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IoT Manager: an open-source IoT framework for smart cities

Luca Calderonia, Antonio Magnania,∗, Dario Maioa

aDepartment of Computer Science and Engineering, University of Bologna, Italy

Abstract

Recent surveys concerning Internet of Things confirm that there are 20 billion connected devices and counting all
around the world. As we assist to the convergence of the IoT and the cloud computing paradigms, sensor networks are
being deployed everywhere and grow both in number and significance. One of the main concerns is thus to provide
the community with versatile and resilient frameworks capable to store and rearrange data collected by these sensors.
However, the world largest information technology companies tend to release products in a as a service fashion,
avoiding to reveal the know-how concerning design and implementation details. As a consequence, a common trend
for academic institutions is to use these mainstream IoT platforms as ’black boxes’. In this paper we discuss some
of the most commonly adopted IoT platforms and we present IoT Manager, a general framework designed for sensor
networks management which was entirely developed within the University of Bologna. Through this case study, we
provide the scientific community with a detailed implementation strategy concerning our specific IoT solution. Our
results are supported from a LGPL realese of the IoT Manager client in order to serve as a test bed both for research
and teaching purposes.

Keywords: Internet of Things, IoT platform, Sensor networks, Software engineering, ICT architectures

1. Introduction

The Internet of Things (IoT) is now a consolidated
reality of our daily lives: from cars to fitness sensors,
from air conditioning systems to cameras, it is increas-
ingly common to stumble upon devices that can com-
municate data with each other [1]. This vision can scale
from the domestic domain to urban and regional sce-
narios, where sensor networks have become a common
feature [2, 3, 4]. The advantages of adopting such tech-
nologies are clear, but the continuous spread of sensor
networks has generated various and inconsistent envi-
ronments. From the one hand, this condition poses sev-
eral security threats [5, 6], from the other hand, the in-
tegration of uncorrelated sensor networks could be any-
thing but simple [7]. We can imagine these sensor net-
works as pieces of a puzzle: in some cases their inte-
gration will be trivial while sometimes it could be ex-
tremely complex. Suppose we want to make the data
produced by different architectures accessible in an ag-
ile way through a single compact solution. For example,
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imagine an integration between data derived from San-
tander’s network1, data produced by the new Array Of
Things in Chicago2 and those from the Smart Citizen
platform3. In such a scenario we would inevitably face
a number of problems, both due to the different nature of
the nodes of the networks and to the different technolo-
gies and architectures adopted. The examples of sensor
networks mentioned above offer a variety of sensors, as
well as communication and storage protocols that are
not shared. The absence of a clear design methodology
that is widely adopted also makes this task rather dif-
ficult. With this principle in mind, several major have
released IoT platforms that address some of the needs
mentioned above. Most of these solutions are offered
in a ready-to-use fashion, lacking transparency and pro-
viding limited technical information along with high-
level architectures and generic communication flows
[8]. This is clearly understandable in relation to busi-
ness models: it would be unreasonable for a major to
reveal relevant technological details and design choices
adopted. Therefore, using such platforms implies a de-

1http://maps.smartsantander.eu/
2https://arrayofthings.github.io/
3https://smartcitizen.me/
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pendency on a sort of black-box. The goal of this paper
is to discuss some of the most promising IoT platforms
while proposing a completely home made solution re-
lying on open source technologies. This approach al-
lows us to discuss design and implementation details at
each layer of the stack our platform is built upon, en-
abling researchers and practitioners to fully understand
what lies behind a IoT solution. Other academic insti-
tutions have felt the need to propose IoT platforms that
could offer an under-the-hood view, for example Castel-
lani et al. [9] have proposed a solution focused on in-
door environments. Conversely, our proposal is mainly
designed for outdoor environments and in particular for
sensor networks distributed both in urban and suburban
areas. Therefore, particular importance will be posed on
the integration and interoperability between the differ-
ent networks. In this context, we want to offer the pos-
sibility to monitor information from the various sensors
currently considered (see Section 3.1). As proposed in
[10, 11], we want to offer an IoT testbed that is use-
ful for both academic teaching and research activities.
Above all, we want to propose a platform where the cit-
izen acts as an active component, for instance adding
one or more nodes to the network in an agile way [12],
or monitoring specific areas of interest through a dedi-
cated client application.

2. IoT Platforms Comparison

Since the term IoT was coined in 1999 by Kevin Ash-
ton during a presentation at Procter & Gamble [13], the
basic idea behind IoT solutions has been widely ex-
plored by both the academic world and the ICT com-
munity. The IoT domain can be intuitively discussed as
follows: let us consider a number of distributed sensors
or gadgets (i.e., "things") lying in an unpredictable vast
environment (a house, a large urban area or a greater re-
gion). These things are able to gather a massive amount
of raw data and translate them into relevant information.
Typically, this ecosystem reacts proactively, minimizing
(or at least trying to minimize) human involvement.

Although straightforward this scenario may appear, it
hides a number of open questions. Which kind of archi-
tecture should be adopted? Which requirements are the
most meaningful among others? Which communication
standards should be adopted in order to enable device
interoperability? What kind of API should be imple-
mented to easily allow a sensor (or a sensor network as
a whole) to join the ecosystem?

