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ABSTRACT

The advantages of processing data at the source motivate developers to offload computations at the
edges of IoT networks. However, the computational resource constraints of edge computing devices
limit the opportunities for deploying applications developed in high-level languages at the edge.
In contrast to C/C++, applications developed in Python and other dynamic high-level languages,
often require an increased amount of memory size, due to their inherent static memory management
approach. Therefore, developers targeting the deployment of applications in dynamic high-level
languages at the edge need support by methodologies and tools, which will allow these applications
to exploit the limited memory resources efficiently. This work presents a memory optimization
framework for applications developed in the Python programming language targeting edge devices.
Aiming to avoid the inherent pitfalls of static memory management that Python’s integrated memory
manager imposes, the framework targets the reduction of the required memory footprint, by integrating
a set of static and dynamic optimizations. The evaluation results, based on a set of representative
real-life benchmark suites and applications, show 64% average memory footprint reduction, over
the CPython’s minimum baseline of 24MB. Additionally, we investigate the impact of memory size
reduction on execution time and energy consumption. The results show 51% lower execution time and
47.3% reduction in the energy consumed.

1. Introduction

Over the last years, there is an ever-growing number
of interconnected IoT devices, providing new services and
applications in a variety of domains, such as autonomous
driving, agriculture, biomedical and healthcare. As the edge-
to-cloud continuum paradigm evolves, there is an increasing
need of processing and storage of data at the edges of the IoT
networks, which are typically based on memory-constrained
embedded devices. This approach has several advantages
compared to the typical offloading of computations to the
cloud. Consuming data directly at the source, contributes
to the energy efficiency and low latency of the whole IoT
system. On the contrary, the wireless transmission of data
to the cloud is typically expensive in terms of latency and
energy consumption, while it may impose security issues.

Providing high Quality of Service (QoS) based on real-
time computations, while operating in resource-constrained
edge devices is challenging. Developers are expected to
address issues such as the processing power and memory
size limitations of the underlying hardware while targeting
real-time performance and low energy consumption [1].
These constraints, which are often contradictory, motivated
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the development of several design methodologies at various
abstraction levels [2].

As the edge computing paradigm evolves, the popularity
of high-level programming languages increases among IoT
developers. For instance, Python relies on a wide variety
of libraries and abstractions which encapsulate low-level
optimizations and allow the expression of more functionality
with less amount of code [3, 4, 5]. These features enable
rapid application development, due to the limited program-
ming effort required. Today, Python dominates in the ar-
eas of scientific computing and machine learning in both
academia and industry [6], through libraries and frameworks
such as the scipy, numpy and Pytorch.

However, porting computationally demanding applica-
tions developed in high-level languages to resource con-
strained edge devices is challenging. For instance, there
are several studies indicating the high energy consumption
and increased memory demands of Python compared to
C/C++ [7, 8, 9, 10]. Applications developed in Python

Device Name Memory Device Name Memory
RT5350F-OLinuXino 32MB Giant Board 128MB

Arduino Yin Intel Galileo Gen 1 & 2

STM32 MCU 64MB 256MB
LC-CherryPi-PC-V3S BeagleBone Black

Table 1: Memory specifications (RAM) of indicative state-
of-the-art embedded boards
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need to be optimized to meet the constraints and limita-
tions of the edge devices. In particular, Python relies on
static memory management, which often leads to increased
memory requirements compared to more flexible dynamic
approaches, which are available in programming languages
such as C and C++. Therefore, applications implemented
using standard Python, often do not meet the constraints of
typical embedded devices [11].

Table 1 shows the memory resources (amount of RAM)
for some indicative state-of-the-art IoT devices. Applica-
tions are expected to adapt to the limited memory resources
of such architectures. Even though the microPython imple-
mentation has been developed to target resource constrained
embedded systems, the supported modules, and packages are
very limited, while it is not compatible with CPython and
other implementations [12]. Another feature of the CPython
memory allocator, which is a result of its static approach,
is that the allocated memory does not always get released
back to the operating system, but instead it is offered back
to the Python interpreter. The reason is that Python relies
on a dedicated allocator for handling small objects that
keeps memory reserved for future use. Therefore in long-
running processes, we observe an incremental reservation of
memory space, which may not be actually utilized, leading
to increased memory fragmentation.

In order to deploy complex Python applications, such
as machine learning algorithms and neural networks to
the edges of IoT networks developers need methodologies
and tools that will reduce the memory demands of these
applications. Towards this direction, this work presents a
novel framework that integrates a set of memory footprint
optimization techniques for Python applications targeting
IoT-embedded devices. The framework combines both static
and dynamic optimizations applied at the application-level,
which significantly reduce the memory requirements of
Python applications. The novel contributions of this work
are the following:

e The development of a systematic methodology for
memory footprint optimizations for Python ap-
plications targeting resource-constrained embed-
ded devices. The methodology is based on a set of
optimization techniques, which address the inherent
pitfalls of static memory management on which the
Python’s default memory management relies. The
methodology is supported by two novel tools that
automate the process of redundant data removal and
reduction of code hierarchy, which have a significant
impact on the Python applications’ memory require-
ments.

e A thorough evaluation of the proposed memory
optimization techniques, demonstrated in a wide va-
riety of representative real-world Python applications.
Apart from demonstrating their effectiveness in terms
of memory utilization, we also investigate their impact
on their real-time performance.

The rest of the paper is organized as follows: Section 2
summarizes the related work on memory management op-
timizations for embedded systems and Python applications.
An overview of the Python memory management approach
and the motivation for the existing work is presented in
Section 3. Section 4 describes the proposed methodology in
detail. The evaluation results and a discussion highlighting
the main observations are presented in Section 5. Finally, in
Section 6 we conclude this work.

2. Related Work

Several works in the existing literature propose memory
management optimizations for embedded systems. Authors
of [13] and [14] propose the Dynamic Data Type Refine-
ment (DDTR) methodology, which enables the systematic
customization and refinement of dynamic data structures
for embedded applications, in terms of performance, mem-
ory footprint, and energy consumption [11]. A complemen-
tary methodology is the Dynamic Memory Management
(DMM), which proposes customized dynamic memory allo-
cators, to meet the application requirements and embedded
system constraints, in terms of performance and memory
footprint [15]. However, these approaches have been devel-
oped for C/C++ embedded applications, while Python and
other modern high-level languages are not supported.

