pd

CISTER

Research Centre in

Computing Systems

Conference Paper

Response time analysis of memory-
bandwidth- regulated multiframe mixed-
criticality systems

Ishfaq Hussain
Muhammad Ali Awan
Pedro Souto
Konstantinos Bletsas
Eduardo Tovar

CISTER-TR-211006

2021/12/14

Conference Paper CISTER-TR-211006 Response time analysis of memory-bandwidth- regulated ...

Response time analysis of memory-bandwidth- regulated multiframe mixed-
criticality systems

Ishfag Hussain, Muhammad Ali Awan, Pedro Souto, Konstantinos Bletsas, Eduardo Tovar

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. Anténio Bernardino de Aimeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: hussa@isep.ipp.pt, awa@isep.ipp.pt, pfs@fe.up.pt, ksbs@isep.ipp.pt, emt@isep.ipp.pt
https://www.cister-labs.pt

Abstract

The multiframe mixed-criticality task model eliminates the pessimism in manysystems where the worst-case
execution times (WCETs) of successive jobs varygreatly by design, in a known pattern. Existing feasibility analysis
techniquesfor multiframe mixed-criticality tasks are shared-resource-oblivious, hence un-safe for commercial-o_-
the-shelf (COTS) multicore platforms with a memorycontroller shared among all cores. Conversely, the feasibility
analyses thataccount for the interference on shared resource(s) in COTS platforms do notleverage theWCET
variation in multiframe tasks. This paper extends the state-of-the-art by presenting analysis that incorporates the
memory access stall inmemory-bandwidth-regulated multiframe mixed-criticality multicore systems.An exhaustive
enumeration approach is proposed for this analysis to furtherenhance the schedulability success ratio. The
running time of the exhaustiveanalysis is improved by proposing a pruning mechanism that eliminates
thecombinations of interfering job sequences that subsume others. Experimentalevaluation, using synthetic task
sets, demonstrates up to 72% improvement interms of schedulability success ratio, compared to frame-agnostic
analysis.

© 2021 CISTER Research Center 1
www.cister-labs.pt

Response time analysis of memory-bandwidth-
regulated multiframe mixed-criticality systems

Ishfaq Hussain®*, Muhammad Ali Awan?®, Pedro F. Souto®®, Konstantinos
Bletsas?, Eduardo Tovar?®

@CISTER Research Centre and ISEP/IPP, Porto, Portugal
bUniversity of Porto, FEUP-Faculty of Engineering, Porto, Portugal

Abstract

The multiframe mixed-criticality task model eliminates the pessimism in many
systems where the worst-case execution times (WCETS) of successive jobs vary
greatly by design, in a known pattern. Existing feasibility analysis techniques
for multiframe mixed-criticality tasks are shared-resource-oblivious, hence un-
safe for commercial-off-the-shelf (COTS) multicore platforms with a memory
controller shared among all cores. Conversely, the feasibility analyses that
account for the interference on shared resource(s) in COTS platforms do not
leverage the WCET variation in multiframe tasks. This paper extends the state-
of-the-art by presenting analysis that incorporates the memory access stall in
memory-bandwidth-regulated multiframe mixed-criticality multicore systems.
An exhaustive enumeration approach is proposed for this analysis to further
enhance the schedulability success ratio. The running time of the exhaustive
analysis is improved by proposing a pruning mechanism that eliminates the
combinations of interfering job sequences that subsume others. Experimental
evaluation, using synthetic task sets, demonstrates up to 72% improvement in
terms of schedulability success ratio, compared to frame-agnostic analysis.

Keywords: Mixed criticality system, Multiframe task systems, Multiprocessor
system on chip(MPSoC), Memory bandwidth regulation

1. INTRODUCTION

The trends in real-time embedded domains (e.g., automotive and avionics)
favor mixed-criticality systems, where computing tasks of different criticalities
co-exist and share resources. A task’s criticality denotes the severity of that task
failing, in conjunction with the probability of such failure. Higher-criticality
tasks hence require stricter, costlier methodologies and worst-case execution

*Ishfaq Hussain
Email address: hussa@isep.ipp.pt (Ishfaq Hussain)

Preprint submitted to Elsevier December 22, 2021

time (WCET) estimation techniques. Scheduling arrangements must also en-
sure that misbehaving lower-criticality applications cannot affect the timing be-
havior of critical ones. Vestal’s mixed-criticality model does so (and promotes
resource efficiency) by using multiple WCET estimates per task, with different
confidence level. Its static variant (SMC) [I], picks the appropriate estimate for
each task, as input to worst-case response time (WCRT) analysis. The adap-
tive (AMC) variant (also [I]), has modes and mode-specific WCETs. At mode
switch (triggered by exceedance of a WCET estimate), lower-criticality tasks
are dropped and more pessimistic WCETSs are assumed for remaining tasks.

AMC/SMC was combined with the multiframe task model [2] in [3], to com-
bat one common source of pessimism and inefficiency. In many systems, the
WCETsS of successive jobs by the same task vary greatly by design, according
to a known pattern. Ignoring such variation, by using the maximum WCET
for all jobs, inflates processor requirements. For example, MPEG codecs [4]
feature different kinds of frames (P, I or B) in a repeating pattern, with very
different worst-case processing requirements. Moreover, Avionics Digital Video
Bus (ADVB) [5] frames are transmitted uncompressed, to minimise encod-
ing/decoding delays, but the types of ADVB frames (e.g., header, audio or
video) differ in end-node processing requirements. Other industrial applica-
tions [6} [7] collect small amounts of data periodically and store them in batch
after N periods, in one costly operation. The multiframe model efficiently covers
such scenarios, but until [3] did not apply to mixed-criticality applications.

This work makes [3] applicable to multicores, by incorporating memory ac-
cess regulation and stall analysis. When multiple cores access memory via a
shared memory controller, as in many commercial-of-the-shelf (COTS) chips
used in embedded systems, regulation makes the system more timing-predictable.
We assume a mechanism like MemGuard [8] from the SCE framework [9] that
can be easily implemented in modern COTS platforms. Each core has a memory
access budget, to consume within a given regulation period. Any core exceeding
its budget is stalled until its replenishment, at the start of the next regulation
period. In [I0], such regulation was combined with SMC/AMC, but not for
multiframe tasks. Conversely, in [I1], it was applied to multiframe tasks, but
not mixed-criticality. This work extends the state-of-the-art with:

1) New schedulability analysis for multiframe mixed criticality multicore
systems, that incorporates the stall due to memory regulation.

2) An accuracy improvement for this analysis that provides tighter schedu-
lability results, by considering all possible releases of higher-priority tasks.

3) A running-time optimisation for the analysis in 2), that prunes combina-
tions of higher-priority task releases whose interference is dominated by others.

Experimental evaluations, using synthetic tasks, show up to 72% higher
unweighted schedulability success ratio vs frame-agnostic analysis.

The paper is organized as follows: Section [2 discusses the state-of-the art.
The system model is presented in Section [3] Section 4] discusses existing results
on multiframe mixed-criticality systems and stall analysis. It closes with an
example demonstrating that a task set deemed schedulable by a stall-oblivious
analysis may be unschedulable when running in a system with memory regula-

tion. Section [5| presents a stall-aware WCRT analysis for memory-bandwidth-
regulated multiframe mixed-criticality systems. Sections [6] and [7] offer optimi-
sations to accuracy and analysis running time, respectively. Section [§] evaluates
the new analyses, in terms of weighted schedulability and running time, com-
pared to frame-agnostic analyses. Section [J] concludes.

2. Related Work

Multiframe Task Model. This task model by Mok and Chen [2] allows the
WCETsS of the successive jobs of the same task to vary with a repetitive pattern.
The schedulability analysis in [2] vastly improves on conservative analyses that
use a task’s highest WCET estimate as the WCET of each job. Baruah et al. [12]
improved on that by considering the actual frame pattern instead of an accu-
mulatively monotonic reordered pattern [2]. The multiframe task model was
further generalized [13] by allowing additional task attributes to differ among
frames. Zuhily and Burns [14] devised exact analysis for multiframe tasks.

