GPU

driver along with OpenCL 1.1 (Embedded Profile) for general-purpose GPU programming. We also

configured each core to run at its maximum frequency, 1 GHz.

Linux/RK provides a kernel-level implementation of MPCP which we used to implement the

7Linux/RK is available at http://rtml.ece.cmu.edu/redmine/projects/rk/.

16

http://rtml.ece.cmu.edu/redmine/projects/rk/

synchronization-based approach. Under our implementation, each GPU-using task first acquires

an MPCP-based lock, issues memory copy and GPU kernel execution requests in an asynchronous

manner, and uses OpenCL events to busy-wait on the CPU till the GPU operation completes,

before finally releasing the lock.

To implement the server-based approach, we set up shared memory regions between the server

task and each GPU-using task, which are used to share GPU input/output data. POSIX signals are

used by the GPU-using tasks and the server to notify GPU requests and completions, respectively.

The server has an initialization phase, during which, it initializes shared memory regions and

obtains GPU kernels from the GPU binaries (or source code) of each task. Subsequently, the

server uses these GPU kernels whenever the corresponding task issues a GPU request. As the

GPU driver allows suspensions during GPU requests, the server task issues memory copy and GPU

kernel execution requests in an asynchronous manner, and suspends by calling the clFinish() API

function provided by OpenCL.

GPU Driver and Task-Specific Threads. The OpenCL implementation on the i.MX6 platform

spawns user-level threads in order to handle GPU requests and to notify completions. Under the

synchronization-based approach, OpenCL spawns multiple such threads for each GPU-using task,

whereas under the server-based approach, such threads are spawned only for the server task. To

eliminate possible scheduling interference, the GPU driver process, as well as the spawned OpenCL

threads, are configured to run at the highest real-time priority in all our experiments.

6.2 Practical Evaluation

Overheads. We measured the practical worst-case overheads for both the approaches in order

to perform schedulability analysis. Each worst-case overhead measurement involved examining

100,000 readings of the respective operations measured on the i.MX6 platform. Figure 5 shows the

mean and 99.9th percentile of the MPCP lock operations and Figure 6 shows the same for server

related overheads.

Under the synchronization-based approach with MPCP, overhead occurs while acquiring and

releasing the GPU lock. Under the server-based approach, overheads involve waking up the server

task, performing priority queue operations (i.e., server execution delay), and notifying completion

to wake up the GPU-using task after finishing GPU computation.

To safely take into consideration the worst-case overheads, we use the 99.9th percentile measure-

ments for each source of delay in our experiments. This amounts to a total of 14.0 𝜇s lock-related

delay under the synchronization-based approach, and a total of 44.97 𝜇s delay for the server task

under the server-based approach.

Case Study. We present a case study motivated by the software system of the self-driving car devel-

17

0

1

2

3

4

5

6

7

Acquire Release
m

ic
ro

se
co

n
d

s
(u

s)

Mean 99.9th percentile

Figure 5: MPCP lock overhead

Table 1: Tasks used in the case study

Task 𝜏𝑖 Task name 𝐶𝑖 (in ms) 𝜂𝑖 𝐺𝑖 (in ms) 𝑇𝑖 = 𝐷𝑖 (in ms) Core Priority
𝜏1 workzone 20 2 𝐺1,1 = 95, 𝐺1,2 = 47 300 0 70
𝜏2 cpu matmul1 215 0 0 750 0 67
𝜏3 cpu matmul2 102 0 0 300 1 69
𝜏4 gpu matmul1 0.15 1 𝐺4,1 = 19 600 1 68
𝜏5 gpu matmul2 0.15 1 𝐺5,1 = 38 1000 1 66

oped at CMU [40]. Among various algorithmic tasks of the car, we chose a GPU accelerated version

of the workzone recognition algorithm [31] (workzone) that periodically processes images collected

from a camera. Two GPU-based matrix multiplication tasks (gpu matmul1 and gpu matmul2), and

two CPU-bound tasks (cpu matmul1 and cpu matmul2) are also used to represent a subset of other

tasks of the car. Unique task priorities are assigned based on the Rate-Monotonic policy [32] and

each task is pinned to a specific core as described in Table 1. Of these, the workzone task has

two GPU segments per job whereas both the GPU-based matrix multiplication tasks have a single

GPU segment. Under the server-based approach, the server task is pinned to CPU Core 1 and is

run with real-time priority 80. In order to avoid unnecessary interference while recording traces,

the task-specific OpenCL threads are pinned on a separate CPU core for both approaches. All

tasks are released at the same time using Linux/RK APIs. CPU scheduling is performed using

the SCHED FIFO policy, and CPU execution traces are collected for one hyperperiod (3,000 ms) as

shown in Figure 7.

