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Abstract

The accuracy of camera-based object detection (CBOD) built upon deep learning
is often evaluated against the real objects in frames only. However, such simplistic
evaluation ignores the fact that many unimportant objects are small, distant, or back-
ground, and hence, their misdetections have less impact than those for closer, larger,
and foreground objects in domains such as autonomous driving. Moreover, sporadic
misdetections are irrelevant since confidence on detections is typically averaged across
consecutive frames, and detection devices (e.g. cameras, LiDARs) are often redundant,
thus providing fault tolerance.

This paper exploits such intrinsic fault tolerance of the CBOD process, and assesses
in an automotive case study to what extent CBOD can tolerate approximation coming
from multiple sources such as lower precision arithmetic, approximate arithmetic units,
and even random faults due to, for instance, low voltage operation. We show that the
accuracy impact of those sources of approximation is within 1% of the baseline even
when considering the three approximate domains simultaneously, and hence, multiple
sources of approximation can be exploited to build highly efficient accelerators for
CBOD in cars.

1 Introduction

Systems based on Artificial Intelligence are becoming ubiquitous these days for a variety
of applications across domains. Those based on deep learning are particularly popular for
object detection, and hardware and software designs to achieve increasingly high accuracy
and confidence on the predictions within limited time bounds (e.g. to process images from
cameras at a high rate) are continuously improved.

Camera-based object detection (CBOD) building upon deep learning has been deployed
in a variety of applications across multiple domains, some of them with safety requirements,
and thus with limitations in the level of errors that can be tolerated. This is, for instance,
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the case of CBOD in Autonomous Driving (AD), where accurate object detection is manda-
tory to guarantee safe progress towards the destination. For instance, You Only Look Once
(YOLO) [1,2] is an award-winning popular and efficient real-time CBOD system already used
in industrial autonomous driving systems such as NVIDIA Drive [3] and Baidu’s Apollo [4], a
popular industrial-quality autonomous driving software framework used in several prototype
vehicles (including autonomous trucks and robotaxies).

YOLO implements a computationally-intensive function based on a Convolutional Neural
Network. It is developed and trained based on IEEE754 floating-point 32-bit arithmetic and
has been proven highly effective and efficient.

For each frame (image), YOLO delivers the list of objects detected with their individual
confidence levels. By default, only objects with detection confidence above 50% are re-
garded as real objects for YOLO. Analogous thresholds – even identical – are considered and
implemented accordingly in frameworks that employ YOLO’s architecture, such as Apollo.

CBOD in general, and YOLO in particular, have a stochastic nature due to building
on neural networks [5], and by delivering results with associated confidence levels. Such
stochastic nature has often been leveraged to use reduced-precision arithmetic (e.g. floating-
point 16-bit instead of floating-point 32-bit), to reduce computation costs while maintaining
accuracy and, in some cases, at the expense of negligible accuracy loss.

While the effectiveness of object detection can be assessed at the granularity of an image,
where we can tell whether objects have been detected, identifying false positives and false
negatives, the semantic implications of false positives/negatives are irrelevant at the granu-
larity of individual images for automotive object detection if decisions are taken averaging
results across multiple frames, as it is the case of YOLO. Instead, detections are combined
across multiple continuous frames captured from cameras, since only when an object is de-
tected across multiple frames – not necessarily strictly consecutive frames – with sufficiently
high confidence is regarded as a true object. For instance, an object detected in a single
frame, but not in the neighbouring ones can be simply disregarded. Analogously, missing
to detect with sufficient confidence an object in a single frame out of a sequence of frames
where it is detected is very unlikely to change the outcome, and hence the object is regarded
as a real object.

AD frameworks leverage detections across multiple frames and across multiple sensors
(cameras, LiDARs, and radars) for the sake of robustness. Thus, a false positive/negative in
a frame causes no semantic error on its own. This brings an additional dimension for error
tolerance that can be exploited to further reduce hardware complexity.

This paper performs a case study for the trade-off between accuracy and complexity
for CBOD in the context of AD systems. In particular, we show for the first time in an
automotive case study that several approximation domains can be leveraged simultaneously
with negligible impact on accuracy:

A) Reduced precision arithmetic (e.g. floating-point 16-bit), in line with existing literature.

B) Approximate arithmetic, such as approximate additions and multiplications, where
results for some input operands may be systematically inaccurate.

C) Random faults due to, for instance, low-voltage operation, which may make some op-
erations produce arbitrarily erroneous results sporadically.
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Hence, this work shows that opportunities exist for the future design of lower-power
higher-frequency AD-specific CBOD accelerators by implementing low-voltage reduced-preci-
sion approximate arithmetic, without impacting on the semantics of the whole object-detec-
tion process.

The rest of the paper is organized as follows. Related work is provided in Section 2.
Section 3 provides background on object detection systems as well as state-of-the-art on
different approaches to improve the efficiency of deep learning models. Section 4 presents the
different approximation domains and the expected impact on the CBOD outcome. Section 6
presents and evaluates the case study. Finally, Section 7 summarizes this work.

2 Related Work

Achieving efficient object detection has been the target of multiple works from different an-
gles, including the reduction of the amount of data fetched and operated, and reducing the
cost to fetch and operate such data, being both sets of solutions orthogonal and complemen-
tary. In the former area, we find works performing real-time video segmentation to compress
spatio-temporal redundancy within and across frames [6], and devising new CNN architec-
tures for low-cost salient object detection [7], and enabling CNN model compaction [8]. Those
works ultimately lead to requiring less data to be fetched from memory, and to performing a
lower number of operations on the data fetched. In the latter area, we find works related to
using alternative data representations, approximate arithmetics and low voltage operation,
which we discuss next.

There is a plethora of related works in the area of reduced precision for neural networks.
The work from Tang et al. [9] proposes MLPAT, a power, area, and timing model framework
for machine learning accelerators. The work explores the design space of precision and
architecture tradeoffs for autonomous driving accelerators assessing the accuracy, power, and
area of floating-point 16-bit, brain floating-point 16-bit, integer 16-bit, and integer 8-bit on
a TPU-v1 [10], an ASIC developed by Google. Wu et al. [11] propose a custom low-precision
(8-bit) floating-point quantization method for FPGA-based acceleration without re-training
and study their approach on VGG16 [12] and tiny-YOLO [13]. In our work, we use the
full version of YOLO v3 [2] and the standard floating-point formats. Mellempudi et al. [14]
propose the use of 8-bit floating-point representation for weights, activations, errors, and
gradients, although the work focuses on training a DNN.

