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Abstract—Recent years have seen a phenomenal rise in per-
formance and applications of transformer neural networks. The
family of transformer networks, including Bidirectional Encoder
Representations from Transformer (BERT), Generative Pre-
trained Transformer (GPT) and Vision Transformer (ViT), have
shown their effectiveness across Natural Language Processing
(NLP) and Computer Vision (CV) domains. Transformer-based
networks such as ChatGPT have impacted the lives of com-
mon men. However, the quest for high predictive performance
has led to an exponential increase in transformers’ memory
and compute footprint. Researchers have proposed techniques
to optimize transformer inference at all levels of abstraction.
This paper presents a comprehensive survey of techniques
for optimizing the inference phase of transformer networks.
We survey techniques such as knowledge distillation, pruning,
quantization, neural architecture search and lightweight network
design at the algorithmic level. We further review hardware-
level optimization techniques and the design of novel hardware
accelerators for transformers. We summarize the quantitative
results on the number of parameters/FLOPs and accuracy of
several models/techniques to showcase the tradeoff exercised by
them. We also outline future directions in this rapidly evolving
field of research. We believe that this survey will educate both
novice and seasoned researchers and also spark a plethora of
research efforts in this field.

Index Terms—Transformers, Self-attention, BERT, GPT, Vi-
sion Transformers, Hardware Acceleration, Pruning, Quantiza-
tion, Neural Architecture Search, Knowledge Distillation, ASIC,
FPGA, GPU, CPU

I. INTRODUCTION

Artificial intelligence (AI) has achieved tremendous success
in a wide range of applications due to its automatic rep-
resentation capability. The global Al market was valued at
USD 136B in 2022 and is expected to reach USD 1,591B by
2030 [1]. The availability of large datasets, efficient network
design and hardware architecture optimization have driven this
progress. The advancements in architectural design and the
development of innovative topologies such as convolutional
neural networks (CNNs), recurrent neural networks (RNNSs),
graph neural networks, and transformers [2] have pushed its
applications into interdisciplinary domains.

By virtue of modeling long-range dependencies, transform-
ers [2] have achieved state-of-the-art performance on various
Natural Language Processing (NLP) and Computer Vision

*Equal Contribution

(CV) tasks. The field of NLP has advanced significantly due
to the emergence of large-scale Pretrained Language Models,
which include Bidirectional Encoder Representations from
Transformer (BERT) and Generative Pre-trained Transformer
(GPT). These models have improved the efficiency of NLP
tasks and also enabled new applications, including ChatGPT
[3l], BARD [4]] and content generation. In fact, researchers have
recently used Large Language Models (LLMs) [3]] to identify
potential COVID-19 variants of concerns. Similarly, vision-
transformer (ViT) [6], and subsequent models have shown
remarkable effectiveness on computer vision tasks such as
the image classification [7] and object detection [8]], and have
outperformed CNNs.

The enhancement in predictive performance and scope of
application has come at the cost of a steep increase in memory
and computation overheads. Figure [I] illustrates the number
of parameters for state-of-the-art (SOTA) language models.
Clearly, SOTA models have up to 1.2 trillion parameters! The
sizes will increase even further as more powerful hardware
platforms are developed. ChatGPT inference consumes 500ml
water for a simple conversation of nearly 50 questions and
answers [9]. Also, recent work has shown that vision trans-
formers can be scaled up to 22 billion model parameters [10].

These factors call for efficient model compression tech-
niques and hardware acceleration methods to facilitate the de-
ployment and usage of such large models in practical settings.
Additionally, given the high computational cost associated
with training and fine-tuning large models, there is a growing
demand for more robust and scalable computing infrastructure.

These challenges have motivated researchers to propose
techniques for reducing transformers’ size, latency and energy
consumption for efficient inference for a wide range of appli-
cations. The methods include pruning [40, 41]], Quantization
[42-44], Knowledge Distillation [45] and Neural Architec-
ture Search [46]. These methods allow better scalability and
environment-friendliness. Orthogonal to advances in model
compression, the design of hardware architecture tailored for
transformers is a promising solution to overcome the compu-
tational limitations of the transformer models. This involves
identifying the computational bottlenecks in the transformer
model, such as the self-attention operator and fully connected
network, and developing hardware architectures that can ac-
celerate these modules. This can be accomplished through
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Fig. 1. Model size of SOTA large language models (Sparrow [11]], Chinchilla [12], HyperCLOVA [13]], Galactica [14], GLM [15], LaMDA [16], FLAN [17],
GPT-3.5 (ChatGPT) [18], GPT-4 [18]], WebGPT [19], GPT-3 [18], OPT-IML [20], InstructGPT [21], OPT-175B [22], BlenderBot 3 [23], BLOOMZ [24],
Jurassic [25], CPM-2 [26], Yuan [27], ERNIE [28]], Gopher [29], MT-NLG [30], Med-PaLM [31], PaLM [32]], Minerva [33]], U-PaLM [34], Flan-PaLM [35]],

GShard [36], PanGu [37], MoE-Fairseq [38], GLaM [39])

efficient mapping of transformer models on FPGAs and ASICs
and through optimization techniques such as parallelization,
pipelining and avoiding redundant/ineffectual computations.

Scope and outline of this paper: In this paper, we survey
several optimization methods for efficient inference of trans-
former architectures and their family of architectures, such as
BERT, GPT, and ViT. We discuss the challenges, advances and
future opportunities in this ever-growing space of transformer
research, whose goal is to reduce inference time, minimize
memory requirements, and enhance hardware performance. To
provide a comprehensive synopsis of key advances, we limit
our discussion to inference-related optimizations and, thus,
exclude training-related techniques. We also forecast possible
future directions in this fast-evolving field of research. The
following list summarizes different dimensions of transformer
optimization/compression/acceleration methods and provides
high-level definitions and the paper organization:

1. In Section |lI} we provide a background on the fundamen-
tals of the transformer model, including embedding, general
attention and multi-headed attention (MHA). We also discuss
the networks used in NLP and computer vision domains, such
as BERT, GPT and vision transformer.

2. Section [III] presents several motivating factors and chal-
lenges for optimizing transformer models. The motivating
factors include increasing model size and the need for im-
proved performance. The challenges include the availability
of computing resources and transformer-specific data/weight
distribution.

3. Knowledge Distillation (KD) is a model compression
technique where a relatively small student model is trained to
mimic the behavior of a large pre-trained teacher network. For
example, using KD, DistilBERT [47] compresses the BERT-
base model by 40% while retaining 97% of its language
capabilities. In Section we first present an overview of
distillation methods and distillation loss functions and then

summarize KD techniques for transformers.

4. The transformer models are often large and heavily over-
parameterized [48]. Pruning refers to the process of identifying
and removing redundant or unimportant parameters in such
a way that the predictive performance is minimally affected.
For instance, oBERT [49] compresses the BERT model and
attains 10x inference speedup on Intel CPU with less than
1% accuracy drop. In Section [V| we first provide a taxonomy
of pruning schemes and then review pruning techniques orga-
nized along several categories, such as weight, node, neuron,
filter, head, and token pruning. We also review post-training
pruning techniques and hardware-aware pruning techniques.

5. During the training process, the weights and activations
are generally stored in 32-bit floating-point precision. How-
ever, the inference can be performed at a lower precision,
such as an 8-bit integer. Quantization reduces their preci-
sion/bitwidth to 16-bit, 8-bit or even 1-bit. Thus, while pruning
reduces the number of parameters, quantization reduces the
storage precision of each parameter. For example, Q8BERT
[50] quantizes the weights and activations of the BERT model
from 32-bit precision to 8 bits, thereby achieving model size
reduction by 4x without compromising accuracy. In Section
VI, we present a comprehensive discussion on quantization
procedures, the taxonomy of transformer quantization, and
binarization methods, followed by summarizing prominent
transformer, BERT and ViT-centric low-precision acceleration
methods.

6. MHA operation has quadratic time complexity, and
hence, it is the crucial performance bottleneck in a transformer.
Several methods have been proposed to simplify this opera-
tion. MobileViT [51]] is an example of such lightweight ViT,
which attains six percentage points better accuracy than the
DeiT model [52], with 3.4M fewer parameters. Section
summarizes such efficient and lightweight architectural design
methods for NLP and vision applications. We further analyze
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the accuracy vs. parameter counts of several tiny ViT models.

7. Neural Architecture Search (NAS) is a process of au-
tomating the design process of a neural architecture for the
given application and dataset. Hardware-aware NAS (HW-
NAS) searches for a network with the highest possible ac-
curacy on a dataset and compute-performance on a target
hardware. For instance, Hardware-aware Transformers (HAT)
[S3] developed a methodology to search transformer models
which have better validation metrics than original transformer
[2]] while having lower latency on CPU, GPU and mobile
platforms. In Section [VIII] we first present an overview of
general NAS methods, followed by classifying the transformer
NAS and HW-NAS methods based on search space, and search
technique. We then review the use of search methods for model
compression.

8. The high computational demands of transformers calls for
hardware optimization techniques and designs of novel hard-
ware accelerators. For example, a hardware-unaware pruning
technique may compress a model to 0.2x the original size.
Yet, such a model is unlikely to provide a 5x reduction in
latency, memory accesses or energy on conventional com-
puting systems. In fact, due to its random sparsity patterns,
such a pruned model may forgo vectorization and tiling and
hence, incur higher latency than the uncompressed model.
Similarly, while approximate computing requires fewer opera-
tions than exact computation, the former incurs higher latency
on a GPU [54]]. Evidently, there is a need to synergistically
design the processing system and transformer to obtain optimal
performance in both worlds. For example, novel dataflows can
expose reuse opportunities and structured pruning techniques
can lead to hardware-friendly memory accesses Section
reviews hardware-level techniques for compute- and memory-
optimization.

Contributions: The three main contributions of this paper
are as follows:

1. Comprehensive overview: We provide a high-level
overview of the SOTA enhancement techniques for trans-
former inference, covering various network and hardware
optimization strategies. To make the survey self-contained and
thus useful for both beginners and seasoned researchers, we
include the essential background on transformer architecture
and transformer-based models. Our goal is to help readers
understand the wide landscape of optimization strategies along
with their challenges and limitations. Our paper is useful for
both neural network enthusiasts and hardware practitioners.

2. Taxonomy and tradeoffs : We provide a taxonomy of
methods for optimized transformer inference based on several
key factors, including the type of optimization technique,
granularity within the transformer model, type of transformer
architecture and domain. The categorization helps readers with
a clear and organized framework for understanding different
approaches and allows them to easily identify and compare dif-
ferent optimization techniques and understand each approach’s
strengths and weaknesses. We discuss the practical considera-
tions for each optimization technique, such as the tradeoffs
between accuracy and efficiency. In addition to qualitative
insights, we also present quantitative results on the number
of parameters/FLOPs and the accuracy of several optimization
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Fig. 2. Transformer architecture [2]

techniques. This provides insights into the tradeoff exercised
by those techniques.

3. Future directions: Finally, we identify the gaps in cur-
rent literature and promising future research directions, such as
developing more efficient hardware architectures, investigating
the benefits of co-design, combining different optimization
techniques and the need for novel benchmarks. Overall, this
paper will be a valuable resource for the research community
and industry practitioners seeking to optimize transformer
inference efficiency for real-world deployment.

In this paper, we use “predictive performance” to refer to
metrics such as accuracy and compute performance to refer
to latency/energy/power metrics. Unless mentioned otherwise,
performance refers to predictive performance. We use ViT to
refer to the vision transformer proposed by Dosovitskiy et al.
[6]. We use “CV transformer” and “NLP transformer” to refer
to the broad family of transformers in CV and NLP areas,
respectively.

II. BACKGROUND ON TRANSFORMER NETWORKS

The transformer model [2] learns global dependencies in the
input through attention mechanism in a pairwise correlation
manner. The model, depicted in Figure [2] has N identical
encoder and decoder modules. The primitive modules in these
two units are Input and Output Embedding, Positional Em-
bedding, MHA and Pointwise Feed-Forward Network (FFN).
In this paper, the vanilla transformer refers to the transformer
model with both encoder and decoder units.

A. Basic Modules

1) Embedding Layer: The embedding layer translates the
tokens into a sequence of dense vector representation, which



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

A

1

1

1

1

1

1

i

1

e h
| [ Scaled Dot-Product Attention
1

1

1

1

1

1

1

\

! T
[ Linear/FC l]J [ Linear/FC [ Linear/FC

N v v

__________________________

(b) Multi-Head
Self-Attention

N \
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
\ [

(a) Scaled Dot-product
Attention

Fig. 3. Attention mechanism in transformers

are fed to the attention mechanism.

2) Positional Embedding: Since transformers lack recur-
rence or convolution operations, they need a mechanism to
remember the relative positional information of the words in
the input sequence [55]. The positional information is induced
using sin and cosine functions at even and odd positions,
respectively, in the input sequence.

3) Self-Attention: Transformer architectures rely on the
self-attention mechanism, which exhibits better model par-
allelism compared to recurrent layers and require minimal
inductive bias compared to a convolution network. This mech-
anism enables the model to focus on different parts of the
input sequence dynamically, establishes pairwise correlation
and models long-range dependencies between the elements of
the input data sequence. In self-attention, the model calculates
the attention weights for each position in the sequence, which
reflects the importance of each position with others. This
allows the model to attend to different parts of the sequence
depending on the input. The input of the attention module is
fed to three distinct fully-connected (FC) layers, which are
learned during training, to produce Query (Q), Key (K), and
Value (V) tensors. The scaled dot-product attention (A), as
given in Equation [I] represents the influence of each word in
Query with respect to other words in the Key matrix.

KT
A = softmax ( \/E) Q)
The Query and Key are multiplied in an element-by-element
manner to produce a score matrix, which is divided by v/Dy,
the square root of output dimensions of the Key matrix to
alleviate the gradient vanishing problem. The softmax function
boosts high score values and dampens lower score values. The
attention score is finally obtained by multiplying the attention
and value matrix, as given in Equation 2} The schematic of

self-attention is depicted in Figure [3(a).

Attention (Q, K, V) = AV )

4) Multi-Head Self-Attention (MHA): The MHA module
includes several “heads”, each of which concurrently computes
attention operations. As depicted in Figure [3[b), the input to
the MHA module is replicated across all the heads. The input
(X) to a head (head;) is processed across three FC layers (W<,
Wi WVi) to obtain one set of Query (Q;), Key (K;), and
Value (V;) vectors on each head, as per Equation

0, = XW% K; = XWKi v, = XxwV 3)

The output (Z;) of each head is computed using Q;, K;,
and V; vectors through the self-attention mechanism, as per
Equation []

head; = Self-attention(Q,, K;, V;), i = 1,2,.h @)

The independent outputs from all the heads {head;, heads,
... head; } are concatenated depthwise and linearly transformed
using an FC layer, as per Equation [3] to produce the output of
MHA module.

MHA(Q, K, V) = [heady; ...heady,] * wO° (5)

5) Pointwise Feed Forward Network (FFN): FEN or multi-
layer perceptron (MLP) unit is a series of two fully connected
(FC) layers with ReLU [56] or GELU [57] activation func-
tion. FFN learns position-specific information with respect
to different sets of input sequences. The output of MHA is
fed to pointwise FFNs, which is further processed using a
normalization (Norm) operation.

B. Encoder and Decoder

The vanilla transformer proposed by Vaswani et al. [2]] con-
sists of encoder and decoder modules. The encoder processes
the input sequence to generate a fixed-length representation,
which contains the essential details of the input data. The
decoder utilizes the context of the encoder and the attention
mechanism to generate an output sequence. This is used for
sequence-to-sequence tasks such as machine translation.