The CPU-execution traces for the synchronization and server-based approaches are shown in

Figure 7(a) and Figure 7(b), respectively. Tasks executing on Core 0 are shown in blue whereas

tasks executing on Core 1 are shown in red. It is immediately clear that the server-based approach

allows suspension of tasks while they are waiting for the GPU request to complete. In particular,

18

0

5

10

15

20

25

Wake up server Server execution
delay

Wake up task

m
ic

ro
se

co
n

d
s

(u
s)

Mean 99.9th percentile

Figure 6: Server task overheads

Table 2: Base parameters for taskset generation

Parameters Values
Number of CPU cores (𝑁𝑃) 4, 8
Number of tasks (𝑛) [2𝑁𝑃 , 5𝑁𝑃]
Task utilization (𝑈𝑖) [0.05, 0.2]
Task period and deadline (𝑇𝑖 = 𝐷𝑖) [30, 500] ms
Percentage of GPU-using tasks [10, 30] %
Ratio of GPU segment len. to normal WCET (𝐺𝑖/𝐶𝑖) [10, 30] %
Number of GPU segments per task (𝜂𝑖) [1, 3]
Ratio of misc. operations in 𝐺𝑖,𝑗 (𝐺𝑚

𝑖,𝑗/𝐺𝑖,𝑗) [10, 20] %

GPU server overhead (𝜖) 50 𝜇s

we make the following key observations from the case study:

1. Under the synchronization-based approach, tasks suspend when they wait for the GPU lock

to be released, but they do not suspend while using the GPU. On the contrary, under the

server-based approach, tasks suspend even when their GPU segments are being executed. The

results show that our proposed server-based approach can be successfully implemented and

used on a real platform.

2. The response time of cpu matmul1 under the synchronization-based approach is significantly

larger than that under the server-based approach, i.e., 520.68 ms vs. 219.09 ms in the worst

case, because of the busy-waiting problem discussed in Section 4.2.

6.3 Schedulability Experiments

Taskset Generation. We used 10,000 randomly-generated tasksets for each experimental setting.

Unless otherwise mentioned, the base parameters given in Table 2 are used for taskset generation.

19

(a) Synchronization-based Approach (MPCP)

(b) Server-based Approach

Figure 7: Task execution timeline during one hyperperiod (3,000 ms)

The GPU-related parameters are inspired from the observations from our case study and the GPU

workloads used in prior work [21, 22]. Other task parameters are similar to those used in the

literature. Systems with four and eight CPU cores (𝑁𝑃 = {4, 8}) are considered. For each taskset,

𝑛 tasks are generated where 𝑛 is uniformly distributed over [2𝑁𝑃 , 5𝑁𝑃]. A subset of the generated

tasks is chosen at random, corresponding to the specified percentage of GPU-using tasks, to include

GPU segments. Task period 𝑇𝑖 and utilization 𝑈𝑖 are randomly selected from the defined minimum

and maximum period ranges. Task deadline 𝐷𝑖 is set equal to 𝑇𝑖. Recall that the utilization of

a task 𝜏𝑖 is defined as 𝑈𝑖 = (𝐶𝑖 + 𝐺𝑖)/𝑇𝑖. If 𝜏𝑖 is a CPU-only task, 𝐶𝑖 is set to 𝑈𝑖 · 𝑇𝑖 and 𝐺𝑖 is

set to zero. If 𝜏𝑖 is a GPU-using task, the given ratio of the accumulated GPU segment length to

the WCET of normal segments is used to determine the values of 𝐶𝑖 and 𝐺𝑖. 𝐺𝑖 is then split into

𝜂𝑖 random-sized pieces, where 𝜂𝑖 is the number of 𝜏𝑖’s GPU segments chosen randomly from the

specified range. For each GPU segment 𝐺𝑖,𝑗 , the values of 𝐺𝑒
𝑖,𝑗 and 𝐺𝑚

𝑖,𝑗 are determined by the ratio

of miscellaneous operations given in Table 2, assuming 𝐺𝑖,𝑗 = 𝐺𝑒
𝑖,𝑗 + 𝐺𝑚

𝑖,𝑗 . Finally, task priorities

are assigned by the Rate-Monotonic policy [32], with arbitrary tie-breaking.