Several works study other possible number formats, such as fixed-point, during training
and inference [15], [16], [17], [18], concluding that it is feasible using alternative number for-
mat representations in the context of CNNs without significant accuracy impact. However,
in practice, it is currently more feasible to use the standard floating-point number repre-
sentation, since the hardware is highly optimized, while other formats may require further
optimization.

Approximate arithmetic applied to CNNs has also been studied in several works. The work
from Hammad et al. [19] studies the use of a dynamically configurable approximate multiplier
for CNN inference on the VGG19 [20], Xception [21], and DenseNet201 [22] networks using
the ImageNetV2 dataset [23]. Ibrahim et al. [24] discuss the use of approximate computing
by means of employing approximate multipliers and adders for machine learning. Further
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related works can be found on the comprehensive survey from Manikandan [25]. To the best
of our knowledge, there are no related works focusing on approximate arithmetic for CBOD in
AD systems, and other works that study approximate arithmetic employ a lower complexity
network. In our work, we have employed the SFA (simplified full adder) based adder [26]
and a configuration of the UDM (underdesigned multiplier) [27] as illustrative examples of
approximate arithmetic units. Other works study different approximate units.

The impact of faults on CNNs has been analyzed from different angles. Some other works
study the impact of aggressive low voltage operations applied to CNNs. Salami et al. [28]
perform an experimental study of the power-performance-accuracy characteristics of CNN
accelerators with aggressive reduced supply voltage capability implemented in real FPGAs,
although the study is not focused on the AD domain. Chandramoorthy [29] also performs
an evaluation of low-voltage operation, but for character recognition, which is a different
application to CBOD.

A. Ruospo et al. [30] characterize the impact of software-injected permanent faults in
the CNN weights of the LeNet-5 CNN [31] with the MNIST dataset [32] for handwritten
digit classification. Authors provide a characterization for 32-bit floating-point arithmetic
and different fixed-point arithmetic configurations (32, 18, 16, 10, and 6 bits). Similarly, F.
Libano et al. [33] study the impact of radiation induced hardware faults on different reduced
precision models. In particular, the work analyses 32-bit and 16-bit floating-point versions,
and an 8-bit integer version of a minimalist CNN (7 layers) also evaluated against the MNIST
dataset [32] for handwritten digit classification, which is a simpler task than CBOD.

Other works [34,35] focus on the detection of faults exploiting spatio-temporal redundancy
in the context of AD. Authors build on the fact that consecutive frames have a very high
degree of visual similarity to detect faults. Authors compare the outcome of consecutive
frames explicitly to detect hardware faults. Instead, we use the default implementation
provided in the Darknet framework, which averages the confidence of the detections across
the last three frames to mitigate some sporadic misdetections, but without including any
specific mechanism for fault detection or correction. Instead, the very same mechanism used
to mitigate model inaccuracies is exploited for fault tolerance in our case.

Overall, our paper is the first one providing a complete assessment of different approxi-
mation domains applied incrementally in a real-life case study for AD systems taking into
account the fault-tolerance that those systems provide due to time and space redundancies.

3 Background

This section, provides background on the CBOD process, YOLO, and precision and appro-
ximation in arithmetic.

3.1 Camera-based Object Detection

The perception process in AD frameworks, such as Apollo, builds upon complementary and
redundant sensors for scene understanding. This includes sensors of different types, such
as cameras, LiDARs, and radars, but also sensors of the same type that may cover some
surrounding areas redundantly (e.g. cameras with overlapping angles of view). This is
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Figure 1: Perception process in AD.

illustrated in Figure 1. Each sensor process generates a new object list periodically (e.g.
every 40 ms for CBOD at a rate of 25 frames per second, FPS), which are fused to generate
a single object list.

The fusion process needs to provide a coherent identification of the objects surrounding
the car, which implies matching objects identified by different sensors, taking into account
their type, size, location, and confidence in their detection. This process is intrinsically fault-
tolerant since if one sensor discards a real object due to low confidence in its detection, but
the other sensors covering the same area detect it with high confidence, the object will be
considered for the fusion process.

The fusion process periodically generates a new list of objects (e.g. at times Ti−2, Ti−1, Ti).
Then, such sequences of lists of objects need to be processed to track objects over time so that
their trajectories can be properly predicted, thus allowing the AD system to take safe driving
decisions. The processing of consecutive object lists is, again, intrinsically fault-tolerant since
detections are leveraged across lists over time, so sporadic false positives/negatives have no
semantic impact on the AD object detection process. As an illustrative example, if a car is
detected in the front view of the vehicle (e.g. in object lists at times Ti−k, Ti−k+1,..., Ti−1)
but suddenly it is not detected in one object list (e.g. Ti), the trajectory prediction module
will still be capable of considering such car as long as the non-detection of that car occurs
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Figure 2: YOLO v3 architecture overview.

sporadically. Analogously, if a car is erroneously detected in front of the vehicle in just one
object list (e.g. Ti), the trajectory prediction process will be capable of detecting it since it
is impossible for such car getting in front of the vehicle in a too short time interval (e.g. in
40 ms), by being missing in Ti−3, Ti−2, and Ti−1, and instead, being in a specific location
(e.g. close to the car) in Ti.

Overall, the perception process of an AD framework is a fault-tolerant process where
independent false positive/negative detections for one sensor, or jointly for multiple sensors
instantly (e.g. in a single object list produced by the fusion process), do not have any
semantic impact affecting the driving decisions.

In this work, we analyse several videos captured by a single camera in an autonomous
vehicle to be processed by YOLO v3, as CBOD representative. Hence, we do not exploit
fault tolerance from redundant sensors due to lack of appropriate data for that purpose (e.g.,
data from multiple cameras from a driving sequence). However, we illustrate tolerance to
errors of the process due to the intrinsic stochastic nature of the detection process in YOLO,
and due to the fault tolerance of object detections across consecutive video frames.