In [14], the authors propose an interesting compari-
son aimed at highlighting common architectural aspects

of several IoT platforms and infer a reference architec-
ture. Conversely, a comprehensive description and com-
parison of the main requirements (both functional and
non-functional) of a IoT platform is discussed in [15].

Many platforms and solutions were proposed within
the IoT domain. Each of them was designed with a busi-
ness model in mind and thus holds specific features:
in this work we adopt the taxonomy proposed in [16],
where IoT platforms are discussed in relation of the cor-
responding application area.

Device Management Platforms, as defined by the
Open Mobile Alliance Device Management, must guar-
antee the provisioning and onboarding of the devices,
including remote parameterisation and real-time con-
figuration. Again, they should allow remote firmware
updates as well as a real time monitoring concerning
devices faults and errors [17]. Therefore, these plat-
forms enable a quick deployment of individual or entire
groups of devices, and allow to define taxonomies and
hierarchies upon them. They also allow to define access
policies for different types of devices. One of the key as-
pects this kind of solution tend stress is the optimization
of network resources. Device Management Platforms
are becoming increasingly important and have conse-
quently drawned the attention of many companies, such
as Amazon, which at the end of 2017 has released the
new Amazon IoT Device Management platform [18].

Application Development Platforms are aimed at
fastening the implementation process of ICT services
addressing the IoT domain. End-user applications
are developed through automatic code generation and
combined with a number of predefined API. One of
the best-known toolkits is Temboo [19], which al-
lows parametrization, events management and auto-
matic code generation for a number of heterogeneous
devices.

Application Enablement Platforms, as the name
suggests, allow IoT architectures to integrate with pre-
existing external services and applications. Therefore,
these solutions operate between the hardware layer con-
sisting of sensors and actuators, and the end-user appli-
cation layer. They often act as an integration middle-
ware: devices communicate directly with the platform
through transport protocols such as HTTP/S or MQTT
and encapsulate data using classical data-exchange for-
mats (XML, JSON). The integration middleware rear-
range this information and delivers it to end-user appli-
cations.

The solution we discuss in the following falls into the
latter category. For ease of reading, we point out that
Application Enablement Platforms are often referred to
as IoT middleware, middleware or IoT middleware plat-
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Figure 1: AWS IoT Core architecture [20].

form: we use these definitions interchangeably. Before
introducing our solution, we discuss some of the most
prominent platforms belonging to this latter category.

2.1. AWS IoT Core

Amazon Web Services (AWS) IoT Core [20] is the
middleware proposed by Amazon. It consists in a cloud
solution relying on a Platform as a Service (PaaS) busi-
ness model. Scalability and interoperability are the most
relevant features of this solution: Amazon ensures that a
single IoT Core instance can support billions of devices,
allowing the exchange of tens of billions of messages
between AWS endpoints. The main role of AWS IoT
Core is therefore to provide a reliable connection be-
tween "things" and the AWS cloud. In order to achieve
this, the well-known HTTP, MQTT and WebSockets
protocols are used and all communications are secured
through TLS and X.509 certificates.

The platform architecture (see Figure 1) consists of
four leading modules (message broker, device shadows,
rules engine, security and identity) plus a fifth compo-
nent (the device gateway) which is not represented in
figure. This latter module connects devices to the mes-
sage broker. Specifically, it exposes an incoming in-
terface implementing the aforementioned protocols and
acts as an intermediary to the message broker. The mes-
sage broker is a publish/subscribe service that allows
all devices to receive or send messages related to a spe-
cific topic they have previously registered to (e.g., Sen-
sor/Humidity/LivingRoom). A device communicates its
own status to the platform publishing a message under
a proper topic. The device shadow service enable virtu-
alization and persistence of each device in the cloud, al-
lowing maintenance of the last known device state even
when it is no longer online. When an object is prop-
erly connected, the status of its shadow can be updated
consistently with respect to the physical device. Con-
versely, when the communication fails, it is still pos-
sible to interact with the device relying on its shadow.
The rules engine module implements the business logic

Figure 2: Microsoft IoT reference architecture [21].

of the platform, making it possible to collect and pro-
cess raw data. As the name suggests, the user is allowed
to define rules that orchestrate the distribution of mes-
sages among other objects or AWS services. Finally, all
these components interact with the security and iden-
tity module which is responsible of providing recipro-
cal authentication and encryption at all communication
levels of the stack. Therefore, a two-way communica-
tion without identity assessment will never occur. This
middleware holds all the benefits provided by Amazon
Web Services, but, as predictable, several implementa-
tion details remain unknown.

2.2. Microsoft Azure IoT Suite

Azure IoT Suite [21] is the cloud platform developed
by Microsoft. As per the AWS IoT Core, the business
model is PaaS. One of the main advantages offered by
this platform is the ability for users to install precon-
figured solutions designed to fit common IoT scenarios.
These solutions are released for free. As an example,
Azure IoT Suite is equipped with a weather forecasts
setting which enables data collection as well as infor-
mation transmission to the middleware and its analysis
through the Azure Machine Learning module. Each of
these preconfigured solutions involves different devices
and rely on several modules among those offered as a
service by Azure and Azure IoT Hub, which are indeed
the real middleware. Figure 2 shows the reference ar-
chitecture of an IoT system according to Microsoft’s vi-
sion: within the blue rectangle it is represented an en-
semble of cloud components needed to support an IoT
solution. Azure IoT Hub plays the leading role as Cloud
Gateway technology.