Mized-Criticality Scheduling. The two main variants (for comprehensive review
see [19]), static (SMC) [I] and adaptive mode-based (AMC) [16], of Vestal’s
mixed-criticality model [I7] characterize each task with multiple WCET es-
timates, with a corresponding degree of confidence associated with a different
criticality level (up to the task’s own). In SMC [I], any job by a lower-criticality
task is terminated, if it overruns its most conservative WCET estimate. Baruah,
Burns and Davis [16] ported standard WCRT analysis to SMC. They also
proposed an adaptive mixed-criticality (AMC) scheduling technique that adds
modes of operation. Two schedulability tests for AMC were devised: AMC-rtb
and the tighter, but more complex, AMC-max. This work was extended to
arbitrary deadlines [I§] and an arbitrary number of criticality levels [19].

Memory Bandwidth Regulation. Timing predictability in safety-critical multi-
core systems with shared resources is challenging. Many works offer analysis for
computing the interference on shared resources and integrate their effect into
the schedulability analysis [20, O, 2], 22] 23]. Mancuso et al. [9] developed a
worst-case stall analysis with a software-based memory regulation mechanism
MemGuard [§] for fixed-priority-scheduled partitioned multicores and integrated
it into schedulability analysis. Yao et al. [21] and Pellizzoni and Yun [22] gener-
alized Mancuso’s analysis [9] by allowing uneven memory budget assignment to
cores, for greater efficiency when their bandwidth requirements are too diverse.
Mancuso et al. [24] explicitly consider the known memory access budgets of other
cores to further improve the stall analysis. Agrawal et al. [25] also proposed a
dynamic memory bandwidth assignment mechanism that varies the budgets
over time, based on the application requirements and formulated schedulability
analysis for this arrangement. Awan et al. [26] extended the SCE model [27]
with periodic EDF servers and per-server memory budgets and explored stall
analysis for multiple memory controllers [2§].

Some works integrate the stall analysis into the response time analysis of
mixed-criticality systems [29] [I0, 2I]. Yun et al. in [29] regulate the memory
access rates of cores running low-criticality tasks. Yao et al. [2I] later gener-
alized this by regulating the accesses from all cores. To achieve isolation from
each other, low- and high-criticality tasks are scheduled on separate cores, which
may inefficiently utilize COTS platforms. In response, Awan et al. [I0] let tasks
of different criticalities share cores and presented a low-complexity schedulabil-
ity test based on AMC-rtb. That was improved [28] by dynamically adjusting
the memory bandwidth upon mode change and an AMC-max-based test. Kri-
tikakou et al. [30), B1] deal with interference on a high-criticality task from low
criticality tasks running on a different core, similarly to a mode change [16].
High-criticality tasks are continuously monitored and any low-criticality tasks
exceeding a pre-specified execution time limit are stopped from further execut-
ing. A multicore implementation of that work [31I] demonstrated its effectiveness
and a dynamic [32] variant reduces the time spent in the controller.

Stalls from memory regulation were incorporated to SMC, AMC-rtb/-max
in [10 28]; and to the WCRT analysis of multiframe tasks in [IT]. Multiframe
tasks and mixed criticalities were also combined [33], B], but for single-core sys-
tems (by nature, requiring no memory regulation) — not multicore systems with
memory-bandwidth regulation, as in this work.

3. System Model

3.1. Hardware Platform

As our work relies on [2I] and extends its results, it is bound by the assump-
tions therein. Specifically, K identical cores {P;, Ps,...Px} share a memory
controller through which main memory is accessed. Any speculative units and
prefetchers are disabled. The scheduling policy for both memory controller and
interconnect is round robin. For the regulation of memory accesses, a mecha-
nism like Memguardﬂ [8], that requires no information about tasks running on
other cores, is used. This allows to compute the response time of a task inde-
pendently of the workload on other cores. This relaxes the certification effort.
The outer cache is partitioned or private to each core or can be even partitioned
among tasks to avoid cache-related preemption delay issues. Performance mea-
suring counters count the memory accesses. As in [8, 2], the memory access
time is considered constant. Although not a requirement, the main memory can
be partitioned (e.g. via PALLOC [34]) for improved predictability.

The memory access budget @ of a core k is the maximum number of accesses
it can make in a regulation period P. If a core depletes its budget, it is stalled
for the rest of the current regulation period. At the start of each regulation
period, a core’s budget is replenished. We assume that the regulation periods

ISpecifically, all that is needed is (i) hardware timers (ii) performance monitoring coun-
ters to track last-level-cache misses and (iii) the generation of an exception upon a counter
overflowing. All these features are commonly found in COTS platforms [8].

are equal and synchronised for all cores. The memory bandwidth share of a
core is by, = %, and Z?:o br <1, i.e., the total allocated bandwidth does not
exceed the total available bandwidth. As in [21], the length P of the regulation
period is expressed in multiples of the constant memory access latency.

3.2. Task model

As in [33], each task 7; has a criticality level k;. The set of criticality levels
is totally ordered, and each job of 7; has multiple WCET estimates, one for
each criticality level lower than or equal to k;, with corresponding degree of
confidence. For simplicity, we assume just two criticality levels, high (H) and
low (L). Unlike [I0} 28], the jobs of 7; do not necessarily have the same WCET
estimates, but their WCET estimates are periodic. I.e., for some integer Fj,
jobs n and n+ F; of task 7; have the same WCET estimates. We call a sequence
of F; consecutive jobs a superframe, and each of its jobs a frame.

Thus, each task is characterized by the 5-tuple 7; = (C_"f,éf{ ,Di, T;, ki),
where k; is the criticality level, T; is the minimum interarrival time, D; <
T; is the relative deadline, and C_"ZL and C_’;H are the WCET Fj-tuples for the
L and H criticality levels, respectively. For example, for a task with k; =

H (an “H-task”), CF = (C%O,CiL)l,CZ-L,%...,Cif(Fi_l)> consists of the L-level

7

WCET estimates (“L-WCETS”) of F; consecutive jobs and, accordingly, C_"ZH =
(C%,C{%C{g, ...,CH(Fi_l)) consists of their H-level WCET estimates (“H-

K2 7 K3

WCETSs”). For a task with #; = L (an “L-task”) only CL is defined.
Memory accesses and CPU computation do not overlap, to comply with [21].

Thus, each frame’s k-WCET, C* ., is given by Cr;, = C{i'f + C:ljl'i, where C;Zl'q’

0,57
is the worst-case memory access time estimate and C’z lf" is the worst-case CPU
computation time estimate. Accordingly, the k-WCET of job f is denoted by

the pair (C’i‘('} mod Fi),C’;Z‘;mod Fi))- Tasks are partitioned to the cores and

scheduled preemptively with fixed priorities, assigned offline by any algorithm.

3.3. Mixed-Chriticality Models

A critical issue in mixed-criticality models is to ensure that a job that over-
runs its WCET does not cause jobs of higher-criticality tasks to miss their dead-
line. This paper, builds on the adaptive mixed criticality (AMC) approach.

AMC assumes as many system modes as criticality levels. The system ex-
ecutes only tasks of criticality not smaller than the level corresponding to the
current operating mode. If a job of any task exceeds its WCET estimate for the
criticality level corresponding to the current mode, the system drops all tasks
whose criticality level corresponds to the current mode and switches to the next
highest mode. The initial mode is the lowest one, which includes all tasks.

A key assumption is that a WCET estimate for a given criticality level
is never less conservative than the WCET for a lower criticality level, thus
providing a higher level of confidence that it will not be overrun. For example,
in a system with only two criticality levels, L and H, the L-WCET is smaller

than or equal to the H-WCET. Generalizing to our model, for every frame k of
every H-task i, Cf\" < ¢l and C)F < o7l

4. Background

This work builds on multiframe mixed-criticality analyses for single-core
systems [3], B3] and Yao et al. memory stall and response time analyses [21].