1) Encoder: The encoder and decoder modules are built by
stacking identical layers, each with two sub-layers: MHA and
FFN, as shown in Figure 2| The input to the first MHA module
is the positional embedding and that to subsequent modules is
the output of the previous layer. The output tensor of MHA is
processed further through a Normalization layer [S8] and fed
to the FFN block to enhance the expressiveness of the input
sequence. The output vector of the FFN unit is added to the
output of MHA using a residual connection and normalized
to generate the encoder output.

2) Decoder: The decoder follows a similar structure to the
encoder and is built using an identical stack of three sub-
layers. The first sub-layer is a masked MHA unit. Its operation
is equivalent to MHA, except that the future positions in the
sequence are masked as they are yet to be predicted by the net-
work. The second sub-layer is a multi-headed cross-attention
unit, where the output of the encoder is mixed with the output
of the first sub-layer (masked MHA). This cross-attention
scheme utilizes the previously generated sequence from the
encoder and focuses on essential information in the sequence.
The third sub-layer is an FFN, which learns position-specific
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Fig. 4. (a) BERT and (b) GPT architectures

information of the processed sequence, followed by an FC
layer.

C. Family of Transformer Architectures

Several transformer-based large models have been recently
developed. The most prominent ones are BERT [59] and GPT
[60] models. These models learn universal language represen-
tation from a large unlabeled dataset and distil the knowledge
to a downstream application on the labeled data. The pre-
trained BERT or GPT is fine-tuned on a specific downstream
application. NLP tasks can be divided into two categories: (1)
Discriminative tasks summarize an input sequence or classify
a sentence. The BERT model is widely used for these kinds
of tasks. (2) Generative tasks use a GPT model to summarize
the input sequence and generate new tokens.

1) BERT: The early language models were designed to
process text data sequentially in a unidirectional manner:
from right to left or from left to right. By contrast, BERT
predicts the missing data based on both the previous words
and the following words in the input sequence; hence, the
name bidirectional. The BERT model consists of only the
encoder module of the original transformer. It masks 15% of
the words in input sequence data, as shown in Figure fa).
The hyperparameters of the BERT model are (1) the number
of encoder layers (L), (2) hidden size (H), and (3) the number
of attention heads (h). The BERT-base and BERT-large have
the following hyperparameters: {L = 12, H = 768, h = 12},
and {L = 24, H = 1024, h = 16}, respectively.

2) GPT: GPTs [60, 61] are large language models (LLMs),
which are pretrained in an unsupervised manner on diverse
text data to perform predictive tasks. GPT retains only the
decoder containing positional encoding, masked MHA, FFN,
and normalization operation, as illustrated in Figure Ekb). The
variants of GPT include GPT-1, GPT-2, GPT-3 [18], etc. The
GPT model is used in various real-world applications, such as
ChatGPT [3].

D. Vision Transformer

The vision transformer ViT [6] has opened up a new
area of research, focusing on using self-attention modules

for computer vision tasks. Vision transformer models have
many advantages over CNNs such as large receptive field,
higher capacity to learn complex features, low inductive
bias, etc. Unlike CNNs, which learn local representations
through their spatial inductive bias, transformer models learn
global representations through the use of the self-attention
mechanism. They are also effective at modeling long-range
interdependencies and can process multi-modal data such as
images, videos, speech, and text. The ViT model, depicted
in Figure [5[a), consists of three main modules: (1) Patch
Embedding, (2) Position Embedding, and (3) Transformer
Encoder.

MLP/FFN

[ Transformer Encoder ]

Patch +
Position ~0[4 (1] ] fL) 6l
Embedding
Linear Projection of Flattened Patches ]

T i e e
L1010

(a) Vision Transformer (ViT)
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Fig. 5. (a) Overall architecture of ViT (b) ViT encoder

1) Patch and Position Embedding: The input to a ViT is
a 3D image of dimension (HxW x3), which is transformed
into a flattened sequence of 2D patches. The ViT model
splits the input image into several non-overlapping patches,
each of size pxp, to treat them as token embeddings. For
instance, consider an image of dimension (H, W, IC), where
H, W, and IC represent the the height of the input image, the
width of the image, and the input channel size, respectively.
The resolution of each 2D patch is (p, p), and the image is
transformed into a vector of dimension (h*w, p*p*C), where
H = h*p and W = h*p. The flattened projection is processed
through a FC layer and passed to the next operations in the
transformer. The position of each element plays an important
role in better learning global information. Therefore, a 1D
learnable position embedding is linearly added to the patch
embeddings to preserve the spatial positional information [6].

2) Transformer Encoder: The vision transformer retains
only the encoder module of the vanilla transformer, similar to
BERT. The encoder extracts features from the input activation
map. It establishes long-range dependency among the patches
through the self-attention mechanism. In the encoder module
of ViT, the normalization operation is applied before MHA
and FFN units, as illustrated in Figure Ekb). The FFN module
is a sequence of two Fully Connected layers whose output
is added to the tensor before the second normalization layer
through a residual connection. The final layer of ViT is an FC
layer, which predicts output probabilities.
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III. MOTIVATION AND OVERVIEW

This section describes the motivation, necessity, and chal-
lenges faced in developing optimization methods for trans-
formers.

A. Motivation for optimizing transformer models

We now discuss the necessity of optimizing large-scale
transformer models:

1) Model size reduction: Large language models are highly
demanding in terms of memory and computing resources,
making them difficult to deploy in real-time applications.
For example, BERT-base and BERT-large models have 110M
and 340M parameters, respectively. Similarly, computer vision
models have huge model size, e.g., the original ViT-base model
consists of 86M trainable parameters [62]. Techniques like
SparseGPT [63]] can help in removing 100 billion parameters
without any accuracy loss. Larger models also provide higher
scope for compression. In other words, for a fixed target
sparsity, larger models experience a much smaller accuracy
drop than their smaller counterparts. For instance, the most
extensive models from the OPT and BLOOM families can be
pruned to 50% sparsity with minimal increase in perplexity
[63]. Therefore, model compression techniques can allow
storing large models in limited storage capacity.

2) Performance benefits: Model compression can improve
hardware efficiency on several metrics such as latency, energy
and power. The inference of a large-sized transformer requires
a significant amount of computing time. A smaller model
can be generally quickly loaded and executed, leading to
low inference latency. For example, MobileBERT [64] is a
compressed version of BERT-base model and it runs 5.5x
faster than BERT-base model on Pixel 4 mobile phone. Also,
smaller models require less memory to store and run, which
can benefit resource-constrained environments such as edge
devices. Running smaller models requires less energy than
running larger models, which can extend the battery life of
mobile devices and reduce power consumption in data centers.

B. Challenges for optimizing transformer models

Although important, optimization of transformer models
presents several challenges.

1) Need of Computing Resources: Developing and imple-
menting transformer optimization techniques require signif-
icant computational resources, particularly during the fine-
tuning phase. Finetuning a compressed or optimized model
involves retraining the model on a smaller dataset, which can
require several iterations of training and validation.

2) Wider distribution of weights: Mao et al. [65] illustrate
the challenges in transformer pruning by comparing the weight
distribution of the ResNet model on the CIFAR10 dataset with
the transformer model on the WMT dataset. Their analysis re-
vealed that the weight distribution of the transformer network
is wider than that of the ResNet model, indicating that the
weights of the transformer tend to be larger than those of a
CNN model. This difference in weight distribution presents
a significant challenge for pruning transformer models as the

process requires careful consideration of the complex interde-
pendencies among the weights. Therefore, pruning transformer
requires more sophisticated techniques than CNN.

3) Simplification prohibits generalization: ML models need
to generalize well to new and unseen data. While simplification
and compression lead to performance improvement on the
target dataset, they can result in poor performance on a dataset
from different domain or having different characteristics. This
is because a compression technique may remove weights
trained for generalization.

4) Hardware-related challenges: Transformer models use
hardware-unfriendly operations that hinder their efficiency and
are difficult to implement on specialized hardware. Unlike
CNNs, which rely on linear operations, transformer models
employ a more complex architecture with many nonlinear op-
erations, including attention mechanisms, softmax and multi-
headed attention [66].

IV. KNOWLEDGE DISTILLATION

Knowledge distillation (KD) [45] is a widely used model
compression technique where the knowledge is transferred
from a large pretrained teacher model to a small student model,
s0 it can replicate or mimic the teacher model’s behavior. KD
methods have been effective in compressing large transformer
models, such as DistilBERT [47]], TinyBERT [67] etc. The
distilled models are smaller and faster and have comparable
accuracy as the teacher model. Also, they can enhance the
accuracy of the small networks on applications that need
complex representations.
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A. Overview of Knowledge Distillation Methods

Typically, the distillation methods utilize the teacher
model’s predictions to guide the student model’s training.
The process first creates a large neural network, and the task
is to make a smaller transformer network approximate the
function learned by the larger network. The student model is
trained to predict both the correct output and the soft targets
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produced by the teacher model. The soft target here refers
to the probabilities the teacher produces when the predictions
are made for a given input. This is done by minimizing the
distillation loss between the targets produced by the teacher
model and the predictions produced by the student model. The
overview of distillation method is depicted in Figure [f[a).

The distillation process usually employs a linear combi-
nation of two loss terms, with a hyperparameter controlling
the balance between them. The hyperparameter controls the
softness of the teacher’s output probabilities, with higher
values producing softer targets, making it easier for the student
network to learn. The first term is usually the standard cross-
entropy or any other loss function depending on the target
task, and the second term measures the difference between
the output probabilities of the student and the soft targets
generated by the teacher network. In general, several types
of loss functions exist to measure the difference between
student and teacher models, such as Kullback—Leibler (KL)-
divergence, mean Squared Error (MSE) and Cosine Similarity.

We now review KD methods that are used to compress
the large-sized BERT and ViT models. Table |I| provides a
classification of these methods.

TABLE I
CLASSIFICATION OF TRANSFORMER KD METHODS

Distillation loss
152, 164} 168H71]]

KL divergence

MSE [67, [72H74]
Cross-entropy 73]
Cosine similarity 1471

Based on task-awareness
[52} 168l [71} [73H75]
47, 164} 169} [701 [76]
Learning granularity
[64} 167} 169} [73H75]
47,152} 1681 169, 1711 72} [76]
[77]

Task-specific
Task-agnostic

Layer-wise
Output-wise
Attention-wise

Network Type
(47, l64] 167H70, 72} [73] [16]
[520 [71L [75]

Transformer/BERT
Vision transformer

B. Methods based on task-awareness

The KD methods can be broadly divided into two categories
based on the level of task-specificity of the knowledge trans-
ferred from the teacher model to the student model. They are
summarized below.

1) Task-agnostic KD: The task-agnostic KD refers to dis-
tilling “generic” knowledge, i.e., without considering any
specific task, which can be useful for several downstream
applications. Homotopic Distillation (HomoDistil) [69] is a
task-agnostic distillation method which combines iterative
pruning and layer-wise (attention-wise and hidden layer-wise)
transfer learning. The student model is initialized from the
teacher model and is iteratively pruned until the target width
is reached. The iterative pruning method removes the least
important parameters throughout the distillation process based
on the importance of the parameters with respect to the final
score.

2) Task-specific KD: Task-specific distillation transfers
knowledge to a small model for the same downstream applica-
tion. This distillation method is extremely useful and suitable
for scenarios where we intend to get the best performance for
the specific task, whereas task-agnostic distillation is suitable
for transferring only the general knowledge and may not obtain
the best performance on the target task. DeiT [S52] is the
first distillation method for ViT. The authors train a student
transformer model to match hard labels provided by a pre-
trained CNN teacher network on the target Imagenet dataset.
The authors utilize only the final output of the teacher and
student model while ignoring the information of intermediate-
layers in both networks.

C. Methods based on distillation granularity

The distillation granularity refers to the level at which
information transfer happens between the teacher and student
network. As shown in Figure [6[b), the granularity can be
network, layer or token. We now discuss them.

1) Network-level Distillation: The network/model-level
distillation transfers knowledge only at the model output level.
In this method, the student network is trained to match the
output of the teacher model by considering the training to
minimize the loss between teacher and student models. This
technique is also known as prediction-layer distillation, as the
student model is trained to match the predictions.

DistilBERT [47] is a pretraining method based on network-
wise KD [45]]. It generates a small general-purpose language
model which can be finetuned on a wide range of applica-
tions. DistilBERT combines language modeling, distillation
and cosine-distance losses. DistilBERT retains 97% of the lan-
guage understanding capabilities of BERT, while having 40%
lower model size and 60% lower latency on the Intel Xeon
E5-2690 CPU. DistilGPT2 [47]] uses the same approach under
the supervision of GPT2 and generates a compressed version
of the GPT model. DistilGPT2 obtains similar performance as
the GPT2 model with only 84M model parameters, as opposed
to 124M parameters in the GPT2 model.

TinyBERT [67] is designed using a mixture of task-agnostic
and task-specific KD methods. It is a two-stage distillation
method, where the first stage transfers general domain in-
formation from a large pretrained BERT model to obtain a
small-sized general TinyBERT model. The general TinyBERT
model acts as a teacher in the second stage and is further
finetuned or distilled on the target dataset to obtain a task-
specific TinyBERT model. TinyBERT with only four self-
attention layers can match 96.8% predictive performance of
the teacher BERT-base network on GLUE benchmark while
being 7.5x smaller. UVC [71] is a unified compression
framework to achieve pruning, layer skipping, and KD in a
single constrained optimization loop. Specifically, its prunes
heads in the MHA unit and inner dimension in the FNN
block. The original uncompressed ViT network provides the
soft labels during the KD process.

2) Layer-level distillation: The layer-level distillation refers
to transferring knowledge at the level of individual layers. In
this method, the student model is trained to produce similar
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Fig. 7. KD approach used by Sun et al. [64] to distill knowledge of IB-BERT
to MobileBERT network

outputs of selected layers as the teacher model. Hidden state-
level transfer learning is a type of layer-level learning that aims
to minimize the loss between the hidden states of teacher and
student networks. The hidden state represents the output of
MHA and FNN modules of the encoder or decoder.

Sun et al. [[64] propose a network called Inverted-Bottleneck
BERT (IB-BERT). It enhances the original BERT model by
adding the linear layers in each self-attention module, as
shown in Figure [7] The IB-BERT model acts as a teacher
model, and the knowledge is distilled to a smaller version,
MobileBERT, progressively over multiple steps in a task-
agnostic fashion. The knowledge from IB-BERT is transferred
to MobileBERT in a layer-wise fashion, i.e., the attention level
and hidden layer-wise independently, as depicted in Figure
The distilled MobileBERT model is 4.3x smaller than the
BERT-base network and 5.5x faster on Pixel 4 mobile phone.

DynaBERT [73] first trains a width- and depth-adaptive
teacher model. Then, based on this teacher model, it dynam-
ically adjusts the width and depth of the student model to
minimize the target hardware latency using KD. As illustrated
in Figure [§] DynaBERT is a two-stage KD process. First, the
knowledge is transferred from the large model to a width-
adaptive subnetwork and then from this intermediate model
to a depth-adaptive model. The distilled models achieve better
language capabilities than BERT-base, RoBERTa and Tiny-
BERT models with less latency on GPU and CPU devices.
One observation from the adaptive distilled models is that the
width direction is more robust to model compression than the
depth direction.

