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Abstract

Vehicular edge computing (VEC) becomes a promising paradigm for the devel-

opment of emerging intelligent transportation systems. Nevertheless, the limited

resources and massive transmission demands bring great challenges on imple-

menting vehicular applications with stringent deadline requirements. This work

presents a non-orthogonal multiple access (NOMA) based architecture in VEC,

where heterogeneous edge nodes are cooperated for real-time task processing.

We derive a vehicle-to-infrastructure (V2I) transmission model by considering

both intra-edge and inter-edge interferences and formulate a cooperative re-

source optimization (CRO) problem by jointly optimizing the task offloading

and resource allocation, aiming at maximizing the service ratio. Further, we de-

compose the CRO into two subproblems, namely, task offloading and resource

allocation. In particular, the task offloading subproblem is modeled as an ex-

act potential game (EPG), and a multi-agent distributed distributional deep

deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equi-

librium. The resource allocation subproblem is divided into two independent

∗Corresponding author
Email addresses: near@cqu.edu.cn (Xincao Xu), liukai0807@cqu.edu.cn (Kai Liu),

penglindai@swjtu.edu.cn (Penglin Dai), fyjin@cqu.edu.cn (Feiyu Jin),
renharlin@cqu.edu.cn (Hualing Ren), zchoujun2@gmail.com (Choujun Zhan),
guosongtao@cqu.edu.cn (Songtao Guo)

Preprint submitted to Journal of Systems Architecture October 25, 2022

ar
X

iv
:2

20
9.

12
74

9v
2 

 [
cs

.N
I]

  2
4 

O
ct

 2
02

2



convex optimization problems, and an optimal solution is proposed by using a

gradient-based iterative method and KKT condition. Finally, we build the simu-

lation model based on real-world vehicular trajectories and give a comprehensive

performance evaluation, which conclusively demonstrates the superiority of the

proposed solutions.

Keywords: Vehicular edge computing, Real-time task offloading,

Heterogeneous resource allocation, Deep reinforcement learning, Exact

potential game

1. Introduction

Recent advances in vehicular networks have paved the way for the develop-

ment of emerging intelligent transportation systems (ITSs) such as cooperative

autonomous driving [1] and vehicular cyber-physical systems [2]. Neverthe-

less, it demands massive data transmission and intensive task computation to

enable most of the applications. For instance, modern vehicles such as Tesla

Model X have already equipped with eight cameras, 12 ultrasonic radars, and

one millimeter-wave radar, and the data computation requirements are ever-

increasing. On the other hand, the limited communication and computation

resources in vehicular networks make it non-trivial to support real-time vehic-

ular applications. Clearly, it is imperative to investigate efficient real-time task

offloading and heterogeneous resource allocation in vehicular networks.

Vehicular edge computing (VEC) [3] has recently emerged as a promising

paradigm to facilitate task processing at the edge of vehicular networks. Great

efforts have been paid to the development of VEC [4–9], where the edge node

such as 5G base stations and roadside units (RSUs) with collocated computa-

tion units, can process tasks with the data uploaded by vehicles via vehicle-to-

infrastructure (V2I) communications. However, none of them have exploited

the non-orthogonal multiple access (NOMA) [10] technology to enhance the

network capacity. Some studies have incorporated NOMA in vehicular commu-

nications [11–14], where the vehicles may communicate with the edge node over
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the same frequency of bandwidth with different transmission power. However,

these studies only considered single edge node scenario and cannot deal with

the interference among different edge nodes. To improve system reliability, a

few studies have taken resource allocation into consideration to counteract the

effect of time-varying V2I channel conditions and dynamic available compu-

tation resources in VEC [15–20]. Nevertheless, none of them investigated the

synergistic effects of real-time task offloading and communication/computation

resource allocation. Some studies designed allocation mechanisms for both com-

munication and computation resources to improve resource efficiency [21–23].

A few literatures formulated the joint optimization model by integrating task

offloading and resource allocation [24, 25]. However, existing studies are mainly

based on centralized scheduling, which may hurdle system scalability in vehicu-

lar networks. The multi-agent deep reinforcement learning (MADRL) [26] as an

emerging distributed solution has been proposed for vehicular applications [27–

29]. On the other hand, some of the work combined reinforcement learning and

game theory [30–32] to solve complex optimization problems. However, none of

the solutions can be directly applied in vehicular networks for joint real-time

task offloading and heterogeneous resource allocation.

With above motivation, this paper investigates a distributed scheduling so-

lution for joint task offloading and resource allocation based on the multi-agent

distributed distributional deep deterministic policy gradient (MAD4PG) and

potential game theory. In particular, we first model the task offloading decision-

making process as an exact potential game (EPG) [33] with Nash equilibrium

(NE) existence and convergence under a designed potential function, where the

edge nodes are rational players to maximize their profits (i.e., the service ratio

of real-time tasks, which is the number of tasks completed before their dead-

lines over the number of total tasks). According to potential game theory, the

NE can be achieved by maximizing the potential of each edge node with the

designed potential function. Naturally, the potential function is well-suitable as

the rewards for edge nodes in the proposed MAD4PG algorithm. The remaining

resource allocation problem is divided into two independent convex optimiza-
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tion problems, and an optimal solution is proposed based on a gradient-based

iterative method and Karush-Kuhn-Tucher (KKT) condition [34].

This work puts the first effort on jointly investigating the real-time task

offloading and heterogeneous resource allocation in NOMA-based VEC by ad-

dressing the following challenges. First, the V2I uplinks suffer interference from

vehicles using the same channel, and the influence depends on the transmission

power allocated by edge nodes. Second, there is a serious imbalance of workload

distribution among different edge nodes due to the time-varying distribution of

computation-intensive and delay-sensitive tasks. Third, it is non-trivial to make

edge nodes determine task offloading and resource allocation decisions indepen-

dently and efficiently only with their local knowledge. Thus, it is imperative

yet challenging to study an effective and distributed method for joint real-time

task offloading and heterogeneous resource allocation in NOMA-based VEC.

The main contributions of this work are outlined as follows.

• We present a NOMA-based VEC architecture, where the vehicles share the

same frequency of bandwidth resources and communicate with the edge

node with the allocated transmission power. The tasks arrive stochasti-

cally at vehicles and have different computation resource requirements and

deadlines, which can be further uploaded to the edge nodes for computing

via V2I communications. The edge nodes with heterogeneous computa-

tion capabilities, i.e., CPU clock frequencies, can either execute the tasks

locally with allocated computation resources or migrate the tasks to neigh-

boring edge nodes via wired connections.

• We formulate a cooperative resource optimization (CRO) problem, which

jointly offloads tasks and allocates communication and computation re-

sources to maximize the service ratio. Specifically, we derive a V2I trans-

mission model, in which both intra-edge and inter-edge interferences are

modeled based on the NOMA principle. Then, we derive a task offloading

model by considering the cooperation of heterogeneous edge nodes.

• We decompose the CRO into two subproblems, namely, task offloading
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and resource allocation. Specifically, we model the first subproblem as a

non-cooperative game among edge nodes, which is further proved as an

EPG with NE existence and convergence. Then, we design a MAD4PG

algorithm, which is a multi-agent version of D4PG [35], to achieve the NE,

where edge nodes act as independent agents to determine the task offload-

ing decisions by adopting the achieved potential as rewards. Further, we

divide the second subproblem into two independent convex problems and

derive an optimal solution based on the gradient-based iterative method

and KKT condition.

• We build the simulation model based on real-world vehicular trajectories.

Then, in addition to the primary metrics, cumulative reward and average

service ratio, we design another four metrics, including average processing

time, average service time, average achieved potential, and proportion of

locally processing to migration, to give insights into performance evalua-

tion. Further, we implement the proposed algorithms, as well as four com-

petitive solutions, i.e., optimal resource allocation and task migration only

(ORM), optimal resource allocation and task local processing only (ORL),

distributed distributional deep deterministic policy gradient (D4PG) [35]

for joint task offloading and resource allocation, and multi-agent deep de-

terministic policy gradient (MADDPG) [28] for task offloading based on

optimal resource allocation. The simulation results conclusively demon-

strate the superiority of the proposed algorithms.