4.1. Multiframe response time analysis

Baruah et al. [12] derived a sufficient response time analysis for multiframe
task sets, based on the one for fixed priority preemptive scheduling, i.e. :

Ri=Cit {%W ¢ (1)

jenp(i) ' 7

The above recurrence upper-bounds the interference by higher priority task
7; during an interval of duration R; by multiplying 7;’s worst-case execution
time, C}, by the number of job releases of 7; in that interval. In a multiframe
task model however, because different jobs may have different WCETs, counting
the number of job releases is not enough. Thus Baruah et al. defined function:

0 if k=0
j+k—1
g(rik) =< max Y Ci (0 mod 1) if I<k<F;, (2
e=j

0<j<F;

q-g(1i, F;) + g(74,7), where g=k div F;, r=kmod F; otherwise

which upper bounds the maximum cumulative execution time of k£ consecutive
jobs of task 7;. They also defined function:

G =a (| 7| 0

that upper bounds the maximum cumulative execution time of jobs of 7; over an
interval of length ¢. Baruah et al. used G(7;, R;) to upper-bound the interference
from higher-priority task 7; in the WCRT recurrence for multiframe tasks:

Ri=g(r,1)+ Y G(7,Ri) (4)

Jj€hp(3)

4.2. AMC-mazx response-time analysis

The AMC schedulability analysis considers the execution in L-mode, in H-
mode and upon mode switch. The analyses for L-mode and H-mode use the
standard WCRT recurrence of fixed-priority scheduling (1)) with the correspond-
ing WCET estimates for all jobs. For the response time upon mode switch, [16]
proposes two analyses: AMC-rtb and AMC-max. Here, we focus on the latter,

which provides tighter bounds by taking into account the time instant s when

the mode switch occurs (relative to the release of the job under analysis).
In [16], AMC-max is also based on the standard WCRT recurrence of fixed-
priority preemptive scheduling as shown in .

R =Cly 3 Q?J +1) o (5)

JERPL(4)
- > (ct ([59] aree i) + 0 M5, 720
M(k,s,t) = min { [w—‘ +1, [Tik—‘ } (6)

In the RHS of , the first summation upper bounds the interference by higher
priority L-tasks, whereas the second summation upper bounds the interference
by higher priority H-tasks. Critical for the safety of this analysis is the parameter
M, @, which upper bounds the number of jobs of higher priority task 75 that
complete after the mode switch; those execute, in the worst-case, for C,? each.

Note that depends on s, so we need to compute the value of s that leads
to the maximum value of the response time, i.e.

R} = maxR;(s),Vs (7)

By analysis of the RHS of , Baruah et al. argue that it is enough to compute
R} (s) only for values of s that correspond to the release times of higher-priority
L-tasks, when the first job of each of these tasks is released at the same time as
the job under analysis and the other jobs arrive as soon as possible. Note that
one needs to check only values of s smaller than the response time in L-mode,
RE, otherwise the task under analysis would complete before the mode switch.

4.8. AMC-mazx for multiframe mixed-criticality

Because in the mixed-criticality model, each job in a multiframe of a H-
task has two WCET-estimates, one for L-mode and another for H-mode, [3],
defines the cumulative L-WCET of any sequence of k jobs of task 7;, g”(7i, k),
an extension of the g(7;, k) function, (2), from [12]:

0 ifk=0
Jtk—1
gL(Ti,k) ={ max Z C{j(g mod Fy) if 1<k<F; (8)
=3

0<j<F;

q-g"(m, F;) + g™ (7, r), where g=k div F;, r=kmod F; otherwise

g (7;, k) for cumulative H-WCET is defined analogously. The cumulative-over-
time WCET function G(7;,t), given by , is likewise extended in [3] to:

GE(mi,t) = g" <T [TLD and G (i) = " (T [TLD 9)

Furthermore, to analyze the response time upon mode switch, [3] defines
g* (7, €%, 1) to compute the cumulative WCET of a sequence of £Z+¢ jobs of
7;, the first £& of which take their L-WCET:

g™ (i, 07 if ¢ =0
g" (i, 45) ifeEA0AeT =0
j+ek -1
max { C']j(k mod Fj)
9" (7, 07, £1) = 053<F: ; o (10)
el 4eH 1
+3° Ok moa m} if 1<tE<FN<tP <F,

k=j+0L

q* - gL(Ti, F) + g (i, 7 ,rH) +¢7- gH(n, F;) otherwise

where ¢“=(¢" div F}), 7l = (¢¥ mod F}), ¢! = (¢# div F;) and 7 = (¢# mod F;).
Additionally, in order to simplify the WCRT recurrence, [3] defines:

P (ri, 1) = g" (n, {TLJ n 1) (11)

With these definitions, [3] transformed the AMC-max response time recurrence
for the mode switch, , to a recurrence for computing the response time of job
j of multiframe task 7; when there is mode switch at time s:

Ri(s) =C4Y GM (rh,8) +> 9" (10, €5 (k, R (s), 5), L7 (k, R 5 (s),8)) (12)

kehpL(3) kehpH (i)
0% (k,t, s) [—‘ H(k,t,s) (13)
7 (k,t,s) = M(k,s,t) (14)

where M (k, s,t) is given by (6). Therefore, Ry ; = maz{R; ;(s) : 0 < s < RE;}.
Again, it suffices to compute R} ; only for those values of s specified for the
original AMC-max. To compute the WCRT of task 7;, one needs to compute
R} ; for every job j in a superframe and take the maximum.

R} =maz{R;;:0<j < Fi} (15)

Finally, [3] proposes trading-off computation cost for pessimism, by computing
the WCRT of only the longest H-mode job in a superframe. Thus becomes:

R;(s) = g™ (r:,1) + ZGL+(Tj, s) + Zg* (i, 0" (k, R} (s),), €7 (k, R} (s),s)) (16)
JERPL(i) kEhpH (i)
which must be evaluated only for values of s smaller than RL, i.e

R} = maz{R}(s):0<s < RI'} (17)

4.4. Stall Analysis

To quantify the interference from the sharing of memory and interconnect
among cores, we build upon the schedulability analysis of Yao et al. [21], which
provides stall analysis for memory-regulated multicore single-criticality systems.
That stall analysis assumes that the task under analysis is the only task on its
core. Therefore, an active task is either executing, accessing memory or stalled.

With memory regulation, a task may experience two kinds of stalls: 1)
contention stall, arising from the sharing of the memory and the interconnect
among the cores; 2) regulation stall, occuring when a core exhausts its budget.
The worst-case stall experienced by a task depends essentially on two values:
the fraction of the total memory bandwidth assigned to the core running the
task, b= Q, and the fraction of the task’s total execution time that is spent
accessing memory, r:%, where C' = C™ + C*. Indeed, if b < %, where K is
the number of cores, the worst-case stall occurs by maximizing the number of
regulation stalls. Otherwise, the worst case occurs by maximizing the number
of contention stalls. If there is enough computation, then all memory accesses
can suffer the maximum contention stalls. However, if there is not enough
computation, some regulation periods may experience regulation stalls. Thus,
Yao’s analysis yields 3 cases:

Case 1: If b < %, then the stall is maximum when the number of regulation
periods with a regulation stall is maximum, and it can be upper-bounded by:

G (P-Q)+ (K -1)Q if C™ mod Q =

[%—I (P-Q)+ (K —-1)(C™ mod Q) otherwise (18)

stall(C¢,C™) = {

Case 2: If b > % and r = Cgl < (K 1)b7 then the stall is maximum when every

memory access suffers interference by all other cores and it can be bounded by:

stall(C*, Cm) =P-Q)+(K-1)-C™ (19)
Case 3: If b>L Ve and r—c— > (K 1)b7 then stall is bounded by
1+ AP -Q)+ ifC<(1+A
statice,cmy = L TP Q@ En O AR,
(1 + 5) (P—-Q)+r2 otherwise
_ Ce _P-Q
where, A = {F—RBSJ , RBS = o1

r1 =min{P — Q, (K — 1)(C™ — A- RBS)}, ro = min{P — Q, (K — 1)(Cmod Q)}

All three cases consider an initial (regulation) stall of (P — @) because, in the
worst case, when a task is scheduled to run on a core, the latter’s memory access
budget is already depleted.

To apply the stall to the WCRT analysis of preemptive fixed-priority schedul-
ing, [21] uses the concept of a synthetic task with the following parameters:

0] C+Z[j

JjEhp(T;)

Table 1: Example task set and WCRT computed by stall-oblivious AMMC-max analysis.