3.2 YOLO Real-time Object Detection System

YOLO is a state-of-the-art real-time CBOD system used as the main component for CBOD
in several industrial autonomous driving software frameworks [3,4,36,37]. YOLO operates on
floating-point 32-bit data, so we assume this number representation as the baseline case in the
rest of the paper despite our findings could be applied analogously to other representations
(e.g., integer numbers).

Figure 2 shows an overview of the architecture of YOLO v3. YOLO v3 consists of 106
layers that include Convolutional, Upsample, Shortcut, Route, and Detection layers. The
Residual Blocks consist of several convolutional layers and skip connections that are used
for feature extraction. The main unique feature of the architecture is that object detections
are performed at three different scales. In particular, the detection processes are performed
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Figure 3: YOLO case study evaluated.

on layers 82, 94, and 106, and after each detection processes, the input image is upscaled
by a factor of 2, allowing for better detection of objects of different sizes. The image is
divided into a grid, and each cell is responsible for predicting three bounding boxes (i.e.
a rectangle delimiting the area of an object). For each of the three bounding boxes, its
coordinates, an objectness score (i.e. the probability that the cell includes an object) and
class scores (i.e. a score for each class indicating the probability that the object belongs to
that class) are calculated. This model defines 80 classes that include animals, food, vehicles,
and pedestrians among others. Many bounding boxes may not contain an object, overlap
with other bounding boxes that contain the same object, or have a very low probability of
containing an object and/or belonging to a specific class. Therefore, a filtering process is
applied to obtain the predictions with the highest confidence level and above a set threshold
– set to 50% by default – and discard the remaining predictions. As illustrated in Figure 3,
this can be done for the internal object list (iTi) (i.e. an independent analysis of the frame),
or at a higher abstraction level, for the resulting output list (Ti) that combines the detections
of the last three frames in order to determine if a detection needs to be considered (i.e. the
average confidence level is above the 50% threshold).

3.3 Precision and Approximation in Arithmetic

Reduced Precision Arithmetic. Reduced precision arithmetic is a widely-adopted model
compression approach [10,11,15,38]. Reducing the number of bits employed for the number
representation, by using for example floating-point 16-bit or integer 16-bit, allows the imme-
diate reduction of the model size. The process to map values of a higher precision arithmetic
into a lower precision arithmetic is called quantization. For instance, a given floating-point
32-bit number that cannot be represented fully precisely with floating-point 16-bit is quan-
tized by mapping it to a different – yet very close – floating-point 16-bit number. Reduced
precision arithmetic can bring area, power, and timing savings due to the reduced hardware
complexity.

Approximate Arithmetic. Approximate arithmetic [19, 24, 39] consists of implement-
ing simplified arithmetic units, such as adders and multipliers, whose results are less precise
compared to fully-precise arithmetic with a similar number of bits. The advantage of appro-
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ximate designs is that the hardware complexity is significantly reduced, which leads to area,
power, and timing savings, at the cost of – typically slightly – reduced precision.

The aforementioned approaches may be combined together to obtain further model com-
pression and energy improvements at the expense of potentially lower accuracy.

4 Approximation Domains and Impact

In this section, we analyse how the YOLO camera-based object detection in particular, and
deep learning-based object detection in general, perform object detection to easily tolerate
errors, we review the three approximation domains considered in this paper, and how these
can affect the object detection outcome.

4.1 Impact of Approximation in YOLO

YOLO v3 implements object detection with 100+ layers, out of which the most computing-
intensive ones are 53 Convolutional layers devoting most of their time to matrix-matrix
multiplications, which is at the heart of most Deep Learning frameworks [40]. Inference
occurs with the sequential processing of a number of matrices. Therefore, any inaccuracy or
computing error occurring in the first layers is propagated to the following layers.

Because of the nature of the inference process, computationally speaking, contents of one
cell of one matrix are used for the computation of multiple cells of another matrix which,
in turn, is processed similarly. Therefore, while an error or an inaccuracy in the result of
one cell is propagated to an increasing number of cells in the following layers of the network,
such propagation occurs with decreasing intensity due to the use of weights, that lead only to
partial propagation of errors to each individual cell. Overall, a local error in one cell becomes
a series of much smaller errors in multiple cells in the following layers. Moreover, those errors
can compensate the effect of each other partially. For instance, a slightly overapproximated
value (e.g. 0.5 instead of 0.48) added with a slightly underapproximated value (e.g. 0.4
instead of 0.43) may mitigate inaccuracies (e.g. 0.5 + 0.4 = 0.9 instead of 0.48 + 0.43 =
0.91). Similar compensation effects have already been observed in other domains such as, for
instance, critical path delay of circuits where, the larger the number of gates in the path, the
lower the variation due to statistical compensation [41].

In semantic terms, such error propagation translates into some minor variations in the
confidence levels and object locations for multiple objects detected, rather than creating large
deviations affecting just one or very few objects. This is true when using lower precision arith-
metic, approximate arithmetic, and even when having sporadic erroneous values. Therefore,
one could expect that only those detections whose confidence levels are close to the threshold
of acceptance (e.g. 50%) may change enough to lead to a different semantic output. For
instance, if confidence levels change by up to ±5%, only detections with confidence levels
originally in the range [45%, 55%] could be classified differently.

If we further consider that the fusion process leverages such information from different
redundant or partially-redundant sensors1, and then such information regarding object detec-

1As indicated before, fault-tolerance due to the use of multiple redundant sensors is not analysed quanti-
tatively in the use case in this paper.
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tions is also leveraged across periodic detection processes (e.g. every 40 ms), we can expect
that objects in the critical confidence level range change across sensors, and over time for
the same sensor. Moreover, we can also expect that inaccuracies do not always affect in the
same direction a given object (e.g. moving it from slightly above the threshold to below the
threshold, or vice versa, across several sensors and repeatedly over time).