The rest of this paper is organized as follows. Section II reviews the related

work. Section III presents the system architecture. Section IV formulates the

CRO problem. Section V proposes the solutions. Section VI evaluates the

performance. Finally, Section VII concludes this paper and discusses future

research directions.
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2. Related Work

Great efforts have been devoted to vehicular applications at the edge of

vehicular networks. Liu et al. [4] investigated the cooperative data dissemi-

nation problem in an end-edge-cloud cooperation architecture. A clique-based

algorithm was proposed to schedule data encoding and dissemination jointly.

Dai et al. [5] designed a VEC architecture for adaptive-bitrate-based multi-

media streaming, where edge cache and transmission services are provided for

file chunks encoded with different quality levels. Zhang et al. [6] presented a

socially aware vehicular edge caching technique that dynamically orchestrates

the cache capabilities of edge nodes and intelligent vehicles based on user pref-

erence similarity and service availability. Liu et al. [7] presented a two-layer

VEC architecture to exploit the cloud, static edge nodes, and mobile edge nodes

for processing time-critical tasks. Liu et al. [8] proposed a memetic algorithm

to exploit the synergistic effects between vehicular caching and network coding

for enhancing the bandwidth efficiency of data broadcasting in VEC. Xu et al.

[9] proposed a vehicle collision warning strategy based on trajectory calibration

and considering V2I communication delay and packet loss. However, the exist-

ing VEC architectures of these studies are based on the conventional orthogonal

multiple access (OMA), and none of them have exploited the NOMA technology

to enhance the network capacity.

Several researchers have exploited the NOMA technology in vehicular net-

works to further improve bandwidth efficiency. Patel et al. [11] evaluated the

communication capacity of NOMA-based vehicular networks, and the numerical

results show that NOMA outperforms the conventional OMA by approximately

20%. Zhang et al. [12] developed a centralized two-stage resource allocation

strategy for NOMA-integrated vehicular networks using a graph-based match-

ing approach and distributed power control via a non-cooperative game. Zhu et

al. [13] proposed an optimal power allocation strategy that considers stochastic

task arrival and channel fluctuation to maximize the long-term power consump-

tion and delay. Liu et al. [14] proposed an alternate direction algorithm for the
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multipliers technique to allocate power in NOMA-based autonomous driving ve-

hicle networks. Nevertheless, these studies are mainly based on single edge node

scenario, while the interference among different edge nodes cannot be handled.

Some studies have focused on task offloading or resource allocation in VEC.

Liu et al. [15] proposed a real-time distributed method for multi-period task of-

floading by evaluating the mobility-aware communication model, the resources-

aware computation model, and the deadline-aware award model in VEC. Liu et

al. [16] presented an algorithm that combined the alternating direction method

of multipliers and particle swarm optimization for task offloading to minimize

the weighted sum of execution delay, energy consumption, and payment cost.

Chen et al. [17] presented a computation offloading approach with failure re-

covery to reduce energy usage and shorten application completion time. Liu et

al. [18] proposed a heuristic scheduling algorithm for real-time data dissemi-

nation by considering both the time constraint of data dissemination and the

freshness of data items. Xu et al. [19] proposed an incentive-based probability

update and strategy selection algorithm for subchannel allocation by modeling

the channel allocation problem as a potential game. Liu et al. [20] developed a

greedy method for cooperative data dissemination in a hybrid vehicular commu-

nication environment. Nevertheless, none of them investigated the synergistic

effects of real-time task offloading and communication/computation resource

allocation.

Several studies have considered joint communication and computation re-

source allocations in VEC. Cui et al. [21] proposed a multi-objective reinforce-

ment learning method to reduce system delay by combining communication and

computation resource allocation. Han et al. [22] presented the coupling-oriented

reliability calculation for cooperative vehicular communication and computing

via dynamic programming methods. Xu et al. [23] employed contract theory

to allocate communication and computation resources for each prospective con-

tent supplier and content requester pair. A few researchers have studied joint

task offloading and resource allocation. Dai et al. [24] proposed a asynchronous

deep reinforcement learning for data-driven task offloading considering hetero-
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geneous servers, such as powerful vehicles, VEC servers, and the cloud. Dai

et al. [25] developed a probabilistic computation offloading approach for inde-

pendently scheduling computation offloading based on the calculated allocation

probability in edge nodes. However, the existing studies cannot be applied to

large-scale vehicle networks, as they are mainly based on centralized scheduling

with high communication overhead and scheduling complexity.

Some studies have focused on task offloading or resource allocation by using

MADRL [26] in vehicular networks. Alam et al. [27] developed a multi-agent

DRL-based Hungarian algorithm (MADRLHA) for dynamic task offloading in

VEC to guarantee latency, energy consumption, and payment cost requirements.

Zhang et al. [28] presented a MADDPG approach for edge resource allocation

to minimize vehicular task offloading cost under strict delay constraints. Nie

et al. [29] proposed a multi-agent federated reinforcement learning (MAFRL)

algorithm to optimize resource allocation, user association, and power control

jointly in an unmanned aerial vehicle (UAV)-enabled VEC. The combination

of game theory and reinforcement learning has recently attracted much aca-

demic attention. Zhang et al. [30] modeled the interaction between the actor

and critic of actor-critic-based reinforcement learning as a two-play general-sum

game with a leader-follower structure. Albaba et al. [31] combined the DQN

and hierarchical game theory for behavioral predictions of drivers in highway

driving scenarios, where level-k reasoning is used to model the decision-making

process of human drivers. Rajeswaran et al. [32] developed a framework that

casts model-based reinforcement learning as a Stackelberg game between a pol-

icy player and a model player. However, none of the solutions can be directly

applied in vehicular networks for joint real-time task offloading and heteroge-

neous resource allocation.

3. System Architecture

In this section, we propose a NOMA-based architecture for cooperative com-

munication and computation in VEC. As illustrated in Fig. 1, the infrastruc-
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Figure 1: NOMA-based vehicular edge computing architecture

tures (e.g., e1∼e3) installed along the roadside such as 5G base stations and

RSUs, have different equipped computing units (i.e., CPU chips), which are

considered as edge nodes to accelerate computation task wireless offloaded by

mobile vehicles. The tasks arrive stochastically at vehicles, which may contain

different data to be computed. The vehicle can communicate with the edge

node via V2I communications within its communication range. Then, the ve-

hicles upload the task to a nearby edge node, where the transmission power is

allocated by the corresponding edge node. By employing superposition coding

(SC) at vehicles and successive interference cancellation (SIC) at edge nodes

[36], vehicles can share the same frequency of bandwidth resources. In particu-

lar, the signals of strong vehicles are decoded and canceled by the edge nodes in

succession before decoding the signals of weak vehicles in NOMA-based VEC. In

addition, the edge nodes are connected via a wired network. Further, the edge

nodes decide whether to execute the received task locally or migrate it to other

nodes via wired connections. Finally, the edge nodes allocate the computation

resources for processing tasks.

The system characteristics are summarized as follows. First, the computa-

tional tasks requested by vehicles may have different data sizes, computation

resource requirements, and deadlines. Therefore, the service condition of tasks
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(i.e., whether the task will be successfully serviced before its deadline) may dif-

fer when offloaded to different edge nodes with diverse computation capabilities,

i.e., the CPU clock frequencies. Second, increasing the transmission power of

a vehicle may improve the achieved V2I transmission rate, but can also dam-

age other V2I uplinks due to enhanced intra-edge and inter-edge interferences.