. =L H _ WCRT
Task r 5 5 T=0D L-mode Mode switch
T1 L [{(1,2),(2,2),(6,1).(4,3)} - 20 7 NA
T2 H {325,121} {(6.4),(10,2),(4,2)} 30 13 19
T3 H {(1,3),2 D} {(2,6),(4,2)} 40 17 27
T1: . memory access Z computation T3 : memory access El computation B contention stall
T3—ble—— D1 ——»le——————— T4 ﬁ 2,1
P1 I
0 10 20 30 40

Figure 1: L-mode execution scenario with stalls for the task set in Table [1| showing that 7o
misses its deadline, even though the AMMC-max stall-oblivious analysis deems it schedulable.
Assuming a four core platform with a regulation period of 10. P;’s memory budget is 3.

cm(p) — o™ L]om
Cr(t) = C! + > {f_}cj
J€hp(T;)
Le. it treats the job under analysis plus the jobs of interfering tasks arriving in
the response time interval as a single job of a synthetic task. Thus, the classic
WCRT equation becomes:

Ri (R C™ (R,
Ri=Ci+ | > {TJ Cj + stall(C¢(R;), C™(Ry))
JjE€hp(T;)

4.5. Example

We present an example of how the stall-oblivious analysis for AMMC-max
presented in Section £.3] may be unsafe in the presence of memory regulation.

Consider a quad-core system using memory regulation based on MemGuard,
with a regulation period of 10 time units (worst-case memory access latency).
Assume that cores P; to P4 have memory budgets of 3, 3, 2 and 2, respectively.

P, runs three multiframe tasks whose characteristics are shown in Table
The two right-most columns in this table show the worst-case response times
of all tasks computed by the stall-oblivious AMMC-max analysis (Section .
Since no WCRT exceeds the respective task deadline, the stall-oblivious AMMC-
max analysis deems the task set schedulable.

However, this may not be the case as illustrated by the execution of P;’s
tasks in Figure[I] where blue is used for 71, green for 7 and black for contention
stalls. For each task, we use a solid pattern to represent memory accesses, and
a diagonal line pattern for computation. In this example, we assume that the
system is operating in L-mode and that 7¢’s third frame and 75’s first frame
arrive at time 0, the beginning of a regulation period. (The 7;; labels above
Py’s execution time line denote that P is executing frame j of 7;.) Assuming
deadline monotonic scheduling, P;’s scheduler decides to run 71, which incurs a
cache miss. Further assume that at the time P; issues a memory request, the

10

other 3 cores also issue memory requests and that the memory controller, which
executes a round-robin scheduler, determines that P;’s request is served only
after the requests of the other 3 processors. Hence, 71 incurs a stall for 3 time
units, after which it performs its memory access. Next, 7 performs computation
for 6 time units, and completes at time 10. The scheduler now decides to run
T9. Again, we assume that, before any computation, 7o suffers two last-level
cache misses, both of which result in memory requests that incur 3-time-unit
memory stalls. At time 18, when the second memory access completes, 7 starts
performing computation. However, after 2 time units, at time 20, 7’s fourth
frame arrives, and the scheduler preempts 7o, and assigns P; to 71. Again, 71
first performs 3 memory accesses, incurring a contention stall of 3 time units
each. After the third memory access terminates, 7 executes for 4 time units
completing at time 36. The scheduler then resumes 75; it executes for one time
unit and completes at time 37. Since 73’s relative deadline is 30 time units, in
this execution 7o misses its deadline (represented by the red cross in Figure (1)),
thus showing that with memory regulation this task set is not schedulable.

5. Memory-aware WCRT Analysis

We now extend the AMC-max based WCRT analysis for mixed-criticality
multi-frame tasks [33], AMMC-max, summarized in Section to systems us-
ing memory regulation. Our approach is based on Yao’s analysis [2I], summa-
rized in Section[4.4)and it is safe, simple and efficient, but somewhat pessimistic.
Section [6] presents tighter analysis whose run-time is significantly larger.

The simplicity of the analysis arises essentially from our approach to upper
bound the stall. This approach and the use of a single recurrence per task, see
(16) and (L7), lead to a rather efficient analysis.

As a first step, we extend some g and G functions described in Section [4]
to compute the maximum cumulative computation time and the maximum cu-
mulative memory access time required to compute the stall. More specifically,
we define functions g°/*/¢™/* and G/ /G™/ ', based on ¢*, (§), and G*, @D,
respectively. For example, we define:

0 ifk=0
JHk—1
e|L .
. max C. it mod Fi if 1<k<F;
g (7i, k) = { 0<i<R; ; (€ mod Fy) (21)
q- gelL(Ti, F;) + ge‘L(n, T) otherwise
where ¢ = k div F; and r = k mod F;
e|L _ e|L t
@V (riyt) = g% (7, | 2 (22

Functions ¢¢/# /g™ and G¢I# /G™H are derived similarly from g and G,
Since we consider adaptive mixed-criticality with only two criticality levels,

high (H) and low (L), the system operates in two modes. In L-mode all tasks

execute, while just the H-tasks in H-mode. Hence, we must consider WCRT

11

in L-mode, in (stationary) H-mode and in transient H-mode, i.e. when a task
is caught by a mode transition. In all cases, we take into account the effect of
memory regulation, by using the approach in [2I] (summarized in Section |4.4)),
i.e. by adding a term that upper bounds the stall to the respective WCRT
equation derived in [33]. For example, in L-mode, the WCRT becomes:

RY =g"(r 1)+ D G'(rj Ro) + stall(C{"(RE), GV (RE)) (23)

j€hp(3)

The stall term is computed using the algorithm in [2T] and summarized in Sec-

tion The crux is what values to use for arguments C; lL(RZL) and C}" ‘L(Ri).
In the multiframe task model, the computation time and the memory access
time of a sequence of jobs of a given length depends on the first job in that se-
quence. Furthermore, the sequence with the maximum computation time may
be different from the sequence with the maximum memory access time. To en-

sure safety, Cf‘L(Rl-L) and CZ”‘L(RiL) must be upper bounds of the computation
and memory access time of a synthetic task composed by the largest L-job of
the task under analysis, 7;, and all jobs of higher-priority tasks that arrive in the
response time interval. Thus we bound each of these components independently:

CFy =g+ > G (L) (24)
JjEhp(i)

oty =gt (m)+ > M) (25)
jERp(3)

This is safe, but may be pessimistic as, for any task 7;, the sequence of jobs with
the largest computation demand, Ge‘L(Tj, RL), may differ from the sequence of
jobs with the largest memory access time, Gm‘L(Tj, RE).

In steady H-mode, the WCRT of an H-task 7; resembles that for the L-mode,
except that there is interference only by higher-priority H-tasks and H-mode
WCET estimates are used:

R =g"(m,)+ 3. G"(m. R+ stall(C;(RI),CI" (RE)) (26)
Tj€hpH (3)

—_—

where the arguments of stall, C{"" (RH) and C"'" (RH), are given by and

7

(28), which again upper-bound the two components independently:

o)y =gMm)+ D ¢M(m,t) (27)
kehpH (i)

oty =g (m)+ > G () (28)
kehpH (i)

12

In transient H-mode the WCRT equation, 7 becomes:

R: (8) = g T’H Z G Tja

jE€hpL(i)

+ 37 9" (i, €5 (R, Ri (),), €7 (k, R} (s), 5)) + stall(CE(Ri (s)), C7* (Ri (s)))
kE€hpH (i)
(29)

where ¢ and ¢ are given by and 7 respectively, and the arguments of
stall, C&*(Ri(s)) and C™*(R;(s)), are given by:

Cer(t) = gV (mi,1) + ST s+ Y g (e 5kt s), 07 (K, s))

jE€hpL(i) k€hpH (1)
JjE€hpL(i) kehpH (i)

where the ¢¢/* and ¢™!* functions are similar to the ¢* function, , except
that they use the respective component of the WCET. Similarly, G¢/** and
G™L+ are similar to GEt function, , except that they use the respective
component of WCET. The WCRT is the maximum of all the responses computed
for all mode switch instants s less than RF:

R} = maz{R}(s):0<s < RI'}

Actually, rather than considering all time instants less than RZ it is enough to
consider only the release time instants of higher-priority L-tasks, assuming that
they are released at the same time as the task under analysis as often as possible.
Indeed, the original arguments for this approach in [35] are still applicable. By
analysing, the RHS of equation , we observe that the interference by higher-
priority H-tasks decreases with s, whereas the interference by higher-priority
L-tasks is a step function that increases at the instant these tasks are released.
This is also true for their WCET components, i.e. the computation time and
the memory access time, and therefore for the stall.