In summary, the stochastic nature of the deep learning-based object detection process,
thus with estimated confidence values and thresholds, and with sensor and time redundancies,
is intrinsically fault-tolerant and hence, amenable to the use of techniques that trade off some
accuracy to save power and design complexity.

4.2 Approximation Domains in Object Detection

Our target for approximation are the arithmetic units based on the assumption that they
generally account for most of the area and power in systolic arrays. Also, we build on the
assumption that their latency determines, or at least has large impact, on the operating
frequency of the accelerator.

Reduced precision arithmetic. Reduced precision (e.g. 16-bit operands instead of
32-bit ones) brings several benefits such as the use of less area to store data and for the arith-
metic units operating such data, lower latencies for arithmetic units operating those smaller
operands, and lower power to perform computations among others. On the other hand, re-
duced precision can encode fewer values. Hence, whenever the value to be stored cannot be
represented exactly with the number of bits available for the particular representation and
precision used, a close value that can be represented is used instead. In general, the higher
the precision, the higher the number of values that can be represented exactly, and the lower
the error introduced due to rounding a non-representable value to a similar representable
one.

In the particular case of YOLO, similarly to many deep learning models, the model
parameters are represented with floating-point arithmetic. By default, 32-bit floating-point
IEEE754 compliant values (also referred to as floats) are used by YOLO, such that 1 bit
is used to represent the sign (s), 8 bits for the exponent (e), and 23 bits for the mantissa
(m). Instead, standard 16-bit floating point values (also referred to as half-floats) devote 1
bit to s, 5 to e, and 10 to m. Other than denormalized values and other special cases, values
represented have the form:

half float(s, e,m) = (−1)s · 2e−15 · (1.m2)

For instance, the half-float 00110101010101002 would correspond to the following real num-
ber:

half float(0, 01101, 0101010100) =

(−1)0 · 213−15 · 1.01010101002 = 0.333007813

Note that in the case of floats, values represented have the form float(s, e,m) = (−1)s ·
2e−127 · (1.m2).

In general, using b bits for the representations implies that up to 2b values can be repre-
sented. Therefore, by decreasing b, fewer values can be represented. Whether this has a large
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or small impact strictly depends on the values represented. For instance, if their exponents
are typically in the range [−14, 15], then the number of e bits of half-floats suffices, and all m
bits can be used for meaningful digits, as opposed to denormalized and out-of-range values,
thus limiting precision loss to be below 0.05% (i.e. 1

2048
). In the case of YOLO, we note

that most values are in this range. Moreover, values out of that range are normally added to
values with higher exponents, thus diluting to some extent their impact in precision.

Overall, reduced precision arithmetic is expected to cause a limited impact in YOLO
object detection if it is not reduced too aggressively (e.g. using only 8-bit floating-point
representation).

Approximate arithmetic. There are a plethora of arithmetic unit designs for approxi-
mate arithmetic, such as approximate adders and multipliers. Those can be used to operate
the mantissa of the operands, since exponents are much less tolerant to errors due to their
exponential impact in the value represented, as shown in [30, 42, 43], and instead, the man-
tissa may tolerate errors particularly in its lower-order bits, which could cause effects similar
to those of reduced precision arithmetic.

The rationale behind approximate arithmetic is that a significant part of the logic is
devoted to providing precision for the computation of a reduced number of values. Thus,
such logic can be removed or reduced so that the cost reduction is significant while the impact
in the result is limited to some inputs, and in those cases, the impact is also low by using
approximation for the lowest order bits only.

As discussed for the case of reduced precision, YOLO uses values such that, in most cases,
the highest order bits of the mantissa are relevant. Hence, the impact of approximation is
very limited. Analogously to the case of reduced precision, inaccuracies due to approximate
arithmetic impact the lowest order bits thus mitigating the relative impact of those inaccu-
racies. And also, as in the case of reduced precision, errors due to approximate arithmetic
can compensate each other partially.

Overall, as for reduced precision arithmetic, approximate arithmetic is expected to cause
a limited impact in YOLO object detection.

On the other hand, approximate arithmetic provides power reductions and a reduction of
the critical path length (i.e., minimum affordable cycle time). For instance, for the appro-
ximate adder considered in our evaluation, authors show a 28% power reduction and 50%
delay reduction [26] (see further details in Section 6). In the case of the multiplier, power
reduction may be as high as 31% [27].

Aggressive low voltage operation. Dynamic energy is the dominant source of energy
consumption in combinational logic such as those arithmetic units used for compute-intensive
workloads such as object detection. It is well-known that dynamic energy is quadratic on
supply voltage (VDD) and hence, one of the most effective ways to save energy in this type
of units is decreasing VDD, despite the negative impact that lower VDD operation can have
on latency [44].

Circuits are usually powered and timed with some guardbands to ensure that they can
complete their function by the end of the cycle. However, given a pair
< VDD, Tcycle >, where Tcycle stands for the cycle time, such that correct operation is en-
sured, one can decrease VDD while keeping Tcycle so that lower energy is consumed at the
expense of some sporadic timing errors that will lead to erroneous outputs. Such errors can
occur for some specific inputs triggering specific delay paths in the circuits, affected neg-
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atively by process variations, under some specific temperature ranges, or under particular
combinations of those effects. Alternatively, a simpler approach consists of using lower power
– yet slower – transistors without changing VDD (e.g. synthesizing those parts of the circuit
targeting a slightly lower operating frequency while keeping the original frequency during
operation), so that power savings can be obtained while keeping VDD unchanged. Slower
paths due to slower transistors may lead to some errors under specific operation conditions
and input data transitions, with the impact of errors and power savings being completely
implementation dependent. The impact of such timing errors is generally arbitrary because
typically there are many critical paths across several corner conditions with a delay close to
Tcycle.

Overall, decreasing VDD aggressively brings significant dynamic energy savings at the ex-
pense of causing some sporadic errors with arbitrary impact in the output result of arithmetic
units. However, if those errors are rare enough, the overall impact in the object detection
process is expected to be tiny in semantic terms.

5 Evaluation Framework

In this section, we present our evaluation framework, discussing the datasets used for the
evaluation, the approximation setups evaluated, and the precision metrics employed to assess
the accuracy of the model.