Moreover, the power allocations of edge nodes vary over time and are unknown

to each other. Thus, the edge node must determine the transmission power of

vehicles by considering the effects of other edge nodes’ power allocation. Third,

the workloads of edge nodes may not be balanced due to the stochastic arrival of

tasks and the time-varying distribution of vehicles. When an edge node is over-

burdened, it becomes appropriate to migrate the extra tasks to other edge nodes

with excess computation resources to expedite processing. However, transmit-

ting the task data to the edge node via wired connections lengthens the task

service time.

Further, we provide an example to demonstrate the concept better. As

shown in Fig. 1, vehicles v1 and v2 upload their tasks via V2I communications.

Since the V2I channel condition between edge node e2 and vehicle v1 is better

than that of vehicles v2 and v3, the signal of vehicle v1 can be decoded firstly by

treating other signals as the noise. Then, the signal of vehicle v1 can be canceled

by the edge node e2 when decoding the signals of vehicles v2 and v3. However,

the signal of vehicle v1 may be interfered by vehicle v2 during the V2I trans-

mission; such interference is termed “intra-edge interference”, since vehicles v1

and v2 are within the radio coverage of the same edge node e2. On the other

hand, the signal of vehicle v3 may be interfered by vehicle v1, and such inter-

ference from other edge nodes is termed “inter-edge interference.” Moreover, it

is obvious that the task workload among edge nodes e1 and e3 is uneven, since

there are three tasks (i.e., k1, k2, and k3) in the edge node e3 but only one task

k4 in the edge node e1. Assume that the computation resources of edge node

e1 are significantly more than those of edge node e3. The task k1 should be

migrated to the edge node e1 over the wired network so that it can be serviced

in a shorter time. As demonstrated above, it is crucial yet difficult to take ad-
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vantage of cooperative communication and computation among edge nodes by

designing an effective and distributed scheduling mechanism for real-time task

offloading and heterogeneous resource allocation to optimize the overall system

performance.

4. Problem Formulation

4.1. Preliminary

The set of discrete time slots is denoted by T = {1, . . . , t, . . . , T}, where T is

the number of time slots. The set of vehicles is denoted by V = {1, . . . , v, . . . , V },

and the location of vehicle v ∈ V at time t is denoted by ltv. The task arrival

probability of vehicle v at time t is denoted by τ tv, and we denote the set of tasks

requested by the vehicle v as Kv. The task requested by vehicle v at time t

denoted by ktv ∈ Kv is characterized by a three-tuple ktv = (dk, ck, tk), where dk,

ck, and tk are the data size, CPU cycles for processing one bit of data, and dead-

line, respectively. The set of edge nodes is denoted by E = {1, . . . , e, . . . , E},

and the edge node e ∈ E is characterized by a four-tuple e = (pe, ce, ue, le),

where pe is the maximum power of V2I communications, ce is the computing

frequency, ue is the V2I communication range, and le is the location. The

transmission rate of wired communication between edge nodes is denoted by

z. The distance between vehicle v and edge node e at time t is denoted by

disttv,e. The set of vehicles within the radio coverage of edge node e at time

t is denoted by Vt
e =

{
v | disttv,e ≤ ue,∀v ∈ V

}
,Vt

e ⊆ V. The bandwidth of

V2I communications is denoted by b. The primary notations are summarized

in Table 1.

4.2. V2I Transmission Model

The V2I transmission model is shown in Fig. 2(a), and the intra-edge and

inter-edge interferences are modeled based on the NOMA principle. We denote

the transmission power of vehicle v allocated by edge node e at time t as ptv,e.

The sum of allocated power cannot exceed the maximum power of V2I com-

munications at edge node e, i.e.,
∑
∀v∈V te

ptv,e ≤ pe. Then, the channel gain

11



Table 1: Summary of primary notations

Notations Descriptions

T Set of discrete time slots T = {1, . . . , t, . . . , T}

V Set of vehicles V = {1, . . . , v, . . . , V }

E Set of edge nodes, e ∈ E and e = (pe, ce, re, le)

τtv Task arrival probability of vehicle v at time t

Kv Set of computation tasks requested by vehicle v

ktv Task requested by vehicle v at time t, ktv ∈ Kv and ktv = (dk, ck, tk)

dk Data size of task ktv

ck CPU cycles for processing one bit data of task ktv

tk Deadline of task ktv

ltv Location of vehicle v at time t

pe Maximum power of V2I communications at edge node e

ce Computing clock frequency of edge node e

ue V2I communication range of edge node e

le Location of edge node e

disttv,e Distance between vehicle v and edge node e at time t

z Wired transmission rate between edge nodes

b Bandwidth of V2I communications

ptv,e Transmission power of vehicle v allocated by edge node e at time t

qtv,e Binary indicates whether task ktv is offloaded to edge node e

ctv,e Computation resource allocated by edge node e for task of vehicle v at time t

Vt
e Set of vehicles within the coverage of edge node e at time t

Vt
hv,e

Set of vehicles that have a worse channel condition than vehicle v at time t

Kt
e Set of tasks uploaded by vehicles that are within the coverage of edge node e at time t

Kt
qe

Set of tasks which are offloaded in edge node e at time t

between the vehicle v and edge node e at time t is denoted by htv,e, which is

computed by [37]:

htv,e =
ηv,e

disttv,e
ϕ/2

(1)

where ηv,e is the Rayleigh distributed small scale fading, i.e., ηv,e ∼ CN (0, 1),

and ϕ is the large scale path loss exponent. Thus, the set of vehicles that have a

worse instantaneous channel condition than vehicle v is denoted by Vt
hv,e

, which

is represented by:

Vt
hv,e =

{
v′ |

∣∣htv′,e∣∣2 < ∣∣htv,e∣∣2 ,∀v′ ∈ Vt
e

}
(2)

After determining the transmission power of each vehicle v ∈ Vt
e, the ob-
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Figure 2: System model

served signal by the edge node e can be represented by [10]:

yte =
∑
∀v∈Vt

e

ptv,es
t
v,eh

t
v,e +

∑
∀e′∈E/{e}

∑
∀v′∈Vt

e′

ptv′,e′s
t
v′,e′h

t
v′,e +N0 (3)

where stv,e is the the message intended for vehicle v and N0 is the additive white

Gaussian noise (AWGN). According to the NOMA principle, the edge node e

can cancel the signals of vehicles with a better channel condition than vehicle v

via SIC. Thus, the signal-to-interference-plus-noise ratio (SINR) between vehicle

v and edge node e at time t is denoted by SINRt
v,e, which can be computed by:

SINRt
v,e =

|htv,e|2ptv,e∑
∀v′∈Vt

hv,e

|htv′,e|2ptv′,e

︸ ︷︷ ︸
Intra-edge interference

+
∑

∀e′∈E/{e}

∑
∀v′∈Vt

e′

|htv′,e|2ptv′,e′︸ ︷︷ ︸
Inter-edge interference

+N0

(4)

where ptv′,e is the transmission power of vehicle v′ ∈ Vt
e and |htv′,e|2 is the

channel coefficient of the interference link between vehicle v′ and edge node

e. The first and second parts in the denominator represent intra-edge and

inter-edge interferences, respectively. Therefore, the uploading time of task ktv

requested by vehicle v and transmitted to edge node e is computed by:

mt
v,e =

dk

b log2

(
1 + SINRt

v,e

) (5)

where dk is the data size of task ktv and b is the bandwidth of V2I communica-

tions, measured by Hz.
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4.3. Task Offloading Model

The set of tasks uploaded by vehicles within the coverage of edge node e at

time t is denoted by Kt
e = {ktv|∀v ∈ Vt

e}. As shown in Fig. 2(b), each task

ktv ∈ Kt
e can be either executed in edge node e locally, or migrated to other

edge nodes for processing. The task offloading indicator is denoted by qtv,e,

which indicates whether the task ktv of vehicle v is offloaded to the edge node

e at time t, and each task can only be offloaded in one edge node at least, i.e.,∑
∀e∈E q

t
v,e = 1. Then, the set of tasks offloaded in the edge node e can be

represented by:

Kt
qe =

{
ktv|qtv,e = 1,∀v ∈ Vt

e′ ,∀e′ ∈ E
}

(6)

which consists of local processing tasks uploaded by vehicles and tasks mi-

grated from other edge nodes. The computation resource (i.e., the CPU clock

frequency) of task ktv ∈ Kt
qe allocated by edge node e is denoted by ctv,e. The

overall allocated computation resources cannot exceed the computation capabil-

ity of edge node e, i.e.,
∑
∀ktv∈Kt

qe
ctv,e ≤ ce, where ce is the CPU clock frequency

of edge node e. Therefore, the execution time of task atv in edge node e is denoted

by xtv,e, which is computed by:

xtv,e =
dkck
ctv,e

(7)

where dk is the size of task ktv, and ck is the CPU cycles for processing one bit

data of task ktv.