6. Exhaustive analysis

The analysis in Section [5| is pessimistic because it uses (i) Baruah’s g/G
functions in accounting the interference by higher-priority tasks and also (ii)
independent upper bounds on the accumulated computation time and the ac-
cumulated memory access time of each job sequence of a higher-priority task.
In this section, we address this pessimism with an exhaustive analysis, which
builds on that of Zuhily and Burns [14]. In Section We reduce its complexity.

6.1. Notation and underlying principles

Fixed-priority WCRT analysis relies on upper-bounding the number of job
releases by each higher-priority task until the task under analysis completes. For

13

multiframe tasks, this is not enough. For any given number of interfering jobs
by a given higher-priority task, there are as many potential interfering sequences
as frames in a superframe: one sequence per initial frame. Because each frame
may have different WCET, each such sequence may cause different interference.
To enumerate all interfering higher-priority frame sequences of a given length,
we adapt the notation of [I4]. Let L; = {0,..., F;-1} denote the set of (the in-
dexes of) initial frames of all job sequences of task 7;. Assuming, without loss
of generality, that tasks are numbered from higher to lower priority, each ele-
ment of the Cartesian product V; = H 1 L denotes a tuple of initial frames,
one per higher priority task, of all the sets (Combmatlons) of interfering job se-
quences, consisting of one such sequence per task in hp(i). For example, we
have three tasks with rate-monotonic priority:m, = {(3,4,7,7),(), 20,20, L},
= = {(5,6,3),(),30,30,L} and 73 = {(4,3),(8,6),40,40, H}. Then, V3 =
{(0,0),(0,1),(0,2),...,(3,0),(3,1),(3,2)} is the Cartesian product of L; =
{0,1,2,3} and Lo = {0,1,2}. (1,0) € V3 denotes two sequences of interfering
frames, one by 71, starting with frame 1, and another by 75, starting with frame
0. Note that (1,0) just specifies the initial frames of the interfering sequences.
The lengths of the sequences are specified differently. Moreover, to upper-bound
the interference of every frame sequence, [I4] defines the cumulative function:

jt+k—1
g(T’iajak): Z Ci,(lmodFi) (30)

L=j
for k=1,2,.... Le., g(7, 4, k) computes the cumulative WCET of a sequence of
k frames of 7;, starting with frame j. We generalize this cumulative function to:
Zj+k 1C,(£modF) ifk=1"L
Zj+k 1CZ(Zm0dF) ifk=H

for mixed-criticality and define (32)) to compute cumulative computation and

gn(7i7j7 k) { (31)

e ool e _
205 Cildmoar,y fc=eandrk=1L

L .
Z]'H“ e m(‘emodp) ifc=mand k=1L
) K

clk . -
T k) = ce 32
9" (75,5, k) Zj+k 1 zl(IZmodF~) ifc=cecand Kk = H (32)
Zﬁ;c torlt ey ife=mand k= H

6.2. AMMC-maz Ezhaustive Analysis

To perform an exhaustive analysis, we compute the response time of every
frame of a multiframe task, considering all possible interfering sequences by
higher priority tasks. Let ve€V; denote a set of interfering sequences, one per
task with higher priority than 7;, such that the first frame of each sequence is
the corresponding element of v.

L-mode analysis. The L-mode WCRT of frame j of a task 7; subjected to v is:

RU\L _— —
RvIL — C” + Z g <7'k, , ’7 T —‘> + stall (CE‘L(RZ‘J‘L),CZZ‘L(R:LL)> (33)

k€hp(i)

14

where v(k) denotes element k of tuple v, and arguments C; IJL(R;Jl]L) and

C'.m.‘L(R-UI-L) of the stall function are given by:

i,J i,
7\ - ¢
Cy ‘L = 'L + E (Tlm k), {*Tk—D

k€hp(i
ﬁL\ _ m|L t
o) + Z " (o, |)
kehp(i)

As usual, is solved by recurrence. All iterations use the same value for v,
i.e., the same first job for each interfering task. To compute the L-mode WCRT
of frame j of task i, RF ‘;» we consider all possible sequences of interfering tasks:

¥

RY; :max{Ryl.L :UEVi} (34)
Finally, for the WCRT of task ¢ in L-mode, we must consider all frames of 7;:

RF=maz{RE,:j=0,.. F,—1 35
3]

Steady H-mode analysis. The WCRT of H-task 7; in (steady) H-mode is com-
puted similarly. The response time recurrence is obtained from , by applying
the transformations that allow us to derive from . The arguments of
the stall function can be derived from the execution time terms in the RHS of
the response time recurrence just like for L-mode. The WCRT of each frame
of task ¢ in H-mode is then obtained by taking the maximum of the WCRT for
all sequences of interfering tasks, like in . Finally, the WCRT of task i is
obtained by taking the maximum of the WCRT of all of its frames, as in .

Transient H-mode analysis. We now focus on the WCRT analysis of H-tasks
caught by mode-switch. Such tasks can suffer the interference of sequences con-
taining not only H-jobs but also L-jobs, i.e jobs that complete before the mode
switch, of higher priority H-tasks. To bound this interference, we combine the
cumulative function, , with the ¢g* function, , and define the cumulative
WCET of a sequence of £& + ¢H frames of task 7;, starting with frame j, such
that ¢& frames complete in L-mode and the remaining in H-mode:

g (7i, 5,05, 0") = g% (71,5, 0°) + g™ (7i, (j + £5) mod F, €7 (36)

e|* m|x

Likewise, we define ¢g¢* and ¢ to compute the cumulative computation and
memory access time of frame sequences.

g (riy 4, 05 0 = gV (i, 4, 67) + g1 (7, (+ €7) mod F, %) (37)
g™ (i, 4. €, 0y = g™ (11, 5, 0%) + g™ (72, (+ €7) mod i, 07) (38)

15

Let Rf‘;, with v € V;, denote the worst-case response time of frame j of
task 7; caught by a mode switch when subjected to the interference of a set of
frame sequences, one per higher priority tasks, such that the first frame of each
of these sequences is the corresponding element in v. Then, with AMMC-max,

the WCRT recurrence for a task caught by a mode switch becomes:

v|* S) = Tk,

R} (s) keh,.Zm ((k) {TkJ +1) (39)
+> 9" (i, v(k), €5 (k, R}V (s),), £ (K, R}V (5), 9))
kEhpH (7)

+ stall (Ce*@()5 Cm*@(s)))

5]

where (L (k, Rf‘;(),s) and ¢ (k, va*(),) are appropriate values for the num-
ber of interfering jobs that complete before/ after the mode change, respectively.
We discuss the selection of these values in this section’s last paragraph.

As for other modes, the arguments of stall are easily derived from the RHS
of , with the help of component-wise cumulative functions and .

Note that provides the response time of a frame j of task ¢ when subject
to the set of interfering sequences, v € V;, as a function of s. Thus:

R = max{RZ' (s):0<s< RU‘L}

2y

As argued in Section it suffices to compute Ry‘%(s) only for values of s equal

v*

to release times of higher priority L-tasks. Like for the other modes, from R,
the response time of frame j of task i is computed by taking the maximum for
all sequences of interfering tasks, and from that the response time of task i, by
taking the maximum for all frames.