A few recent works propose memory management opti-
mization methodologies targeting the elimination of mem-
ory leaks and fragmentation. For example, in [16] the au-
thors leverage machine learning techniques for the automatic
detection of memory leaks in C/C++ codes, while in [17] is
proposed a replacement for malloc/free aiming to eliminate
the memory fragmentation of C/C++ applications. A similar
approach utilizes machine learning techniques to reduce the
memory fragmentation in C++ server workloads, induced
by long-lived objects allocated at peak heap size [18]. The
aforementioned approaches target C/C++ applications, and
they cannot be directly mapped to Python applications,
due to the different structure of the memory allocation in
dynamic languages, compared to the static.

With regard to Python, several works focus on analyzing
Python’s behavior and memory management performance.
The authors of [19] provide a detailed quantitative analysis
of the overhead in Python without and with just-in-time
(JIT) compilation and they identify the existing memory
overheads due to Python’s interpreter and built-in memory
manager, while also discussing the limitations of Python’s
garbage collector. Similarly, the authors of [20] study the
Python’s interpreter and calculate the overheads of some
of the language’s features such as the dynamic typing and
reference counting. These works focus on identifying the
overhead of Python features in terms of performance and
memory and they do not propose optimization techniques.
Therefore, they can be considered as a first step towards a
more through understanding of Python’s inherent limitations
in terms of memory management.

Regarding the memory management optimizations for
Python, the authors of [21] propose a Python package for
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Table 2: Summary of related research for Python memory
footprint optimizations

reducing the performance and memory overhead of loading,
traversing, and manipulating tree data structures in Python
applications. The authors of [22], propose a Python-based
optimization framework for high-performance genomics,
that combines the advantages of high-level languages such
as Python with the performance of lower-level languages
such as C/C++. In order to overcome the inherent limita-
tions of the Python interpreter and memory management
approach, the work in [23] proposes an alternative byte-
code interpreter, based on CPython. Aiming to enable the
efficient deployment of Python applications in embedded
systems and micro-controllers, the authors of [24] introduce
a run-time system that allows the execution of high-level
languages and they discuss the static memory allocation
behavior of Python. Additionally, the work in [25] proposes
an abstract garbage collector (AGC), which detects and re-
moves unreachable abstract addresses and works as a tracing
garbage collector. A similar approach in [26] describes a
dynamic memory leak detection method for dynamic lan-
guages. The work in [27] introduces a garbage collector,
which is enabled by machine learning methods to allow
efficient memory deallocation. The authors of [28] propose
a hardware-software co-optimization memory management
scheme for dynamic languages, including Python.

The aforementioned approaches that target Python can
be considered complementary to the optimizations proposed
in this work. Although the existing research has high-
lighted the effectiveness of memory footprint optimization
for Python libraries, no work to date, to the best of our
knowledge, has proposed a memory footprint optimization
framework that specifically targets Python applications de-
ployed on edge computing devices. The proposed framework
is complementary to several existing works and can further
be extended, for example by combining advanced Python
garbage collectors. Table 2 summarizes the related work and
highlights the position of the present work in relation to the
existing literature.

A preliminary version of the proposed methodology has
been presented in [11]. However, the present work includes
significant improvements and extensions, including tool sup-
port, full automation and an extensive description of several
steps, such as the "Redundant Data Removal" and "Code

Research Goal Related Works poe e i ;p;;,;;";;"'""""P'viﬂéﬁ'ﬁe'a'ﬁ
[13’ ]4’ 15] heepools:_l\ 3
C/C++ Memory Management freeocks g |
y g [297 l 6, 17’ 1 8] Object AEocation- _ @
Qualitative/Quantitative Analysis [19, 20, 30] O
Interpreter-oriented Optimizations [23, 24] .
Novel Garbage Collectors [25, 26, 27] CPython Memory
Library and Manseer
L . o [31,21,22] ] memaassia)
Application-specific Optimizations — B o 0 :
Application-Level Memory malloc()/free() ] Free iocks (85121t |
. S Present work L ‘
Footprint Optimizations reavess =] - e %::M:Ima:ks

Figure 1: CPython's memory management organization

Hierarchy Reduction", as well as thorough evaluation and
explanation of results based on new benchmarks.

3. Background and meotivation

Across the different Python implementations, various
approaches in terms of the way that memory management
is performed have been introduced, however, the core prin-
ciples remain the same. In this work, we select the CPython
version of Python, as it is the default implementation pro-
vided by Python developers [32], thus the most widely
utilized version of the various implementations. We focus
on the special internal characteristics and limitations of
CPython’s memory management.

Typically, in CPython, the code gets compiled to a low-
level, platform-independent intermediate representation of
the source code, namely the bytecode, which is finally loaded
and executed by the Python interpreter engine. The Python
memory manager relies on a garbage collector, which em-
ploys a reference counting technique for monitoring the
active memory objects. With reference counting, the runtime
keeps track of all of the references to an object. When an
object has zero assigned references, it cannot be accessed by
the program code anymore, so its allocated memory can be
freed and returned to the system. Even though the automatic
garbage collection is faster and hides implementation details,
it imposes computation and memory overhead in order to
track all application references.

Furthermore, memory leaks occur in practice: the ref-
erence count of non-active objects may never become zero,
even though these are not used in any subsequent computa-
tions. Typical causes of memory leaks are uncommon paths
through the code structure. For instance, a function may
allocate a block of memory and then free the block again,
while the application algorithm does not use the specific
block. Moreover, early termination of the application due to
an error condition can lead to a memory leak. In general,
if a Python application terminates early, all of its memory
is released back to the operating system, however, there
exist scenarios that lead to memory leaks. For instance,
Python applications that utilize finalizers [33], which are
special methods that are called when an object is about
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to be destroyed, may not be called if the program termi-
nates abnormally. Moreover, the integration of third-party
libraries into Python applications may not efficiently release
the memory allocated, when the Python program terminates
early.

Python’s heap management is implicit to the applica-
tion’s developer and handled by the interpreter, i.e. the
developer has no direct control over it. The dynamic memory
allocation/deallocation on Python’s heap space is performed
by the integrated memory manager through the Python/C
API functions [34]. The Python memory manager is orga-
nized into three layers [35]:

e Blocks: Blocks refer to the fundamental memory
management component, which is defined by a con-
tinuous number of bytes of virtual memory. Each
block can be characterized as unfouched, i.e. a por-
tion of memory has not been allocated yet, free, i.e.
an allocated block that has been "freed" and has
no relevant data and allocated, which contains data
required by the Python application. The blocks that
are deallocated by the memory manager (i.e. they are
"freed"), are added to a list data structure for future
use by the manager (freelist). Typically, the size of the
blocks varies from 8 to 512 bytes and it is a multiple
of eight.

e Pools: Pools consist of blocks from a single-size class.
Whenever a block is requested, the memory manager
checks the pools for that block size. Each pool can
be characterized as free, used or empty. Normally, the
size of the pool is equal to the size of a memory page.
Limiting the pool’s size to the fixed size of blocks has
a positive impact on memory fragmentation.

e Arenas: Finally, arenas are the highest level of mem-
ory components and contain pools of memory. Are-
nas are sorted by the CPython memory manager in
ascending order, based on the availability of free pools
in each arena, and, unlike pools and blocks, they do not
have any explicit state. The typical size of the arenas
is fixed at 256K B, which corresponds to the size of 64
pools, considering a 4KB page size.