However, the task ktv cannot be executed until the task data is received at

the offloaded edge node e when the task is requested by the vehicle v, which is

without the radio coverage of edge node e. Thus, we denote the wired trans-

mission time of task ktv transmitted by edge node e and received at edge node

e′ by wtv,e, which is computed by:

wtv,e =

0, ktv ∈ Kt
e

⋂
Kt
qe

dk distte,e′ζ/z, ktv ∈ Kt
e

⋂
Kt
qe′

(8)
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where distte,e′ is the distance between edge nodes e and e′, and ζ is a distance

discount constant. The processing time of task ktv in the edge node e at time t

is denoted by ntv,e and expressed by:

ntv,e = wtv,e +
∑
∀e′∈E

qtv,e′x
t
v,e′ (9)

The processing time of task ktv consists of the wired transmission time and

execution time depending on the task offloading decisions.

4.4. Cooperative Resource Optimization Problem

The service time of task ktv ∈ Kt
e consists of the uploading time and pro-

cessing time, which is denoted by ψtv,e and can be expressed by:

ψtv,e = mt
v,e + ntv,e (10)

The task ktv is successfully serviced only if the service time is shorter than the

deadline tk. Then, the service ratio of edge node e is defined as the ratio between

the number of successfully serviced tasks (i.e., be serviced before the deadline)

and the number of requested tasks in the edge node e, which is denoted by Ψt
e

and represented by:

Ψt
e =

∑
∀ktv∈Kt

e
I
{
ψtv,e ≤ tk

}
|Kt

e|
(11)

where |Kt
e| is the number of tasks requested by vehicles within the cover-

age of edge node e, and I
{
ψtv,e ≤ tk

}
is a indicator function, and we have

I
{
ψtv,e ≤ tk

}
= 1 if ψtv,e ≤ tk, otherwise, I

{
ψtv,e ≤ tk

}
= 0.

Given a determined solution (P,Q,C), where P denotes the determined

V2I transmission power allocation, Q denotes the determined task offloading

decisions, and C denotes the determined computation resource allocation, which

is represented by: 
P =

{
ptv,e | ∀v ∈ Vt

e,∀e ∈ E,∀t ∈ T
}

Q =
{
qtv,e | ∀v ∈ V,∀e ∈ E,∀t ∈ T

}
C =

{
ctv,e | ∀v ∈ V,∀e ∈ E,∀t ∈ T

} (12)
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This paper aims to maximize the sum of service ratios of edge nodes during the

scheduling period by jointly optimizing task offloading decisions and heteroge-

neous resource allocation in NOMA-based VEC. Thus, the cooperative resource

optimization problem is formulated by:

CRO : max
P,Q,C

f1 =
∑
∀t∈T

∑
∀e∈E

Ψt
e

s.t. C1 :
∑
∀v∈Vt

e

ptv,e ≤ pe,∀e ∈ E,∀t ∈ T

C2 :
∑

∀ktv∈Kt
qe

ctv,e ≤ ce,∀e ∈ E,∀t ∈ T

C3 : qtv,e ∈ {0, 1} ,∀v ∈ V,∀e ∈ E,∀t ∈ T

C4 :
∑
∀e∈E

qtv,e = 1,∀v ∈ V,∀t ∈ T

(13)

Constraint C1 guarantees that the total transmission power allocated by

the edge nodes cannot exceed the maximum power of V2I communications.

C2 requires that the overall allocated computation resources cannot exceed the

computation capacities of edge nodes. Constraints C3 and C4 state that task

offloading decision qtv,e is an 0-1 integer variable, and each task can only be

offloaded in one edge node at least.

5. Proposed Solution

As shown in Fig. 3, the CRO is solved through decoupling the two subprob-

lems, i.e., task offloading (P1) and resource allocation (P2). In particular, the

P1 is modeled as a non-cooperative game among edge nodes, which is proved as

an EPG with the existence and convergence of NE. To deal with P1, we design

the MAD4PG implemented at each edge node for task offloading to achieve the

NE. On the other hand, the P2 is divided into two independent convex opti-

mization problems. We derive the optimal solution for heterogeneous resource

allocation based on the gradient-based iterative method and KKT condition

to handle P2. The interaction between the two solutions is described as fol-

lows. First, the task offloading decisions are determined in advance based on
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Figure 3: Overall of the proposed solution

the MAD4PG with the input of local system observation. Then, the resource

allocation is obtained via the optimal solution according to the task offloading

decisions. Further, in the NOMA-based VEC environment, the joint action of

both task offloading and resource allocation is utilized to obtain the rewards for

edge nodes via the designed potential function. The procedure will be continued

until the training for the MAD4PG is completed.

5.1. Problem Decomposition

In this section, we first decompose CRO into serval problems at each time

slot. Since the variables Pt, Qt, and Ct at time t are independent of each other,

and the four constraints are separable since the variables are not overlapped,

the problem can be decomposed into two subproblems, which are formulated as

follows.
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1) Task Offloading: the first subproblem P1 with respect to Qt concerns

task offloading decisions of edge nodes, which is formulated by:

P1 : max
Qt

g1 =
∑
∀e∈E

Ψt
e

s.t. C5 : qtv,e ∈ {0, 1} ,∀v ∈ V,∀e ∈ E

C6 :
∑
∀e∈E

qtv,e = 1,∀v ∈ V

(14)

Then, we model P1 as a non-cooperative game among edge nodes, where edge

nodes act as players to determine task offloading strategies independently. The

game model is represented as G =
{
E,S, {Ue}∀e∈E

}
, where E denotes the

set of players; S denotes the strategy space of the game, which is defined as

the Cartesian products of all individual strategy sets of edge nodes, i.e., S =

S1× . . .×Se× . . .×SE , where Se denotes the set of all possible strategies of edge

node e. Each element S ∈ S is a strategy profile, and S = (S1, . . . ,Se, . . . ,SE),

which can be rewritten into S = (Se,S−e), where S−e denotes the joint strategy

adopted by the opponents of edge node e, i.e., ∀e′ ∈ E\{e}. And Se is the strat-

egy of edge node e, which can be expressed by Se =
{
qtv,e | ∀e ∈ E,∀v ∈ Vt

e

}
;

Ue (S) denotes the utility function of edge node e, which is defined as follows.

Definition 1. The utility function of edge node e denoted by Ue (S) : S 7→ R

is defined as the sum of achieved service ratio of edge nodes under the strategy

profile S, where R is the set of real numbers.

Ue (S) =
∑
∀e∈E

Ψt
e (15)

Further, we prove that the non-cooperative game model G is an EPG with

the existence and convergence of NE by giving a potential function as Eq. 16.

Theorem 1. Given a potential function of edge node e as

Fe (S) = Ue (Se,S−e)− Ue (−Se,S−e) (16)

the game G is an exact potential game.
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where Ue (−Se,S−e) is the achievable utility when the strategy of edge node e

is not valid.

Proof. See Appendix A.1.