Azure IoT Hub enables connection between millions
of devices and a cloud based back-end, supporting
bi-directional communication for AMQP, MQTT and
HTTPS protocols. Features of this hub include twin de-
vices, a similar solution to the AWS Device Shadow. A
twin device consists in a JSON document in which in-
formation concerning the status of the paired device is
stored. For each connected device, Azure maintains a
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Figure 3: SiteWhere architecture [22].

twin whose information can be used by the device itself
or by other applications, in order to perform device con-
figurations or to query it for data. This feature is very
helpful for batch operations. Regarding communication
security, Azure Hub IoT grant access to each hub end-
point through a token-based authorization mechanism
or through X.509 certificates. Such authorisations may
restrict access to the hub and to some specific function-
ality.

2.3. SiteWhere

SiteWhere [22] differs from previously discussed
middlewares primarily for its business model. It is in-
deed an open-source IoT platform, developed and main-
tained by SiteWhere. This solution is licensed under
CPAL-1.0 (Common Public Attribution License Version
1.0). To be more accurate, two variants of this platform
were released: a free for use Community Edition, and an
Enterprise Edition, which consists in an extended paid-
for version of the first. The latter solution need to be
purchased directly from SiteWhere. Several are the re-
quirements to deploy a SiteWhere instance: an Apache
Tomcat web server should be configured as well as a
MongoDB repository. Java and HiveMQ (a MQTT bro-
ker) are also required.

The SiteWhere server represents the central node
through which it is allowed to manage both components
and REST services. This solution is designed as a multi-
tenant system in which tenants are responsible for most
of the processing logic. Within each server, one or more
tenant engines are bootstrapped, each running as a dif-
ferent IoT application. In order to keep the informa-
tion separate, each tenant is coupled with its own data

Figure 4: Samsung SmartThings architecture [23].

store. As depicted in Figure 3, every tenant also fea-
tures a processing pipeline that can be customized with-
out affecting other pipelines. Sensors send data through
a gateway which operates between tenants and devices.
SiteWhere supports MQTT, AMQP and REST commu-
nications.

2.4. Samsung SmartThings

SmartThings [23] is an IoT applications ecosystem.
SmartThings project started in 2012 through a Kick-
starter campaign. The basic idea was to realize a so-
lution for smart domestic environments through a hub
connected to a set of "things" (e.g., temperature and hu-
midity sensors, smoke and CO alarms). As the project
was started, it was coupled with a smartphone app able
to communicate with the remote hub. 2014 represents a
milestone for SmartThings as it was acquired by Sam-
sung Electronics. The initial architecture has evolved
considerably to become a genuinely cloud-centric plat-
form. Indeed, as depicted in Figure 4, it is now possible
to connect devices to the cloud back-end following three
different strategies, even without the aid of a direct hub
connection. Another type of connection is the cloud-
connected one, that makes possible to implement an
indirect communication channel between (cloud-based)
third-party devices and the SmartThings cloud. While
the presence of a hub that acts as a gateway between
devices and the cloud is recommended, several opera-
tions could be performed locally, without the need to
query the back-end. In this specific case, SmartThings
refers to these devices as hub-connected and they rely
on ZigBee or Z-Wave communication protocols. In
SmartThings applications, objects are usually organized
and grouped according to the room they are in. The
room concept is therefore a key aspect for SmartThings
clients.

SmartThings includes the concept of automation
which allows the user to interact with the ecosystem
without any manual intervention. With respect to au-
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tomation, two are the possible strategies to adopt: the
first relies on WebHook, the second on AWS Lambda
functions. For instance, it is possible to define an
automation strategy designed to adjust light intensity
within a particular room according to weather changes.

This cloud solution also supports encrypted commu-
nications between all connected components through
the SSL/TLS protocol [24]. Although the architecture
offered by SmartThings is solidly aimed at the domes-
tic environment or, more generally, at the smart build-
ing concept, its features make it possible to adopt it
in broader contexts. In particular, thanks to cloud-
connections, it would be possible to hook up a sensor
network.

3. IoT Manager

In [25], Calderoni et al. proposed a general ICT ar-
chitecture designed to manage several subsystems in ur-
ban contexts. IoT Manager represents an evolution of
this model and implements its main features. In this
section, we want to clearly explain how our platform
was designed and implemented, in order to provide the
scientific community and practioners with a tangible ex-
ample of a fully open IoT stack. As pointed out previ-
ously, an IoT Player does not frequently reveal details
about its solution. In addition to this, it is increasingly
common to see platforms that are not supported by ex-
haustive details about the connection of sensors. Dis-
cussion typically focuses on the IoT middleware layer,
its infrastructure and the services offered. However, this
leads to neglect some relevant details concerning on the
one hand the physical component that has to communi-
cate with the middleware, and on the other hand the pos-
sible application component. In this section we want to
face this discussion in its entirety: through a top-down
approach we will analyze IoT Manager not only dis-
cussing the role of integration middleware but also de-
scribing the physical and application layers of the stack.
Indeed, this will allow us to describe the sensors used
in our case study (see Section 4), make a comparison
between our proposed middleware and those introduced
in Section 2 and illustrate a client application connected
to the platform.