Fig. 1 illustrates the organization of blocks, pools and
arenas of CPython’s memory manager [36]. The memory
manager handles requests, by trying to provide memory from
the arena with the lowest amount of available memory (i.e.
the one which is mostly occupied). An interesting feature
of CPython is the fact that the memory manager returns to
the OS not pools or blocks, but arenas, only. In contrast to
C/C++, when a memory block is deallocated, that mem-
ory is not actually returned back to the OS, but remains
in a freelist. Although this approach typically reduces the
memory allocation overhead in terms of performance, it is
very static, leading to higher memory footprint utilization
throughout the execution of an application. For IoT appli-
cations deployed on edge devices with memory constraints,
such a static approach is often a significant limitation.
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Figure 2: Motivational example showing CPython's static
memory management approach

Figure 2 shows a typical memory utilization plot of a
CPython application (a machine learning application de-
rived from the IoT wearables domain [11]). Although the
application is very dynamic, in the sense that it constantly
allocates and deallocates memory blocks of various sizes,
these fluctuations are not reflected in the OS. Even though
mechanisms such as GC and Python’s memory allocator
are running in the background, this is not frequently ob-
served from the operating system’s perspective, thus leading
to static memory utilization. For instance, the memory of
objects freed by the GC are never becoming visible to the
0S8, as for a portion of memory to be given back to the OS,
a whole arena should be freed. Therefore, from the OS’s
and system’s perspective, the application is static it terms
of memory requirements. Initially, we observe a spike for
modules and data allocation, which is reserved for the rest
of the execution, although many of the allocated parts are
either tracked or removed by the garbage collector.

To address the aforementioned limitations, which are
critical for CPython applications targeting edge computing
devices, we propose a flow of application-level memory
footprint optimizations integrated into a framework, which
will enable a more dynamic memory management approach,
to enable the efficient utilization of the limited memory
resources of edge devices.

4. Memory Footprint Optimization
Methodology

4.1. Overview

This section presents the systematic methodology for
memory footprint optimizations for embedded Python ap-
plications and the tool-flow that supports the methodology.
The input of the methodology is the source code of the appli-
cation under optimization. An overview of the optimization
techniques is presented in Fig. 3. The methodology consists
of the following steps:

1. Application-Level Analysis: The first step of the
proposed methodology includes the dynamic analysis
of the application using well-established Python pro-
filing tools, such as memory profiler [37], guppy [38],
which enable the identification of the most critical
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Figure 3: Overview of the memory footprint optimization methodology

application data structures in terms of memory re-
quirements. This step identifies the source code func-
tions and data structures, in which the applied refac-
toring and optimizations of the subsequent steps of
the methodology are expected to have an increased
impact.

. Static to Dynamic Memory Management: In this
step, the application source code is refactored, by
converting the most critical data structures in terms
of memory requirements, as identified in the previous
step, from statically declared into dynamic. Appar-
ently, this is a very application-specific step. Automat-
ing the refactoring is very challenging, because algo-
rithmic adaptations may be needed in several cases,
to avoid altering the functionality of the application.
Therefore, its efficient implementation is left to devel-
opers, for now. However, the conversion from static
to dynamic memory management is critical, since (i)
it addresses the static memory management limita-
tions in terms of memory utilization, as explained
in the motivational example of Section 3 and (ii) it
enables further memory optimizations. Expressing a
significant amount of dynamic application behavior in
terms of memory utilization normally enables several
optimization opportunities, which are described in the
next steps of the methodology.

. Architecture-Independent Profiling and Analysis:
After applying the necessary source code refactoring
which creates a version of the application with a
dynamic memory behavior, the application is profiled
again. Object-trace profiling tools, such as the Guppy-
PE [38], enable the collection of object and heap
detailed memory sizing information. The profiling
data generated in this step are fed as input into the sub-
sequent memory optimization steps. Additionally, this
step reveals the effectiveness of the refactoring applied
during the Static to Dynamic Memory Management
step.

. Redundant Data Removal: The profiling analysis
conducted by the previous step is used to identify
parts of code, data, and imported modules that are use-
less for the actual functionality of the application, or
that are duplicated versions of already existing parts.
The former happens in cases of inefficient application
development, while the latter is usually a result of

the object-oriented nature of Python, in which the
interpreter often creates instances of the same object
in function calls. Keeping alive only the actual data
and modules which are necessary for the applica-
tion execution, enables significant gains in terms of
memory footprint. The Redundant Data Removal step
integrates techniques that rely both on static and dy-
namic analysis of the application under optimization.
The implementation of this step in practice often re-
quires extended source code refactoring. In this work,
we fully automated this step. The corresponding tool
which implements this step is described in detail in
Section 4.2.

. Code Hierarchy Reduction: An important factor that

affects the overall memory footprint of Python appli-
cations is the memory overhead added by the inter-
preter for the static memory allocation of modules
at the beginning of each program. Python’s mem-
ory manager, by default, loads statically every single
module used in the application, without taking into
account which functions will be actually executed at
run-time. Therefore, another way to optimize the total
memory footprint of an application is to minimize the
overhead added by these data. In practice, without
modifying Python’s memory manager, moving the
functionality of the actual useful code from a module
inside the application and reducing code hierarchy, re-
duces this overhead. This has to be applied selectively
though, to keep the source code maintainability at a
reasonable level while removing all relevant parts of
the incurred memory footprint overhead. Again, this
involves non-trivial reorganization of the code. There-
fore, we fully automated this step and the correspond-
ing tools we developed and integrated in the proposed
framework are described in detail in Section 4.2 and
Section 4.3.

. Python Integrated Optimizations: Python’s inter-

preter offers several flags and options to optimize the
application execution in terms of required computing
and memory resources. More specifically, we take
advantage of -O flags to remove assert statements and
discard docstrings. By implementing such optimiza-
tions in practice, an optimized Python bytecode is
generated, i.e. a platform-independent low-level im-
plementation of the target application to be executed
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on the Python’s virtual environment. This step is fully
automated, as it is provided directly by the Python
interpreter.