In the game model G, edge nodes attempt to achieve the NE [33] by maximizing

their utility with conflicting interests.

Definition 2. The strategy profile S∗ ∈ S is a pure-strategy Nash equilibrium

[33] if and only if:

Ue
(
S∗e ,S∗−e

)
≥ Ue

(
Se,S∗−e

)
, ∀Se ∈ Se,∀e ∈ E (17)

Lemma 1. Given a potential function Fe(S) as Eq. 16, the set of NE of the

game G coincides with the set of NE for the game GF =
{
E,S, {Fe}∀e∈E

}
, i.e.,

NE(G) ≡ NE
(
GF
)

(18)

where NE denotes the Nash equilibrium set of a game.

Proof. See Appendix A.2

Finally, we prove the existence of NE of the game model G based on Lemma 1.

Theorem 2. Given a potential function Fe(S) as Eq. 16, the game G has at

least one pure-strategy NE.

Proof. See Appendix A.3

On the other hand, due to the limited strategy space S, the NE can converge in a

finite number of steps. We establish the ε-improvement path and ε-equilibrium

[33], which is a strategy profile approximately close to an actual NE, then prove

the convergence of NE.

Definition 3. A path ρ =
(
S0,S1,S2, . . .

)
is an ε-improvement path [33] if

in each step i, the utility of edge node e is improved with the value ε, i.e.,

Ue
(
Si+1

)
> Ue

(
Si
)

+ ε,∃ε ∈ R+,∀i.
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Definition 4. The strategy profile Ŝ ∈ S is an ε-equilibrium [33] if and only if

∃ε ∈ R+, and:

Ue

(
Ŝe, Ŝ−e

)
≥ Ue

(
Se, Ŝ−e

)
− ε, ∀Se ∈ Se,∀e ∈ E (19)

Theorem 3. For the game G, every ε-improvement path is finite, and its end-

point is an ε-equilibrium, which is a refinement of the original NE.

Proof. See Appendix A.4

2) Resource Allocation: the second subproblem P2 with respect to Pt con-

cerns on transmission power allocation and Ct concerns on computation resource

allocation, which is formulated as follows.

P2 : min
Pt,Ct

g2 =
∑
∀e∈E

∑
∀ktv∈Kt

e

(
mt
v,e + ntv,e

)
s.t. C7 :

∑
∀v∈Vt

e

ptv,e ≤ pe,∀e ∈ E

C8 :
∑

∀ktv∈Kt
qe

ctv,e ≤ ce,∀e ∈ E

(20)

It is observed that the variables Pt and Ct in Eq. 20 are independent of each

other. The constraints C7 and C8 are separable since the variables are not

overlapped. Therefore, the subproblem P2 can be divided into two independent

problems, namely, transmission power allocation and computation resource al-

location, which are formulated as follow.

Transmission Power Allocation: it is with respect to the variables Pt

concerns on transmission power allocation, which is formulated as follows.

P3 : min
Pt

g3 =
∑
∀e∈E

∑
∀ktv∈Kt

e

dk

b log2

(
1 + SINRt

v,e

)
s.t. C7 :

∑
∀v∈Vt

e

ptv,e ≤ pe,∀e ∈ E

(21)

It is observed that the variables related to the edge nodes are independent.

Thus, the P3 can be further divided into multiple simple problems, where each
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one is only related to an edge node e.

P4 : max
Pte

ge3 =
∑
∀ktv∈Kt

e

b log2

(
1 + SINRt

v,e

)
s.t. C9 :

∑
∀v∈Vt

e

ptv,e ≤ pe
(22)

However, the P4 is nonconvex due to the intra-edge and inter-edge interferences.

Then, we apply some approximations to convert P4 into a convex problem. In

particular, a lower bound of ge3 can be obtained and formulated by [38]:

ge3 ≥ ge3 =
∑
∀ktv∈Kt

e

b
(
ξtv,e log2 SINRt

v,e + ωtv,e
)

(23)

where ξtv,e and ωtv,e are fixed and given by:

ξtv,e = SINR
t

v,e

/
(1 + SINR

t

v,e)

ωtv,e = log2(1 + SINR
t

v,e)−
SINR

t

v,e

1 + SINR
t

v,e

log2 SINR
t

v,e

(24)

The lower bound is tight if SINRt
v,e = SINR

t

v,e. Thus, the P4 can be re-

expressed in the relaxation as:

P5 : max
Pte

ge3 =
∑
∀ktv∈Kt

e

b
(
ξtv,e log2 SINRt

v,e + ωtv,e
)

s.t. C9 :
∑
∀v∈Vt

e

ptv,e ≤ pe
(25)

Nevertheless, the P5 is still nonconvex because the objective is not concave in

Pt
e. Given a new variable p̃tv,e = log2 p

t
v,e, the P5 can be transformed as follows.

P6 : max
P̃te

g̃e3 =
∑
∀ktv∈Kt

e

b(ξtv,e log2 S̃INR
t

v,e + ωtv,e)

s.t. C10 :
∑
∀v∈Vt

e

2p̃
t
v,e ≤ pe

(26)
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where log2 S̃INR
t

v,e is given by:

log2 S̃INR
t

v,e = p̃tv,e + log2 |htv,e|2 − log2

 ∑
∀v′∈Vt

hv,e

|htv′,e|22
p̃t
v′,e

+
∑

∀e′∈E/{e}

∑
∀v′∈Vt

e′

|htv′,e|22
p̃t
v′,e′ +N0


(27)

Thus, the P6 is a standard concave maximization problem as well as a convex

optimization problem since each constraint is a sum of convex exponentials, and

each term in the objective sum is concave.

Computation Resource Allocation: it is with respect to the variables

Ct concerns computation resource allocation, which is formulated as follows.

P7 : min
Ct

g4 =
∑
∀e∈E

∑
∀ktv∈Kt

e

(wtv,e +
∑
∀e′∈E

qtv,e′x
t
v,e′)

s.t. C8 :
∑

∀ktv∈Kt
qe

ctv,e ≤ ce,∀e ∈ E
(28)

Similar to the P3 of Eq. 21, the P7 can be further divided into multiple simple

problems, where each is only related to an edge node e and formulated as follows.

P8 : min
Cte

ge4 =
∑

∀atv∈Kt
qe

xtv,e

s.t. C11 :
∑

∀ktv∈Kt
qe

ctv,e ≤ ce
(29)

where Ct
e represents the variables in Ct associated with edge node e. Thus, the

P8 is a convex optimization problem, as the objective in Eq. 29 is convex, and

the constraint is linear.

5.2. MAD4PG for Task Offloading

The MAD4PG model consists of several distributed actors, a learner, a

NOMA-based VEC environment, and a replay buffer. The primary components

of MAD4PG are designed as follows.
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1) System State: The local observation of system state in the edge node e

at time t is denoted by:

ote =
{
e, t,DistVt

e
,DKt

e
,CKt

e
,TKt

v

}
(30)

where e is the edge node index; t is the time slot index; DistVt
e

represents the

set of distances between edge node e and vehicle v ∈ Vt
e at time t, and DKt

e
,

CKt
e
, and TKt

v
represent the set of data size, required computation resources,

and deadline of task ktv ∈ Kt
e in edge node e at time t, respectively. Thus, the

system state at time t can be denoted by ot = {ot1, . . . ,ote, . . . ,otE}.

2) Action Space: The action space of edge node e consists of the offloading

decision of tasks requested by vehicle v ∈ Vt
e, which is denoted by:

ate =
{
qtv,e′ | ∀e′ ∈ E,∀v ∈ Vt

e

}
(31)

where qtv,e′ ∈ {0, 1} indicates whether task ktv is offloaded in the edge node e′.

The set of edge node actions is denoted by at = {ate | ∀e ∈ E}.