From a high-level architectural point of view (see
Figure 5 for reference), this system is composed of three
layers, similarly as discussed in [26].

The sensing layer consists of a number of hetero-
geneous sensor networks. These networks can be dis-
tributed anywhere in the globe and their purpose is to
collect raw data. In addition, the platform is fully geo-
referenced, allowing application-level filtering based on

Figure 5: A high-level diagram showing IoT Manager architecture.

sensors effective location. Range queries may be also
addressed in relation with the user’s current position (as
an example consider a user who wants to check the air
quality in his surroundings). The geo-referencing of the
sensors does not offer guarantees regarding the logical
division of the sensors of interest. Therefore, IoT Man-
ager is designed to natively support sensors with a two-
tier taxonomy. In detail, in the sensing layer a network
node can be treated either as a simple sensor or as a
concentrator. In this second case, the purpose is to rep-
resent a logical set of different simple sensors. Thanks
to the two-level taxonomy, the back-end gateway allows
for requests which only address the set of simple sen-
sors connected to a given concentrator. Raw data from
sensors and concentrators are sent to the middleware
via APIs that depend on the storage engine adopted.
IoT Manager currently has its own internal storage, but
through a set of predefined APIs it is possible to inte-
grate data from sensor networks whose storage is ex-
ternal to the back-end. This is another key aspect of our
solution: it is possible for third parties, such as a citizen,
to connect their own sensor or sensor network. Within
Section 3.1 we describe some sensors which are already
handled by IoT Manager and we also detail the proce-
dure used to build one of this devices from scratch.

The data layer represents the back-end of the system
and is responsible for two main features: on the one
hand, it serves as a repository for all of the sensed infor-
mation, on the other hand, it provides several API which
may be called by client applications in order to query
those data and retrieve them in a properly arranged for-
mat. As we have seen, this level plays the key role of
maintaining compatibility between the various subsys-
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tems. It also provides the application layer with an ef-
ficient and transparent way to access data. The role of
integration middleware is covered by the back-end logic
module (see Figure 5) that represents the more sophisti-
cated component of the system.

Specifically, this component is able to retrieve raw
data produced by sensors and concentrators using a set
of predefined APIs which allow it to query different
storage engines. Furthermore, information recovery is
empowered both for internal and external storages. Al-
beit raw data might be retrieved from a wide range
of different repositories, the back-end logic can revise
these records in order with the goal for them to conform
to a particular format, in accordance with the back-end
gateway dispositions. The back-end gateway is another
key component of this layer. It exposes HTTP/HTTPS
APIs to enable communication with client applications.
It is also responsible for requests translation (in a set of
jobs handled by the back-end logic component) and for
final response formatting (JSON). An in-depth discus-
sion about the back-end gateway and the back-end logic
is provided in Section 3.2.

The service layer offers users a wide range of possi-
ble client applications that communicate with the back-
end gateway through appropriate APIs. These APIs are
currently based on HTTP and HTTPs protocols, which
makes integration with desired user application quite
simple. Within Section 3.3 we provide a detailed design
of one of these client applications, which has been de-
veloped for Android mobile devices. Clients are subject
to a specific access policy and handle geo-referenced
data.

3.1. Sensing layer: some examples
Our solution deals with different types of sensors, one

of which consists in a low-cost weather station. This
prototype relies on a UDOO Neo Extended board. This
board is equipped with a NXP i.MX 6SoloX proces-
sor with two different core: an ARM Cortex-A9 and a
Cortex-M4 (an Arduino UNO-compatible platform). In
addition, it is provided with 1GB RAM, a Bluetooth 4.0
receiver, a Wi-Fi module and 9 integrated sensors (3-
Axis accelerometer, magnetometer, gyroscope) which
were not considered in our case study. Finally, there
is an I2C (Inter Integrated Circuit) connector used to
plug sensor modules (UDOO bricks). One of the main
features concerning UDOO bricks is the ability to work
through a cascade configuration: it is allowed to con-
nect several sensor modules using the sole I2C interface
on the board. Of course, it is also allowed to connect
sensors directly to the Arduino socket provided by the
board [27].

In our experiment, we used three different sensor
modules: a Barometer brick (based on MPL3115) that
is able to sense pressure (hPa) and temperature (◦C),
a Light brick (based on TSL2561T) that returns illumi-
nance (Lux) ambient values and a Humidity brick (based
on SI7006-A20) providing relative humidity percent-
age.

We have developed a simple bash script which al-
lowed us to read data from the barometer. Conversely,
as part of our implementation relies on external li-
braries, other bricks were handled through an Arduino
sketch. Data received from each sensor are collected by
the UDOO operating system and then sent to an exter-
nal storage via HTTP/S API. In order to comply with
IoT Manager specifications, the payload also includes
some mandatory information (sensor identifier, sensor
name, subsystem identifier, status, latitude and longi-
tude). These fields are introduced in Section 3.2.