Quantification of (- (k, RZ'; (s),s) and ¢*(k, RZ‘;(S), s). Equation is to be
solved via a recurrence relation, as in classic AMC-max. However, for the recur-
rence to converge, appropriate values for ¢%(k, RZ';(SL s) and ¢ (k, RZ‘;(s), s)
must be selected. The quantification of interfering jobs completing before/after
the mode change, does not carry over from lassic AMC-max, because it may
prevent the recurrence from converging, as evidenced by the following counter-
example, that uses classic AMC-max values for ¢ and ¢ (see (5]) and (@
Consider the computation of the response time of a frame of H-task 7; upon
mode switch, using . Assume that the L- and H-WCET estimates of higher
priority H-task 7; are {20, 5,1} and {40, 10, 2}, respectively. Assume that frame
0 is the first one for 7;. Assume that, in iteration k, there are two interfering
H-jobs; then the cumulative interference is 50. Assume that in iteration k + 1,
the number of interfering jobs increases to 3, the first of which is an L-job and
the othes are H-jobs, the cumulative interference will decrease to 32. As a result,
the response time computed in iteration k£ 4+ 1 may be smaller than in iteration

16

k. Such non-monotonicity in the cumulative interference with respect to time
may prevent the recurrence from converging. To address this issue we define:

0" (k,t,s) = maz Q%J - 1,0) (40)
(ke t,5) = [TLJ — (P (Rt 5) (41)

There are three key properties of the quantification of £ (k, t, s) and ¢ (k, t, s)
via and respectively that ensure that can be solved using a recur-
rence and that its solution is safe:

Lemma 1. provides a lower bound on the number of jobs of a periodic task
T, with period Ty that execute completely in a time interval, I, of length s.

Proof sketch: The minimum number of job releases of 7 in I is LTikJ If the
release of a job is inside I and the release of the following job is also inside I,
then the former job executes completely in I. Therefore, the number of jobs

that execute completely in [is one less than the number of job releases in 1.

Lemma 2. is an upper bound on the number of jobs of sporadic task T
with minimum inter-arrival time Ty, released in a time interval I, of length t,
that complete after time instant s, relative to the beginning of I. Also, the sum
of and s equal to the maximum number of job releases of 4, in I.

Proof sketch: The maximum number of job releases of 74 in I is [+-]. From

Tk
Lemma (I} at most ¢'(k,t,s) of those complete before s.

The third property is that is independent of ¢. This is trivial to check,
but it is crucial as it ensures that in the solution of by a recurrence, the
interference of jobs of higher priority H-task 7, before the mode switch has the
same value in all iterations. Furthermore, the first H-job of the interfering job
sequence of 7 is always the same frame, and therefore the interference by the
H-job sequence is monotonically non-decreasing. (As shown, for the memory
agnostic case in Lemma 1 of [3].) Therefore, in the solution of the recurrence

(139), RZ‘;(S) is monotonically non-decreasing, thus ensuring termination, either

by convergence or by deadline violation.

7. Pruning

The exhaustive analysis of Section [6]is tighter than the analysis of Section
because it exhaustively computes the WCRT of (i) every frame of all tasks and
(ii) for all possible frame sequences of interfering tasks. Zuhily and Burns [14]
use pruning to reduce running times. We now adapt that pruning approach to
our model of Section Bl

The work in [T4] considered a single core platform whereas our work targets
a multi-core platform with memory regulation. Therefore, we need to account
for the two components of the WCET, because, as summarized in Section [£.4]

17

in a multicore platform with memory regulation, a job may incur a stall which
depends on those components. As an extreme example, two jobs with the same
WCET but one with a zero-valued memory access time, and the other with a
zero-valued compute time, will incur different stalls: whereas the first job will
incur no stall the latter may incur a significant stall, i.e. comparable or even
higher than the job’s WCET. Thus, whereas [I4] relies on the < relation in R
to prune jobs, our approach relies on the relation < between elements of R?,
the WCET pairs, defined as follows:

Definition 1. Let (z1,y1), (r2,y2) € R%. Then, (z1,11) < (z2,y2) iff (z1 <
2 Ay1 <ya Var <2 Ayr < yo)

Pruning frames: To compute the WCRT of a task, rather than consider
every frame of that task, Zuhily and Burns [I4] consider only the peak frame
of each task, i.e., the one with the maximum WCET among its frames. In our
model, since R? is a poset under the < relation defined above, there may not be
a total order among the WCET pairs of a task’s frames. So, for each task, we
must compute the WCRT for each frame whose WCET pair is maximal among
the set of WCET pairs of the frames. If multiple frames have the same maximal
WCET pair, analyzing one of them suffices.

With AMC, we must compute WCRTSs for H-tasks in both modes. Thus, we
perform pruning independently for both modes, using the respective WCETs.
Le., for H-task 7;, we define FF and FF' — the sets of frames of 7; whose WCET
pairs are maximal in L- and H-mode, respectively. With these sets, to compute
the L-mode WCRT of 7;, we compute the response time for each of the frames
in FiL and take the maximum. Similarly for the H-mode and mode switch, we
consider only the frames in FZ-H . For an L-task 7;, we only define FiL .

Pruning frame sequences: The analysis in Section[f]solves one recurrence
for every element of the cartesian product of the L-sets of higher-priority tasks,
i.e. the V-sets. In [I4], to reduce the number of response time recurrences,
Zuhily and Burns prune elements from the L sets, thus reducing the cardinality
of their cartesian products and ultimately the number of recurrences.

The pruned set, L;, is obtained from set L; by removing every frame j that
fulfills the following condition: There exists a frame k # j such that, for every
sequence of ¢ frames (with 1 < ¢ < F;), the cumulative WCET of the sequence
starting with frame j is smaller than that of the same-length sequence that
starts with frame k.

Our approach differs from that in [14] in two aspects: 1) For each task, we
define set L”, furthermore for each H-task, we define also sets L and L*, since
we must consider each mode; 2) We use the < relation on R?, not the < relation
on R, since we must ensure that the stall caused by the interfering task is also
taken into account.

Thus, sets LY and L are obtained from set L; using the L-WCET and the
H-WCET estimates, respectively, and by using the relation < on R?, to compare
the cumulative WCET pairs of sequences of ¢ jobs, with 1 < ¢ < F;.

Set f/f, used for mode switch analysis, is obtained from L;, by removing every
frame j for which there is a frame k # j such that, for every sequence of ¢¢

18

Table 2: Overview of Parameters

[Parameters [Values [Default |
Number of cores (K) {2,4,6,8} 2
Memory Intensity (v) {1:.1:.9} 0.4

H-WCET scale-up factor () {2:0.5:6} 2
Task-set size (|7]) {6, 8,10, 12} 10
Fraction of H-tasks in 7 (¢) {0.05:0.05: 0.6} 0.4

Upper bound on # of frames (a) {3:1:8} 5
Lower bound on L-WCET (3) {0.1:0.1:0.8} 0.2
Inter-arrival time (T5) 10msec to lsec N/A

L-mode frames followed by a sequence of £/ H-mode frames, with 0 < /& < F;
and 0 < ¢(f < F;, the cumulative WCET pair of the sequence starting with
frame j is < than that of the sequence starting with frame k.

With the definitions above, rather than solve one response time recurrence

i—1

per element of V; = [] j—o Lj, we need only solve one recurrence per element
of the Cartesian product of the appropriate “pruned” sets. For example, to
compute the WCRT of an H-task 7; upon mode switch, we solve one recurrence

per element of H;;é I:j

8. Evaluation

We implemented both analyses for performance evaluation. Our simulator
has two modules. One module generates parameterizable synthetic workloads.
Another one assigns bandwidth and tasks to cores, and tests for schedulability.

Unbiased task utilizations in L-mode are generated using the UUnifast-
discard [36], 87] algorithm and varied within [0.1, 1] x K. Task periods (10 msec
to 1 sec) are log-uniform-distributed. Deadlines are implicit (T;=D;), though
analyses hold for constrained deadlines (D;<T;). Task-set size (|7]) is an input
parameter. The number of H-tasks is |¢ x |7]], where (€(0,1) is a user defined
fraction of H-tasks and |-] denotes rounding to the nearest integer. The number
of frames of each task is randomly selected over [1, a], where upper-bound « is
an input parameter. The L-WCET of the first frame is generated by multiplying
the period of a task with its utilization, i.e., C’lﬁ:Ti x U;. The L-WCETs of
other frames are randomly generated within [3 x C’iLJ, CiLJ], where 3€(0,1] is an
input parameterﬂ For any frame, its H-WCET is computed by linear scaling
its L-WCET (i.e., CZHJ =£&X ij), where £ is an input parameter. (Griffin’s [38]
more sophisticated H-WCET generation approach came too recently for us to
consider.) The total WCET is divided between memory access time and the
CPU computation time using an input parameter . The memory access time
of a frame in mode = € {L, H} is randomly selected within [0, v x Cf;]; what

remains is the CPU computation time, i.e., ¢/

m|x 3 A
i =Ci;—C; ;. Audsley’s priority

2For convenience, without loss of generality (since shift-rotating the order of the frames
results in an equivalent multiframe task), the first frame has the biggest L-WCET. Note that
our analyses make no assumptions regarding the WCET of the first frame being the greatest.