5.1 Datasets

To assess the impact of different approximation domains in the CBOD process, we consider
the default YOLO v3 [2] version with a pre-trained set of weights that is implemented within
the Darknet framework [45], processing a set of images with labelled objects – the COCO
dataset [46] – as well as several representative driving video recordings [47–52].

The labelled dataset consists of a set of images that have been tagged with labels accu-
rately. In the case of object detection, a bounding box and an associated class are set for
every object contained in each image. This information is referred to as the ground truth
and is later used for comparison against the output of the CBOD process. We use the testing
subset of the COCO dataset for our case study, as this dataset contains thousands of high-
quality images. We can expect relatively highly accurate results with this dataset, since we
use a pre-trained version of YOLO that was trained using the training subset of COCO. The
COCO dataset contains images of common objects in context. However, due to its generality,
the dataset includes many images completely unrelated to driving scenarios. Therefore, we
filtered out those images not containing either a person or a vehicle to reduce the number of
unrelated images. However, even if the images contain vehicles, this does not imply that the
images strictly belong to driving scenarios.

To complement our experimental analysis, we have studied and included a set of unlabelled
videos recorded by collection cars explicitly for the development of CBOD. Due to the cost
of performing object detection with software-implemented arithmetic units (i.e. 45 minutes
per frame and configuration in our case), we only processed a subset of the frames in each
video (≈ 30 seconds for each video).
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We considered the use of several autonomous driving labelled datasets, such as, CityPer-
sons [53], KITTI [54] and ApolloScape [55], among others (up to 12 datasets in practice).
However, to the best of our knowledge, there are no publicly available datasets for which
to evaluate the pre-trained YOLO v3 model with sufficient accuracy. We discarded each of
those datasets due to at least one of the following reasons: (i) not being publicly available,
(ii) not being sufficiently representative for our case study, due to not having the most rel-
evant object classes found in the context of autonomous driving (i.e., at least vehicles and
pedestrians), (iii) missing 2D annotations, which are required since the pre-trained YOLO
v3 model produces 2D bounding box object detections, and (iv) using similar annotation
guidelines to those of the pre-trained YOLO v3 model, which is trained with the COCO
dataset, to guarantee meaningful results.

5.2 Approximation setups

We have integrated the SoftFloat library [56] in the Darknet framework to implement floating-
point numbers at software-level, replacing native floating-point operations by their software
emulation, which allows us to use arbitrary representations and arithmetics. We evaluate four
different scenarios: the IEEE754 floating-point 32-bit fully precise version (YOLO32full), the
IEEE754 floating-point 16-bit fully precise version (YOLO16full), the floating-point 16-bit
version using approximate multipliers and adders (YOLO16approx), and YOLO16approx
with some faults injected to mimic erroneous outputs due to aggressive low voltage operation
(YOLO16appfault).

As said, YOLO16approx corresponds to YOLO16full, but using approximate multipliers
and adders for the mantissa, which have been implemented on top of the SoftFloat library
to emulate their behavior. In particular, YOLO16approx implements the addition operation
without forwarding the carry from the lowest half of the addition to the highest half of the
addition [26]. This optimization significantly decreases the latency of the most critical delay
path, as shown in [26], which enables the use of lower power gates within a given VDD and
Tcycle envelope, while still preserving full precision for the addition of the most significant
bits, hence limiting the impact of approximation. Regarding the approximate multiplier, we
use the design in [27], which provides a method to build 2x2 approximate multipliers and also
provides a method to build larger multipliers using blocks of 2x2 smaller multipliers. Using
this method, given 2 operands (A and B), split into their half uppermost bits (AH and BH
respectively) and their half lowermost bits (AL and BL respectively), we have implemented
an approximate multiplier where the blocks ALxBL, AHxBL and ALxBH are approximate,
and the block AHxBH is accurate since this block has a higher impact in the result of the
multiplication. While other approximate arithmetic units could be considered, the units
considered prove to be effective, as shown later in this section, and hence, they already serve
the purpose of illustrating that the use of approximate arithmetic is suitable path for CBOD
in AD systems.

Finally, YOLO16appfault implements YOLO16approx, but mimicking the impact of faults
due to low voltage operation at software level, inside the SoftFloat library. We model low
voltage related faults by randomly flipping one bit of the result of floating-point multiplica-
tions or additions with a given probability of fault injection per result, pfaulty, which suffices
to corrupt the result on an arbitrary manner. How specific pfaulty values relate to particular
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VDD values is technology dependent and beyond the scope of this work. Bits are only flipped
in the mantissa. Given that the exponent and sign have fewer bits, we assume that the logic
to operate them has lower delay (e.g. in terms of fanout-of-4, FO4, gates) and can easily
tolerate some delay increase to deliver correct results despite low voltage operation without
impacting cycle time. Instead, we assume that mantissa bits are in the critical path for
delay, and hence, any increase in the latency of the logic operating mantissa bits due to lower
voltage operation could lead to erroneous outputs. Therefore, it is possible decreasing VDD

to some extent with no impact in the exponent and sign bits, and experiencing faults only
in the mantissa bits. Moreover, as shown later, mantissa bits are relatively fault tolerant,
and hence, there are opportunities to trade off some faults in the mantissa for power savings.
We evaluate some pfaulty values to assess the sensitivity of different tradeoffs between VDD

values (or degrees of aggressiveness using lower power transistors for the mantissa operation)
and fault rates generated by raising pfaulty until it had a visible – yet affordable – impact
in results. Note that, processing each frame involves operating in the order of 1010 16-bit
floating-point values, so 1011 mantissa bits (the mantissa has exactly 10 bits for 16-bit float-
ing point numbers). Hence, the number of faults injected is around 1010 ∗ pfaulty per frame.
Therefore, we injected between 104 (pfaulty = 10−6) and 107 (pfaulty = 10−3) faults per frame.