3) Reward Function: In the game model, the objective of each edge node is

to maximize its utilities. Therefore, the reward function of the system is defined

as the achieved utilities of edge nodes at time t, which is represented by:

r
(
at | ot

)
= Ue (Se,S−e) =

∑
∀e∈E

Ψt
e (32)

Further, the potential function of the game G is adopted as the reward of edge

node e with action ate in the system state ot.

rte = r
(
at | ot

)
− r

(
at−e | ot

)
(33)

where r
(
at−e | ot

)
is the achieved system reward without the contribution of

edge node e, and it can be obtained by setting null action set for edge node e.

The set of rewards of edge nodes is denoted by rt = {rt1, . . . , rte, . . . , rtE}. In the

MAD4PG, the objective of each edge nodes e ∈ E is to maximize the expected

return, which is represented by Rte =
∑
i≥0 γ

irt+ie , where γ is the discount.

In the beginning of MAD4PG, the parameter of the local policy and critic

networks are randomly initialized in the learner, which are denoted by θµ and
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Algorithm 1: MAD4PG

1 Initialize the network weights;

2 Initialize the replay buffer B;

3 Launch J distributed actors and replicate network weights to the actors;

4 for iteration = 1 to max-iteration-number do

5 for t = 1 to T do

6 for edge node e = 1 to E do

7 Sample M transitions of length N from B randomly;

8 Construct the target distributions;

9 Compute the policy and critic network loss;

10 Update the local policy and local critic networks;

11 if t mod ttgt = 0 then

12 Update the target networks;

13 if t mod tact = 0 then

14 Replicate network weights to the distributed actors;

θQ, respectively. Then, the parameters of target policy and critic networks are

initialized as the same as the corresponding local network, which are denoted

by θµ
′

and θQ
′
, respectively.

θµ
′
← θµ, θQ

′
← θQ (34)

And the replay buffer B is initialized with a maximum size |B| to store replay

experiences. The procedure of MAD4PG is shown in Algorithm 1.

On the other hand, there are J distributed actors, which are launched to pro-

duce the replay experiences by interacting with the environment concurrently.

The parameters of the local policy network in the j-th actor are replicated from

the local policy network of the learner, which are denoted by θµj . The initialized

system state of each iteration is denoted by o0. The task offloading action of

edge node e in the j-th actor at time t is obtained based on the local observation
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Algorithm 2: The j-th Distributed Actor

1 while Learner is not finished do

2 Initialize a random process N for exploration;

3 Receive the initial system state o1;

4 for t = 1 to T do

5 for edge node e = 1 to E do

6 Receive a local observation ote;

7 Select a action ate = µ
(
ote | θ

µ
j

)
+Nt;

8 Receive the reward rt and the next system state ot+1;

9 Store
(
ot,at, rt,ot+1

)
into replay buffer B;

of the system state:

ate = µ
(
ote | θ

µ
j

)
+ εNt (35)

where Nt is an exploration noise to increase the diversity of edge actions, and

ε is an exploration constant. Then, the actions of edge nodes at are executed

in the NOMA-based VEC environment, and the reward of each edge node can

be obtained according to Eq. 33. Finally, the interaction experiences including

the system state ot, edge node actions at, rewards of edge nodes rt, and next

system state ot+1 are stored into the replay buffer B. The iteration will continue

until the learner is finished. The procedure of distributed actors is shown in

Algorithm 2.

A minibatch of M transitions of length N is sampled from replay buffer B

to train the policy and critic networks of the learner. The transition of the M

minibatch is denoted by
(
oi:i+N ,ai:i+N−1, ri:i+N−1

)
. The target distribution

of edge node e is denoted by Y ie , which is computed by:

Y ie =

N−1∑
n=0

(
γnri+ne

)
+ γNQ′

(
oi+Ne ,ai+N | θQ

′
)

(36)

where ai+N = {ai+N1 , . . . ,ai+Ne , . . . ,ai+NE }, and ai+Ne is obtained via the target

policy network, i.e., ai+Ne = µ′(oi+Ne | θµ′). The loss function of the critic
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network is represented by:

L
(
θQ
)

=
1

M

∑
i

1

E

∑
e

(
Y ie −Q

(
oie,a

i | θQ
))2

(37)

The parameters of the policy network are updated via policy gradient.

∇θµJ =
1

M

∑
i

1

E

∑
e

∇aie
Q
(
oie,a

i | θQ
)
∇θµµ

(
oie | θµ

)
(38)

The parameters of the local policy network and local critic network are updated

with the learning rate α and β. Finally, the edge nodes update the parameters

of target networks if t mod ttgt = 0, where ttgt is the target network parameter

updating period.

θµ
′
← nθµ + (1− n)θµ

′

θQ
′
← nθQ + (1− n)θQ

′
(39)

with n � 1. The network parameter of policy network at j-th actor is also

updated periodically, i.e., when t mod tact = 0, where tact is the network pa-

rameter updating period of the distributed actors.

θµj ← θµ
′
,∀j (40)

where θµj represents the parameters of the local policy network in the j-th dis-

tributed actor.

5.3. Resource Allocation Based on Convex Optimization

1) Transmission Power Allocation : To solve the convex optimization prob-

lem P6, we first exploit the Lagrange dual method [34] by introducing a La-

grange multiplier λte into P6. Then, the Lagrange function is obtained by:

L(P̃t
e, λ

t
e) = g̃e3 − λte(

∑
∀v∈Vt

e

2p̃
t
v,e − pe) (41)

Further, the dual problem of P6 is expressed as:

P9 : min
λte

max
P̃te

g5 = L(P̃t
e, λ

t
e)

s.t. C12 : λte ≥ 0

(42)

26



It is noted that the P9 can be decomposed into a two-layer optimization prob-

lem. The inner layer is represented as an optimization problem of P̃t
e with fixed

λte, and the outer layer is represented as an optimization problem of λte with

fixed P̃t
e. In the outer layer, the dual variable λte is iteratively updated through

gradient descent.

λt,(i+1)
e = max{0, λt,(i)e + σ(

∑
∀v∈Vt

e

2p̃
t
v,e − pe)} (43)

where p̃tv,e is fixed; σ is a sufficiently small constant, and i is an iteration number.

Further, the inner dual maximization can be resolved by finding the stationary

point of the Lagrange function in Eq. 41 with respect to P̃t
e and with fixed λte.

∂L
(
P̃t
e, λ

t
e

)
∂p̃tv,e

= bξtv,e − ptv,e(λte +
∑

∀v′∈Vt
hv,e

bξtv,e|htv,e|2
SINRt

v′,e

|htv′,e|2ptv′,e
) = 0 (44)

where the partial derivative is transformed back to the Pt
e-space. Thus, the

fixed-point equation can be formulated, and the transmission power of vehicle

v is updated by:

pt,(i+1)
v,e =

bξtv,e

λ
t,(i)
e +

∑
∀v′∈Vt

hv,e

bξtv,e|htv,e|2I
t,(i)
v′,e

(45)

where λ
t,(i)
e and p

t,(i+1)
v,e denote λte in i-th iteration and ptv,e in (i+1)-th iteration,

respectively, and I
t,(i)
v′,e is given by:

I
t,(i)
v′,e =

∑
∀v′∈Vt

hv,e

|htv′,e|2p
t,(i)
v′,e +

∑
∀e′∈E/{e}

∑
∀v′∈Vt

e′

|htv′,e|2p
t,(i)
v′,e′ +N0 (46)

where p
t,(i)
v′,e and p

t,(i)
v′,e′ denote ptv′,e and ptv′,e′ in i-th iteration, respectively.

2) Computation Resource Allocation : Similar to the transmission power

allocation, we first introduce a Lagrange multiplier λte into the P8. Then, the

dual problem of P8 can be expressed as:

P10 : min
λte,C

t
e

g6 = ge4 − λte(
∑

∀ktv∈Kt
qe

ctv,e − ce)

s.t. C12 : λte ≥ 0

(47)
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Based on the KKT condition [34], we can get the following formulas:

∇Cte
ge4 + λte∇Cte

(
∑

∀ktv∈Kt
qe

ctv,e − ce) = 0,

λte(
∑

∀ktv∈Kt
qe

ctv,e − ce) = 0,

λte ≥ 0

(48)

By solving the set of equations, the optimal solution of computation resource

allocation for task ktv can be obtained as follows.

ctv,e
?