The output of the methodology is the optimized Python
application source code in terms of memory footprint. Steps
2,4 and 5 are expected to have the most significant impact on
the memory footprint reduction. As stated earlier, step 2 is
applied manually, while steps 4 and 5 are supported by novel
tools which are integrated into the proposed framework. A
detailed view of the methodology is shown in Fig. 4.

4.2. Memory Footprint Optimizations based on
Static Analysis

Static memory footprint optimizations refer to a set of
optimizations that are statically executed. Static analysis
optimizations are integrated in Step 4 of the flow, as shown
in Fig. 3. The main goal of the applied static optimizations
is to detect and remove redundant imported modules and
variables that do not contribute to any functionality through-
out the execution of the Python application. Moreover, these
optimizations act as a pre-processing step for the subsequent
dynamic optimizations.

To implement the algorithm, we leverage a set of PyPi’s
projects, namely pyflakes [39] and autoflake [40]. Pyflakes
analyzes programs statically, detects errors and operates
by parsing source files. Autoflake utilizes pyflakes and it
removes unused imports and variables from Python code.
By default, autoflake removes only redundant imports for
modules that are part of the standard library. This is due to
the fact that other modules may have side effects that make
them unsafe to be removed automatically. In our approach,

we significantly extend the functionality of pyflakes and
autoflake, so that we can detect redundant or duplicated
imports and data beyond the standard library, as well as
detect unused functions.
In practice, this is achieved by creating the Abstract
Syntax Tree (AST) of the corresponding application. AST
generates the abstract syntactic structure of the source code,
where every single node denotes a construct. The source
code is parsed once and the AST is generated. Next, all nodes
of the generated AST are traversed. We distinguish three
alternative types of AST nodes, namely (i) Import Nodes,
which refer to AST nodes related to importing modules, (ii)
Variable Nodes which correspond to nodes that refer to ob-
jectinitialization and, finally, (iii) Function Nodes, which are
related to function definitions throughout the source code.
For the former, we detect the number of nodes that depend
on our target import node. If there exist no referenced nodes,
the import node is redundant, i.e. it is not utilized by the rest
of the target application. Therefore, the examined node and
the corresponding source code can be safely removed. With
regard to the variable nodes, each variable is represented as a
Python object in AST. Variable references are utilized either
to load the current, assign a new value, or delete the object.
Initializing a new variable is characterized as a single load
or an assign, depending on the kind of initialization. If no
other references exist to the target object, it is characterized
as redundant and, thus, it can safely get removed from the
source code.

The detection and removal of redundant function nodes
is not straightforward. Existing tools for static analysis do
not support any functionality for deleting unused functions.
Therefore, we extended the functionality of the existing
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Algorithm 1: Memory Footprint Optimizations
Algorithm based on Static Analysis

Algorithm 2: Memory Footprint Optimizations
Algorithm based on Dynamic Analysis

Data: Python Source Code (pythonApplicationFiles)
1 Static-Analysis(pythonApplicationFiles):
2 parsedCode = parseSourceCode(pythonApplicationFiles)
3 AST = createAST(parsedCode) /* Create Abstract Syntax
Tree(AST) */

4 /* Traverse AST */

5 for node in AST do

6 if node is import then

7 if node has no kid nodes then

8 /* Unused import detected */

9 remove(node,pythonApplicationFiles,
10 optimizedCode)
11 else if node is variable object then

12 /* If variable is not referenced for load or assign */
13 if node.loadReferences == 0 &&
node.assignReferences == 0 then
remove(node,

pythonApplicationFiles,optimizedCode)

“ILL

15 else if node is function definition then

16 /* Find AST nodes that reference to the current
node */

17 node.num_of_references = 0

18 for newNode in AST do

19 if newNode.reference == node && newNode

!=node then

20 L node.num_of_references += 1

21 /* If there is no reference to this function from
other objects, remove function */

22 if node.num_of _references == 0 then

23 remove(node,pythonApplicationFiles,

24 L optimizedCode)

25 return optimizedCode

tools for function node removal. Initially, we detect all the
function nodes, by traversing the AST. Next, we traverse
again the AST and monitor all the references to object
attributes or symbol names in the whole AST, which can
be the function’s potential callers. The function nodes that
are not referenced by any other node in the source code,
are marked as unused and, therefore, get removed from
the source code. Self-references are excluded during this
monitoring process, in order to be able to detect and remove
recursive functions. Finally, Python offers dynamic code
modifications and dynamic function definitions. Since the
characterization of these cases as necessary or redundant is
even more challenging, they are not considered during the
static analysis process and their characterization is left as a
future work.

To minimize the overhead of static analysis we pro-
vide in-memory node logging and tracing, thus avoiding
extra disk storage for log files and time-consuming post-
processing. Moreover, in addition to memory footprint re-
duction, removing redundant modules, data and functions
leads to improved source code quality, as it increases code
maintainability. Algorithm 1 demonstrates the core func-
tionality of memory footprint optimizations based on static
analysis.

Data: Python Source Code Files(pythonApplicationFiles)
1 Dynamic-Analysis(pythonApplicationFiles):
2 /* Single Execution */
3 while executeApplication() do
4 /* Trace application throughout the execution */
5 traceFile = traceApplication()
6 /* Generate code hierarchy tree */
7 hierarchyLayers =

generateHierarchy Tree(pythonApplicationFiles)

/* Code Coverage */
coverage = monitorCodeCoverage(traceFile,

pythonApplicationFiles)

e %

10 for code in coverage do

11 if code is in non-executed branch then

12 /¥ Avoid Branch Code Coverage */

13 L continue

14 else

15 /* Remove Dead Code */

16 deleteCode(pythonApplicationFiles,

optimizedCode)

17 /* Hierarchy Reduction */

18 for layer in hierarchyLayers do

19 for node in layer do

20 /* First, check for intra-layer dependencies */

21 if layer has intra-dependencies then

22 for dependentNode in layer do

23 if dependentNode depends on node then

24 /* Resolve intra-layer dependencies
*/

25 transferCode(node, dependentNode,
pythonApplicationFiles,
optimizedCode)

26 for dependentNode in layer-1 do

27 /* Check for inter-layer dependencies with

layer-1 */

28 if dependentNode depends on node then

29 /* Resolve inter-layer dependencies */

30 transferCode(node, dependentNode,

pythonApplicationFiles,
optimizedCode)

31 return optimizedCode

4.3. Memory Footprint Optimizations based on
Dynamic Analysis

This section describes in detail the optimizations enabled
by the dynamic analysis, i.e. by profiling and executing the
corresponding Python application. The optimized source
code generated after applying the static analysis optimiza-
tions to remove redundant modules, variables, and functions
(Section 4.2) is forwarded to the dynamic analysis for fur-
ther optimizations. In particular, the dynamic optimizations
include Redundant Data Removal enabled by dynamic anal-
ysis (Step 4 in Fig. 3) and the reduction of the code hierarchy
(Step 5 in Fig. 3). The pseudocode of Algorithm 2 illustrates
the core functionality of both optimizations, which are ana-
lyzed in the rest of this section.
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4.3.1. Redundant Code Removal

In contrast to static programming languages, such as
C/C++ where memory allocation and deallocation are di-
rectly done at run-time on the corresponding code line, the
Python’s memory manager does not dynamically (de)allocate
the required memory. Explicit memory management usu-
ally leads to higher memory requirements, as a significant
amount of the estimated footprint is pre-allocated statically
by the memory manager. Thus, the existence of redundant
code and data can cause high static memory pre-allocation,
which cannot be directly deallocated by developers.