5.3 Precision metrics

To assess the impact on the accuracy of the different approximation domains, we build on the
Intersection over Union (IoU), Average Precision (AP ) and Mean Average Precision (mAP )
metrics as described in [57]. The IoU is obtained as follows:

IoU =
Areagt ∩ Areap
Areagt ∪ Areap

(1)

where Areagt is the area of the ground truth bounding box for the corresponding object and
Areap is the area of its predicted bounding box. The IoU gives a value between 0 (if the
bounding boxes do not intersect) and 1 (if the bounding boxes are exactly the same in terms
of area and position). Using IoU we can set a threshold t such that only if IoU ≥ t, the
prediction is regarded as correct, otherwise it is regarded as incorrect. In our case, we assume
t = 0.5, in line with the PASCAL VOC challenge [58]. With IoU we can classify objects as
correct detections (true positives, TP), erroneous detections (false positives, FP), and missed
detections (false negatives, FN).

We have used a publicly available framework [57] to measure the mAP and to obtain the
number of TP, FP, and FN of the different experimental setups.

The assessment of object detectors is mainly based on the Precision (P ), an indication of
the accuracy for detecting only relevant objects (i.e., objects represented in the ground truth),
and Recall (R), an indication of the accuracy for detecting all relevant objects. Precision
and recall are defined as follows:

P =
TP

All detections
=

TP

TP + FP
(2)

R =
TP

All groundtruths
=

TP

TP + FN
(3)
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A good detector should identify all ground-truth objects and avoid predicting non-existent
objects. Therefore, FP and FN should be close to 0, and P and R close to 1.

Building on these two concepts, the Average Precision (AP ) is measured by an all-point
interpolation method for a given object class, and a set IoU . The AP is defined as follows:

AP0.5 =
∑
n

(Rn+1 −Rn)Pinterp(Rn+1) (4)

where AP0.5 indicates that the AP is measured with IoU = 0.5 and

Pinterp(Rn+1) = max
{R̃:R̃≥Rn+1}

P (R̃) (5)

If AP values are obtained for different object classes, they can be averaged to obtain a
single value called Mean Average Precision (mAP ) that weights all object classes equally
disregarding the object frequency for each type [57]. The mAP is defined as follows:

mAP =
1

N

N∑
i=1

APi (6)

6 Results

In this section, we discuss the labelled dataset evaluation, the video case study evaluation,
the confidence range of the detections, and we provide some complementary experiments
analysing the area of the misdetections and the misclassification of vehicle types.

6.1 Labelled Dataset Results

We have computed the AP values for the labelled dataset for all types of vehicles (cars, trucks,
motorbikes, and buses) and for the person class of object. Results are shown in Table 1 (top
data rows), where we show the number of TP, FP and FN, the mAP for the four vehicle
classes, and for the four vehicle classes and persons together. In particular, we show results
for YOLO32full, YOLO16full, YOLO16approx, and YOLO16appfault varying pfaulty between
10−6 and 10−3. As shown, reducing precision slightly reduces both the number of TP and FP,
and slightly increases FN, in this case, which still leads to near-identical mAP values to those
of YOLO32full. If we further introduce approximate arithmetic (YOLO16approx), results
remain nearly constant. If we introduce faults, results change marginally up to pfaulty = 10−4,
and higher fault rates lead to noticeable differences due to the increased number of FP.

Overall, these results indicate that CBOD is highly tolerant to multi-domain approxima-
tions such as those of reduced precision, approximate arithmetic, and even some moderate
fault rates due to aggressive low voltage operation.

6.2 Case Study (Video) Results

The main drawback of the labelled dataset analysis is that the COCO dataset does not
contain many images relevant for driving conditions (e.g. images of road scenes taken by
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Figure 4: Example of a frame with different (but true) object detections by YOLO32full
(left), YOLO16full (center) and the original frame (right).

in-vehicle cameras), so the value of the results of this analysis in the context of autonomous
driving are limited.

We include the analysis of videos of real driving conditions that contain relevant data
despite not being labelled, as discussed in Section 5.1. The main drawback of using unlabelled
videos is that they lack groundtruth labelled objects to assess the accuracy of the model.
Therefore, the only means of assessing the accuracy of the model is to use the baseline
YOLO32full as the reference configuration. However, the baseline configuration is not 100%
accurate. Therefore, when comparing different configurations, it cannot be stated whether
discrepancies among them are due to erroneous detections in one or the other configuration,
other than by visual inspection of the corresponding frame. For instance, this is illustrated
in the frame in Figure 4, where we see that both, YOLO32full and YOLO16full, have 5 TP
and at least 1 FN. However, without visual inspection and taking YOLO32full as a reference,
we would assume that YOLO32full has 5 TP and no FN, whereas YOLO16full has 4 TP, 1
FN, and 1 FP. It is important to clarify that all the quantitative results provided in this work
are calculated strictly from the output of YOLO, and the metrics have been obtained with
a scientific framework to avoid any kind of subjective visual inspection. Therefore, visual
inspection is only employed for qualitative discussions. This may lead to pessimistic accuracy
results, to some extent. However, we believe that the analysis of unlabelled videos is still
very relevant in this context because they allow considering real driving conditions.

Table 1 (center and bottom rows) shows analogous results to those of the labelled dataset
but for the unlabelled video. In the table, iTi corresponds to the object detection per indi-
vidual frame (internal YOLO results), whereas Ti corresponds to the object detection results
averaged across the last three frames, as illustrated in Figure 3.

Note that YOLO32full is omitted in the table since it is used as a reference to compare the
other setups. Results are shown for both, the internal object list for a single frame (central set
of rows) and for the list averaging confidence levels across 3 consecutive frames (bottom set of
rows). The first observation is that mAP values are very high for all configurations and object
types (i.e. vehicles and persons) with respect to YOLO32full, except when pfaulty ≥ 10−4.
This holds for both iTi and Ti object lists.

When comparing results for both lists, we observe that Ti has lower TP, FP and FN values.
Lower TP, rather than indicating a higher number of undetected objects, it indicates that even
YOLO32full detects fewer objects because the intrinsic fault tolerance of YOLO averaging
confidence levels across frames allows removing sporadic marginal detections (e.g. objects
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Table 1: Results for the labelled data set (top), and both iTi and Ti for the video use case.
Gray background rows indicate the most aggressive configurations in terms of approximation
that cause negligible (below 1%) accuracy degradation.