Results. We captured the percentage of schedulable tasksets where all tasks met their deadlines.

For the synchronization-based approach, two multiprocessor locking protocols are used: MPCP and

FMLP+. Schedulability under MPCP and FMLP+ is tested using the analysis developed by Laksh-

manan et al. [29] and Brandenburg [10]8, respectively. Both analyses are appropriately modified

based on the correction by Chen et al. [13]. We considered both zero and non-zero locking over-

8We used the FMLP+ analysis for preemptive partitioned fixed-priority scheduling given in Section 6.4.3 of [10].

20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of GPU segment to length to WCET (%)

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of GPU segment to length to WCET (%)

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 8: Schedulability w.r.t. the GPU segment length

head under the synchronization-based approach, but there was no appreciable difference between

them. Hence, only the results with zero overhead are presented in the paper. Tasks are allocated to

cores by using the worst-fit decreasing (WFD) heuristic in order to balance the load across cores.

Under the server-based approach, the GPU server is allocated along with other tasks by WFD.

Eqs. (5) and (6) are used for task schedulability tests. We set the GPU server overhead 𝜖 to 50 𝜇s,

which is slightly larger than the measured overheads from our implementation presented in Sec-

tion 6.2. Two versions of the GPU server are considered to show the analytical improvement of

this work: Server-RD, which is our initial work [25] using only the request-driven approach, and

Server-RD+JD, which is the one newly proposed in this paper. Unless otherwise mentioned, we will

limit our focus to Server-RD+JD and call it as the server-based approach.

Figure 8 shows the percentage of schedulable tasksets as the ratio of the accumulated GPU

segment length (𝐺𝑖) increases. In general, the percentage of schedulable tasksets is higher when

𝑁𝑃 = 4, compared to when 𝑁𝑃 = 8. This is because the GPU is contended for by more tasks as

the number of cores increases. The server-based approach outperforms both of the synchronization-

based approaches (MPCP and FMLP+) in all cases of Figure 8. This is mainly due to the fact that

the server-based approach allows other tasks to use the CPU while the GPU is being used. While

MPCP generally performs worse than FMLP+ in our experiments, we suspect that this is due to

the pessimism in the analysis [29] that computes an upper bound by the sum of the maximum

per-request delay, similarly to the request-driven analysis shown in Eq. 3. If it is extended with the

job-driven analysis like Eq. 4, its performance will likely be improved.

Figure 9 shows the percentage of schedulable tasksets as the percentage of GPU-using tasks

increases. The left-most point on the x-axis represents that all tasks are CPU-only tasks, and the

right-most point represents that all tasks access the GPU. Under all approaches, the percentage of

schedulable tasksets reduces as the percentage of GPU-using tasks increases. However, the server-

based approach significantly outperforms the other approaches, with as much as 38% and 27%

21

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Percentage of GPU-using tasks (%)

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Percentage of GPU-using tasks (%)

MPCP

FMLP+

Server-RD+JD

Server-RD

(b) 𝑁𝑃 = 8

Figure 9: Schedulability w.r.t. the percentage of GPU-using tasks

0

20

40

60

80

100

8 12 16 20 24 28 32 36 40 44

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Number of tasks

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

16 24 32 40 48 56 64 72 80 88

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Number of tasks

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 10: Schedulability w.r.t. the number of tasks

more tasksets being schedulable than MPCP and FMLP+, respectively, when the percentage of

GPU-using tasks is 70% and 𝑁𝑃 = 4.

The benefit of the server-based approach is also observed with changes in other task parameters.

In Figure 10, the percentage of schedulable tasksets is illustrated as the number of tasks increases.

While the difference in schedulability between the server and FMLP+ is rather small when 𝑁𝑃 = 4,

it becomes larger when 𝑁𝑃 = 8. This happens because the total amount of the CPU-inactive time

in GPU segments increases as more tasks are considered. A similar observation is also seen in

Figure 11, where the number of GPU access segments per task varies. Here, the different is much

noticeable as more GPU segments create larger CPU-inactive time, which is favorable to the server-

based approach.