19

assignment [39] is used. For frame-agnostic analyses, we use for each task 7; the
parameters ¢°%(7;,1), g™%(7;,1) and ¢¢/*(r;,1) + ¢™%(r;, 1) for its worst-case
CPU computation time, worst-case memory access time and total WCET.

Table [2] summarizes the parameters. The triples represent minimum value,
increment size and maximum value for a parameter. Each random parameter
uses its own pseudo random number generator, which is seeded in the first
replication [40].

For every parameter in this table, except the inter-arrival time, we run a
two-factor experiment in which one of the factors is that parameter and the
other factor is the task set L-mode utilization. In each of these experiments,
the remaining parameters take their default values.

For each combination of input parameters, 100 task sets are generated. As
in [21], a memory access takes 40 nsec and the regulation period is 100 usec.
Task-to-core assignment and bandwidth allocation are performed using memory-
fit [I1]. This heuristic assigns a task to the core that requires the least memory
budget increase to accommodate it, as quantified via binary search.

Because we use a two-factor experimental design, we use weighted schedu-
lability [41] [42] as evaluation metric, making it possible to show the results in
two dimensional plots rather than in three dimensional plots.

Let Sy (7,p) denote the result of schedulability test y for task set 7 for an
input parameter p. The weighted schedulability W, (p) is:

_ ZVT(UL (7'2 - Sy(7,p))
2w UR(T)
where, U- L(r) = % is L-mode system utilization normalized by number of

cores K. The experiments ran on a system with 8 Xeon E5-2420 2.20 GHz dual
cores, 32 GB of RAM and Linux Mint 18.3 Sylvia with open jdk 1.8.0_242.

Wy(p)

(42)

8.1. Results

In our experiments, the simpler multiframe analysis (AMMC-max, Section
markedly outperforms the frame-agnostic AMC-max, AMC-rtb and SMC, and,
surprisingly, almost matches the exhaustive analysis (AMMC-max-Z, Section@.

The effect of the H-WCET scale-up factor (£) and the H-task fraction (¢) are
presented in Figures [2a] and High values for either, increase the processing
requirements of H-tasks, hence lowering the weighted schedulability (and perfor-
mance difference among tests). The number of generated H-tasks is rounded up
to the nearest integer when the target ¢ yields a non-integer number. This ex-
plains the step-like behavior in Figure 2b] A higher memory intensity increases
the overall stall, detrimentally for schedulability (Figure . With more cores,
the overall interference among cores increases, impacting the schedulability for
all tests (Figure . It is expected, since the memory bandwidth is not scaled
up with the increase in the number of cores. The higher interference also sub-
sumes the benefits of better analysis.

Many low-utilization tasks are easier to schedule than few high-utilization
tasks, due to bin-packing fragmentation. Hence, the performance of all tests

20

Table 3: Maximum absolute difference in unweighted schedulability success ratio compared
to AMC-max over all experiments for each parameter varied.

Analysis ¢ 7] £ « B ~ K
AMMC-max-Z | 39% | 45% | 69% | 54% | 47% | 72% | 39%
AMMC-max | 37% | 41% | 66% | 50% | 44% | 62% | 37%

improves with task set size (Figure [2¢). With more tasks, there is also more po-
tential to leverage frame information, hence the greater performance difference
between frame-agnostic and multiframe analyses with large task set sizes.

Parameter 8 lower-bounds the ratio between the smallest and the biggest
L-WCET, among a task’s frames. As f tends to 1, the generated task sets
approximate single-frame tasks, thereby reducing the potential benefits from
leveraging the frame information. This effect is evident for all tests (Figure .
Varying the number of frames shows a roughly ascending trend for the multi-
frame analyses (Figure. Indeed, having more frames per task means a higher
percentage of frames not exhibiting the worst-case computation and/or mem-
ory access time — which multiframe analyses can leverage. The trend is opposite
for the frame-agnostic approaches, because the single-frame representation of a
multiframe task combines the worst-case computation and the worst-case mem-
ory access time over all of the latter’s frames (possibly, different ones). The
pessimism from that is more pronounced, the higher the number of frames is.

The test running time of the simpler multiframe analysis (AMMC-max)
is of the same order of magnitude as that of the frame agnostic analyses,
whereas the exhaustive analysis (AMMC-max-Z) is several orders of magnitude
higher (Figure [21)).

Finally, Table [3] provides the maximum absolute difference in unweighted
schedulability success ratio of each multiframe max analysis (AMMC-max-z
and AMMC-max) from the single frame analysis (AMC-max), when varying
different parameters. The maximum difference for each analysis is highlighted
in Table |3| In the best case, AMMC-max-Z achieves up to 72% higher success
ratio than AMC-max. The results for the simpler analysis is close to those of
the exhaustive analysis, whereas its running time is much shorter.

9. Conclusions

We formulated schedulability analysis for multiframe mixed-criticality tasks
with memory regulation, that incorporates the related memory stalls. The state-
of-the-art previously only offered analysis for systems with at most any two of
the following three characteristics: (i) mixed criticalities; (ii) multiframe tasks;
and (iii) memory access regulation. By covering all three of those our work al-
lows for safely leveraging frame information of mixed-criticality tasks, for better
schedulability, also on COTS multicore architectures; no longer just single cores.
As our experiments with synthetic tasks demonstrated, the frame-aware and
stall-aware schedulability analysis substantially outperforms its frame-agnostic

21

‘Weighted Schedulability

‘Weighted Schedulability

0.5

0.4

0.3

0.5

0.4

0.3

H-WCET scale up factor(§)

Fraction of H-tasks({)

Task set size(|7]) L-WCET variation(8)

(e) (0 (2) (h)

Figure 2: Weighted schedulability for different factors variation a) Effect of H-tasks share in
a taskset b) Effect of H-WCET variation ¢) Effect of number of cores d) Effect of memory
intensity e) Effect of tskset set size f) Lower bound on L-WCET variation g) Effect of number
of frames h) Average runing time

(but still stall-aware) counterparts. This validates our approach as a tool for
safely harnessing the power of COTS multicores for critical workloads.

Acknowledgements

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER Re-
search Unit (UIDP/UIDB/04234/2020); by the Operational Competitiveness
Programme and Internationalization (COMPETE 2020) under the PT2020 Part-
nership Agreement, through the European Regional Development Fund (ERDF),
and by national funds through the FCT, within project PREFECT (POCI-
01-0145-FEDER-029119); by FCT through the European Social Fund (ESF)
and the Regional Operational Programme (ROP) Norte 2020, under grant
2020.08045.BD.

22

Number of Frames () Task set size (|7])

(a) (b) (c) (d)
©
IS T T F T 7
ok

42) g E =
= -~ F =
3 r]
3w []

ER=) ~o
o 20 |k -
0 g2 E =
= 5L E
w0 E - -
- E T]

E

i3 2E =
c B E|
2 F =
S =
- E E
“ | | E | | =
0.8 ° 4 6 8 6 8 10 1

T T
b — e+ AMMC z H
2o B 55 -max-
oo e = —a— AMMC-max
3 = =
3 2 B —e— AMC-max |
I I z —w— AMC-rtb
¢ o 03 O
5 5 23 —— sMc
n 0 n
<
T %o 3
S 2 2
= o =
=l = =
] o0)
Eol| EE £
(=}
| | | | | | |
0.1 0.2 0.3 04 0.5 0.6 0.1 . . . 09 2 4 6 8

N

References

1]

2]

S. Baruah, A. Burns, Implementing mixed criticality systems in Ada, in:
16th Ada-Europe Conference, 2011, pp. 174-188.

A. K. Mok, D. Chen, A multiframe model for real-time tasks, Trans. Softw.
Engin. 23 (10) (1997) 635-645.

I. Hussain, M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, E. Tovar, Re-
sponse time analysis of multiframe mixed-criticality systems with arbitrary
deadlines, J. Real-Time Syst. (2020). doi:10.1007/s11241-020-09357-w.