Labelled data set
Configuration TP FP FN mAP

vehicle
mAP vehicle
and person

YOLO32full 5269 1076 4135 59.73 60.47
YOLO16full 5226 1038 4178 59.79 60.39
YOLO16approx 5230 1023 4174 59.49 60.16
YOLO16appfault(10−6) 5238 1030 4166 59.26 60.00
YOLO16appfault(10−5) 5214 1018 4190 59.29 59.99
YOLO16appfault(10−4) 5227 1034 4177 59.20 59.95
YOLO16appfault(10−3) 5210 1219 4194 58.53 59.39

Video use case: iTi – single frame detections
Configuration TP FP FN mAP

vehicle
mAP vehicle
and person

YOLO16full 51297 857 1472 94.78 95.00
YOLO16approx 51142 797 1627 93.69 93.96
YOLO16appfault(10−6) 51123 842 1646 95,50 95,50
YOLO16appfault(10−5) 51061 839 1708 94,07 94,19
YOLO16appfault(10−4) 50804 1223 1965 90,71 91,21
YOLO16appfault(10−3) 48853 3562 3916 83,14 83,77

Video use case: Ti – confidence averaged across frames
Configuration TP FP FN mAP

vehicle
mAP vehicle
and person

YOLO16full 49720 462 1184 96.25 96.21
YOLO16approx 49552 395 1352 97.29 97.14
YOLO16appfault(10−6) 49514 408 1390 97,06 96,92
YOLO16appfault(10−5) 49448 446 1456 95,42 95,62
YOLO16appfault(10−4) 49307 710 1597 92,27 92,84
YOLO16appfault(10−3) 47659 2422 3245 89,35 88,88

whose confidence is slightly above 50% only sporadically). This very same effect also oc-
curs for the other configurations. FP and FN values also decrease due to the filtering of
sporadically different confidence values for all configurations. Overall, globally, mAP values
for iTi and Ti do not differ much. However, if we look at how fault-tolerant are both lists,
we realize that Ti is much more tolerant to approximation since, as we introduce further
approximation domains and as we increase pfaulty, mAP degrades slowly. For instance, the
two last configurations for iTi bring mAP drops of around 3% and 7% respectively, whereas
for Ti those drops are in the order of 3-4% in both cases.

We also observe that the impact of approximation is analogous across object types, as
expected, since those are orthogonal concerns. Instead, a relationship exists between the
dimensions of the objects, occupied area, and the impact of approximation, since detections
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(a) YOLO16full (b) YOLO16approx

(c) YOLO16appfault

Figure 5: TP and FP+FN per confidence level for all object types with the Ti object list. The
configurations are (a) YOLO16full, (b) YOLO16approx, and (c) YOLO16appfault(10−4).

of small objects tend to have lower confidence values and the impact of approximation could
make those values drop below or grow above the acceptance threshold, hence with a semantic
impact.

Finally, considering only whether predictions are above or below the threshold omits
information about the confidence of those predictions. For this reason, we have measured the
distribution of the confidence levels for both TP and FP+FN. We depict those values for all
object types (not only vehicles and persons) in Figure 5, for the YOLO16full, YOLO16approx,
and YOLO16appfault(10−4) configurations, using the Ti object list. Note that the y-axis is
in logarithmic scale.

All configurations show similar trends. As shown in Figure 5, TP distributes quite ho-
mogeneously across confidence levels. However, FP+FN concentrates in the low confidence
range, thus indicating that discrepancies negligibly impact objects detected with high con-
fidence. This indicates that the object detection process is naturally fault-tolerant in the
context of autonomous driving. Moreover, visual inspection revealed that discrepancies for
high-confidence objects relate to (1) objects correctly identified in terms of location and type,
but whose bounding box differs noticeably because other objects have been included in the
bounding box, either in the approximate configuration or in the reference one (YOLO32full),
and (2) overlapping objects where each configuration detects a different subset.

Overall, despite only a subset of redundancy levels are exploited in this work, we already
show that CBOD for automotive systems is an intrinsically fault-tolerant process, which
eases the adoption of specific accelerators building on multiple approximation domains such
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Figure 6: Area of all the objects detected and misdetected for the YOLO16Approx Ti video
use case.

as reduced precision, approximate arithmetic, and aggressive voltage scaling for low power
operation. In this work we have analysed the different sources of approximation in an incre-
mental manner. However, we believe that the conclusions obtained with our analysis can be
extrapolated to the other cases. For instance, reduced precision arithmetic and approximate
arithmetic have some impact on the lowermost values of the mantissa, and rarely propagate
to uppermost values. Hence, those effects are expected to hold regardless of the baseline
used in each case. Similarly, fault injection in the mantissa has low impact when occurring in
lowermost bits. If applied on YOLO32full, it is expected that a fraction of faults will impact
the 10 uppermost bits of the mantissa (i.e., 10 every 23 faults on average), hence with similar
effects to those of fault injection in YOLO16full, whereas the rest of the faults (i.e., 13 every
23 faults on average) will impact the 13 lowermost bits of the mantissa, hence with lower
impact than that of injecting faults in the 10th bit of the mantissa of YOLO16full.

6.3 Complementary Experiments and Results

6.3.1 Area of the Misdetections

Another factor to take into account is the area of the misdetected objects of certain types.
For instance, a car with a very small bounding box area corresponds to a car that is far away.
Hence, it is not problematic if this car is misdetected for a few frames as long as the car is
detected when the distance is reduced and the area of the bounding box of the car is much
larger.

Figure 6 shows the area range of all vehicle detections (TP) and objects not detected
(FN) for the YOLO16approx Ti video use case. The area of the objects is defined as the
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Figure 7: Example of a misdetected truck with a large area using YOLO32full (left) and
YOLO16full (right).

ratio of the bounding box area with respect to the total area of the image, hence the value of
the area ranges from 0 to 1 and, for example, a 0.5 area corresponds to an object occupying
half of the image. Note that the y-axis is in logarithmic scale. Note also that the x-axis
increments in orders of magnitude every 10 steps.