Besides weather stations, the sensing layer is com-
posed of a number of other devices such as ArLu and
Lamps. An ArLu, representing a lighting cabinet, acts
as a concentrator and is logically connected to a set of
simple sensors (Lamps) allowing a full lighting system
management. This two-level taxonomy enables a logi-
cal partition even when ArLu and Lamps are not physi-
cally connected one each other.

3.2. Data layer: the back-end logic

When a client application queries the back-end for
data, the data layer acts as outlined in Figure 6.

The client application delivers a request over a
HTTP/HTTPS post channel. The web server, imple-
menting the back-end gateway, handles this request and,
first of all, checks for user authentication. This oper-
ation is performed by the AuthManager class, a spe-
cific software component which addresses authentica-
tion queries to the central IoT Manager storage. Thanks
to a complete integration with prepared statements, this
module preserves the framework from being affected by
SQL injection. On authentication granted, the back-end
gateway instantiates a JobManager: this module checks
for the type of the handled request and instantiates in
turn a Mapper object in order to retrieve data. The set of
job types supported by our framework along with each
request parameter are reported in Table 1.

While jobs 3, 4, 5 and 7 depend on meta data and
affect IoT Manager storage only, jobs 1, 2 and 6 may
also affect a number of external storages. In fact, as
previously discussed (see Figure 5 for reference), our
framework is able to retrieve raw data both from its own
storage and from a number of external sources. As we
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Client WebServer :AuthManager :JobManager :Mapper :DataProcessor

JobExec()

Authenticate()

auth granted

GetData(job-type)

MapSystem()

DataRetrieval()

data

FormatData(data)

json

json

json

Figure 6: IoT Manager requests processing from the back-end perspective.

may notice, each of these jobs is completely transpar-
ent with respect to the calling application concerning
real data location. Thanks to a set of back-end APIs, the
Mapper object connects to each subsystem and retrieves
each relevant record. Desired records are thus collected
by the JobManager object and prepared for being re-
turned to the calling application by the DataProcessor
(see Figure 6 for reference). The latter class is respon-
sible for data formatting in compliance with the service
contract through JSON notation.

Our back-end logic thus relies on several APIs for
data retrieval. It is important here to point out that each
retrieved record may belong to a separate subsystem,
each holding specific features. As a consequence, data
may contain a large number of heterogeneous attributes.
This is the reason why we defined a restricted set of at-
tributes which subsystems need to exhibit as a manda-
tory requirement for them to be connected to IoT Man-
ager. Specifically, these attributes shall represent a sen-
sor identifier (unique within its own subsystem), a sen-
sor name (or description), the identifier of the subsys-
tem they belong to, a status information and a couple
of fields specifying the longitude and latitude coordi-
nates of the sensor. It is meaningful to note that these

data do not need to be stored under a single or prede-
fined column name. For each external source, the Map-
per queries IoT Manager meta data in order to know
which column or columns contain each mandatory in-
formation and which names represent those columns
within the external storage schema. This mapping fea-
ture provided by the back-end logic allows for a proper
implementation of jobs 1 and 6 which, as should be no-
ticed, produce a list of compliant information derived
from heterogeneous subsystems. This allows client ap-
plications to easily handle sensor lists throughout each
part of the user interface where sensor-specific details
are not required. Conversely, when a calling application
would require something specific about a single sensor,
a different mapping principle applies. This is indeed the
case of job 2. The back-end logic access the aforemen-
tioned meta data and search for column mapping con-
cerning sensor and subsystem identifiers. Through the
proper connection API, the Mapper queries target stor-
age for each data related to the sensor and blindly col-
lect them. Sensor-specific data are then JSON formatted
and returned through the HTTP service in a key-value
fashion. The calling application is thus responsible for
data interpretation. In order to build a proper user in-
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Table 1: IoT Manager input parameters and job types derived from
the HTTP service contract exposed by the back-end gateway.

Parameter Description

user, pwd Username and password for authentication.
filter Susbsystem identifier (0: all subsystems).
id Single sensor or single city identifier, depending on

the job.
minLon, maxLon Longitude bounding values.
minLat, maxLat Latitude bounding values.
job Job identifier, as outlined below.

Job Description

1 Returns a list of sensors lying within a specific
bounding box specified by the calling application.
Depending on the filter parameter, it is possible to ad-
dress this request to a specific subsystem (a specific
set of sensors) or to each subsystem.

return [id, name, subsystem, longitude, latitude, status]:list
2 Returns a single sensor and all of its related informa-

tion in a key-value fashion. The identity of the sensor
is provided in the request through the couple subsys-
tem, id.

return [attribute name, value]:list
3 Returns the list of subsystems handled by IoT Man-

ager.
return [subsystem, name]:list
4 Returns the list of known cities in the back-end atlas.
return [city, name]:list
5 Returns a single city and all of its related information.
return city, nation, name, longitude, latitude, gmt
6 Returns the list of sensors connected to a specific

concentrator (uniquely identified by subsystem, id).
return [id, name, subsystem, longitude, latitude, status]:list
7 Returns a key-value list exposing a semantic descrip-

tion of each attribute for each specific subsystem.
return [attribute name, description]:list

terface and to correctly show meaningful data, end-user
application developers may rely on job 7, which provide
the client with a human readable description of each re-
turned field. Finally, a couple of words about georefer-
encing. IoT Manager natively supports positional data.
Mobile services built against the IoT Manager frame-
work may use GPS coordinates to enrich their queries
with bounding box information. However, when a client
application is not aware of its location, or when the
hardware it is executed on is not equipped with any form
of location sensing device, job 4 and 5 may be used to
simulate user’s position as derived from the framework
atlas.