To further identify parts of the source code which can
be safely considered redundant, we rely on dynamic anal-
ysis results. Throughout the execution of the application
under optimization, we monitor the program execution on
a different thread and trace the sequence of the source
code instructions executed. We generate annotated traversed
source code listings, caller/callee relationships, and list the
functions executed. Moreover, by taking advantage of cover-
age.py project [41], which is a third-party coverage tool, we
extract the code coverage, i.e. the percentage of source code
actually executed for a particular run and the corresponding
source code lines. Existing tools, such as [41, 42] do not
provide code removal features. Instead, they only report the
coverage, as well as a percentage indicating the correspond-
ing reliability. Therefore, we extend their functionality, to
characterize alternative parts of code and provide automated
code removal features. Through our implementation, we
derive a detailed code coverage report and distinguish the
following two cases:

e Dead code coverage: These parts of source code
refer to all the non-executed code apart from the ones
mapped to branch code coverage. As no condition
can allow the execution of these parts of source code,
it is automatically removed by deleting the corre-
sponding source code lines. Interestingly, Python al-
lows for classes to be dynamically modified at run-
time, and evaluate arbitrary Python expressions from
a string-based or compiled-based-code input by using
the eval() function. Although Python’s eval() is a
very useful function, the code generated at runtime
cannot be known a priori, thus these parts of code
should not be removed. However, if the application
input is fully deterministic, then it may be possible
to characterize the corresponding parts of the source
code as redundant, too.

e Branch code coverage: It refers to the non-executed
parts of code placed under branches. As a branch
we consider every line of code that triggers switch-
ing execution to a different instruction sequence as
a result of executing a branch instruction. Branch
code coverage depends on control flow structure and
triggering inputs, with more deeply nested statements
being significantly less likely to be covered [43]. The
most representative cases are if branches, for, and
while loops. Such parts of the code are not considered

Layer N M n

Layer 2

Layer 1

Figure 5: Code hierarchy, inter and intra-dependencies

as redundant, thus they are not automatically removed.
Similarly to the dynamically modified dead code de-
tected in Dead code coverage, such parts of code can
be removed for fully deterministic application inputs,
only.

After the identification and removal of redundant code
through dynamic analysis, the optimized source code is
provided as input to the Code Hierarchy Reduction step.

4.3.2. Code Hierarchy Reduction

An assumption on which the specific optimization relies
on, is that the source code of the imported modules exists
locally; either in the application’s file directories or on
Python’s standard libraries on the device, and it is not stored
as bytecode. In order to apply this optimization in practice,
we generate the code hierarchy graph of all the modules for
all the application layers, during the dynamic analysis. Fig. 5
illustrates a generic graph representation of a multi-layer
code hierarchy. Each node corresponds to a unique module,
while each edge represents a dependency among modules.
For example, in Fig. 5 module 1A depends on module 2A.
Additionally, the same node can exist in alternative layers
of the hierarchy, while there is no limitation on the num-
ber of dependencies that each node can have, i.e. multiple
nodes can depend on multiple nodes. Finally, directly or
indirectly, all imported modules refer to the main module of
the application under optimization. Moreover, Python allows
circular dependencies between modules, where each module
is defined in terms of the other (i.e. module A requires
module B and simultaneously module B requires module A).
In fact, in the majority of cases, circular dependencies occur
due to poor application development and they are often a
cause of memory leaks, infinite import recursions and may
have negative impact on the source code maintainability.
To address these issues, we developed a tool which merges
the corresponding modules in one, while respecting the se-
quence of inter-module function calls and data types access.

In order to retain the application functionality, the tool
respects the dependencies between the modules. We imple-
mented a top-down hierarchy reduction design, starting from
Layer N, where there exist no dependencies from upper

First Author et al.: Preprint submitted to Elsevier

Page 8 of 16



Layer 2

Layer1

Layer 0

Figure 6: Example of 3-layer code hierarchy reduction

layers. We identified two distinct cases for module depen-
dencies, namely intra-layer and inter-layer dependencies.
The former refers to dependencies within the same layer,
while the latter refers to dependencies among alternative
module layers. Initially, we resolve the intra-layer dependen-
cies of Layer N, i.e. the corresponding source codes of the
independent layers are transferred to the dependent layers.
Next, we proceed with the inter-layer dependencies between
Layers N and N — 1, in which, similarly, the source codes
of Layer N is transferred to the corresponding dependent
nodes of Layer N — 1. The Layer N — 1 becomes the
top-level layer of the code hierarchy. The aforementioned
process is repeated, until the procedure reaches Layer O,
where the main module is located, which is responsible for
the application’s execution.

Fig. 6 illustrates a simple example of 3-Layer hierarchy
application. Starting from Layer 2, as there exist no intra-
layer dependencies, the functionality of nodes 2A and 2B,
is transferred to modules 1A and 1B, respectively (Step 1).
Next, the process is continued on Layer 1, where there exists
an intra-layer dependency among the combined nodes 1 A2 A
and 1B2B. Thus the corresponding source code is trans-
ferred to the dependent node, i.e. from 142 A to 1 B2 B (Step
2). Finally, as no intra-layer dependencies exist, the new
node is relocated to the main node in Layer O (Step 3.) and
the code hierarchy is fully reduced, thus the interpretation
overhead due to module allocation is reduced to minimum.
The core functionality of the code hierarchy reduction tool
is summarized in lines 17-30 of Algorithm 2.

Even though code hierarchy reduction is expected to
reduce the memory footprint, trade-offs can be identified
between the source code maintainability and memory foot-
print. The process of hierarchy reduction is executed recur-
sively over the alternative modules and libraries of the target
application and is finalized when the memory footprint is not
reduced more than a user-defined percentage A%, which is
configurable by the user.