3) Attention-based distillation: The attention-based distil-
lation trains the attention matrices of the student network
from the teacher network, such that it transfers the linguistic
information. The motivation for this method comes from
BERT’s capability to learn attention weights in such a way that
it captures rich linguistic knowledge, which includes syntax
and coreference information [67]]. Minilm [70] is a deep self-
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attention distillation technique where the student is trained to
mimic the self-attention behavior of the last layer of the BERT
teacher. However, within the last self-attention layer, the task
is to minimize the KL divergence between the QKV attention
matrices. The attention matrix transfer learning process can be
extremely useful for task-specific distillation scenarios.

4) Embedding-layer distillation: In addition to model-level,
attention-level and hidden states, the knowledge from the
teacher embedding layer can be transferred to the student’s
equivalent layer to learn the embedding layer. Manifold
learning-based distillation [79] methods use inter-sample in-
formation to support layers with mismatched dimensions. Hao
et al. [[75] utilize patch-level information and develop a fine-
grained manifold distillation method to transfer the patch-level
manifold information between teacher and student ViTs. The
tiny model is trained in such a way that it mimics the patch-
level manifold space of the teacher model using three manifold
matching loss terms.

Although useful, KD methods suffer from problems such
as limited generalization, interpretability and overfitting. The
distilled student model may not generalize well to new and
unseen data when the student tries to only mimic the teacher
and ignores the full distribution of the target data. KD can
lead to overfitting if the student model is overtrained and tries
to fit the teacher model too well.

V. PRUNING

Neural network pruning is a method to reduce the
size and computation complexity by removing redundant
weights and activations. The pruning algorithms force the
weights/nodes/neurons/heads to be zeros as much as possible
during inference run-time. In this section, we classify methods
based on saliency, sparsity pattern and transformer granularity.

A. Overview of pruning techniques

The general methodology of most pruning methods is to first
train a neural network to achieve the best accuracy possible.
The second step in this process includes identifying and
removing the least important parameters based on magnitude
or contribution to the overall model performance. The third
step is to finetune the pruned model to recover the accuracy.
The second and third steps are iteratively performed until there
is an accuracy loss.
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TABLE II
CLASSIFICATION OF PRUNING TECHNQIUES BASED ON SALIENCY OF NETWORK PARAMETERS: ZERO/FIRST/SECOND-ORDER

Approach Pros Cons
Zero- prunes weights based on local importance score (e.g., | computationally efficient Sub-optimal for large networks due
order magnitude) of each weight in the model [76] to ignoring global importance of

weights

First- Considers impact of each parameter on the model | More accurate in high-sparsity | computationally expensive due to
order accuracy, e.g., weights moving away from zero are | regimes due to considering the gra- | requiring gradient computation for

considered important [78]] dient information every weight.
Second- uses the approximations of the loss curve to guide | Most accurate due to computing | Very expensive as it requires hes-
order pruning. Considering loss curvature helps establish | the Hessian matrix (or its approxi- | sian computation

relationship between weights and loss function. [49] | mations)

B. Pruning taxonomy based on saliency quantification

The pruning techniques can be divided into zero, first and
second-order based on how they quantify the saliency of net-
work parameters. Table [[I] describes the three methodologies,
along with their pros and cons.

An example of a first-order technique is AxFormer [80].
For large transformers, iteratively performing pruning and fine-
tuning leads to overfitting the training data for the downstream
applications. They solve this problem using a hierarchical
greedy scheme that needs no additional fine-tuning. They
first find the baseline loss of the transformer by fine-tuning
it on a downstream application. Then, the loss (say K) is
computed by removing an element. If K is below the lowest
loss encountered so far, the element is pruned. To avoid
overfitting, they prune an element only if it reduces the loss of
at least half of the samples in the validation set. This ensures
effective generalization.

Their pruning technique works hierarchically: it first looks
at self-attention and FFN blocks, and only, if required, it
analyzes their building blocks, such as neurons and attention
heads. This approach prunes bulky blocks quickly and speeds
up subsequent iterations. To further narrow down the search
space, if a block (say, self-attention) is found to be of high
significance, they exclude all the heads in that block from
further consideration. For effective pruning, it is important to
analyze the elements in the right order. Towards this, they
note that the lower layers of BERT extract phrase-level and
surface features; intermediate layers find syntactic features,
and deeper layers focus on semantic features. Deeper layers
are required only for capturing long-range dependency. The
depth of analysis required by each task is different, e.g., local
context is sufficient in sentiment extraction since sentiments
change quickly. In fact, syntactic and semantic knowledge is
usually not necessary. As such, they inspect from the last layer
towards the first layer since the last layers are unimportant or
harmful for sentiment analysis.

In the transformer, the use of soft attention facilitates end-to-
end training. However, by accounting for only the top-N (say
N=30) attention values, the transformer can focus on the most
important phrases of the input. They replace hard attention
with soft attention in the layers where hard attention reduces
the validation loss. Hard attention can sometimes enable better
representation by focusing on just one input token. Hence,
hard attention is especially useful for capturing phrase-level
information in lower layers. Their technique leads to smaller,

faster and more accurate models. Their technique can also
further improve Q8BERT and DistlIBERT models. Also, their
models are relatively insensitive to the choice of random seed
initialization. Finally, their technique has small latency since
it only requires multiple iterations on a small validation set
and no fine-tuning or retraining.

An example of the second-order pruning technique is
oBERT [49], which approximates the Hessian function to
measure the importance of model parameters. The pruned
models attain 8.4x inference speedup with less than 1%
accuracy drop and 10x speedup with less than 2% accuracy
drop on Intel Xeon Platinum 8380 CPU platform.

C. Classification based on the matrix sparsity pattern

A neural network can be pruned at different levels, resulting
in different sparsity patterns. The methods are classified into
unstructured, semi-structured and structured methods. The
techniques are described in Table [III} and illustrated in Figure
O We summarize a few transformer-specific works based on
this classification below:

1) Unstructured Pruning: The irregular pruning methods
result in a significant reduction of model parameters due to
the lowest level of pruning granularity. However, unstructured
sparse patterns require specialized hardware architectures and
sparse libraries to take advantage of the significantly com-
pressed model. Although 97% of the network parameters
can be pruned, it is hard to obtain substantial inference
speedup on many hardware platforms [78]. Gordon et al. [82]
apply magnitude-based pruning [41] to compress BERT, where
weights close to zero are pruned. The authors observe that
low pruning levels (30-40%) do not affect pretraining loss,
while medium pruning levels hinder useful pretraining infor-
mation from being transferred to downstream applications.
Additionally, the pretraining loss depends on the downstream
application in the case of high pruning levels.

Gradual magnitude pruning (GMP) [92] is a process of
gradually pruning the weight parameters with low magnitude
during the training process. Sparse*BERT [93] applies GMP
on LLMs and shows how pruned models can transfer between
domains and applications. They show that models pruned on
a particular large-scale dataset and applications on the general
domain language can be utilized on new domains and small-
scale datasets without requiring significant hyperparameter
tuning. They can obtain similar accuracy as unpruned LLMs.

Prune-OFA [76] creates unstructured sparse pre-trained
BERT models that can be fine-tuned on the target downstream
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TABLE III
CLASSIFICATION OF PRUNING TECHNQIUES BASED ON THE SPARSITY PATTERN
Approach Example
Unstructured It prunes the weight matrices of a model irregularly, resulting in unstructured weight/activation matrices. | [[78} 181} |82]
An example of it is element-wise pruning.
Semi-structured | An example of semi-structured sparsity is N:M sparsity, where the weight matrix is divided into groups, [183186]
each of size M, of which N elements are pruned.
It prunes at component-level, e.g., neurons, channels, heads, columns, rows or entire layers, instead of
individual weight parameters. This leads to more regular network that gain performance even on general-
purpose hardware.
I. Row/Column: remove redundant rows/columns in weight matrices 870188 |
Structured 2. Head-wise: it is a row-wise structured pruning technique that removes the redundant heads in MHA 487189 |
3. Layer-wise: It prunes individual layers of a network 190]
4. Block Pruning: it first groups a weight matrix into a 1D (Figure [9¢) or 2D (Figure [9]) blocks and [o1]
prunes the entire block

(a) Structured

(b) Unstructured

Fig. 9. Types of sparsity

applications at high sparsity ratios. This method consists of a
teacher preparation step for initializing the student model and
a student pruning step which is fine-tuned for the downstream
task through a knowledge distillation approach. Prune-OFA
also introduces a pattern lock to prevent the zeros in the model
from being updated while fine-tuning the network.

PLATON [94] is another example of unstructured pruning
method. It captures the uncertainty of importance scores based
on the absolute difference between the importance score at
the current pruning iteration and the moving average of the
previous iterations. This method retains weights with low
important score values and high uncertainty. On a wide range
of transformer models, such as BERT-base [59]] and ViT-B16
[6], PLATON can compress the model by up to 90% while
increasing the accuracy by 1.2 percentage point.

2) Semi-structured Sparsity: This type of sparsity pattern is
more efficient than unstructured pruning and has been imple-
mented in commercial hardware, e.g., the tensor core in Nvidia
A100 GPU can accelerate the 2:4 sparsity pattern, illustrated
in Figure Eke), by a factor of 2 [83]]. NxMTransformer [85]
models N:M sparsity as a constrained optimization problem
and optimizes the downstream tasks while considering the
hardware constraints. The authors use the Alternating Direc-
tion Method of Multipliers (ADMM), a popular technique
for non-convex optimization problems with multi-objective
constraints. NxMTransformer prunes Q, K, and V matrices,
attention output and fully connected layers in the Transformer,
and the sparsified model is 1.7 points more accurate than the
SOTA N:M sparse language models.

Fang et al. [84] propose a network-hardware co-design
framework to generate a series of N:M (3:4, 2:4, 1:4) sparse
transformer models for deployment on a diverse set of FPGA
platforms and a dedicated hardware architecture to support
this specialized sparse implementation. The set of N:M sparse
transformers are generated using inherited dynamic pruning

(c) 1-D Blocked

£

(d) 2-D Blocked

(e) N:M Sparsity (2:4)

(IDP), resulting in 6.7 percentage point increase in accuracy.

Chen et al. [95]] propose three sparse vision transformer
exploration methods to obtain compressed models. The first
method, Sparse Vision Transformer Exploration (SVIiTE), dy-
namically extracts sparse subnetworks and explores sparse
connectivity during the training process. Structured Sparse
Vision Transformer Exploration (S?ViTE) structurally prunes
and grows the attention heads as structured sparse models
are more hardware-friendly. The Sparse Vision Transformer
Co-Exploration (SViTE+) co-explores data and architecture
sparsity and determines the most important patch embeddings.
The end-to-end exploratory methods improve the accuracy of
DeiT-small by 0.28% while compressing at least 50% weights.

3) Structured pruning: Structured pruning methods prune
at the granularity of entire layers/filters/channels/heads, lead-
ing to a sparse matrix with structured pattern. WDPruning
[96] is a structured pruning technique to reduce the width of
FC and MHA layers and the depth of the overall network
simultaneously. The width of the weight matrices is pruned
using a set of learnable parameters, which are used to dynam-
ically adjust the width of the matrices. On the other hand, the
depth of the model is pruned by shallow classifiers based on
the intermediate data of the self-attention blocks. The pruning
results on DeiT-base [52] shows that the throughput can be
improved of 15% for an accuracy drop of 1%.

D. Classification based on Pruning granularity

In this subsection, we focus on pruning the trained weights
of a transformer model. Based on the algorithm and hardware
requirement, a transformer can be pruned at different granu-
larity levels, such as element-, layer-, head-, line-wise.

1) Element-wise pruning: The element-wise pruning
method is analogous to zero-order, which picks the individual
element in a transformer as the pruning granularity, resulting
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in an irregular sparse matrix. The importance of each weight
can be measured based on different criteria such as magni-
tude, output activation values, or scores calculated by other
functions. Transformer.zip [81] performs iterative magnitude
pruning [41], which prunes all the parameters below a certain
threshold in each pruning iteration.

2) Row/Column Pruning: Row/Column is a line-wise struc-
tured pruning technique to remove redundant rows/columns
in the weight matrices of a transformer. The row pruning
refers to removing individual attention heads, while column
pruning removes output features. Both techniques prune less
important parts of the self-attention unit while maintaining the
regular structure of the model. CoFi [87] learns the pruning
mask of all operators in a Transformer: FFN layers (Zrrn),
FFN intermediate dimensions (Z;,:), MHA layers (Zarmga),
Attention heads (Zpcqq), Hidden dimensions (Zp;q,). This
framework achieves 10x speedup and close to 95% sparsity
across several datasets while preserving 90% of the accuracy
of the transformer. VTP [88] target output feature of the linear
projections, i.e., FC layers, in a ViT model by learning the
sparsity mask of each output feature based on L;-norm.

TPrune [[65] is a combined row and column-wise trans-
former pruning technique for resource-constrained environ-
ments. This method divides the weight matrix into several
sub-blocks with the same shape and then utilizes the row and
column-wise lasso penalty. The row-wise and column-wise 12-
regularizer terms are added to the loss function, and the model
is trained to learn the structured sparse representations. The
regularizer here is the square root of the sum of squares of
weights along a dimension. This way, the least important rows
or columns are automatically pruned, as gradient descent aims
to minimize the combined loss function. The individual struc-
turally pruned subblocks are concatenated to form the final
weight matrix. The pruned transformers achieve 1.16-1.92x
speedup for the same model accuracy on mobile devices.

UP-ViT [97] is a unified framework to structurally prune
all the important dimensions of ViT blocks, such as MHA,
FFN, normalization layers, and convolution channels in ViT
variants. The importance of each channel is calculated by first
dividing the ViT model into several individual uncorrelated
components and evaluating the performance difference after
removing each channel in every component. The authors apply
the UP method on several SOTA ViT models, such as DeiT,
PVT and achieve acceptable accuracy performance tradeoffs
on compressed models.

3) Block Pruning: Lagunas et al. [91] compute the im-
portance of each block in the attention layers based on its
contribution to the overall model performance and prune the
least important blocks. HMC-Tran [98]] is a tensor-core aware
pruning (TCP) to exploit sparsity in a coarse-grained manner
using block pruning technique (Figure 9(d)). The authors first
divide the weight matrix into pxq blocks, say 16x16, and
prune the entire block whose 12-norm is less than a predefined
value prec. TCP attains a speedup of 3.68x with 92% sparsity
on BERT-base model on V100 Tensor core GPU, while the
baseline SVD achieves only 3.56x speedup.

4) Head Pruning: Head pruning is a row-wise structured
model compression method that removes the redundant heads

in the multi-head self-attention module. Michel et al. [48]
show that a few layers in a transformer can be reduced to
as low as a single head. The authors use a first-order proxy
method to determine the importance of each head and prune
them iteratively. The experiments on Vanilla Transformer and
BERT show that the models can be compressed up to 20—40%
without any quality loss. Voita et al. [89] first analyze the
intrinsic properties and determine the importance of each head
to draw a conclusion that specific heads take specific roles. The
authors then develop a gating mechanism to prune half of all
the heads with less than 0.25 BLEU loss.

5) Layer-wise Pruning: Layer-wise pruning is a structured
pruning technique that uses individual layers as the pruning
granularity to reduce the depth of the overall transformer
network. LayerDrop [90] selects a sub-network from the
original Transformer model by learning the retention rate for
each layer during training, and only the layers with high
impact are preserved during the inference runtime.

6) FFN Pruning: Pruning redundant weights in an FFN
layer is extremely important as this layer account for close
to 2/3rd of the total parameters in a Transformer model
(excluding the embedding parameters). Ganesh et al. [99]
showed that MHA and FFN layers take almost similar time on
GPUs even though the former layer account for 1/3rd of the
parameters, while FFNs become a bottleneck on CPUs. VTP
[88]] prunes channels in such a way that it focuses more on
the FFN unit than MHA weights.