The base task utilization given in Table 2 follows a uniform distribution. In Figure 12, we

evaluate with bimodal distributions where the utilization of small tasks is chosen from [0.05, 0.2]

and that of large tasks is chosen from [0.2, 0.5]. The x-axis of each sub-figure in Figure 12 shows

the ratio of small tasks to large tasks in each taskset. While the server-based approach has higher

schedulability for fewer large tasks, the gap gets smaller and the percentage of schedulable tasksets

22

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Number of GPU segments per task

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Number of GPU segments per task

MPCP FMLP+

Server-RD Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 11: Schedulability w.r.t. the number of GPU segments

0

20

40

60

80

100

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of small tasks to large tasks

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of small tasks to large tasks

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 12: Schedulability w.r.t. the ratio of small tasks to large tasks

under all approaches goes down to zero as the ratio of large tasks increases, due to the high resulting

utilization of generated tasksets.

We next investigate the factors that negatively impact the performance of the server-based

approach. The GPU server overhead 𝜖 is obviously one such factor. Although an 𝜖 of 50 𝜇s that

we used in prior experiments is sufficient enough to upper-bound the GPU server overhead in most

practical systems, we further investigate with larger 𝜖 values. Figure 13 shows the percentage of

schedulable tasksets as the GPU server overhead 𝜖 increases. Since 𝜖 exists only under the server-

based approach, the performance of MPCP and FMLP+ is unaffected by this factor.9 On the other

hand, the performance of the server-based approach deteriorates as the overhead increases.

The length of miscellaneous operations in GPU access segments is another factor degrading

the performance of the server-based approach because miscellaneous operations require the GPU

server to consume a longer CPU time. Figure 14 shows the percentage of schedulable tasksets as

the ratio of miscellaneous operations in GPU access segments increases. As the analyses of MPCP

9Only a small fluctuation in schedulability of synchronization-based approaches (< 1%) exists due to the nature
of random parameters.

23

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

GPU server overhead (1U�u���)

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

GPU server overhead (1U�u���)

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 13: Schedulability w.r.t. the GPU server overhead (𝜖)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of misc. operations in GPU segment (%)

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Ratio of misc. operations in GPU segment (%)

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 14: Schedulability w.r.t. the ratio of miscellaneous operations in GPU access segments

and FMLP+ require tasks to busy-wait during their entire GPU access, their performance remains

unaffected. On the other hand, as expected, the performance of the server-based approach degrades

as the ratio of miscellaneous operations increases. Specifically, starting from the ratio of 60% at

𝑁𝑃 = 4 and 90% at 𝑁𝑃 = 8, the server-based approach underperforms FMLP+. However, we

expect that such a high ratio of miscellaneous operations in GPU segments is hardly observable

in practical GPU applications because memory copy is typically done by DMA and GPU kernel

execution takes the majority time of GPU segments.

Lastly, we evaluate the impact of task periods in schedulability. Recall that task periods are

uniformly chosen from [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], where 𝑇𝑚𝑖𝑛 = 20 ms and 𝑇𝑚𝑎𝑥 = 500 ms in our base parame-

ters. In this experiment, we fix 𝑇𝑚𝑎𝑥 to 500 ms and vary the value of 𝑇𝑚𝑖𝑛. The results are shown

in Figure 15. Interestingly, the server-based approach outperforms FMLP+ until 𝑇𝑚𝑖𝑛 reaches

80ms at 𝑁𝑃 = 4 and 160 ms at 𝑁𝑃 = 8, but it starts to underperform afterwards. We suspect

that this is mainly due to the rate-monotonic (RM) priority assignment used in our experiments

and the request ordering policies of the GPU server and FMLP+. The priority-based ordering of

the GPU server favors higher-priority tasks and the FIFO ordering of FMLP+ ensures fairness in

24

0

20

40

60

80

100

5 10 20 40 80 160 320

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Minimum task period (msec)

MPCP

FMLP+

Server-RD

Server-RD+JD

(a) 𝑁𝑃 = 4

0

20

40

60

80

100

5 10 20 40 80 160 320

S
ch

e
d

u
la

b
le

 t
a

sk
se

ts
 (

%
)

Minimum task period (msec)

MPCP

FMLP+

Server-RD

Server-RD+JD

(b) 𝑁𝑃 = 8

Figure 15: Schedulability w.r.t. the minimum task period

waiting time. If there is a large difference in task periods, it is better to give shorter waiting time

to higher-priority tasks as they have shorter periods (and implicit deadlines) under RM. On the

other hand, if the difference in task periods is relatively small, fair waiting time for tasks is likely to

improve overall schedulability. There has been a long debate on priority-based and FIFO ordering

in the literature. Further discussion on this issue is beyond the scope of the paper, and we leave

the extension of the GPU server with FIFO ordering as part of future work.