5. Experimental Results and Evaluation

5.1. Experimental Setup

The experiments were conducted using the Anaconda
version of Python 3.7 language based on CPython imple-
mentation. We utilize a Raspberry Pi4 Model B, equipped
with Quad core Cortex-A72 (ARM v8)@1.8GHz and 4GB
of DRAM as a state-of-the-art embedded board. Raspberry

Pi4 is one of the most widely used embedded boards over
a wide variety of application domains [44]. Moreover, the
memory management of Python applications, is directly
handled by the Python’s engine, thus the memory gains are
expected to remain the same and are representative for a wide
range of devices, including IoT devices, with even lower
memory capacity.

Concerning the profiling and analysis (step 3 in Fig. 4),
we rely on well-established tools, such as Python’s mem-
ory_profiler [37], which is a pure Python module for mon-
itoring the memory consumption of processes, as well as
line-by-line analysis of memory consumption for Python
programs. For the memory monitoring of a process from the
operating system’s perspective, we use the Linux perf [45],
a profiling tool that provides an abstraction of the underlying
hardware and provides low-level system metrics.

The proposed memory footprint optimization framework
is extensively evaluated based on the following applications
and benchmarks:

e A set of benchmarks from the pyperformance [46]
suite. The specific benchmark suite collects real-world
Python applications relevant to all Python implemen-
tations. The input of each selected pyperformance
benchmark is the default (i.e. the one that the suite
provides).

e A real-world Convolutional Neural Network(CNN)
application, consisting of multiple convolution and
activation layers for digit recognition, derived by [47].
As input, we provide the MNIST dataset [48], which
consists of images of digits ranging from 0 to 9,
represented as a matrix of shape 28x28x1.

e A real-world machine learning-enabled IoT biomed-
ical application which is executed on a wearable
device. In particular, the application provides activity
prediction of patients, given as input sensor coordi-
nates (X, y, z) placed on the patient’s chest and a set of
features per patient. The possible classification states
are: lying (1), sedentary (2), dynamic (3), walking (4),
running (5), and biking (6). The application uses a
pre-trained Python auto-regressive model to provide
predictions and the classifier used is the Random
Forest (RF). RF [49] is an ensemble machine learning
method that is often used for classification. Multiple
decision trees are constructed, each of which predicts
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Figure 7: Memory footprint optimization for Pyperformance
Benchmark Suite

according to the given input. The final prediction is
based on majority voting classification of the indi-
vidual trees. The RF classifier is implemented using
the scikit-learn software library. We used a data-set
consisting of 197,633 coordinates, which are split into
data blocks of 128 coordinates each one, thus gen-
erating 1544 patients data points and 15 features per
patient. The data blocks are independent (i.e. there are
no data dependencies between them). Therefore, the
output of the application is 1544 activity predictions,
which are produced sequentially. We used 20 estima-
tors (i.e. trees), without any limitations in terms of tree
depth. All these parameter settings were derived from
the real-life application provided by IMEC [50].

Experiments showed that the minimum possible mem-
ory footprint required for an empty Python application is
24MB. This size corresponds to a set of 96 arenas of 256KB,
which are allocated at the initialization of every application,
in order for the interpreter to operate efficiently, and are
never deallocated until the end of the execution. Therefore,
this threshold is used as a baseline for our experiments.

5.2. Pyperformance suite & CNN Application
Memory footprint optimization evaluation: Figure 7
illustrates the memory footprint optimization results before
and after applying the proposed framework on each ap-
plication of the pyperformance benchmark suite. X axis
denotes each benchmark, while Y axis denotes the max-
imum memory footprint of the application in MB. The
results show that the average memory footprint reduction
is 34.6%. The benchmark with the highest memory foot-
print reduction is Sympy. SymPy [51] is a Python library
for symbolic mathematics. Detailed analysis of the specific
benchmark shows that the Sympy library allocates a large
amount of redundant data, while in practice it utilizes only
a small amount of them. Furthermore, Sympy is known to
behave insufficiently when the user requests the handling
of very long expressions [51]. The reduction of code hi-
erarchy and the removal of useless data/code resolves the
aforementioned issues, reaching a memory footprint op-
timization of 84.5%. Furthermore, from Figure 7 we ob-
serve that the benchmarks Django_template, Tornado_http,
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Figure 8: Execution time optimization for Pyperformance
Benchmark Suite
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Figure 9: Experimental evaluation of memory footprint and
execution latency optimizations on Convolutional Neural Net-
work(NN) application over MNIST dataset.

Sqlalchemy_declarative and Sqlalchemy_imperative show
the smallest optimization in terms of memory footprint. In
order to operate efficiently, all four of these require a large set
of input data that need to be processed at runtime. Although
such a dataset was not available in the pyperformance suite
during the evaluation of the framework, we can safely as-
sume that a larger input dataset will lead to increase memory
footprint reduction.

Impact on execution time: Figure 8 shows the exe-
cution time of each pyperformance benchmark before and
after applying the memory optimization framework. The
Y axis represents the execution time of the corresponding
benchmark in seconds. Interestingly, the memory footprint
optimizations result in execution time reduction, by 33.1%
on average. We assume that the main reason is that removing
redundant modules and reducing the code hierarchy simpli-
fies the application data flow, having a significant positive
impact on the execution time.

CNN application evaluation: Moreover, our experi-
ments are also conducted on the CNN application over the
MNIST dataset for embedded systems. Figure 9 illustrates
the memory footprint and execution time optimizations,
showing an improvement of 27MB, which corresponds to
49.1% decrease, having 24MB as baseline, as illustrated
in Figure 9a. Regarding the execution latency experiments,
Figure 9b presents the execution latency of the inference
throughout the execution and we observe a speedup of 1.3x.