E. Quantitative comparison of pruning techniques

Figures [I0{a), [I0[b), [I0fc) compare the accuracy vs num-
ber of parameters of pruning methods on DeiT-base, DeiT-
small and DeiT-tiny networks [52], respectively. We obtain
the accuracy numbers from the corresponding papers. The
plots show that certain pruning techniques can reduce the
number of parameters while improving the accuracy of the
DeiT model, while a few methods remove parameters with
some compromise in accuracy. For example, WDPruning [96]],
S2ViTE [93], SAViT [62] methods increase the accuracy of
the compressed model with less number of model parameters
on DeiT-base model. On the other hand, other methods, such
as VTP [88], comes with a drop in accuracy. Therefore, the
accuracy of the pruned models depend on the pruning method
and finetuning pipeline.

F. Token/Patch Pruning

In the previous subsection, we discussed pruning methods
pertaining to the weights of a transformer model, while this
subsection focuses on token/patch pruning, which is analogous
to activation pruning in the CNN model. Token pruning [100]
reduces the computation complexity of a transformer by re-
moving redundant tokens or words from the input vocabulary,
whereas patch pruning removes less important patches in the
embedding of a ViT model. This pruning can be applied at
different stages of a transformer model, such as at embedding,
intermediate and final classification layers.

Learned Token Pruning (LTP) [1O1] adaptively prunes less
effective tokens as the sequence passes through different layers
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of the network. The tokens below a certain threshold, learned
during the training process, are pruned in every layer, allowing
the length of the pruned sequence to vary with respect to the
input sequence. Luo et al. [102]] proposed a token pruning
method for vision transformers by using the attention score
as a natural indicator to determine the importance and prune
tokens. An attention-based pruning module is inserted between
the self-attention layers. The integrated weight parameters are
fused with MHA to estimate the importance of each token and
prune the tokens in the layer accordingly.

Yang et al. [103] dynamically monitors the tolerance of
tokens and adapts the precision of Q/K/V vectors. They note
that the noise tolerance of a token depends on its importance.
They sort the tokens based on their importance scores. There
is negligible impact on BERT accuracy when adding Gaussian
noise (equivalent to quantization) in the tokens with very low
importance. However, doing this to highly important tokens
has a high impact on accuracy. They further note that pruning
19% least important tokens causes only a 0.2% drop in
accuracy, whereas pruning 24% tokens degrade accuracy by
5%. Hence, the pruning ratio needs to be carefully controlled,
and accuracy loss due to pruning needs to be compensated.

Their technique divides the tokens into three types: high-
precision (e.g., top 15% most important), low-precision (next
70%) and pruned (last 15%). They are stored with 8b, 4b and
Ob, respectively. They regard pruning as O-bit quantization,
which unifies both these techniques. The exact ratio of tokens
of each type is decided based on Bayesian optimization. The
pruned tokens are consolidated in a single representative token
(RToken), obtained by weighting the tokens based on their
importance score and then summing up these values. This
RToken (which can be 4b or 8b) is concatenated with 8b
and 4b tokens and fed to the transformer. At the end of
the transformer block, these pruned tokens are updated and
concatenated with the output non-zero-bit tokens. This output
is fed to the next transformer block. Processing this RToken
adds only minor overhead but avoids the accuracy loss due to
completely pruning unimportant tokens. This approach allows
more aggressive pruning for the same accuracy loss.

Their hardware accelerator uses a variable-speed systolic
array [104] to support 4b and 8b matrix multiplication. Due to
the dataflow constraints of SA, the PEs (processing elements)
performing 4b*4b and 8b*4b operations have to stall for one
cycle and two cycles, respectively. Due to this, the PEs remain
under-utilized. To deal with this issue, they group similar-
precision tokens together and place low-precision tokens in
the front. This reduces stall cycles since the cases of ) and
KT having different precisions is reduced.

1) Uniform vs Non-uniform Token Pruning: The uniform
token pruning methods use a single pruning configuration for
all the tokens throughout the network for a given dataset.
Nevertheless, the input sequence can vary with respect to
different tasks and datasets. Therefore, applying the same
pruning percentage can potentially under-prune short sequence
or over-prune long sequence [100]. The non-uniform token
pruning techniques adapt the pruning percentage based on
the characteristics of the input sequence. SpAtten [[105] is an
example of a non-uniform token pruning method that assigns
the pruning rate proportional to the input sequence length.

2) Static vs. Image-Adaptive Patch Pruning: Static token
pruning methods [95] [101] prune the number of input tokens
by a fixed ratio for different images. They neglect the fact that
each image’s information varies in region size and location.
The image-adaptive token pruning methods [106] remove the
surplus tokens based on the image characteristics to attain a
per-image adaptive pruning rate. Therefore, the latter methods
can achieve a higher overall model compression ratio than
the former method. AS-ViT [[107] is an adaptive sparse token
pruning method which uses a set of learnable thresholds and
MHA to prune the redundant tokens. The attention weights
of the self-attention unit evaluate the token significance with
a few additional operations, and the learnable parameters are
inserted within the ViT model, distinguishing important tokens
from uninformative ones. The learnable threshold parameters
are optimized in such a way that they can balance accuracy
and model complexity, thereby generating different sparse
combinations for different input sequences.

HeatViT [660] is an image-adaptive token pruning method
for efficient and accurate ViT inference. The authors designed
a token selector consisting of an attention-based multi-head
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token classifier and a token packager to classify tokens ac-
curately and consolidate non-informative tokens. The pruning
rate is enhanced by carefully analyzing the inherent compu-
tational patterns in ViTs, as opposed to static pruning. The
hardware efficiency is further improved by employing 8-bit
fixed-point quantization.

3) Quantitative comparison of token pruning techniques:
In Figure we compare the accuracy and floating point op-
erations (FLOPs) of various token pruned models. As pruning
tokens does not alter the network/weight structure, the number
of parameters remains the same as the baseline DeiT-small
model. However, the number of multiplications and additions
are reduced due to token/activation pruning. The size of each
circle in the figure corresponds to the relative FLOPs of the
token pruned model with respect to the baseline DeiT-small
model. All the pruning methods reduce the total number of
FLOPs. A few techniques like ViT-Slim [108] improves the
baseline DeiT-small accuracy and reduces the FLOP count.
DyViT [109] method achieves best compression with respect
to FLOPs but comes with a drop in accuracy.

Accuracy vs FLOPs

80.0 @ DeiT-small
0 ® ° ViT-Slim-1
= s ® IA-RED
£795 ® ViT-Slim-2
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Fig. 11. Comparison of token pruning methods: PS-ViT [101], DyViT [109],
EViT [110], AS-ViT [107], ViT-Slim [108], IA-RED [106]. The baseline is
DeiT-small [52] model.

G. Post Training Pruning (PTP)

The conventional pruning algorithms require fine-tuning the
pruned network and/or jointly learning the pruning configu-
rations. This is required to retain the accuracy lost due to
trimming weights, thereby requiring a significant amount of
retraining time. Post-Training Pruning (PTP) does not require
any additional retraining and maintains the same baseline
accuracy. For instance, Kwon et al. [111] propose a PTP
method for transformers based on Fisher information matrix
as a criteria to identify redundant heads/filters. The framework
requires only 3 minutes on a single GPU to remove heads in
MHA and filters in FFN layers. It achieves a 1.56x speedup on
inference latency for BERT with less than 1% accuracy loss.
The PTP methods can be divided into static and dynamic,
which are explained below.

1) Static PTP: The static PTP methods identify and prune
the least important parameters in the model irrespective of the
input token sequence. The model is pruned only once and and

is used for inference for all input sequence lengths. Frantar
et al. [63]] propose a static PTP method to compress giant
language models, such as GPT, and show that it is possible
to remove 50% of the weight parameters without significantly
compromising model perplexity. They develop SparseGPT, a
one-shot and layer-wise solver based on closed form equations
by approximating sparse regression solver and is efficient
enough to produce a sparse model only in a few hours of
GPU time. The proposed method achieve 60% unstructured
sparsity on OPT175B [22] and BLOOM-176B [112] models
with minimal accuracy loss under 4.5 hours. SparseGPT can
be further extended to N:M sparsity (2:4 and 4:8) with some
additional accuracy loss compared to the unoptimized model.

2) Dynamic PTP: Adaptive inference or dynamic PTP
refers to the ability of a pretrained transformer to dynam-
ically reduce and adjust the layer length during inference
based on the input sequence/token, without requiring any
additional finetuning. The intuition behind this technique is
that each input sample is different in terms of complexity and
using a fixed-size model for all input samples may not be
computationally optimal. Hence, adaptive inference methods
adaptively skip part of the layer computations according to
the input sample to obtain the best performance. EBERT [113]]
is an example of such method which dynamically prunes the
redundant heads in the MHA unit and structured computations
(output channels) in the FFN unit for each input sample at
inference time. The authors employ two predictor networks
(two feed-forward, one batch norm and ReLU layer), one for
MHA and one for FFN unit. The predictor network generates
a {1, 0} mask, equal to size of number of heads in MHA and
number of ouput channels in FEN layer. The BERT model and
the randomly initialized predictor network are jointly trained.
The goal is to learn the predictor network to determine the
most important components in the BERT model.

H. Hardware-aware pruning

To realize the full performance benefit of pruning, there is
a need to customize pruning to different hardware platforms.

Fan et al. [114] execute the BERT-large model on CPU and
GPU platforms and show the percentage latency of attention
layers, linear layers and remaining computations. For an
input sequence length (L) of 256, linear layers dominate the
execution time, whereas, for L=1024 and 2048, the attention
layers become dominant. Hence, both these layers need to be
accelerated. They classify the sparsity patterns into five basic
patterns: random, low-rank, block-wise, sliding window and
butterfly (BF). Of these, butterfly pattern is the only one which
(1) allows structured data accesses (2) simultaneously benefits
both global and local context (3) benefits both attention and
FFN layers. Butterfly matrices are universal representations of
structured matrices having a simple recursive pattern. They can
approximate linear transformations. The low-rank sparsity re-
quires sequentially reading the rows and columns, which leads
to poor hardware efficiency. The sliding-window pattern only
studies local context, and hence, it needs low-rank sparsity to
compensate for the accuracy loss. Block-wise sparsity engines
require additional algorithmic transformations.
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They propose two types of building blocks: ABF-block and
FBF-block. The ABF-block has attention as the backbone and
compresses all the linear layers using butterfly factorization.
It has three BF linear layers (BFLLs) for producing Q, K and
V matrices. Then, there is an MHA layer and another BFLL
for extracting relationships between tokens. Finally, there is
a BF FFN consisting of two BFLLs. The FBF-block replaces
attention with a 2D FFT (fast Fourier transform) layer and
hence, lower parameter and computation count. The mixing of
input tokens by FFT enables subsequent BF FFN to compute
longer sequences. By virtue of FFT, this block uses a unified
BF pattern, leading to better hardware efficiency. However, the
use of FFT degrades accuracy. Their proposed design uses [Ny
FBF blocks and N5 ABF blocks to address these tradeoffs, as
shown in Figure [12]

x N, x N,
BFMLP || || BFlinear pmjﬁiim L1 Output
(RC+LN) layer (RC+LN)
T ¥ T
Q* KT
2D FFT | | BFMLP
Input T4 RC+LN) Softmax 1™ RC+LN)
ABF block FBF block

Fig. 12. Accelerator proposed by Fan et al. [114] (RC= residual connection,
LN=layer-normalization, BF = butterfly)

Their accelerator has multiple BF engines, which can be
programmed at runtime to accelerate either FFT or BF linear
layers. It uses multiplexers and demultiplexers to choose the
correct input and provide the correct output. This allows
the reuse of add/subtract/multiply units. The butterfly pattern
requires different inputs at different stages. Hence, both row-
major and column-major patterns lead to bank conflict. They
propose a custom data layout that shifts down the first element
of every column by a certain number of rows. This layout
removes bank conflicts in reading data in the first two stages of
the BF pattern. They use double-buffering to overlap memory
access with computation. Since FFT computation involves
complex data, they concatenate the lower (higher) portions of
two input buffers to create first (second) ping-pong storage.
Their algorithmic optimizations reduce the model size and
FLOPs with no loss in accuracy.

Zhang et al. [115] note that even with structured pruning, the
shape of pruned weight matrix may differ in different encoders
of various heads in an MHA. They propose compressing
the transformer model in a weight-shape-aware manner so
that the weight matrices of Q, K, V, O, FFN1 and FFN2
layers are of similar shapes. This improves the utilization of
FPGA buffers and MAC (multiply-accumulate) array. Their
compression technique first finds the weight importance based
on the “winning ticket hypothesis” methodology. It shows
that the sub-model, created by removing the lowest-magnitude
weights and training from the original initialization, can
achieve similar accuracy as the original unoptimized model.
They use LayerNorm to find the importance of every weight
column. One by one, in every encoder and decoder, they attach
LayerNorm to any MatMul (matrix multiplication) containing

weight. Then, they train the transformer till the convergence
of ~ factors in the newly attached LayerNorms. The final
value of v shows the importance of each weight column. The
scaling factors  of all the LayerNorms are stored in a new
model. In LayerNorm, the scaling elements are the same for
different rows but different for every row element. Thus, using
LayerNorm with MatMul, v and S show the scaling factor for
each column. Since ~ is more dominant than 3, y is taken as
the column-importance factor. Then, weight columns with ~y
values below a threshold are pruned.

Then, a two-stage pruning strategy is used. (1) Coarse-
grain pruning removes weights with the same ratio throughout
the transformer model. Pruned weight matrices are of simi-
lar shape. (2) Fine-grain pruning, which removes redundant
weights without accuracy loss. In both stages, pruning and
training are performed alternately. While performing MatMul,
they compute the output in a column-wise manner. A single-
size element-wise vector multiplication and addition substitute
the MAC of various sizes. Modern FPGAs have high bitwidth
(e.g., 27b * 18b) DSPs, which provide no extra advantage
for INT8 computations. They use double-MAC technique
(((a <<) + b) % ¢) which accomplishes two multiplications
in a single operation. In their dataflow, the weight term is
used as the shared term c. Column-wise computation naturally
avoids multiplications with zero operands. Their technique
compresses the transformer by 95 times and achieves high
throughput on FPGA.

Fang et al. [86] present a technique to deal with networks
having N:M sparsity. A transformer having N:M sparsity
requires both sparse-dense and dense-dense MatMul. They
present a unified MatMul engine for accelerating both these
MatMul. It has H planes of K « K SA. Each PE has a MAC,
MUXes, registers and non-zero (NZ) value selection unit. The
MAC unit multiplies two 16b numbers and accumulates with
a 32b partial sum. NZ value selection unit is activated only
for sparse-dense MatMul. Based on the input bitmask, it loads
only NZ weights and the corresponding activations. Figure [I3]
shows dense-dense and sparse-dense MatMul for a 1:2 sparsity
pattern. Clearly, for sparse-dense MatMul, trivial computations
are avoided, improving hardware efficiency and performance.
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Fig. 13. Multiplication of (a) dense (b) sparse matrices using systolic array
(86l

They note that for a fixed sparsity ratio (i.e., fixed (M-
N)/N), setting N to 1 provides comparable accuracy as N=2,
and hence, they set N=1. The accuracy loss remains negligible
even with 75% sparsity, and therefore, they set N:M value to
1:4. They set H = 4 and K = 16 and thus, their accelerator
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has 1024 MAC units. Compared to Lu et al. [[116], which
uses 4096 MAC units, their design has comparable inference
latency and much higher throughput per MAC unit. On using
N:M of 1:8, the latency reduces further.