In summary, the server-based approach outperforms the synchronization-based approach using

MPCP and FMLP+ in most cases where realistic parameters are used. Specifically, the benefit

of the server-based approach is significant when the percentage of GPU-using tasks is high, the

number of GPU segments per tasks is large. However, we do find that the server-based approach

does not dominate the synchronization-based approach. The synchronization-based approach may

result in better schedulability than the server-based approach when the GPU server overhead or the

ratio of miscellaneous operations in GPU segments is beyond the range of practical values (under

MPCP and FMLP+) and the range of task period is relatively small (under FMLP+).

7 Conclusions

In this paper, we have presented a server-based approach for predictable CPU access control

in real-time embedded and cyber-physical systems. It is motivated by the limitations of the

synchronization-based approach, namely busy-waiting and long priority inversion. By introduc-

ing a dedicated server task for GPU request handling, the server-based approach addresses those

limitations, while ensuring the predictability and analyzability of tasks. The implementation and

case study results on an NXP i.MX6 embedded platform indicate that the server-based approach

can be implemented with acceptable overhead and performs as expected with a combination of

CPU-only and GPU-using tasks. Experimental results show that the server-based approach yields

25

significant improvements in task schedulability over the synchronization-based approach in most

cases. Other types of accelerators such as DSPs and FPGAs can also benefit from our approach.

Our proposed server-based approach offers several interesting directions for future work. First,

while we focus on a single GPU in this work, the server-based approach can be extended to multi-

GPU and multi-accelerator systems. One possible way is to create a GPU server for each of the

GPUs and accelerators, and allocating a subset of GPU-using tasks to each server. The optimization

and dynamic adjustment of servers considering task allocation, overhead, and access duration is

worthy of investigation. Secondly, the server-based approach can facilitate an efficient co-scheduling

of GPU kernels. For instance, the latest NVIDIA GPU architectures can schedule multiple GPU

kernels concurrently only if they belong to the same address space [2], and the use of the GPU

server satisfies this requirement, just as MPS [33] does. Thirdly, as the GPU server has a central

knowledge of all GPU requests, other features like GPU fault tolerance and power management can

be developed. Lastly, the server-based approach can be extended to a virtualization environment

and compared against virtualization-aware synchronization protocols [26]. We plan to explore these

topics in the future.

References

[1] i.MX6 Sabre Lite by Boundary Devices. https://boundarydevices.com/.

[2] NVIDIA GP100 Pascal Whitepaper. http://www.nvidia.com.

[3] NVIDIA Jetson TX1/TX2 Embedded Platforms. http://www.nvidia.com.

[4] NXP i.MX6 Processors. http://www.nxp.com.

[5] QNX RTOS. http://www.qnx.com.

[6] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2:

Hidden details revealed. In IEEE Real-Time Systems Symposium (RTSS), 2017.

[7] N. Audsley and K. Bletsas. Realistic analysis of limited parallel software/hardware implementations. In IEEE

Real-Time Technology and Applications Symposium (RTAS), 2004.

[8] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen. Errata for three papers (2004-05) on

fixed-priority scheduling with self-suspensions. Technical Report CISTER-TR-150713, CISTER, 2015.

[9] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible real-time locking protocol for multi-

processors. In IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

2007.

[10] B. Brandenburg. Scheduling and locking in multiprocessor real-time operating systems. PhD thesis, University

of North Carolina, Chapel Hill, 2011.

[11] B. Brandenburg. The FMLP+: An asymptotically optimal real-time locking protocol for suspension-aware

analysis. In Euromicro Conference on Real-Time Systems (ECRTS), 2014.

26

https://boundarydevices.com/
http://www.nvidia.com
http://www.nvidia.com
http://www.nxp.com
http://www.qnx.com

[12] B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols.

Design Automation for Embedded Systems, 17(2):277–342, 2013.

[13] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard, F. Ridouard,

N. Audsley, R. Rajkumar, and D. Niz. Many suspensions, many problems: A review of self-suspending tasks in

real-time systems. Technical Report 854, Department of Computer Science, TU Dortmund, 2016.