3.3. Service layer: a client application

As previously discussed (see Figure 5 for reference),
the service layer is an ensemble of applications designed
to interact with IoT Manager data layer. Within this
section we explore this layer through a real application
which was designed and implemented by our research

:WelcomeActivity :MainActivity :DBManagerService :LocationThread

onCreate() bindService()

onCreate()
onBind()

onServiceConnected() REGISTER CLIENT

onPermissionGranted()
onResume() RESUME CLIENT

START LOCATION THREAD

newThread()

startThread()

SEARCHING

START SPINNER

GPS Listening

onFreshCoords()
UPDATE GEOPOINT

END SPINNER

startActivity(lon,lat)

onCreate()
getMapAsync() bindService()

onPause() PAUSE CLIENT

onStop()
onDestroy() UNREGISTER CLIENT

unbindService()

requestPermission()
onStart()

onResume()
onPause()

Figure 7: Launch sequence (Android API level ≥ 23).

team. The service we are about to discuss consists of a
mobile application built over Android OS.

The main aim of this application is to sense location
information through GPS and network hardware and to
display sensors which lie within a given distance with
respect to the device itself. The user is also allowed
to displace his position using one of those provided by
the back-end atlas. As this application is intended to
be used in the IoT domain, it is designed with multi-
threading and asynchronism in mind. Each client activ-
ity relies on a shared Android service in order to obtain
positional data as well as each kind of external data to
be downloaded through IoT Manager HTTP API. The
launch sequence of our application is described in Fig-
ure 7.

As we may see, a welcome activity is initially started
along with a service running on a separate thread. The
activity first checks for user permission concerning GPS
and Network and, on permission granted, asks the ser-
vice for location coordinates. The service then starts
a dedicated thread which implements several primitives
provided by Android OS able to deal with GPS and Net-
work sensing. When a fresh position is sensed, the lo-
cation thread sends a message to the service, which in
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:MainActivity :DBManagerService :BackendThread :LocationThread

GPS Listening
onCreate()

getMapAsync()
onStart()

onResume()

bindService()

onBind()
onServiceConnected() REGISTER CLIENT

GET CAT LIST

newThread(CAT)

startThread() Back-end call

DONE CAT

DONE CAT
updatePrefs()

updateMenu()
initOverlays() GET CITIES LIST

newThread(CITIES)

startThread() Back-end call

DONE CITIES

DONE CITIES
updatePrefs()

GET OBJ LIST

START PROGRESS

newThread(OLIST)

startThread() Back-end call

UPDATE PROGRESS

UPDATE PROGRESS

DONE OLIST

DONE OLIST

END PROGRESS

updateOlist()
updateItemList()

updateCoords()
updateListMap()

Figure 8: Main activity starting sequence. Here we assume login in-
formation has been already filled in the application preferences and
no specific city from the back-end atlas was selected instead.

turn sends these new coordinates to each connected ac-
tivity. As the welcome activity receives coordinates, the
program control passes to the main activity which im-
mediately binds to the service. The main activity first
checks for authentication information within the appli-
cation preferences. Figure 8 shows its starting sequence
assuming these credentials were already provided by the
user.

While the Android service and the location service
keep on running on their own threads, this sequence di-
agram shows a new type of thread which has been de-
signed to handle back-end calls. During its starting se-
quence, main activity asks the service for a number of
external data. For each task, the service instantiates a
single thread implementing the IoT Manager communi-
cation service and propagates the request to the endpoint
through HTTP/S. Specifically, it first asks for the com-
plete list of subsystems handled by the back-end (Table
1, job n.3). Then it requests the list of cities stored in
the back-end atlas, used to populate a specific combo
box within application preferences (Table 1, job n.4).

:MainActivity :DBManagerService :BackendThread :LocationThread

GPS ListeningonItemSelected() GET OBJ (id,cat,ins)

START PROGRESS

newThread(OBJ)

startThread() Back-end call

UPDATE PROGRESS

UPDATE PROGRESS

DONE OBJ

DONE OBJ

END PROGRESS

createDialog()
updateView()

updateView()
GET SONS (parent,cat)

newThread(SONS)

startThread() Back-end call

DONE SONS

DONE SONS
setSonsList()
updateView()

ifif [isInsiderChild]

Figure 9: Sensor details request. The collected information replaces
the map layout container or, when the request arises from that con-
tainer itself (isInsiderChild = true), it is shown in a dedicated dialog.

Finally, it asks for a list of sensors (belonging to any
subsystem) which lie within a predefined range from the
user (Table 1, job n.1).