Li et al. [117] note that transformers that use composite
sparse attention, such as Longformer, are inefficient on GPUs
since different sparse patterns have different locality patterns.
Previous works store the sparse matrices using either coarse-
grain format (e.g., block coordinate format) or fine-grain
format e.g., coordinate (COQ) or compressed sparse row
(CSR), is inefficient for all sparse patterns. Hence, composite
sparse attention takes three-fourths of the execution time on
Longformer. They propose novel GPU kernels for accelerating
such networks. Based on the spatial locality, they divide sparse
patterns into two categories. (1) coarse-grain: all types of
blocked patterns, local and dilated. (2) fine-grain: random,
global and selected. For these categories, they use BSR (block
sparse row) and CSR formats, respectively.

While feeding the input, they create metadata for these
formats and load them to the GPU. (1) BSR metadata is
produced based on the window size and remains fixed for the
dataset. (2) CSR metadata is produced based on global indexes
of crucial token locations. This metadata needs to be revised
for each iteration. Then, coarse- and fine-grain kernels are used
to execute corresponding patterns. SDDMM (sampled dense-
dense matrix multiplication) and SpMM (sparse-dense matrix
multiplication) are processed parallelly in two streams using
coarse- and fine-grain kernels. For fine-grain kernels, they
adapt Sputnik kernels and use CUTLASS kernels, which are
more efficient than Sputnik kernels. They fuse scale and mask
operations with sparse softmax. They propose two coarse-grain
kernels that use BSR for (a) SDDMM and (b) SpMM.

(a) It assigns every row block in the output BSR matrix
to a single thread-block. One thread-block handles the entire
blocked GEMM. For C = I1*¥12, every thread-block computes
the NZ blocks in a row by reading the blocks from I1 and
I2. They decompose blocked GEMM into hierarchical tiled
GEMMs at thread-block, warp and thread levels. (b) This
kernel uses a blocked 1D tiling method. It is similar to (a),
except that the output row block is not fully processed by
one thread-block. Rather separate thread-blocks are used for
1D tiles of the output matrix. Similar to (a), further levels of
tiling are also used.

They propose a sparse softmax kernel for computing the
outputs of both coarse and fine-grain kernels. Since softmax
reads all the row elements, presence of overlapped coarse/fine-
grain patterns in the same row leads to inaccuracies. Hence,
they invalidate the overlapping regions. Then, a row-level
softmax is done following scheme (a) above. The output
row block has NZ elements from both coarse- and fine-grain
patterns. They sequentially scan the row using BSR metadata
and CSR metadata to process NZ elements in coarse- and fine-
grain patterns, respectively. Then, the results of these scans
are combined to get overall results. Their technique improves
the performance of Longformer and QDS-Transformer models
on state-of-art GPUs. They achieve higher performance than
techniques using either coarse- and fine-grain methods.

1. Storage formats for sparse matrices

Some researchers have proposed specific formats for storing
different sparse matrices.

Qi et al. [[118] propose techniques for optimizing the trans-
former model. They compare “block-balanced pruning” (BBP)
[L19] with “block-wise pruning” (BW) [[120]. BBP prunes at
row/column granularity in every block of a matrix (refer Figure
[[4[a)), whereas BW prunes at the granularity of a block.
On applying these to the transformer, BBP provides superior
accuracy than BW at nearly all sparsity ratios. BBP is a fine-
grained pruning scheme which retains more crucial informa-
tion. Hence, they choose it as their compression scheme. They
propose a “compressed block row” (CBR) format for storing
matrices resulting from BBP. Based on the compacted matrix,
CBR uses two arrays, as shown in Figure [[4[b)-(c). (1) A 3D
array to save non-zero elements. (2) block indices of non-zero
sub-rows. Compared to COO and CSR formats, their CBR
format needs lower memory. This is because it stores only the
non-zero row-index and not the column index of each non-
zero element. Their pruning technique reduces latency on an
FPGA.

k
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Fig. 14. (a) Sparse matrix resulting from BBP (b) compacted matrix (c) CBR
format [[118]]

Peng et al. [121] present a “column balanced block-wise
pruning” (CBBWP) scheme for bringing the best of block-
wise and bank-balanced pruning. It prunes blocks with low
L2 norm in each column so that every column is left with
the same number of blocks. Figure [I5] shows their proposed
storage format. It needs only one index pointer for every block,
saving memory. CBBWP enables parallelism within and across
the blocks. Their FPGA accelerator optimizes MatMul with
the CBBWP scheme.
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Fig. 15. (a) Resultant matrix from column-balanced block-pruning (b)
compacted matrix and (c) block-index [121]
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VI. QUANTIZATION

Quantization refers to the process of reducing the preci-
sion of the model parameters (weights and activations). This
method reduces the precision of these numbers to lower bit
widths, such as 16-bit or 8-bit integers. This section provides a
brief overview of transformer quantization methods, taxonomy,
and implications on hardware performance.

A. Overview of quantization

There are multiple ways to quantize a network while pre-
serving the model performance. There general quantization
methods can be classified into: static vs dynamic, uniform
vs mixed precision, Post Training Quantization (PTQ) vs
Quantization-aware Training (QAT). Table |V| provides high-
level definitions of these different methods and serves as a
background for rest of the transformer-specific methods.

Table provides classification of quantization methods
based on the methodology used (PTQ vs QAT) and bitwidth
assignment within the network (unform vs mixed precision).

TABLE IV
CLASSIFICATION OF QUANTIZATION METHODS BASED ON PTQ vs QAT
AND UNIFORM VS MIXED

Method PTQ QAT
Uniform 122} 1123] 1501 183} 1124]
Mixed Precision | [125H129] [130]

B. General quantization procedures

1) Quantization function: The most basic quantization
function is linear quantization [44], which represents the
floating-point range using a fixed number of discrete levels.
The range is divided into equally spaced intervals evenly
distributed around a central value. For instance, the range is
uniformly distributed between -128 and 127, with zero at the
center for 8-bit signed quantization. This method is useful
for data that have a symmetrical distribution, such as weight
tensors in neural networks [135]]. The quantization process is
represented in Equation [6]

T Tmaxz — Tmin
Qr) =[5 + 738 = e ©)
where r is the floating-point value and Q(r) is the corre-
sponding quantized representation of r, S and Z represent the
scale parameter and zero-point respectively. .4, and 1y,
denote the maximum and minimum values of the floating point
range. The rounding function is given as [-|, and b constitutes
the quantization bit width. Besides linear quantization, other
weight/activation quantization functions include Dorefa [42],
PACT [136], QIT [137]], LSQ [138], etc. Q8BERT [50] is a
QAT method which uses the linear quantization scheme [44]]
in the forward pass and Straight-Through Estimator (STE) in
the backward pass.

Li et al. [130] apply “symmetric linear quantization” on the
ELBERT model. Then, they compute clipping range W;;, as
sign(W)xmin(|W|,2!—2~%). Here i and d are the number of
integer and fraction bits, respectively, in W;;,,. After this, the

quantized weight is computed as |29W.;;, +0.5| x 27¢. They
perform 8-bit quantization for weights and activations of MHA
and 16-bit quantization for those of FFN. This allows storing
all the weights on-chip. This quantization strategy incurs less
than 1% accuracy loss. They use LUTs (look-up tables) to
compute log and multiplications in the entropy calculations of
the early-exit strategy. The rest of the design and optimizations
are similar to that of Lu et al. [L16]. Implementation of
their technique on FPGA incurs lower latency and energy
consumption over a GPU implementation.

2) Matching Full Precision Model: In this subsection, we
discuss qauntization methods which quantize the model in
such a way that the low-precision model tries to match the full-
precision model. This is similar to the knowledge distillation
method, where the quantized model learns the patterns from
floating point network so that the overall loss between both
the versions are minimized.

Liu et al. [125] formulate PTQ as an optimization problem
to find optimal quantization intervals using Pearson correlation
coefficient and ranking loss. The quantization scheme for
MHA and FFN modules is learned differently within the
transformer. The precision of the MHA module is learned by
an attention map ranking loss, and the precision of the FNN
unit is learned using the cosine similarity. The main aim of
these learned methods is to maximize the similarity between
the outputs of the full-precision and quantized network.

PSAQ-ViT [139] is a data-free quantization framework for
CV transformers, which does not require the calibration dataset
to reduce the precision of a trained transformer model. The
authors utilize the properties of the self-attention module and
analyze the general difference in its processing of Gaussian
noise and real images to generate realistic samples to estimate
the quantization parameters. This framework uses a relative
value metric to optimize the Gaussian noise to approximate the
real images and then calibrate the quantization parameters. The
experiments on benchmark models demonstrate the effective-
ness of PSAQ-ViT, outperforming real-data-driven methods.

PSAQ-ViT-V2 [126] also utilizes a student-teacher learning
methodology, where the goal is to minimize the KL divergence
between the pretrained full precision model and the quantized
network. CPT-V [[127] is based on contrastive loss, which
learns the data representation that is not variant to changes
in certain attributes. The contrastive loss also minimizes the
distance between the quantized and full precision predictions
in a self-supervised approach for a given mini-batch. It re-
quires only 1000 calibration images to determine the best
quantization scales for each layer in the ViT model.

Yuan et al. [[122] observe that the activations after softmax
and GELU operations differ from the traditional Gaussian
distribution. Also, the commonly used metrics, such as MSE
and cosine distance, are not efficient in finding optimal
quantization scale parameters. Therefore, the authors propose
PTQ4ViT by employing twin-uniform to minimize the quan-
tization error and Hessian-guided method to learn the scales
of FC layers. The scaling factors are determined in such a
way that the distance between the output before and after
quantization is minimized. The experiments on ViT, DeiT, and
Swin show that PTQ4ViT obtains near-lossless accuracy on the
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TABLE V

COMPARISON BETWEEN DIFFERENT CATEGORIES OF QUANTIZATION TECHNIQUES

Static: The statistics of the pre-trained model, such as value ranges in
a layer, are collected during offline phase over a calibration dataset.
These values remain constant during the inference.

Dynamic: It dynamically calculates the quantization parameters of activation
tensors during model execution. Hence, this process is expensive as quantization
is performed for every new input sample

Uniform: It quantizes all the layers with the same bitwidth [[131]. Tt
is simple to implement but the performance is sub-optimal.

Mixed-precision: It assigns different bitwidth to different tensors or layers
[132]] within a network. It attains better accuracy but finding the optimal
bitwidth for each layer/tensor is a combinatorial process . For example, Li
et al. [130] quantize attention weights to 8 bits and FFN weights to 16 bits.

PTQ: It quantizes a pretrained model without requiring additional fine-
tuning steps. It can either use a calibration dataset or can be performed
without any such dataset [[133] in a data-free manner. It avoids need
of fine-tuning, but degrades accuracy for low precisions.

QAT: It finetunes the quantized model by simulating the effect of quantization
function by using Straight-Through Estimator (STE) [134] to approximate gra-
dients through the non-differentiable quantization function in backpropagation.
This makes the model robust to quantization noise but requires additional

expensive training pipeline

ImageNet dataset.

3) Dealing with outliers: Dettmers et al. [[128]] note that the
outliers in activation matrices in a few layers break the quan-
tization of LLMs. They quantize outliers to FP16 and other
activations to 8 bits to resolve this issue, thereby improving
accuracy but bringing challenges in the implementation.

The GOBO technique [123|] quantizes model weights and
embeddings. In every layer, ~99.9% weights follow Gaussian
distribution, their technique divides weights into two groups:
Gaussian and outliers (0.1%). They calculate the mean and
standard deviation of the layer’s weights. Then, if the prob-
ability of a weight belonging to this distribution is below a
threshold, it is considered an outlier. The outliers are stored
as it is (FP32). Not storing outliers leads to large accuracy
loss, but storing more than 0.1% outliers provides a marginal
improvement in accuracy. The Gaussian group weights are
quantized to just eight FP32 centroids (with <1% accuracy
loss) or sixteen FP32 centroids (with no loss). Then, only
a 3b index to the dictionary is required for each Gaussian
group weight. They reduce the number of multiplications by
expressing ax+bx as (a+b)x. Their technique allows memory
compression by 10x. Their technique is faster and more
energy efficient than the Tensor core-like design.

Mokey technique [129] quantizes both weights and activa-
tions. In the BERT-Large model, activations contribute more
than 50% of the memory footprint for token lengths above 512.
Unlike weights, activations cannot be quantized in the offline
stage, and they are also spread more widely than weights.
Their quantization approach works in three steps (1) They
generate a dictionary using “agglomerative clustering”, which
progressively merges nearby clusters to bring the cluster count
to the desired value. It leads to more accurate models than K-
means clustering. Their technique creates a bell-shaped pattern
with a mean of zero and a standard deviation of one. On
this pattern, they repeatedly apply agglomerative clustering to
quantize it to 16b FX dictionary of centroids, called “golden
dictionary” (GD). The same GD is used for all the models.
GD is symmetric around zero, so it requires storing only half
the entries. (2) Their technique profiles the model to collect
activation samples. Using them and the pre-known weight
tensors, they adjust the GD to fit every tensor. Specifically,
if the target tensor has mean and standard deviation as m and
s, they compute GD * s + m.

For every input tensor, their technique creates two dictio-

naries for each layer: a Gaussian group of values close to the
mean, which covers >98% weights and >95% activations; and
an outlier group of the remaining values. Although individual
activations depend on the input, their layerwise distribution
does not change much. (3) The weight tensors are encoded as
indexes to their dictionaries. During inference, their technique
outputs FX16 activations, which are converted into indices to
corresponding dictionaries before storing them in memory. All
weights and activations are quantized to 16-entry dictionaries
of FX16 centroids, which require only 4-bit indices.

For further simplification, they fit an exponential curve to
model the GD since the near-mean values of a Gaussian
distribution follow an exponential function of the form a® +b,
where () is an integer. Then, instead of computing 256 possible
products, they need to compute only 15 exponent sums based
on the property a?*a? = a9*P, This is shown in Figure An
actual MAC operation is required in the rare case when either
weight or activation is an outlier. Their technique outperforms
previous quantization techniques.

Ey Ey
Ay=p+C W, = p+C
A, =p+C W, =p>+C

AW = A,Wo+A, W, +...
=pl*2+ Cpl+ Cp2+ C2+
4+5 4 5 2
p**5+ Cp*+ Cpd+ C2+...
Rangg&lf] }nge [0,7]
= (p3+p+...) + C(p+p*+...) + C(p'+p*t...) + NC2
Computed as: Exponents for Exponents for
1. Histogram of activations. Constant weights. Constant
exponents (Calculated while (calculated while
2. Weighted quantizing output of compiling)
reduction earlier layer)

Constant

Fig. 16. Computation of output activations in Mokey technique [129]

4) Combining pruning and quantization: Joint-way com-
pression applies two or more compression methods, such as
pruning and quantization, to gain additional savings. Most
CNN model compression techniques, including pruning and
quantization, are usually a two-step finetuning process. First,
the model is pruned and retrained, followed by quantizing
to low precision and finetuning. However, training the com-
pressed model twice requires high computation time. Wang
et al. [124] propose a technique where quantization and
pruning steps are carried out in the same finetuning step on
downstream tasks using the pretrained models. The activations
are quantized using PACT [136]] technique, while the weights
are quantized using statistics-aware weight binning (SAWB)
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quantizer [140], which minimizes the quantization error utiliz-
ing first and second order moments. Their technique achieves
16x speedup over the unoptimized transformer models across
language and vision tasks by employing 4-bit quantization
and 50% weight pruning. Mishra et al. [83] first perform 2:4
sparsity-aware finetuning on a pretrained transformer, followed
by 8-bit PTQ of the pruned weights. The resultant vanilla
transformer and BERT models are 8x smaller than the original
model, with no loss in accuracy.