Heap memory management utilization analysis: For
a more thorough analysis, we monitored the impact of the
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Benchmark Initial Average Num. of Arenas|Optimized Average Num. of Arenas |Initial Average Num. of Pools| Optimized Average Num. of Pools

Chameleon 155 137 623 512
Chaos 120 113 492 441
Crypto_pyaes 127 125 516 489
Django_template 168 161 673 636
Fannkuch 120 104 487 403
Float 121 113 488 421
Mako 144 114 587 459
Meteor_contest 124 119 503 477
N-body 126 116 511 467
Nqueens 122 117 495 469
Pathlib 140 118 563 470
Raytrace 120 112 485 448
Regex_compile 141 120 571 469
Regex_eftbot 122 119 493 477
Regex_v8 135 132 544 523
Richards 122 117 491 469
Spectral Norm 121 116 485 449
Sqlalchemy_declarative 174 170 694 669
Sqlalchemy_imperative 172 169 686 677
Sympy 288 125 1139 465
Tornado_http 234 200 936 772

Average 147.3 129.5 (-9.6%) 589.1 518.2 (-12.07%)

Table 3: Python arenas and pools optimization for Pyperformance Benchmark Suite
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Figure 10: Experimental evaluation of memory footprint optimizations on loT biomedical application

optimizations on CPython’s internal heap memory manage-
ment. Table 3 illustrates the average number of allocated
arenas and pools throughout the execution of each bench-
mark before and after the implementation of the framework.
The experiments were conducted with a 256KB arena size.
The pool size is set to 4KB, in order to be equal to the
operating system’s page size, aiming to reduce fragmen-
tation; thus saving memory space. By applying the pro-
posed framework, the average number of active arenas is
reduced by 9.6% on average. Similarly, the average number
of active memory pools is reduced by 12.07% on average.
The application-level memory footprint optimizations lead
to optimized results in terms of pool and arenas utilization.
Also, by exploiting the dynamic memory aspects of an appli-
cation, more pools are reduced throughout the execution, in
contrast to static memory management, where pools cannot
be frequently deallocated. Moreover, though the Useless
Data Removal step, small-sized objects and variables are
removed, thus leading to fewer allocations of small-sized
memory blocks.

5.3. IoT biomedical application and use-case
demonstration

The memory optimization methodology is evaluated on
a real-world biomedical application, which is based on an
RF classifier. We present a use-case demonstration of each
framework’s step, aiming to provide a simple example of
how our approach is applied in practice and the impact of
each step, respectively. Figure 10 shows detailed memory
optimization results (Figure 10a, as well as their corre-
sponding impact on the execution time (Figure 10b). This
detailed presentation of results allows the evaluation of the
contribution of each step to the overall memory footprint and
execution time reduction. The initial application memory
footprint is measured at 258 MB, all statically allocated
at the beginning of the execution. The execution time of
the original version of the application for the specific in-
put dataset is 1404.1s. A detailed analysis of the overall
memory footprint requirements showed that the majority
of allocated memory is used by imported modules. More
specifically, 185MB were assigned to the imported libraries,
while 69.1MB were allocated to store the input data and
prediction models.
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5.3.1. Demonstration and impact of static to dynamic
memory management

After the application-level analysis (step 1), we imple-
mented Step 2 of the methodology, to convert the most
critical application data structures from static to dynamic
and enable dynamic memory allocation and deallocation.
Figures 11, 12 illustrate the comparison of the two ap-
proaches using a high-level application data-flow. As ex-
plained in Section 4, this step is manually implemented,
as it requires an understanding of the application algorithm
to avoid altering the application functionality. Originally,
the prediction phase of the random forest algorithm was
implemented statically, as follows: As soon as the data point
is ready, it is fed to all the trees of the forest and then the
output of each tree is gathered to perform the prediction, as
shown in Figure 11. However, if the prediction is executed
sequentially, then only the information of a single tree is
required to be allocated in the memory at each point of the
prediction phase. Thus, possible performance can be traded
for storage requirements, respecting the functionality and the
accuracy of the algorithm. The RF classifier contains 20
prediction trees of 2.3MB each. Moreover, 18MB is used
to store classifier metadata. Furthermore, in practice, not
all classifier’s information is required simultaneously. The
required functionality and the necessary data can be pro-
vided to the algorithm dynamically when needed, only [11].
In other words, the dynamic loading of trees enables the
dynamic allocation of memory required for the input data
to each tree. More specifically, in the initial implementation,
the test set and features memory size is 5.1MB. However, the
transformation allowed the test to be split into 128 chunks of
0.41MB each, further reducing the RAM size requirements.
Listing 1 shows a code snippet of how the source code
is structured before(top) and after our transformation is
applied(bottom). The modified version of the application is
illustrated in Figure 12. This static-to-dynamic conversion
reduced the overall memory footprint by 19.3% compared to
the initial memory size, which corresponds to 50 MB, while
enabling and increasing the impact of the optimizations of
step 4 and step 5. Additionally, the execution time is reduced
by 8.3%.

5.3.2. Demonstration and impact of static and
dynamic analysis

The redundant data removal and code hierarchy reduc-
tion steps had also a significant impact on the memory size
optimization of the application. Even though we propose a
unified methodology, the automated proposed approach can
operate independently to the non-automated steps. As we ob-
serve in Figure 10a, the optimizations based on static analy-
sis reduced the memory requirements and the execution time
by 34MB and 323.2s, respectively. The optimizations based
on dynamic analysis reduced the required memory size by
56MB and the execution time by 273s. Aiming to provide
further insights on the impact of the static and dynamic-
based optimizations, we investigate how our application is
transformed and what is the impact of each step, respectively.

5.1 MB

A
i \

197,633 Sensor Coordinates Input & 15 ‘

Features per Patient (5.1 MB)

r Static Memory
Allocation

Tree O Static 1 H
Treel Memory !

Allocation i
—
\

46 MB
L

Static Memory
Allocation

Tree 19

Pre-Trained Classifier
(18MB)

Scikit Library

Figure 11: Initial static memory implementation of the loT
biomedical application.
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Figure 12: Dynamic memory implementation of the loT
biomedical application, after applying the optimization
methodology.

Listing 2 depicts a code snippet of the redundant data re-
moval. In this example, the function estimateECGFearutres()
is never called through the source code, thus represented in
the AST as leaf and is removed statically. On the other side,
the if statement is input-dependent, thus cannot be removed
statically, therefore is removed on dynamic analysis. Last
but not least, the part of the code after the return function,
which is outside the branch, can be removed only through
dynamic analysis. This leads to fewer instructions invoked
by the interpreter, while it resolves data dependencies for
later steps.

As far as the code hierarchy reduction is concerned, this
is implemented automatically through our framework. The
application’s version fed as input in this step is executed by
importing 17 Python modules. Through redundant module
removal, 23MB of memory is freed. Only the functionality
of the utilized functions is moved to the main module, thus
maintaining active only the necessary data. This leads to
both less memory footprint and gains in execution time. List-
ing 3 illustrates a representative example of code hierarchy
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reduction. For instance, the estimateAR() function is the only
one utilized from the AR module, thus its functionality is
transferred to the main module, while the rest of the AR is
fully removed.