As we may see, each back-end call is handled by a
specific thread and does not affect the application re-
sponsiveness at all. Please note that each back-end call
depicted in Figure 8 may be exploded with the sequence
diagram provided in Figure 6. When these calls are
completed and information is returned to the calling ac-
tivity, the application GUI is updated with sensors data.
A sorted list of sensors (with respect to the distance to
the user) is populated on the left, while a map show-
ing an overlay icon for each sensor is proposed on the
right. It is meaningful to point out that, at this stage,
no detailed sensor information is required. In order to
populate list and map it is enough to know few basic
information as those returned by job 1 or 6 (see Table
1 for reference). Consequently, our GUI is subsystem-
independent and is able to deal with heterogeneous sen-
sors with no need for specific personalization. Process-
ing of sensors list and map relies on a specific class
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SCOFactory

+ getSCO(idCat : int, json : JSONArray) : SCO

<<abstract>>
SCO

- sonsList : SCLO[]

+ getIDObj() : int
+ resolveStatus() : String
+ createView(context : Context) : View
+ getSonsList() : SCLO[]
+ setSonsList(sonsList : SCLO[]) : void
+ getIcon(idCat : int) : int
+ getStatus(idCat : int, stato: int) : boolean

SCLO
- id : int
- name : String
- category : int
- state : int
- longitude : double
- latitude : double
- distance : String

+ formatName() : String
+ setDistanceTo(lng : double, lat : double) : void
- formatDistance(dist : int) : String
+ getIcon() : int
+ compareTo(another : SCLO) : int

SCODefault
+ SCO_ID : int = -1

SCOUdooWhst
+ SCO_ID : int = 6

SCOTc
+ SCO_ID : int = 1

SCOArLu
+ SCO_ID : int = 2

SCOLamp
+ SCO_ID : int = 3

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>>

Figure 10: The Android client class factory, the abstract class representing a single sensor and some of its specializations.

called SCLO (see Figure 10). The role of this class is
to store basic sensor information for those devices in-
cluded in the current bounding box. Such information
constitutes the instances objects of the SCLO class. As
we may see in the class diagram depicted in Figure 10,
the SCLO class expose a number of methods. Among
them, it is meaningful to underline those dealing with
distance evaluation with respect to the user’s position.
These methods and fields are relevant as they enable
location-based filtering and sorting. Again, it is impor-
tant to note that the abstract class SCO includes the son-
sList field, consisting of an array of SCLO. It also con-
tains the related overloads of the getSonsList method.
As we may see, each instance of the SCO class keep
all the information related to sensor’s sons in a compact
and interoperable fashion via the SCLO class.

When the user clicks or taps on a specific sensor, a
request for sensor’s details is propagated to the back-
end, as depicted in Figure 9.

This sequence implements the call for job n.2 (see
Table 1 for reference). When the download process ter-
minates and the information is delivered to the main ac-
tivity, the GUI is properly updated. Again, as the given
sensor could be a concentrator, another back-end call
(job n.6) is propagated in order to show the list of related
sensors. Conversely as per the sequence proposed in
Figure 8, the information to be shown is sensor-specific
and, thus, a specific layout needs to be designed to ar-
range it. Our Android client is conveniently designed
to this purpose and it is provided with a class factory
which instantiates the proper object on a subsystem ba-
sis. A simple class diagram showing some specializa-
tions of the abstract class implementing a single sensor
is provided in Figure 10.

Each sensor class need to specialize an abstract
method createView(). This method should contain those
instructions used to render a proper layout for the sen-
sor. Consequently, when we need to show some sensor-
specific detail within the GUI, it is sufficient for us to
call this method on the object representing the given
sensor, without any other knowledge about its features.

4. Case study

The open source framework IoT Manager was firstly
designed and introduced to reflect the needs of several
partners of the University of Bologna in a smart city
scenario. As each partner possessed a different, sepa-
rate sensor network, the main goal was to allow these
networks to join the middleware without any ad hoc in-
tervention. This challenge represented an excellent case
study for both industrial and research purposes, and pos-
itively contributed to the platform implementation pro-
cess.

Currently, IoT Manager involves four different types
of sensors: in addition to the already mentioned ArLu,
Lamp and Weather Station (see Section 3.1) a sensor
called Traffic Controller (TC) is also handled. This sen-
sor is based on a smart camera that continuously mon-
itors a road section using some virtual spires placed on

Table 2: Geographical distribution and quantification of the various
types of sensors currently involved in our case study.

Sensor Quantity Distribution
ArLu ' 50 Europe
Lamp ' 500 Europe
Traffic Controller ' 30 Europe and Morocco
Weather Station ' 10 Italy
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Figure 11: Distribution of the various types of sensors that are part of
the IoT Manager sensing layer. In red, those countries in which TC
sensors are deployed. In dark blue, those countries involving ArLu
and Lamp. Italy (yellow) is the only nation where all of the currently
handled sensors have been deployed.

the lanes. The TC is responsible for counting, classify-
ing and estimating the speed of vehicles crossing the
virtual coils that are placed in strategic points of the
roadway. Although the number of sensors is not very
high, they are widely spread across the European con-
tinent (see Table 2 and Figure 11). Data collected by
these sensors were derived from an agglomeration of
corporate databases and research outcomes as the result
of a number of collaborations between the University of
Bologna and other institutions.