The authors of SpAtten technique [105] note that natural
languages have many redundancies due to adverbs, articles,
prepositions, etc. They assess token importance and then prune
unimportant tokens based on attention probability values.
More tokens are pruned for longer sentences since they gener-
ally have higher redundancies. Token pruning optimizes both
attention and FC layers. They further note that the correlations
tracked by some of the heads in MHA are redundant. They
assess the impact of each head on the output and then prune
unimportant heads. Both pruning operations are done in a
cascaded manner: A pruned element is removed from all the
subsequent layers, and thus, deeper layers need to process
fewer tokens/heads. This is shown in Figure Token and
head pruning decrease sentence and feature lengths, respec-
tively. While conventional activation pruning decides based
on activation magnitude, their technique decides based on
attention probabilities accumulated over layers.

MNNFast and A3 [141] do not reduce DRAM accesses,
and hence, they are useful for compute-bound discriminative
models (e.g. BERT) only and not only for memory-bound
generative models (e.g. GPT-2). Whereas SpAtten reduces
memory accesses and, thus, optimizes both types of models.
A3 prunes QKV vectors of a token in one head, and MNNFast
prunes V vector; hence, they bring down computation of
attention layers, but not FFN layers. In SpAtten, once a token
is pruned, those computations in subsequent layers are also
avoided, and thus, it optimizes FFN layers also.

They propose progressive quantization of attention inputs
to further reduce memory accesses. They observe that when
a few tokens are dominant, the quantization error is low, and
just MSB (most significant bit) is sufficient, whereas, for a
smooth distribution, both MSB and LSB (least signifcant bit)
are required. Hence, they perform more aggressive quantiza-
tion when some attention probabilities are dominant. They
first bring MSBs of attention inputs and compute attention
probabilities. If the highest probability is below a threshold,
it indicates a flat distribution. Then, LSBs are also fetched,

Further pruned 6nd
token and 5th head

Pruned 2nd token
and 3rd head

and probabilities are recomputed. Effectively, this technique
uses more bits for harder inputs. Overall, they reduce memory
accesses by performing extra computations, which benefits
memory-bound models (e.g., GPT-2). This technique is not
used for compute-bound models (e.g., BERT). Since attention
layers frequently use softmax, which can reduce quantization
errors, the quantization technique has negligible impact on
accuracy.

They further propose a hardware accelerator. To support
pruning, they design a highly parallel top-K engine, which
finds K most influential heads or tokens in O(n) time, whereas
a sorting engine would take O(nlogn) time. The engine
supports the splitting and concatenation of LSBs and MSBs.
SpAtten is evaluated across 30 well-known benchmarks, such
as GLUE, SQuAD, and Wikitext-2, on BERT and GPT-2 net-
works. The co-designed pruned Transformer and accelerator
reduce the memory access by 10.0x with negligible accuracy
loss and achieve significant speedup and energy savings on a
wide range of platforms, including Raspberry Pi ARM CPU,
TITAN Xp GPU, Xeon CPU, and Nano GPU.

TABLE VI
QUANTIZATION GRANULARITY

Granularity Remark

Per-Tensor Quantizes each tensor in the network differently. It
accounts for different distributions of weights and

activations.

Per-Channel It quantizes each channel of a tensor differently. It
is more accurate than per-tensor, but requires more

metadata and quantization steps during inference.

Per-Head Each head in the MHA has different quantization
scale. In language/vision tasks, some words/regions
are more important, leading to different patterns of

self-attention applied to different parts of the input.

Per-Token/Patch It quantizes each element in the token/patch vector

[142] with different quantization scales
Weight-group Each group within a single weight matrix has differ-
1431 [144] ent scale value. Especially useful when the embed-

ding has a complex or non-uniform weight distribu-
tion.

C. Classification based on granularity of quantization

A transformer model can be quantized across different
layers and levels of granularity, such as head-wise, channel-
wise, embedding-wise, etc. The main challenge with trans-
former quantization is the difference in the range of parameters
between different MHA and FFN layers, and therefore using
similar scale parameters can lead to results in strong outliers.



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

X

Al
]

[Tx1] [Gex1]
A X A B

(a) Per-Tensor  (b) Per-Token/

Embedding

(c) Per Group
Embedding

(d) Per-Tensor/
Per-Layer

(e) Per-Channel/
Per-head

(f) Per-head Group

Fig. 18. Quantization techniques. A: Quantization parameter, C;: Input Channel Dimension, C,: Output Channel Dimension, T: Token Dimension, Ge: Number

of Embedding Groups, Gh: Number of Head Groups

Also, previous works have shown that accuracy of a ViT
model degrades by quantizing the layer norm and softmax
operators [125]. Table summarizes the methods based on
their granularity and Figure [T8] illustrates these methods.

1) Per-Tensor Quantization: Per-tensor quantization is a
process of quantizing different tensors (weight and activation
tensors) with different quantization scale parameters instead
of possessing the same scale for the layer. This scheme is
extremely beneficial to attain good accuracy as weight and
activation tensors can have varying distributions.

2) Per-Channel Quantization: Per-channel quantization is
a commonly used method for CNNs, where each channel of
a weight filter/activation map is quantized to different preci-
sion or scale. Per-channel transformer quantization involves
independently quantizing each dimension in each weight
tensor matrix with different scale values. This method is
more accurate than the per-tensor quantization as it considers
each channel’s statistical properties, giving more fine-grained
control over each channel. However, this technique can be
computationally more expensive than per-tensor as it requires
storing more quantization parameters and quantization steps
during inference.

3) Per-Head Quantization: Per-head quantization is a pre-
cise technique that is particularly useful in the case of a model
with different attention head distributions, where each individ-
ual head in an MHA module is quantized with a different scale
or precision. This process is extremely helpful for Transformer
models or text/image inputs with varied data distribution.
In language tasks, a few words/tokens in a sentence exhibit
more importance than words to better understand the overall
meaning of a sentence, leading to different patterns of self-
attention applied to different parts of the input. In vision
applications, a few regions in the input image may have more
variability in color or texture than other set of pixels, leading
to different feature distributions and requiring the model to
learn features using a varied weight distribution.

4) Per-token/Per-Embedding/Per-Patch Quantization: The
per-token and per-patch quantization methods refer to quantiz-
ing the sequence vector for language task and patch sequence
for vision application, respectively, with different quantization
scale values. This kind of fine-grained optimization for the

specific characteristic in the token/patch can lead to better
accuracy, although the number of additional quantization pa-
rameters increases with an increase in the embedding size.

ZeroQuant [142]] is based on multiple contributions in
hardware-friendly quantization grouping scheme, layer quanti-
zation learning method and optimizing the inference backend
to achieve speedup on different devices. This method applies
dynamic group-wise quantization for the weight matrix and
token-wise quantization for the activation tensor. The op-
timized inference backend reduces the cost of quantization
and dequantization operations to achieve speedups on INTS-
supporting tensor core GPUs. ZeroQuant proposes a knowl-
edge distillation for Mixed Precision Quantization, where the
Transformer is quantized layer-by-layer to Int4/Int8 precision.
The method achieves optimal accuracy and speedups for BERT
and GPT-3 (350M parameters) but cannot maintain accuracy
for a large-scale GPT model with 175B parameters.

5) Group Quantization: Group quantization is a process
of partitioning the weight and activation parameters within a
layer into several groups and quantizing them with different
precision or scale. Per-embedding group quantization [144]
technique divides the embedding weights into groups, and
each group is quantized differently using a different set of
quantization parameters. This type of group quantization is
particularly useful when the embedding has a complex or non-
uniform weight distribution. It allows the quantization parame-
ters to be tailored to the specific characteristics of each group.
This technique can enhance the transformer model’s accuracy
by allowing the quantization parameters to be customized for
each group of embedding weights. Q-BERT [143] divides the
layer parameters into groups, typically 128, and quantizes
based on the importance of each group using second-order
Hessian approximation in the range of 4 to 16. Q-BERT [143]]
is a group-wise, mixed-precision quantization scheme that uses
the second-order Hessian information [145]] to evaluate the
sensitivity of the different tensors on the overall accuracy.
Their technique achieves 3-bit and 8-bit weight and activation
bitwidth, respectively.
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D. Classification based on resultant bit-width or data-type

The easiest and most common quantization technique to
preserve accuracy is to use integer arithmetic for linear
operations while retaining floating-point precision for non-
linear operations. However, this mixed precision approach
requires the support of custom hardware with a large area for
processing floating-point precision into integer-only hardware,
thus introducing overhead for interaction between integer and
FP precision. Several PTQ methods chose to leave softmax and
activation functions in floating point precision as quantizing to
low precision may lead to a signifcant drop in model accuracy.

1) Integer-only Quantization: Integer-only quantization
methods propose efficient methods to quantize every layer,
tensor, and operation, both linear and non-linear, to inte-
ger precision without affecting the accuracy. The int-only
quantization methods eliminate the need for quantization and
dequantization steps and enable entire network inference in a
uniform integer domain.

I-BERT [146] quantizes all the layers in a BERT model,
GELU, Softmax, and LayerNorm operations to Int8 precision
and achieves 2.4-4x speedup over FP32 BERT model on
Nvidia T4 GPU. I-ViT [147] utilizes Dyadic quantization [148]]
for int-only quantization of linear matrix multiplication. FQ-
ViT [149] is a fully quantized model incorporating a log2
quantization and an integer softmax operation. Specifically,
the authors introduce Log-Int-Softmax (LIS) to quantize the
attention maps to 4 bits and replace the multiplication with a
bitshift operator. Rock et al. [131] quantize all tensors and
operations, including LayerNorm, SoftMax and GELU, of
BERT to uniform Int8 precision. Their technique leads to only
a minor drop in accuracy.

2) Binarization/Ternarization: Binarization and ternariza-
tion are extreme forms of quantization, where the model
parameters are represented using only two and three values,
respectively, thereby significantly reducing memory consump-
tion. While binarization requires only {1, -1} values, ternary
weights are either {-1, 0, 1}, and hence the memory reqiure-
ment decreases by 32x and 16Xx. respectively. These tech-
niques often go hand-in-hand with PTQ or QAT methods and
can be very well utilized for low-power devices such as MCU.
Although binarization or ternarization can be very effective in
significantly reducing the storage space, they can also impact
the model accuracy due to extreme forms of low-precision
implementation. While the floating point representation offers
the highest level of accuracy, extreme quantization is the most
efficient for low-power computational platforms.

Although binarization methods have achieved acceptable ac-
curacy on Convolutional architectures [[150, [151]], they cannot
be directly applied and generalized on transformer models.
For instance, BiBERT [152]] showed that directly binarizing
the model parameters of BERT can cause a drop of 20
points in GLUE dataset [153]]. BIBERT proposes a bi-attention
module, depicted in Figure [I9] where the attention activations
are binarized using a binarization function. The bi-attention
module also replaces the softmax function with a bool function
that binarizes the attention values to {0, 1}. The ignorance
of softmax can cause quantization errors and damage the
attention activations as the model is trained with softmax

20

operation in the MHA modules throughout the network. The
authors also propose Bitwise-Affine Matrix Multiplication
(BAMM), which used to support the computation between
the binarized attention score (B 4) and binarized vector (By/)
during inference.

Bi-Attention

1

« DRE <0000 +BEAD
oiED mEpE
o acan

bool(.) BAMM
- -, B AM
1 1A _
B0 >

head,... head

Fig. 19. Bi-attention [152]

Binarized Transformer (BiT) [154] is a multi-stage
distillation-based binarization technique, where the authors
first distill the information from a full precision model to a
medium quantized model (lower precision but not binarized
network). The intermediate reduced precision network then
acts as a teacher model for the binarized student transformer
network. This two-step process ensures good transferability
between the large-sized full precision model and the bina-
rized student model, which has been shown on the BERT
model in the GLUE benchmark dataset. The authors of XTC
[L55] first conducted a study to estimate the importance of
hyperparameters and training strategies from several previous
works. They finetune many existing compressed BERT models
and conclude that longer training epochs and smaller learning
rate values can aid quantization compression. Based on the
observations, they propose methods to quantize BERT while
achieving acceptable model performance and 50x size reduc-
tion. BinaryBERT [156] proposes a ternary weight splitting
method, where a ternary model is chosen as a proxy, and
the goal is to bridge the gap between a binary and full
precision model. Binary Ensemble BERT (BEBERT) [157] is a
technique to overcome the limitations of previous binarization
methods, which integrates several Binary BERT models in an
ensemble fashion using AdaBoost. It incurs only a minimal
accuracy loss of 0.3% over the full-precision BERT model.

3) Emerging Numerical Formats: The emerging numerical
formats such as Bfloatl6 [158]], Microsoft Floating Point
(MSFP) [159]], Tensorfloat32 [160], and FP8 [161 [162] pro-
vide better computational efficiency and accuracy for several
transformer workloads. Bfloatl6 is a 16-bit floating-point
format developed by Google, consisting of 8 exponent and
7 mantissa bits. This precision offers significant speedups for
BERT models while maintaining comparable accuracy to using
FP32. MSFP is a floating-point datatype for efficient cloud
inference. MSFP shows promising results on the BERT model
as it incurs 3x lower cost compared to Bfloatl6 with less



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

than 1% drop in accuracy. TensorFloat32 (TF32) is a precision
format developed by Nvidia, which provides an easy path to
accelerate FP32 on A100 and H100 GPUs. This format uses
1 sign bit, 8-bit exponent (same as FP32 precision) and 10-
bit mantissa (same as FP16 format). Finally, FP8 is an 8-
bit floating-point format that is mainly used for low-power
inference, which allows a larger dynamic range at the expense
of precision [162]. The exponent and mantissa bits for FP8
can be set dynamically. For example, FP8 can take any of
the following two formats: (1-bit sign, 5-bit mantissa, 2-bit
exponent) or (1-bit sign, 4-bit mantissa, 3-bit exponent). All
these formats discussed here offer several benefits over the
traditional floating-point precision, enabling faster and more
efficient inference with reduced memory bandwidth.

Table provides classification of quantization methods
based on the bitwidth to which weights or activations are
quantized. It can be observed from the table that majority of
the methods use 8 bits for transformer quantization as this level
provides the least accuracy loss while reducing the precision.

TABLE VII
CLASSIFICATION OF QUANTIZATION METHODS BASED PRECISION
Precision References
Binary/Ternary | [152}1154H157]
3-bit [1230 [127]
4-bit [122H127]
6-bit [1220 [125]
8-bit (50, 1831 1122} 11244128 [130]
16-bit [130]

E. Quantitative comparison of quantization techniques

In Figures 20(a), 20(b) and [20{(c), we compare the model
size and accuracies of several quantization methods on DeiT-
base, tiny and small backbone configurations, respectively. The
methods we compare on DeiT are PTQ-ViT [125], PSAQ-ViT
[139], PSAQ-VIiT V2 [126], FQ-ViT [149], PTQ4ViT [122]
and I-VIT [147].

The model size of the quantized model after quantizing the
weight and activation parameters to same bitwidth using dif-
ferent quantization methods the remain same. This is because
they differ only in the quantization function. However, the
accuracy of a quantization method depends on the quantization
process in terms of how well the knowledge is transferred
from full precision model to quantized model or how well
the method handles the outliers. For example, PSAQ-ViT V2
transfers the knowledge better than PSAQ-VIiT as the teacher-
student model in the former method is more efficient than the
patch similarity in the later method. It transfers the attention
distribution from high precision weights to low precision ones
well. Ultimatley, the model performance of quantized models
depend on the method used.