Furthermore, by exploiting the automated optimizations
that Python’s interpreter offers (step 6), the overall memory
footprint reached 92.8MB. Compared to the original version
of the application, the memory footprint reduction reached
64% (Figure 10a), while the execution time was reduced by
51.8%, as shown in Figure 10b. The execution time reduction
is highly correlated to the memory footprint, due to the
following reasons: i) the number of lines of code is signifi-
cantly reduced, thus the interpreter’s overhead and execution
overhead is reduced, ii) the number of accesses to the main
memory is reduced, thus CPU stalls are also reduced, iii)
non-required memory allocations/deallocations and imports
are avoided and iv) data and can fit within the cache, leading
to more cache hits and faster execution times. Last but not
least, Figure 13 illustrates the comparison of the initial and
final memory utilization of IoT biomedical application. We
observe that through our approach, the dynamic nature of the
examined application can be exploited, thus leading to more
effective utilization of memory. For low-resource devices,
this dynamic behavior is critical for the efficient execution
of an application.

5.4. Discussion

As shown in the above experiments, the proposed frame-
work enables significant memory footprint optimizations,
which also have a positive impact on execution time. For
example, as can be noticed by Table 1 and Fig. 10a, the initial
version [oT biomedical application could not be deployed
on a Giant Board, on an Intel Galileo, or on a BeagleBone
Black. However, after applying the proposed framework,
the optimized version requires significantly less amount of
resources and can be successfully executed.

# Static data load and processing

acc_data = pd.read_csv(acc_file) # Static load of data
classifier = open(”all_trees.pckl”) # Static load of RF trees
num_blocks = len(datal'ACC'])/(4%32)

for i in range(num_blocks-1): # Feed blocks to trees

. # Processing

# Dynamic data load and processing
for gm_chunk in pd.read_csv(acc_file, chunksize=128,
iterator=True): # Load data on chunks of 128 elements
for i in range(9,20):
# Load tree one by one
pickle_in = open("tree"+str(i)+".pckl”, "rb")
. # Processing

Listing 1: Code comparison before (top) and after (bottom)
applying static to dynamic memory transformations step on
IoT biomedical application

def estimateACCFeatures():

# Removed at static analysis as it is never called
def-estimateECGFeatures():

class AR:
def __init__(self, model_path, sensor_position,
clf_method):

# Removed at dynamic analysis as its execution is
input dependent

if sensor_position == 'chest':
return
# Rest of code removed at dynamic analysis as its
execution depends on 'return' function trigger

Listing 2: Redundant code removal code snippet

To further investigate the impact of the proposed mem-
ory optimizations on other metrics, we monitored the en-
ergy consumption of the pyperformance benchmark and
the IoT biomedical application, before and after applying
the optimizations. The applications were deployed on an
Nvidia Tegra X1 embedded device with 4 ARM Cortex-
A57 processors running at 1.9 GHz and 4 GB RAM. The
energy was measured by integrated power sensors plugged
into the device. Figure 14 illustrates the energy gain percent-
age of the optimized pyperformance benchmarks, compared
to the initial implementation. We observe that the energy
consumption follows the behaviour of memory and perfor-
mance optimizations [52], leading up to 55.1% less energy
consumption and 19.3% on average. Similar experiments
were conducted for the IoT biomedical application, showing
47.3% lower energy consumption.

Furthermore, an interesting question is to which extent
the optimized Python implementation can compare to the
corresponding C implementation in terms of execution time
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# Initial code hierarchy
. # Other imports
from AR import * # AR is initially imported

# Only estimateAR() is utilized from AR
current_ar = estimateAR(acc_data)

# Reduced hierarchy

. # Other imports
# Only estimateAR() functionality is moved to main module
def estimateAR(self, df):

current_ar = estimateAR(acc_data)

Listing 3: Code comparison before (top) and after (bottom)
applying code hierarchy reduction

and memory requirements. Therefore, the optimized version
of the IoT application (i.e. the optimized Python source
code after applying the proposed framework) was developed
from scratch in C language. Both the Python and the C
implementation of the IoT application were executed on an
Nvidia Tegra X1. Table 4 summarizes the results of the
comparison between Python and C implementation, using
the same application input.

Regarding the execution time, the C implementation is
1.5x times faster, compared to the Python implementation.
This is due to the fact that C is a compiler-based language,
thus no code translation is required at run-time, and code
optimizations can be applied by the compiler and further
optimize the program using static information about types
and memory layout of objects. In contrast to Python, which
is an interpreter-based language, C avoids the run-time over-
head of the interpreter and optimizations prior to execution
cannot be achieved. This is a commonly observed behavior,
as the identified overheads account for 64.9% of the overall
execution time, while the remaining 35.1% is used for the
execution of the program [19]. Therefore, there is at least
2.8x increase in execution time on average moving from a
C-like program to a Python program running on CPython
due to language and interpreter overheads. This observation
is inline with corresponding results reported in the existing
literature [30].

Additionally, we measured the number of total memory
accesses of the corresponding applications by utilizing the
Linux perf tool. More specifically, we monitored the per-
formance counters of the processor throughout the execu-
tion of C and Python execution, respectively. We observe
that Python requires an order of magnitude more memory
accesses compared to the C implementation (23.8% more
accesses). The underlying layers that CPython contains,
induce a significant overhead for read and write accesses of
the executed application.

Although the memory requirements of the Python im-
plementation are higher and performance is lower than in C,
it is friendlier to application developers. Indeed, as shown
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Figure 14: Energy consumption reduction percentage(%) for
Pyperformance Benchmark Suite.

Python Implementation | C Implementation
Memory Footprint 92.8 MB 2.9 MB
Total Memory Accesses 31.4x10° 74.9x10°
Execution Time 677.25 sec 451.3 sec
Lines of Code (LoC) Ix 3.4x

Table 4: Python and C code comparison

in Table 4 the C implementation of the IoT application
requires 3.4x less LoC than the corresponding Python im-
plementation. The fact that Python provides a variety of
libraries and software abstractions makes it suitable for fast
code development and contributes to its increased popularity
in the embedded and HPC communities. The abstractions
offered by Python can significantly contribute to highly
maintainable source code, which is a critical feature for ap-
plications under development and for commercial software
products. Even though it is probably not possible to achieve
the same memory and execution time with corresponding
C implementations, it is still important to reduce Python
overheads as much as possible in an automated way, to allow
developers to exploit Python’s user-friendliness features in
edge devices of limited resources.

6. Conclusion

In this work, we described a methodology supported
by a tool flow for the memory optimization of Python
applications targeting devices with limited computational
resources at the edges of IoT networks. The methodology
is enabled by dynamic memory management techniques
and relies on two novel tools which automate the removal
of redundant data and the reduction of the code hierarchy
of Python applications. Although the optimizations focus
on memory footprint reduction, we show that they have
a significant positive impact on other metrics, including
application execution time and energy consumption, which
are also critical in the area of edge computing development.
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