Each among the aforementioned sensors belongs to a
different network involved in some kind of outdoor ur-
ban sensing. Specifically, the Traffic Controllers sensor
network provides traffic monitoring information upon
several major arterial roads in different European coun-
tries. Conversely, the network comprising ArLus and
Lamps is used for public lighting management and is
mainly deployed in Italy, France, and Germany. Finally,
weather stations are part of a prototype network de-
ployed in Italy solely, and they are designed for air qual-
ity and weather conditions monitoring. As discussed
above, these sensor networks were already operative,
and belong to different companies. Therefore, they are
part of different and separate systems and they store raw
data on separate remote data bases. Thanks to IoT Man-
ager, we were able to harmonize these networks trans-
parently. While they still collect data in each respec-
tive storage system, IoT Manager is able to retrieve each
data on the middleware and offers a unified application
for an easier sensor network management.

It is finally important to stress that IoT Manager is de-

signed with research and teaching purposes in mind. We
released an open distribution of the client application in-
troduced in Section 3 on GitHub4. This approach allows
students and researchers to synchronize their IDE with
IoT Manager’s repository and to develop their own IoT
solutions against the framework.

5. Discussion and future improvements

IoT Manager’s goal is twofold: first, to provide re-
searchers and practitioners with a full-stack platform
that enables rapid deployment of prototype IoT so-
lutions; second, to provide guidance at all architec-
tural levels for the production of open-source IoT lay-
ers/platforms. Commercial solutions presented in Sec-
tion 2 offer a typically partial or compartmentalized
view. A rather evident lack is the absence of operational
details concerning the application layer. A full-stack so-
lution, as IoT Manager represents, could be useful for
research groups to understand how to build an IoT plat-
form from scratch and to quickly hook up sensor net-
works. IoT Manager also help the designer in the cus-
tomization of the client application which needs to be
implemented according to the requirements of specific
application contexts. This feature is usually provided by
Application Development Platform (which fall outside
of the scope of this work) while it is rarely adopted by
Application Enablement Platform, which focus is posed
on the middleware (see Section 2 for details).

Therefore, as stressed before, the main features of
IoT Manager are (i) its interoperability and (ii) its full-
stack architecture. Concerning (i), as we have seen in
the Section 4, the proposed framework allows the rapid
coupling of entire networks of sensors, even for those
which already operate. The only constraint is the exis-
tence of the six mandatory information (sensor identi-
fier, sensor name, subsystem identifier, status, latitude,
and longitude), as discussed in Section 3.2. In specific
application contexts, this feature makes IoT Manager’s
interoperability more agile than its commercial coun-
terparts, which often require the creation of an ad hoc
digital twin (e.g., AWS IoT Core) for each connected
device. In relation to (ii), IoT Manager is combined
with a complete end-user application framework which
enables to quickly define the taxonomy of the different
types of sensors involved in a project. The client appli-
cation manages this taxonomy with a class factory de-
sign pattern. This feature allows the rapid rendering of
customized graphical interfaces, potentially relying on

4https://github.com/smartcitylabunibo
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those which are already provided on GitHub. Besides,
although IoT Manager is designed for smart city con-
texts, the presence of hierarchies makes it possible to
adopt it in several other contexts, as the home automa-
tion one or, more generally, in smart buildings. Again,
it is allowable to use sensor hierarchies to define groups
of sensors belonging to the same place. For instance,
the introduction of a hierarchical subdivision by rooms
may reflect the sensors partitioning provided by Sam-
sung SmartThings.

Our research and teaching team is constantly work-
ing on IoT Manager platform. Several modules were
implemented during the recent years in order to expand
the data layer capabilities as well as to extend the set of
subsystems handled by the framework. Several efforts
have been also carried out in order to improve the ser-
vice layer. As one of the main concern of IoT Manager
is interoperability, we will devote our attention to the
platform’s APIs. Two are the main challenges with re-
spect to this subject: first, a wider set of communication
protocols should be exposed by the back-end gateway.
As an example, several IoT platforms accept connection
from MQTT or WebSockets protocols, which are not
handled by our middleware at the moment. Second, the
back-end mapper should be provided with a wider set
of external storage engine APIs. This condition would
indeed lead to an easier connection of pre-existing sub-
systems. Specific attention should be posed on NoSQL
databases and column-based storage engines. We are
currently working on an additional module located be-
tween the Sensing Layer and the Data Layer (see Figure
5) in order to enhance our three-layered stack. The mis-
sion of this module is to act as a dispatcher between sen-
sors and the back-end allowing a two-way message ex-
change. The dispatcher should be combined with appro-
priate APIs for sensors connection. Implementing this
component would enable a publish/subscribe paradigm
similarly as discussed for AWS IoT Core (see Section
2.1) and represents one of the most insightful challenges
of the IoT Manager project.

6. Conclusion

In this paper we introduced IoT Manager, a full stack
IoT platform relying on open source technologies. We
discussed our platform in accordance with several main-
stream IoT middlewares provided by well-known com-
panies. Throughout the first part of this work we em-
phasised several common patterns which may be found
in commercial platforms while, in the second one, we
discussed our own solution with respect to these refer-
ence architectures. As a lot of research and teaching

projects within this field rely on hidden details which
private companies do not tend to unveil, our main aim
was to provide the scientific community with a tangible
implementation of such a solution, along with a detailed
description of our design strategies at each level of the
stack.
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