VII. EFFICIENT TRANSFORMER DESIGN

The complexity and computational demands of transformer
models hinder their deployment in resource-constrained envi-
ronments such as embedded systems. Therefore, researchers
have developed lightweight transformer models, which still
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Fig. 20. Comparing accuracy and model size of DeiT-base, -small and -tiny
models on the following quantization technqiues: PTQ-ViT [125], PSAQ-ViT
[139], PSAQ-ViT V2 [126], FQ-ViT [149], PTQ4ViT [122] and I-VIT [147].

achieve high accuracy. These models can bring the benefits
of deep learning to a wider range of tasks and devices. This
section reviews the design principles of few such techniques.
Table provides a classfication of these methods.

A. Methods for NLP

To retain long-term/global information, the self-attention
operation updates each token’s representation by attending to
all other tokens in the sequence. However, this requires a
quadratic computation cost with respect to the token sequence
length for that layer. In addition, transformers perform batch-
wise matrix multiplication to learn global representations in
MHA. These operations incur high overhead. The goal of
efficient transformer variants is to avoid such costly operations
and replace quadratic-complexity MHA operations with linear-
complexity operations.

Reformer: Kitaev et al. [163] utilizes locality-sensitive
hashing (LSH) method to lower the time complexity of tra-
ditional self-attention from O(N?) to O(NlogN), where N
is the sequence length. The general idea of LSH is to reduce
the dimensionality of the data while preserving the similarity
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Fig. 21. (a) Locality-sensitive hashing method in Reformer [163]]. (b) Self-attention operation in the classical transformer with O(N?) time complexity (c)
The execution methodology of attention with O(N) complexity in CosFormer [164]

TABLE VIII
CLASSIFICATION OF LIGHTWEIGHT NETWORK DESIGNS

Reducing Applying attention across channel dimension instead
complexity of spatial dimension [165], using element-wise op-
of attention | eration in attention computation [166], replacing
from softmax attention with ReLU attention [[167] or linear
quadratic to | function [164] or low-rank factorization of attention
linear [168]

Reducing Reducing number of heads [168]], depthwise convo-
number of | lution [165], group convolution and parameter-free
parameters layers [169]

Hybrid replacing 3x3 CONV in the bottleneck residual
convolution- | block with MHA [170], introducing local self-
attention attention into convolution [171], replacing MBConv
networks with MobileViT block in MobileNetV2 [51]]

Fusing local | [S1L117111172]

and global

features

Domains NLP [164, 1167, [168], CV [51} 165! 1166, [169H173]|

between the data points of high dimension. LSH attention
involves using locality-sensitive hashing to efficiently find the
nearest neighbors among the keys. This is achieved by assign-
ing each vector to a hash using a hashing scheme that ensures
nearby vectors get the same hash with high probability, and
then employing random projections to create multiple hashes
for each vector. The tokens within each chunk are attended
among themselves, resulting in O(NlogN) complexity. The
entire schematic of LSH in Reformer is summarized in Figure
[2IJa). The authors also use the concept of reversible residual
layers, where the activations are stored only once during
training, instead of L times, where L is the number of layers
in the model. The resultant transformer model is efficient in
terms of both latency and memory due to these two technqiues.

Linformer: Wang et al. propose Linformer [168], which
decomposes the dot-product attention operation into small
chunks of attention multiplications through linear projections.
Therefore, the quadratic self-attention can be executed using
a low-rank factorization of the original attention. The number
of heads is reduced compared to the baseline transformer, and
the decrease in the number of heads in MHA is compensated
with long input sequences. While the transformer inference

latency increases with an increase in sequence length, the
latency of the Linformer remains relatively flat. Thus, for long
input sequences, Linformer provides significant speedup over
transformer.

Performers: The authors of Performers [[167] introduce a
new approach called FAVOR+ to estimate the softmax self-
attention for models that have longer sequence lengths. The
Performers method require linear space and time complexity.
Therefore, this method is more efficient in terms of both
latency and memory compared to quadratic O(N?) trans-
former [2]] and O(NlogN) Reformer [163]] attention methods.
The authors utilize positive random features to generate an
estimate of the softmax function with a positive feature map,
which is essential for ensuring stable training. The Performer
model outperforms other models in terms of speed, memory
usage, and performance. The authors further demonstrate that
it is not necessary to approximate softmax to obtain good
results. Instead, they use ReLU attention to achieve superior
performance when training from scratch.

CosFormer: Qin et al. [164] propose Cosformer, which
replaces the quadratic softmax attention operation with a linear
function. The features are passed through ReLU to enforce
non-negative property before computing the similarity scores
to avoid aggregating negatively-correlated contextual informa-
tion. The attention weights are re-weighted using the cosine
function to enhance local correlations, which usually contain
relevant token information for NLP tasks. The quadratic at-
tention operation can be achieved in linear complexity using

the matrix product property as follows: ((b Q) (K )T) V=

»(Q) (¢ (K)" V). Figure [21(b) depicts the multiplication in
traditional transformer, where Query (Q) and Key (K) are
first multiplied resulting in an attention matrix, followed by
multiplication with Value (Q). Figure 21]c) depicts the linear
complexity attention in CosFormer, where first the Key and
Value matrices are multiplied, followed by attention-Key dot
product. The time complexity in both the cases are depicted
in Figures 21(b) and (c).
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Fig. 22. (a) Standard ViT model proposed by Dosovitskiy et al. [6]. It first flattens the input image into several patches. This resultant patches are processed
using a standard FC layer, followed by series of self-attention modules. (b) MobileVit Block [51]. This block replaces a few MBConv modules in MobileNetV2.
The input is a feature map from the previous layer. The local features are extracted using an n X n Convolution layer and global information is modeled
using a transformer. The local and global features are fused together using residual connection.

B. Methods for Computer Vision

While efficient transformer design methods for NLP tasks
focused predominantly on optimizing attention, efficient mod-
els for vision applications aim to curate lightweight models
that can run efficiently on resource-constrained devices. In this
subsection, we focus on such efficient variants in computer
vision field.

MobileViT: MobileViT [51] combines the strengths of stan-
dard convolution and attention mechanism and presents a new
approach for better local-global context fusion. The authors
replace the traditional Mobile Inverted Residual Convolution
(MBConv) layer in the upper stages of the MobileNetV2
model [174] with the MobileViT block to obtain better global
representation. Using a self-attention mechanism, the Mobile-
ViT block substitutes the local processing in convolutions with
global processing. The local representations and the global in-
formation are concatenated to generate enhanced local-global
representations. The hybrid unit helps to learn better represen-
tations with fewer parameters and a simple training procedure.
This modified approach surpasses lightweight CNNs with a
similar parameter budget on the ImageNet dataset. Although
MobileViT reduces the number of parameters and increases
accuracy, the MHA module is still a performance bottleneck as
it requires quadratic complexity. The MHA module is directly
inherited from the original vanilla transformer. The sequence
of operations and details of each module is summarized in
Figure 22]

MobileViTV2: MobileViTV2 [166] enhances the Mobile-
ViT network by introducing a separable self-attention layer.
This enhanced separable module uses an element-wise oper-
ation for self-attention computation, thereby bringing down
the MHA complexity from quadratic to linear, with respect to

the patch sequence length. The MobileViTV2 model replaces
the expensive batch-wise matrix multiplication with a context-
aware element-wise operator, as depicted in Figure 23] The
separable self-attention layer is explained in detail in Figure
24} which requires only O(N) complexity. Although Mobile-
ViTV2 has higher number of parameters than MobileViTV1,
its latency is lower. The MobileViTV2 network achieves
75.6% accuracy on the ImageNet dataset, performing better
than MobileViT by 1% and running 3.2 faster on iPhonel2.

k
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Fig. 23. (a) Traditional self-attention in MHA. (b) Separable self-attention
in MobileViTV2 [166], which replaces the expensive batch-wise matrix
multiplication with element-wise linear operations.

Mobile-former: The Mobile-former network [[172] employs
parallel MobileNetV2 and Transformer modules with two-
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(a) Traditional Self-attention

(b) Separable Self-attention in MobileVitV2

Fig. 24. (a) Computation in the traditional self-attention Each token in
Query attends to all other tokens in Key, resulting in O(N?) complexity.
(b) Comparison of separable attention [166] with self-attention [2]. In this
enhanced module, the input is processed using three branches Input (I), Key
(K) and Value (V). The input I maps each token in input X to a scalar
through an FC layer of Weights W . This weights serve as Latent node L. The
separable attention computes context scores only with respect to this latent
token L, resulting in O(N) complexity. The context scores cs are used compute
context vector ¢,, which is equivalent of attention matrix in self-attention.

Shared Weights

Linear

Fig. 25. Recursive Atrous Self-Attention (RASA)

way bridges (Mobile—Former and Mobile<Former). It seeks
to achieve a bidirectional fusion of local and global feature
representations at each level in the network. The input to the
MobileNetV2 is the input image, while the transformer module
takes a few learnable tokens as input, which are used to encode
the global features of the input image. The mobile block
is an MBConv block from MobileNetV2 [174], where the
ReLU is replaced by dynamic ReLU [175]. Mobile—Former
employs lightweight cross attention to fuse the local represen-
tations with global features. The Former block is a standard
transformer module that consists of MHA and FFN. The
Mobile<—Former unit bridges from global to local features.
The Mobile-Former network attains an accuracy of 77.9%
with 294M FLOPs and exceeds MobileNetV3 accuracy by 1.3
percentage point on the ImageNet dataset. The network also
outperforms DETR [8]] by 1.1 AP on the object detection task.

LVT: Lite Vision Transformer [171] propose two new
layers, viz., Convolutional Self-Attention (CSA) and Recursive
Atrous Self-Attention (RASA) in the transformer architecture.
CSA is used in the first stage of LVT whereas RASA is used in
last three stages of LVT. They note that CONV layer is more
effective in extracting low-level features. They introduce local
self-attention into a 3*3 CONV. Compared to transformers,
this leads to enhanced low-level features, improving the gen-
eralization capabilities. RASA uses multi-scale context with
a single kernel for computing similarity between Q and K,
as shown in Figure RASA processes features recursively
using “atrous self-attention” as the activation function. This
allows RASA to improve model depth without increasing
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parameter-count.

TFormer: TFormer [169] network proposes techniques
for making CV transformer transmission-friendly. It employs
many parameter-free on-the-fly operations along with tra-
ditional attention multiplication. Specifically, the authors of
TFormer proposed a hybrid layer and partially connected
feed-forward network (PCS-FFN), which replace the MHA
module and FFN unit, respectively. The hybrid layer comprises
only parameter-free layers, such as max and average pooling,
whereas the PCS-FFN layer is based on group convolution to
reduce the model parameters. These ideas reduce the size of
the trained TFormer model that is transmitted from cloud to
the inference hardware. The TFormer models outperform DeiT
[52] and PVT [[176] in terms of the number of parameters and
model accuracy on a wide range of tasks.
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Fig. 26. EdgeNeXt [165]

EdgeNeXt: EdgeNeXt [165] is a lightweight architecture
with hybrid convolution and attention modules. The authors
propose a “split depth-wise transpose attention” (STDA) unit
to split the input tensor into multiple channel groups. This
module utilizes NxN depthwise convolution and pointwise
operations for spatial mixing and channel mixing, respectively.
EdgeNeXt uses cross-covariance attention that applies atten-
tion operation across the channel dimension instead of the
spatial dimension to reduce the complexity from quadratic to
linear. The network also employs adaptive kernel sizes, where
small kernel sizes are used in the early stages, and large sizes
are used in the latter part of the Transformer model. Figure [26]
illustrates the proposed EdgeNeXt module, and the network
attains 71.2% accuracy on the ImageNet dataset with only
1.3M parameters.

BoTNet: BoTNet network [170] seeks to improve the global
representation of feature maps. Bottleneck Transformer (BoT)
module is obtained simply by replacing the 3x3 convolution
in the bottleneck residual block with MHA. Figure [27|a)
illustrates the bottleneck module in the ResNet50 network
[L77], while Figure b) depicts the enhanced BoT module,
which is obatined by replacing the middle convolution with a
self-attention unit. The overall BoTNet model is constructed
by replacing the last three bottleneck modules of a standard
ResNet50 model with the BoT module without changing any
other hyperparameters. BoTNet achieves 84.7% accuracy on
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the ImageNet dataset and is 1.64 times faster than EfficientNet
on the TPUV3 accelerator.
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Fig. 27. (a) Bottleneck Module in the traditional ResNet Family [177]. (b)
BoTNet [170] module, which replaces the 3 x3 Convolution with MHA

C. Quantitative comparison of lightweight CV transformer
techniques

In Figure 28] we compare the ImageNet top-1 accuracy and
parameter-count of vision transformer models summarized in
this section with the baseline transformer models, viz., DeiT-
tiny [52], ViT-small [6]], T2T-ViT [178] and CNN models,
viz., MobileNetV1 [179], MobileNetV2 [174], MobileNetV3
[L80]. A positive correlation (not necessarily linear) exists be-
tween the number of parameters and accuracy. Larger models
generally achieve higher accuracy scores, although there are
diminishing returns as the model gets larger.

Accuracy vs Number of Parameters
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781 . Tformer
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Fig. 28. Comparison of ImageNet top-1 accuracy and number of parameters of
lightweight vision transformer models: MobileViT [51], MobileViTv2 [166],
Mobile-former [172]], LVT [171]], TFormer [169], EdgeNeXt [165]

This indicates that increasing the number of model parame-
ters can improve the model’s ability to learn and generalize to
new data. There is a wide variation in accuracy scores across
different models, even when they have a similar number of
model parameters. This suggests that other factors, such as
the model architecture and training process, are crucial in
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determining model performance. Also, adding more param-
eters beyond a certain point may not significantly improve
accuracy. For instance, T2T-ViT [178] has the highest number
of parameters among the compared models, though the accu-
racy is less than that of MobileViTV2. Some models, such as
MobileViT, achieve high accuracy with relatively small model
sizes, indicating that they are more efficient at learning from
the available data.

VIII. NEURAL ARCHITECTURE SEARCH

Neural architecture search (NAS) is a rapidly evolving
research field which automates the end-to-end manual design
process of a neural network for a given task and dataset.
Hardware-aware NAS (HW-NAS) is a class of NAS that
focuses on automatically searching accurate and hardware-
efficient models [181]]. The searched transformer networks
through NAS and HW-NAS often outperform manually de-
signed models in terms of accuracy and compute performance
on the target hardware [182].

This section first provides a brief overview of NAS tech-
niques targeting the transformer family and then summarizes
a few works which utilize NAS for model compression. Table
presents a classification of transformer NAS methods.