[14] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı. rCUDA: Reducing the number of GPU-based

accelerators in high performance clusters. In International Conference on High Performance Computing and

Simulation (HPCS), pages 224–231, 2010.

[15] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Systems,

48(1):34–74, 2012.

[16] G. Elliott and J. Anderson. An optimal 𝑘-exclusion real-time locking protocol motivated by multi-GPU systems.

Real-Time Systems, 49(2):140–170, 2013.

[17] G. Elliott, B. C. Ward, and J. H. Anderson. GPUSync: A framework for real-time GPU management. In IEEE

Real-Time Systems Symposium (RTSS), 2013.

[18] General Dynamics. OKL4 Microvisor. http://ok-labs.com.

[19] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for

simple one-dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–325, 1974.

[20] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU

execution model for runtime engines. In IEEE Real-Time Systems Symposium (RTSS), 2011.

[21] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph: GPU scheduling for real-time multi-

tasking environments. In USENIX Annual Technical Conference (ATC), 2011.

[22] S. Kato, M. McThrow, C. Maltzahn, and S. A. Brandt. Gdev: First-class GPU resource management in the

operating system. In USENIX Annual Technical Conference (ATC), 2012.

[23] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding and reducing memory

interference in COTS-based multi-core systems. Real-Time Systems, 52(3):356–395, 2016.

[24] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R. Rajkumar. Bounding memory interference

delay in cots-based multi-core systems. In IEEE Real-Time Technology and Applications Symposium (RTAS),

2014.

[25] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based approach for predictable GPU access control.

In IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2017.

[26] H. Kim, S. Wang, and R. Rajkumar. vMPCP: A synchronization framework for multi-core virtual machines.

In IEEE Real-Time Systems Symposium (RTSS), 2014.

[27] J. Kim, B. Andersson, D. de Niz, and R. Rajkumar. Segment-fixed priority scheduling for self-suspending

real-time tasks. In IEEE Real-Time Systems Symposium (RTSS), 2013.

[28] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling for cyber-physical systems: Analysis

and case study on a self-driving car. In International Conference on Cyber-Physical Systems (ICCPS), 2013.

27

http://ok-labs.com

[29] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on

multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 2009.

[30] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky. Partitioned fixed-priority preemptive scheduling for multi-

core processors. In Euromicro Conference on Real-Time Systems (ECRTS), 2009.

[31] J. Lee, Y.-W. Seo, W. Zhang, and D. Wettergreen. Kernel-based traffic sign tracking to improve highway

workzone recognition for reliable autonomous driving. In IEEE International Conference on Intelligent Trans-

portation Systems (ITSC), 2013.

[32] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal

of the ACM, 20(1):46–61, 1973.

[33] NVIDIA. Sharing a GPU between MPI processes: Multi-process service (MPS) overview. http://docs.nvidia.

com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.

[34] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource kernel in Linux. In IEEE Real-Time Systems

Symposium (RTSS) Work-In-Progress, 1998.

[35] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. Berg, and S. Wang. An evaluation

of the NVIDIA TX1 for supporting real-time computer-vision workloads. In IEEE Real-Time Technology and

Applications Symposium (RTAS), 2017.

[36] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In International Con-

ference on Distributed Computing Systems (ICDCS), 1990.

[37] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE

Real-Time Systems Symposium (RTSS), 1988.

[38] L. Shi, H. Chen, J. Sun, and K. Li. vCUDA: GPU-accelerated high-performance computing in virtual machines.

IEEE Transactions on Computers, 61(6):804–816, 2012.

[39] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero. Enabling preemptive multiprogram-

ming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014.

[40] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi. Towards a viable autonomous driving

research platform. In IEEE Intelligent Vehicles Symposium (IV), 2013.

[41] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system for GPGPU computing. In IEEE

Real-Time Technology and Applications Symposium (RTAS), 2015.

28

http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

	1 Introduction
	2 Related Work
	3 System Model
	4 Limitations of Synchronization-based GPU Access Control
	4.1 Overview
	4.2 Limitations

	5 Server-based GPU Access Control
	5.1 GPU Server Design
	5.2 Schedulability Analysis
	5.3 Task Allocation with the GPU Server

	6 Evaluation
	6.1 Implementation
	6.2 Practical Evaluation
	6.3 Schedulability Experiments

	7 Conclusions