=
1/ce
√
dkck∑

∀ktv∈Kt
qe

1/ce
√
dkck

,∀ktv ∈ Kt
qe (49)

6. Performance Evaluation

6.1. Settings

In this section, we implement a simulation model 1 by using Python 3.9.13

and TensorFlow 2.8.0 to evaluate the performance of the proposed solutions.

The simulation model is based on a Ubuntu 20.04 server with an AMD Ryzen

9 5950X 16-core processor (clocked at 3.4 GHz), two NVIDIA GeForce RTX

3090 graphic processing units, and 64 GB memory. We consider the general

scenario in a 3×3 km2 square area, where E = 9 edge nodes such as 5G base

stations and RSUs are uniformly distributed in the road map. On the basis of

referring to [13], [15], [23], and [39], the simulation parameter settings are as

follows. The computation capacities (i.e., the CPU clock frequencies) of edge

nodes are different, which are set as uniformly distributed in [3, 10] GHz [39].

The communication range of V2I communications is set as ue = 500 m [13].

Further, the realistic vehicular trajectories are utilized as traffic inputs col-

lected from Didi GAIA open data set [40] by extracting from a 3×3 km2 area

of Qingyang District, Chengdu, China, on 16 Nov. 2016. In particular, we have

1The code can be found at https://github.com/neardws/Game-Theoretic-Deep-

Reinforcement-Learning
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Figure 4: Heat map of the distribution of vehicles under different scenarios

examined three service scenarios with different periods. Detailed statistics such

as the total number of vehicle traces, the average dwell time (ADT) of vehicles,

the variance of dwell time (VDT), the average number of vehicles (ANV) in

each second, the variance of the number of vehicles (VNV), the average speed

of vehicles (ASV), and the variance of speeds of vehicles (VSV) are summarized

in Table 2. The heat maps of vehicle distribution within the scheduling period

are shown in Fig. 4 to exhibit the traffic characteristic under different scenarios

better. Comparing Figs. 4(a), 4(b), 4(c), and 4(d), it is noted that the vehi-

cle density in the rush hour (i.e., around 8:00, 13:00, and 18:00 on Nov. 16,

2016, Wed.) is much higher than that during the night (i.e., around 23:00) in

the same area. It can also be noted that the vehicle distributions are different

during different scheduling periods.

Table 2: Traffic characteristics of each scenario

Scenario Time Traces ADT VDT ANV VNV ASV VSV

No. 1 8:00-8:05 718 198.3(s) 123.8 474.6 11.6 5.22(m/s) 2.61

No. 2 13:00-13:05 862 188.5(s) 125.1 541.6 5.38 5.59(m/s) 2.73

No. 3 18:00-18:05 928 196.5(s) 122.5 608.0 7.76 4.60(m/s) 2.40

No. 4 23:00-23:05 359 173.7(s) 124.1 207.9 3.93 7.30(m/s) 3.16

For the implementation of the MAD4PG, the architectures of the policy and

critic networks are described as follows. The local policy network is a five-layer

fully connected neural network with three hidden layers, where the number of

neurons is 256, 256, and 256, respectively. The architecture of the target policy

network is the same as the local policy network. The local critic network is a
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five-layer fully connected neural network with three hidden layers, where the

numbers of neurons are 512, 512, and 256, respectively. The architecture of the

target critic network is the same as the local critic network. The Rectified Linear

Unit (ReLU) is utilized as the activation function, and the Adam optimizer is

used to update network weights. The number of distributed actors is set as

J=10. The primary system model parameters and algorithm parameters are

shown in Table 3.

Table 3: Parameters

Parameters of System Model

Parameter Value

Requested task size dk [15] [0.01, 5] MB

Computation cycles for processing 1-bit task data ck [13] 500 cycles/bit

Deadline of tasks tk [15] [5, 10] s

V2I communications bandwidth b [39] 20 MHz

Computation capability of edge node ce [39] [3, 10] GHz

Maximum power of V2I communications pe [13] 1×103 mW

V2I communication range ue [13] 500 m

Wired transmission rate z 50 Mbps

Distance discount ζ 6.667×10−4

Additive white Gaussian noise N0 [23] -90 dBm

Large scale path loss exponent ϕ [23] 3

Parameters of MAD4PG

Parameter Value

Discount γ 0.996

Batch size M 256

Maximum replay buffer size |B| 1×106

Exploration constant ε 0.3

Learning rate for policy network and critic network 1×10−4

Target network parameter updating period ttgt 100

Network parameter updating period of the distributed actors tact 1000

For performance comparison, we implement four comparable algorithms as

follows.

• ORM : it is divided into two stages: resource allocation and task offloading.

Then, edge nodes prefer to migrate the tasks to other edge nodes.

• ORL: it allocates the V2I transmission power and computation resource
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as ORM, and each edge node prefers executing the tasks locally.

• D4PG [35]: it jointly determines the task offloading decision, V2I trans-

mission power allocation, and computation resource allocation by imple-

menting a DDPG agent with the global system statues as inputs, where

the utility function is adopted as the reward of the agent.

• MADDPG [28]: it allocates the V2I transmission power and computation

resource as ORM, and implements the MADDPG in each edge nodes to

determine task offloading decision independently, where the utility func-

tion is adopted as the rewards for edge nodes.

For performance evaluation, we collect the following statistics: the uploading

time and processing time of each task; the total number of tasks executed locally,

denoted by Klocal; the number of tasks migrated to other edge nodes, denoted

by Kmigrated; the total number of tasks, denoted by Ktotal, and the number of

serviced tasks, denoted by Kserviced. On this basis, four metrics named aver-

age processing time (APT), average service time (AST), average service ratio

(ASR), and cumulative reward (CR) are obtained based on Eqs. 9, 10, 11, and

32, respectively. We further design the following two extra metrics for analysis.

• Average Achieved Potential (AAP): it is defined as the sum of edge rewards

(i.e., the achieved potential) divided by the number of edge nodes during

the scheduling period, which is computed by 1
E

∑
∀e∈E

∑
∀t∈T r

t
e.

• Proportion of Local Processing to Migration (PLPM): The percentage of

tasks that processed locally is computed by Plocal = Klocal/Ktotal, whereas

the percentage of tasks that migrated to other edge nodes is computed by

Pmigrated = Kmigrated/Ktotal, and we have Plocal + Pmigrated = 1.

6.2. Results and Analysis

1) Algorithm Convergence: Figure 5 compares the CR of the five algorithms

in terms of convergence performance under different traffic scenarios. As noted,

the convergence speed of the proposed solution is just next to D4PG (i.e., around
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Figure 5: Algorithm convergence under different traffic scenarios

3000 iterations), but it achieves the highest CR value (i.e., around 230). In con-

trast, D4PG and MADDPG converge in around 2000 and 3500 iterations and

achieve the CR around 190 and 220, respectively. ORL and ORM achieve the

CR of around 210 and 189, respectively. It is observed that the ORM, ORL,

MADDPG, and MAD4PG can achieve the much higher CR than D4PG in the

first 2000 iterations. The primary reason is that the proposed optimal resource

allocation solution is used in ORM, ORL, MADDPG, and MAD4PG to make

the performance better than D4PG, which jointly determines task offloading

and resource allocation. On the other hand, due to the speed-up replay experi-

ence sampling by leveraging the distributed actors in MAD4PG, the proposed

solution converges much faster than MADDPG, as well as achieves the highest

CR under different traffic scenarios.