D. Le Gall, Mpeg: A video compression standard for multimedia applica-
tions, CACM 34 (4) (1991) 46-58. [doi:10.1145/103085.103090.

Aeronautical radio, Inc., ARINC specification 818-2 Avionics Digital Video
Bus (ADVB) High Data Rate, 818th Edition (2013).

C. Bailey, A. Burns, A. Wellings, C. Forsyth, Keynote paper: A perfor-
mance analysis of a hard real-time system, Control Engineering Practice
3 (4) (1995) 447-464.

J. P. Lehoczky, L. Sha, Y. Ding, The rate monotonic scheduling algorithm:
Exact characterization and average case behavior, in: 10th RTSS, 1989,
pp- 166-171.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-
core platforms, in: 19th RTAS, 2013, pp. 55-64.|doi:10.1109/RTAS.2013.
6531079l

R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, H. Yun, Wcet (m) estima-
tion in multi-core systems using single core equivalence, in: 27th ECRTS,
IEEE, 2015, pp. 174-183.

M. A. Awan, P. Souto, K. Bletsas, B. Akesson, E. Tovar, Mixed-criticality
scheduling with memory bandwidth regulation, in: 55th DATE, 2018.

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, E. Tovar, Memory band-
width regulation for multiframe task sets, in: 25th RTCSA, 2019, pp. 1-11.

S. K. Baruah, A. Mok, Static-priority scheduling of multiframe tasks, in:
11th ECRTS, 1999, pp. 38—45.

S. Baruah, D. Chen, S. Gorinsky, A. Mok, Generalized multiframe tasks,
J. Real-Time Syst. 17 (1) (1999) 5-22.

A. Zuhily, A. Burns, Exact scheduling analysis of non-accumulatively
monotonic multiframe tasks, J. Real-Time Syst. 43 (2) (2009) 119-146.

23

https://doi.org/10.1007/s11241-020-09357-w
https://doi.org/10.1145/103085.103090
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/RTAS.2013.6531079

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

[26]

A. Burns, R. I. Davis, A survey of research into mixed criticality systems,
Comput. Surveys 50 (6) (2017) 82:1-82:37.

S. K. Baruah, A. Burns, R. I. Davis, Response-time analysis for mixed
criticality systems, in: 32nd RTSS, 2011, pp. 34-43.

S. Vestal, Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance, in: 28th RTSS, 2007.

A. Burns, R. I. Davis, Response time analysis for mixed criticality systems
with arbitrary deadlines, in: 5th WMC, York, 2017.

T. Fleming, A. Burns, Extending mixed criticality scheduling, in: Proc.
WMC, RTSS, 2013, pp. 7-12.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar,
Bounding memory interference delay in COTS-based multi-core systems,
in: 20th RTAS, 2014, pp. 145-154.

G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, L. Sha, Schedula-
bility analysis for memory bandwidth regulated multicore real-time sys-
tems, IEEE Transactions on Computers 65 (2) (2016) 601-614. |doi:
10.1109/TC.2015.2425874.

R. Pellizzoni, H. Yun, Memory servers for multicore systems, in: 22nd
RTAS, 2016, pp. 97-108.

K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, A for-
mal approach to the WCRT analysis of multicore systems with memory
contention under phase-structured task sets, J. Real-Time Syst. 50 (5)
(2014) 736-773.

R. Mancuso, R. Pellizzoni, N. Tokcan, M. Caccamo, WCET Derivation
under Single Core Equivalence with Explicit Memory Budget Assignment,
in: 29th ECRTS, Vol. 76 of Leibniz International Proceedings in Informat-
ics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2017, pp. 3:1-3:23.

A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, M. Paulitsch,
Contention-aware dynamic memory bandwidth isolation with predictability
in COTS multicores: An avionics case study, in: 29th ECRTS, 2017, pp.
2:1-2:22.

M. A. Awan, P. F. Souto, B. Akesson, K. Bletsas, E. Tovar, Un-
even memory regulation for scheduling IMA applications on multi-core
platforms, J. Real-Time Syst. 55 (2) (2019) 248-292. |doi:10.1007/
511241-018-9322-y.

24

https://doi.org/10.1109/TC.2015.2425874
https://doi.org/10.1109/TC.2015.2425874
https://doi.org/10.1007/s11241-018-9322-y
https://doi.org/10.1007/s11241-018-9322-y

[27]

[28]

[29]

[30]

[32]

[33]

[34]

L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni,
H. Yun, R. Kegley, D. Perlman, G. Arundale, R. Bradford, Single core
equivalent virtual machines for hard real—time computing on multicore
processors, Tech. rep., University of Illinois (2014).

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, E. Tovar, Mixed-
criticality scheduling with dynamic memory bandwidth regulation, in: 24th
RTCSA, 2018.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, Memory access control
in multiprocessor for real-time systems with mixed criticality, in: 24th
ECRTS, 2012, pp. 299-308.

A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, F. Vargas,
Monitoring On-line Timing Information to Support Mixed-Critical Work-
loads| in: 34rd RTSS, Vancouver, Canada, 2013, pp. 9-10.

URL https://hal.archives-ouvertes.fr/hal-01015455

A. Kritikakou, C. Rochange, M. Faugere, C. Pagetti, M. Roy, S. Girbal,
D. G. Pérez, Distributed run-time wcet controller for concurrent critical
tasks in mixed-critical systems, in: 22nd RTNS, ACM, 2014, p. 139.

A. Kritikakou, T. Marty, M. Roy, Dynascore: Dynamic software controller
to increase resource utilization in mixed-critical systems, TODAES 23 (2)
(2018) 13.

I. Hussain, M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, E. Tovar,
Response time analysis of multiframe mixed-criticality systems, in: 27th
RTNS, 2019, pp. 8-18.

H. Yun, R. Mancuso, Z.-P. Wu, R. Pellizzoni, PALLOC: DRAM bank-
aware memory allocator for performance isolation on multicore platforms,
in: 20th RTAS, 2014, pp. 155-166.

S. K. Baruah, H. Li, L. Stougie, Mixed-criticality scheduling: Improved
resource-augmentation results., in: 25th Int. Conf. Computers & Their
Applic.(CATA), 2010, pp. 217-223.

E. Bini, G. C. Buttazzo, Measuring the performance of schedulability tests,
J. Real-Time Syst. 30 (1-2) (2005) 129-154.

R. I. Davis, A. Burns, Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems, in: 30th RTSS,
2009, pp. 398-409.

D. Griffin, I. Bate, R. I. Davis, Generating utilization vectors for the sys-
tematic evaluation of schedulability tests, in: 41st RTSS, IEEE, 2020, pp.
76-88.

25

https://hal.archives-ouvertes.fr/hal-01015455
https://hal.archives-ouvertes.fr/hal-01015455
https://hal.archives-ouvertes.fr/hal-01015455

[39]

[40]

[41]

[42]

N. C. Audsley, On priority assignment in fixed priority scheduling, Inform.
Processing Lett. 79 (1) (2001) 39-44.

R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling., Wiley
professional computing, Wiley, 1991.

A. Bastoni, B. Brandenburg, J. Anderson, Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability,
6th OSPERT 10 (2010) 33—44.

A. Burns, R. Davis, Adaptive mixed criticality scheduling with deferred
preemption, in: 35rd RTSS, 2014, pp. 21-30.

26

	CISTER_TR_211006
	Response time analysis of memory-bandwidth-regulated multiframe mixed-criticlaity systems
	INTRODUCTION
	Related Work
	System Model
	Hardware Platform
	Task model
	Mixed-Criticality Models

	Background
	Multiframe response time analysis
	AMC-max response-time analysis
	AMC-max for multiframe mixed-criticality
	Stall Analysis
	Example

	Memory-aware WCRT Analysis
	Exhaustive analysis
	Notation and underlying principles
	AMMC-max Exhaustive Analysis

	Pruning
	Evaluation
	Results

	Conclusions