We observe that the total number of misdetections increases for vehicles with an area
smaller than 0.006, which are considered to be small objects. In particular, misdetections
for small objects are typically one order of magnitude lower than total detections, whereas
misdetections for large objects are two orders of magnitude lower. Hence, we can conclude
that, the larger the object, the lower the probability of experiencing a misdetection.

Regarding reported misdetections for large area objects, we have inspected visually a
number of them, and in all cases, we have found scenarios where arguably no misdetection
occurred in practice. For instance, Figure 7 shows an example of a truck with large area
and a confidence level of 0.98 that is considered to be a misdetection. In this case, both
configurations detect the truck, but the bounding box IoU is below 0.5 because YOLO32full
(left picture) includes the building behind the track in the bounding box. Hence, this
YOLO16full prediction (right picture) is regarded as both FP and FN. In this particular
example, YOLO16full predicts the object area more accurately than YOLO32full, but the
opposite can also happen.

The percentage of correct detections (TP), as shown in Figure 8, decreases with object
areas lower than 0.003, and decreases more steeply below 0.0006. Note that the smallest
observed area has a 100% of TP, but there are only 3 objects of this size, as shown in
Figure 6. Therefore, this specific percentage can be simply disregarded since, with a larger
number of objects within this area range, one would expect to observe a lower percentage of
TP than for larger areas.

Overall, these results show that misdetections come mainly from objects with a small
area, and have, therefore, low importance in this context. Misdetections of objects of large
area are mainly due to both configurations detecting the same object, but with the IoU
between the bounding-boxes being lower than the set threshold, and hence, the detections
are regarded as FP and FN.
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Figure 8: Percentage of correct detections (True Positives) for the YOLO16Approx Ti video
use case.

6.3.2 Misclassification of Vehicle Types

By visual inspection, we noticed that, in some cases, different configurations detect the same
object but classify it differently. For example, one configuration may classify a vehicle as a
car and another configuration may classify it as a truck, especially in the case of vans, as
in this YOLO model there is no van object class. Misclassification of an object may have a
significant impact in the mAP metric, since a misclassified object in these circumstances is
regarded as both FP and FN, as the model failed to detect (classify in this case) an object,
and detected a new object (in this case the same object but of a different object class).

To assess the impact of vehicle type misclassifications, we have merged the different vehicle
classes present in the baseline YOLO model (car, motorbike, truck, and bus) into a single
class called Vehicle. We refer to this configuration as the Generalization configuration.

Figure 9 shows the number of TP and FP of all vehicle types for the labelled dataset. In all
configurations, the number of TP of the generalization increases a bit and the number of FP
decreases by the same amount. Therefore, the accuracy of the object detector in these terms
improves. On the other hand, the results for the mAP of Vehicles in Figure 10, show that
the mAP of Vehicles with the generalization decreases for some configurations (YOLO16full
and YOLO16Approx), therefore contradicting to some extent the previous observation of
increased accuracy. This shows a weak point of the mAP metric. In particular, the calculation
of the mAP of Vehicles for the baseline is the simple mean of the AP for the different types of
vehicles without considering the number of observations of each class, whereas the AP of the
generalization of vehicles is computed as a single value naturally weighting all objects. This
implies that, if a type of vehicle has a very high/low AP but it accounts for a tiny fraction
of the total objects with respect to the number of detections of other types of vehicles, the
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Figure 9: Comparison of the total number of T/P and F/P for the baseline and the general-
ization configurations for the labelled dataset.

Figure 10: Comparison of the Vehi-
cle mAP of the baseline and the gener-
alization configurations for the labelled
dataset.

Figure 11: Comparison of the Vehicle
mAP of the baseline and the generaliza-
tion configurations for the Ti video use
case.

mAP of Vehicles can be significantly affected.
For the video use case, we also obtain that the number of TP of the generalization in-

creases and the number of FP decreases. On the other hand, in this case the mAP of the
vehicle generalization provides a higher mAP for all configurations, as shown in Figure 11 for
the Ti configuration. The iTi configuration follows analogous trends but it is omitted since
it does not provide further insights. A careful analysis of the videos shows that, if we do not
generalize and keep different types of vehicles in different classes, YOLO32full performs a
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relevant number of misclassifications. Hence, it is often the case that approximate configura-
tions perform a correct object class classification whereas YOLO32full does not. Assuming
that approximate configurations are always wrong upon a mismatch with YOLO32full is,
therefore, highly pessimistic. However, since videos are not labelled, there is no automatic
way to correct this issue. Generalizing vehicles into a single class is a way to mitigate this
issue related to the lack of labelled driving videos.

From the analysis of both labelled and unlabelled data, we can conclude that different
configurations in some cases detect the same object but with a different classification, thus
introducing more variability in the results if the mAP is solely analysed. By considering all
vehicle objects as a single class, we avoid issues related to unlabelled data misclassification by
the baseline configuration. Moreover, in many cases – yet not necessarily always – classifying
a vehicle object into the wrong subclass (e.g., classifying a car as a van) has irrelevant
semantic impact.

7 Conclusions

Object detection in AD, is a stochastic process building upon deep learning, thus causing false
positives/negatives. To tolerate errors, object detection is performed with sensor redundancy
(multiple cameras, LiDARs, and radars), and time redundancy (leveraging detections over
time), so that sporadic errors have no visible impact on the output.

This paper analyses the semantic impact of different approximation domains that can be
used to save energy and complexity in the power-hungry CBOD process. In particular, in
the context of an automotive case study, we show how abundant but minor errors caused
by lower precision and approximate arithmetic, as well as sporadic arbitrary errors caused
by aggressive low voltage operation have, ultimately, negligible semantic impact in object
detection despite causing some impact in the confidence level for detections and even some
seldom misdetections. Our results for both, a labelled dataset and real driving videos, show
that accuracy (in terms of mAP) is within 1% of the original one even if we consider the
three domains of approximation simultaneously decreasing floating-point precision from 32
to 16 bits, using approximate arithmetic, and considering fault rates of up to 10−5 in the
mantissa of the data. Overall, our study provides strong ground to develop application-
specific accelerators exploiting multiple approximation domains for cost-constrained domains
such as the automotive one.
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