2) Effect of Traffic Scenarios: Figure 6 compares the five algorithms under

different traffic scenarios. As demonstrated, Fig. 6(a) compares the ASR of

the five algorithms, and the MAD4PG achieves the highest ASR. Figure 6(b)

compares the CR of the five algorithms. As noted, the CR of the MAD4PG is

higher than ORM, ORL, D4PG, and MADDPG. Figure 6(c) shows the AAP

of the five algorithms. It is expected that the MAD4PG achieves the highest

AAP under all the scenarios, which indicates the advantage of the potential

function as rewards of edge nodes in MAD4PG. Figures 6(d) and 6(e) compare

the AST and APT of the five algorithms, respectively. It demonstrates that

the MAD4PG can achieve cooperative communication and computation among

edge nodes, improving the overall service ratio by minimizing the average service
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Figure 6: Performance comparison under different traffic scenarios

time of tasks. As expected, the APT of the MAD4PG is the lowest. It can be

further justified by Fig. 6(f), which shows that the tasks are more likely to

migrate to other edge nodes for faster processing.

3) Effect of Computation Capability of Edge Nodes: Figure 7 compares the

five algorithms under different computation capabilities of edge nodes. In this

set of experiments, we consider that the computation capabilities of edge nodes

follow the uniformed distributions, which increase from ce ∼ [1, 10] GHz to ce ∼

[5, 10] GHz. A more significant computation capability represents that more

tasks can be executed. Figure 7(a) compares the ASR of the five algorithms.

With the increasing computation capability, the ASR of all algorithms increases

accordingly. Figure 7(b) compares the CR of the five algorithms. In particular,

the MAD4PG achieves the highest CR. Figure 7(c) compares the AAP of the five

algorithms. As expected, the performance of all five algorithms gets better when

the computation capability increases. Figure 7(d) compares the AST of the five

algorithms. It is noted that the AST of ORL is lower than that of MAD4PG
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Figure 7: Performance comparison under different computation capabilities of edge nodes

when the computation capabilities of edge nodes are more considerable (i.e.,

ce ∼ [4, 10] GHz and ce ∼ [5, 10] GHz). The reason is that the gap between the

computation capabilities of different edge nodes becomes smaller. Thus, the task

processing time is shorter when the tasks are executed locally than offloaded to

other edge nodes. It can be further verified in Fig. 7(e), which shows the APT

of the five algorithms. It is noted that the APT of ORL is the shortest when

the computation capability is larger; however, the ASR of ORL is smaller than

MAD4PG. This is because the cooperation of communication and computation

among edge nodes is more efficient in the MAD4PG. The advantage can be

further convinced by Fig. 7(f), which shows the PLPM of the five algorithms.

4) Effect of Arrival Probability of Tasks: Figure 8 compare the five algo-

rithms under different task arrival probabilities of vehicles. In this set of ex-

periments, we consider that the task arrival probability of vehicles at each time

slot increases from τ tv = 0.3 to τ tv = 0.7. As expected, the performance of all

five algorithms gets worse when the task arrival probability increases. Figure
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Figure 8: Performance comparison under different arrival probabilities of tasks

8(a) compares the ASR of the five algorithms, and the MAD4PG achieves the

highest ASR. Figures 8(b) and 8(c) compare the CR and AAP of the five algo-

rithms, showing that the MAD4PG can remain the highest CR and AAP across

all cases, which indicates the advantages of MAD4PG by adopting the potential

function as edge node reward. Figures 8(d) and 8(e) compare the AST and

APT of the five algorithms. It is observed that the performance gap among

the ORL, MADDPG, and MAD4PG is small when the task arrival probability

increases from 0.3 to 0.4. The reason is that the scheduling effect is not signif-

icant when there are sufficient resources. Figure 8(f) compares the PLPM of

the five algorithms. When the task arrival probability increases, the proportion

of tasks processed locally in the MAD4PG decreases. The reason is that the

tasks migrated to other edge nodes are more likely to be serviced before their

deadlines.
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7. Conclusion and Future Work

This paper presented a NOMA-based VEC architecture for cooperative com-

munication and computation among edge nodes. On this basis, the V2I trans-

mission model was derived by considering the intra-edge and inter-edge interfer-

ences, and the task offloading model was derived by considering heterogeneous

resources and cooperation among edge nodes. Then, we formulated the CRO

problem to maximize the service ratio. Further, we decomposed CRO into two

subproblems, namely, task offloading and resource allocation. The task offload-

ing subproblem was modeled as an EPG with the existence and convergence of

NE. The MAD4PG algorithm was proposed, in which edge nodes act as agents

with action space for determining the task offloading to achieve the NE. In par-

ticular, the potential function of the game model was adopted as the rewards

of edge nodes. Then, the optimal solution was proposed to solve the remaining

resource allocation problem based on the gradient-based iterative method and

KKT condition. Lastly, we built the simulation model with realistic vehicular

trajectories extracted from different periods, and a comprehensive performance

evaluation demonstrated the superiority of the proposed solutions.

In future work, we would like to further improve the system performance

by considering the inner relationship between vehicle mobility and cooperative

computation among edge nodes, e.g., the tasks can be migrated to the edge

node where the vehicle will travel. In addition, the end-edge-cloud hierarchical

architecture for vehicular networks is expected to be incorporated to enhance

performance by leveraging the cooperation among vehicles, edge nodes, and the

cloud. Finally, we would like to implement the solution model in the real world

to verify system capability based on the actual vehicular network environments.
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Appendix A

A.1 Proof of Theorem 1

Proof. According to Eq. 16, we have

Fe (S ′e,S−e)− Fe (Se,S−e)

= Ue (S ′e,S−e)− Ue (−S ′e,S−e)− (Ue (Se,S−e)− Ue (−Se,S−e))

= Ue (S ′e,S−e)− Ue (Se,S−e) + Ue (−Se,S−e)− Ue (−S ′e,S−e)

= Ue (S ′e,S−e)− Ue (Se,S−e)

(50)

Thus, the Theorem 1 is proved.

A.2 Proof of Lemma 1

Proof. Assume that S∗ is a Nash equilibrium of game G, we have

Ue
(
S∗e ,S∗−e

)
− Ue

(
Se,S∗−e

)
≥ 0, ∀Se ∈ Se,∀e ∈ E (51)

According to the definition of the exact potential game, we have

Fe
(
S∗e ,S∗−e

)
− Fe

(
Se,S∗−e

)
≥ 0, ∀Se ∈ Se,∀e ∈ E (52)

Therefore, S∗ is also a Nash of game GF , and NE(GF ) ⊆ NE(G). Similarly,

NE(G) ⊆ NE(F).

A.3 Proof of Theorem 2

Proof. The strategy space S is closed and bounded. Hence, the potential func-

tion Fe(S) has at least one maximum point in S, which corresponds to the Nash

equilibrium of the game GF . Then, according to Lemma. 1, the game G has at

least one pure-strategy Nash equilibrium.

A.4 Proof of Theorem 3

Proof. Since the strategy space S of game G is closed and bounded, ∃Fmax ∈

R, and Fmax < ∞ such that Fmax = supS∈S Fe(S). Suppose that the path

ρ =
(
S0,S1, . . . ,Si, . . .

)
is an ε-improvement path, and it is infinite. By the
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definition of ε-improvement path, we have Ue
(
Si+1

)
> Ue

(
Si
)

+ ε,∃ε ∈ R+,∀i.

Thus, we have Fe
(
Si+1

)
> Fe

(
Si
)

+ ε′,∃ε′ ∈ R+,∀i, where ε′ is a sufficiently

small constant. It can further imply that

Fe
(
Si
)
> Fe

(
S0
)

+ i · ε′,∀i

lim
i→∞

F
(
Si
)
> lim
i→∞

{
Fe
(
S0
)

+ i · ε′
}

=∞
(53)

It contradicts Fmax <∞, which indicates that the path ρ must have finite steps

and terminate at an ε-equilibrium point.
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