TABLE IX
CLASSIFICATION OF TRANSFORMER NAS METHODS

Search method
Reinforcement Learn- | [183]
ing (RL)
One-shot/Differentiable [1844191])
Evolutionary [192194]
Once-for-all Search [46l 153} [195H199]
KD [200-202]
Accuracy Predictor [203]
Training-free search [204: 1205]
Search Parameter
Head Number [46, 184} [188] 1195} 196} 203} 204} 206]
QKYV Dimension [46l 196] 1204, 206]
FFN Dimension [46) 184} 189} [195H197} 1204} 207} 208]
Embedding Dimension [46l 1841 1189, (196 204]
Network Depth [46} [185] 186, 1196, 204} 208]
Kernel & Channel size [183L 1185} 188} 1193, 1197, (198 203]
Network Type
Transformer (enc-dec) [531 1189} 1192, 1203} 205]
BERT [190; 209-211]
Computer Vision [46 1184, 118511891 [194H197, 1204} 1206} 207]

A. Overview of Neural Architecture Search

A NAS method typically consists of three components: (1)
search space, (2) search strategy and (3) evaluation phase. The
first step is to efficiently curate the search space consisting
of all possible architectures. The transformer search space
typically consists of the architectural hyperparameters, such
as Q-K-V FC dimensions, the number of heads in the MHA
unit and the inner dimensions of the FC layer in the FFN/MLP
module at each level of the network. The depth of the trans-
former model, i.e., the number of encoder or decoder layers,
is also considered in the search space. The vision transformer
model includes the patch size and patch embedding size in the
search space, while the hybrid attention-convolution search
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Fig. 29. Overview of transformer Neural Architecture Search Methodology. The main step in the NAS process includes building primitive search elements,
search space followed by applying a search methdology to search for an efficient transformer model

space considers the kernel and filter size of the convolution
operation. The search strategy automatically discovers top-
performing architectures from the predefined search space for
a dataset. The search algorithm outlines a methodology to find
an optimal model from a pool of all possible networks. The
evaluation phase is the most critical step, which evaluates
the performance of the predicted architecture. It compares
different neural architectures predicted by the search algorithm
to properly guide the search process in the direction of finding
an optimal model. The flow of a transformer NAS algorithm
is illustarted in Figure 29]

Since a model searched for one hardware platform may
not be optimal for other platforms, HW-NAS methods [181]]
include the performance metrics of the underlying hardware
platform in the search method as a multi-objective opti-
mization function. For instance, Hardware-aware Transformers
(HAT) [53] showed that the NLP transformer specialized for
GPU runs faster on GPU than CPU and vice versa for similar
validation accuracy.

B. Classification based on Transformer Search Space

The transformer search spaces can be classified into two
types based on the operations present in the primitive element
set.

1) Attention-only Search Space: The search elements in
the self-attention-only search space include hyperparameters
of the transformer attention module, such as number of heads,
FFN dimension, and QKV FC matrix sizes. HAT [53] and
AutoFormer [46] are examples of such search methods based
on the vanilla transformer and ViT, respectively.

2) Hybrid Attention-Convolution Search Space: The hy-
brid attention-convolution search space consists of attention
and convolution parameters within the transformer backbone
network. Although convolution operations are primarily used
in vision applications, they are also utilized in a few NLP
applications, such as text classification. TextNAS [212], GLiT
[197] and BurgerFormer [198] are examples of hybrid search
space, which includes the kernel and channel size of the
convolution along with the self-attention parameters.

C. Classification based on Search Method

The search algorithm is designed to find the best-performing
architecture from the predefined set of primitive operations
without significant human intervention. The search strategy
has evolved greatly over the last few years, which includes
reinforcement learning (RL) [213], One-shot/Differentiable

[214], Evolutionary [215]], Once-for-all [216], Random search
[217], low/zero cost proxy search [218]], Bayesian Optimiza-
tion [219]. We now describe the search methodology and
summarize a few transformer-centric search methods.

1) Reinforcement Learning Search (RL-NAS): The pioneer-
ing NAS method based on RL [213] consists of an RNN
model as a controller which interacts with the environment of
all possible neural architectures. In each search iteration, the
controller predicts the best architecture that is likely to produce
good model performance, i.e., accuracy, and the predicted
model is trained end-to-end. UniNet [183] is an RL-based
method to search for the optimal combination of convolution,
MHA and MLP-mixer layer [220], along with their depth
and channel dimension throughout the transformer backbone
network. As-ViT [207] utilizes the RL-NAS method to find
the base ViT architecture, which is further scaled up to meet
the accuracy and computation budget requirement. Compiler-
aware architecture search [221] is an RL-NAS method to
search for a BERT model network that achieves good accuracy
and has low latency on mobile CPU and GPU platforms.

2) One-shot/Differentiable Search: The one-shot search
methods reduce the computation time by creating a supernet-
work of all possible neural architectures based on a predefined
search. This approach uses weight-sharing to reuse the same
weights for multiple architecture combinations, allowing the
search algorithm to train and evaluate using a single big
network instead of individual small models. DARTS [214] is
a one-shot method that uses a learnable architectural param-
eter for each operation in the search space, formulating the
search process in a differentiable manner. The final searched
architecture is obtained by sampling the best operation at
each level of the network. DARTSformer [187] addresses
the problem of applying DARTS directly on the transformer
search space. They show that the memory consumption of
the transformer supernetwork increases with hidden size. The
authors combine DARTS with “reversible networks” [222]] to
search without running out of memory. This is achieved by
reconstructing the input of a reversible network layer from its
output during backpropagation, requiring only the output of
the last layer to be stored. This reduces the memory burden
on the supernetwork and allows for higher hidden sizes and
more candidate choices. The searched network for machine
translation performs better than the vanilla transformer.

Planer [191] is a differentiable search method [223]], which
takes a transformer model and a target latency value to produce
a sparsely-activated optimized network that meets the latency
budget. The search space includes different combinations of
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FFN layer, number of heads and mixture-of-expert (MoE)
layers. MoE layers consist of multiple expert layers, where
each path predicts a specific subset of inputs. The output
prediction accuracy is enhanced by combining the outputs
from all the paths. The transformer models searched using
Planer achieve 2x speedup over vanilla transformer on a GPU
while maintaining the baseline accuracy.

You Only Compress Once BERT (YOCO-BERT) [224]]
first constructs a search space of 103 architectures, featuring
all combinations of a BERT model. The optimal model for
a given performance constraint is then searched using a
novel stochastic nature gradient optimization method. ViT-
Slim [108] is another one-shot framework to search for an
efficient architecture over three important modules - MHA,
FFN and patching mechanism.

3) Evolutionary Learning Search: The evolutionary learn-
ing search algorithms [215] use the principle of natural evolu-
tion, such as selection and mutation, to find optimal neural
architectures. The genetic algorithm (GA) in evolutionary
learning is an iterative process of evaluating selected individ-
uals according to a fitness function and generating a new set
of architectures using the characteristics of best-performing
models from the previous generation. Initially, a population is
randomly generated by sampling different architectures from
a large pool of networks in the search space. Each individual
is a specific neural architecture trained on the target task
to determine fitness. The weaker networks have less chance
of surviving in the current generation as they compete with
candidates of a higher fitness function. The next generation
of top-k networks is obtained by mutation or crossover of
top individual models in the current generation of networks.
Although this search methodology is very effective, it requires
a large amount of computation time and resources.

Evolved Transformer (ET) [[192] and Primer [[193]] are exam-
ples of evolutionary learning methods to find optimal encoder-
decoder and decoder-only self-attention networks, respectively.
ET allocates more computing resources to promising models
and finds efficient cell/graph architecture stacked multiple
times to form the encoder and decoder units. Primer resolves
the hurdles of the search method in Evolved Transformer and
uses a small proxy dataset to search for optimal models, which
are then transferred to the large target dataset. The searched
ET and primer models achieve superior validation metrics than
the vanilla transformers on language tasks.

Real-time Style Transfer [194] is a hardware-aware CV
transformer search method. The submodules of the ViT back-
bone for style transfer are searched using evolutionary search.
The searched network is at least 2.1 faster than the baseline
model for style transfer on Xiaomi Redmi 10 mobile and
Raspberry Pi 3 embedded devices.

4) Once-for-all search: Once-For-All (OFA) [216] is a
two-step method which combines the one-shot approach and
evolutionary learning search process. The OFA method first
trains a supernetwork of maximum dimensions along all the
hyperparameters, i.e., MHA heads, FNN dimension, kernel
and filter size. During the second step of the evolutionary
search process, the predicted models are sampled from the
pretrained supernetwork and validated to obtain validation
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metrics without additional finetuning. This search method has
the advantage of avoiding training of every sampled network as
weights for the sampled models are retained from the trained
supernetwork. Several transformer methods rely on the OFA
technique by training a large transformer supernetwork and
applying evolutionary search for the optimal number of heads
and FFN dimension.

HAT [53] is an HW-NAS method, where the search space
includes key transformer hyperparameters, namely, the number
of heads, MLP dimension, and the number of encoder/decoder
blocks. The search space is elastic in such a way that the
encoder/decoder module at each stage can choose a different
set of hyperparameters. The search methodology follows the
once-for-all technique, where a supernetwork of the highest
dimension is initially trained, and different submodels are
sampled to perform the evolutionary search. The search pro-
cess incorporates the target latency for different devices, viz.,
Intel Xeon CPU, Raspberry Pi ARM CPU, and Nvidia TITAN
Xp GPU platforms. The searched model for Raspberry Pi-4
embedded device on the WMT’ 14 translation task achieves
a 3x speedup with 3.7x fewer trainable parameters over
the baseline vanilla transformer. The searched subtransformers
reveal that GPU platforms prefer shallow model with wide
layers, while ARM CPU picks deep model with thin layers to
obtain optimal hardware performance.

Several vision transformer search methods, such as Aut-
oFormer [46], ViT-ResNAS [195]], NASformer [206], Burg-
erFormer [198], etc., also rely on OFA technique to search
for an optimal model. The OFA method first trains a large
Supernetwork of maximum dimensions and samples different-
sized models from the supernetwork to specialize for different
performance metrics, thereby significantly reducing the search
cost. The supernetwork comprises maximum dimensions, such
as QKYV, number of heads, embedding dimensions etc. The
objective function of evolutionary search considers different
performance related metrics in different ViT methods, such
as accuracy, model size and latency. The searched CV trans-
former models outperform SOTA CNN and manually designed
self-attention-based models, such as DeiT [52], in terms of
accuracy and number of parameters.

5) NAS using Knowledge Distillation: Knowledge distilla-
tion methodology can accelerate the NAS process by trans-
ferring the acquired knowledge from a large teacher network
to the student model. This allows the NAS algorithm to
evaluate the performance of the predicted subnetwork using
the teacher model. LightHuBERT [200] first trains a once-
for-all BERT supernetwork of maximum dimensions from
scratch using the loss function of the pre-training distillation.
During the search process, the subnetworks with different
sizes of embedding dimension, number of heads, FFN inner
dimension and network depth are sampled and evaluated using
the teacher model. The search process culminates when a
network with desired performance is reached. On several
speech recognition tasks, the searched LightHuBERT achieves
comparable predictive performance as the baseline teacher
model HUBERT [225]], even though it has 29% fewer model
parameters. AutoDistill [201] is a distillation-based search
method that utilizes multi-objective Bayesian Optimization
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(BO) to learn a small model by considering several objectives,
constraints and hardware performance. The authors include
layer-wise, progressive knowledge transfer, and a model pre-
training distillation into the search process.

6) Accuracy predictor based NAS: The search methods
based on accuracy predictors utilize an ML model as a
surrogate model to predict the accuracy of a predicted network
during the search process. The auxiliary model is previ-
ously trained on pre-collected samples of architecture-accuracy
pairs. LightSpeech [203]] is a search method to find the
optimal text-to-speech model based on the accuracy predictor.
The search space is a hybrid attention-convolution backbone
consisting of the number of heads and kernel size in the
convolution operation. The searched transformer is 6.5 x faster
than the baseline model on Xeon CPU E5-2690 v4 with similar
voice quality metrics.

7) Training-free Neural Architecture Search: The training-
free NAS methods rely on a set of performance evaluation
strategies based on the model architecture or gradient infor-
mation for quickly estimating the model accuracy. During
the search iteration, the estimated accuracy is used without
training the model, thereby significantly reducing the search
time. For instance, Abdelfattah et al. [226] devise a zero-cost
proxy method, where they assign a score to the neural archi-
tecture at initialization which is indicative of the validation
accuracy of just a single minibatch of data. LiteTransform-
erSearch [205] is a training-free search method to find optimal
transformer architectures for resource-constrained hardware
platforms. The authors establish a strong relationship between
the validation accuracy and the number of model parameters
of the decoder layer in the transformer, thereby substituting
the decoder parameter count as a proxy during the search
process. The authors integrated the zero-cost proxy metric
into the evolutionary search algorithm, where the accuracy is
obtained by the surrogate model and latency is computed from
the target hardware platform. The searched transformers attain
a speedup of 1.3x and 1.5x on Intel Core i7 CPUs and Nvidia
Titan Xp GPUs, respectively, over the baseline transformers
while achieving similar perplexity. TF-TAS [204] is a zero-
cost proxy method, which evaluates different configurations
of the CV transformer model at a low cost. The evaluation
is based on the synaptic diversity and synaptic saliency of
MHA and MLP units, respectively. The search time to find the
optimal transformer is just 0.5 days, while the supernetwork
training-based search requires 24 GPU days.

D. Application of NAS for Model Compression

The algorithmic development of NAS methods led to apply-
ing the search strategies to automatically solve combinatorial
problems. In this subsection, we review use of NAS meth-
ods for model compression, mixed-precision quantization and
other use cases.

1) NAS for Automated Pruning: The NAS-based prun-
ing methods apply the search methodology to automatically
remove the redundant parameters, providing an alternative
to manual pruning algorithms. Several BERT-centric pruning
methods, such as AdaBERT [209] and NAS-BERT [210],
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compress the large model into a small model on downstream
tasks. AdaBERT [209], LightHuBERT [200], AE-BERT [227]]
are examples of BERT compression methods using NAS prin-
ciples. NAS-BERT [210] is a task-independent compression
strategy to reduce the size of a BERT model, while AdaBERT
[209] compresses a pretrained BERT in a task-dependent
manner utilizing differentiable search [214]]. AE-BERT [227]]
is an automated compression methodology to find an submodel
for a target pruning ratio from a pretrained BERT.

2) NAS for Mixed-Precision Quantization Search: The
challenge in mixed-precision quantization is assigning the
optimal bit-width of each layer such that model size is reduced
without accuracy loss. If an “L”-layer transformer can be quan-
tized to one of the “b” possible bitwidth values, there exists bl
different quantized configurations. It is practically impossible
to finetune every combination to find the optimal mixed-
precision quantized model. Therefore, the problem of mixed-
precision quantization can be reformulated as a NAS problem,
thereby utilizing the search principles of NAS algorithms. AQ-
BERT [190] is a mixed-precision quantization search method
to assign different bit-width/precision to different encoder
layers of a pretrained BERT model and different precisions to
different sub-groups within a layer. The automatically searched
and compressed BERT networks show their effectiveness
on standard GLUE benchmarks and commodity hardware in
terms of accuracy and latency.

3) NAS for Hybrid Operator Search: NAS methods can
also be utilized to search for hybrid operators within a
transformer backbone network. We review two case studies to
demonstrate the usefulness of NAS in such scenarios. Liu et al.
[228]] include the conventional attention (O(n?) complexity)
and linear attention (O(n) complexity) from Cosformer [164]]
in the search space. They propose a search methodology to
find the best type of attention at each layer of the transformer
network such that the models are balanced in terms of time
complexity and accuracy. Compared to baseline transformers
that have quadratic complexity, their searched networks have
comparable accuracy on NLP and vision tasks, while having
much better compute efficiency.

The networks based on convolution and attention operations
achieve high accuracy; however, involve multiplications, which
are expensive. To boost hardware efficiency, researchers have
proposed networks that perform only addition [229] or bitwise-
shift operations [230]. Nevertheless, such non-multiplication
networks attain inferior accuracy. Shift AddNAS [189]] employs
a NAS method which searches the combination of multipli-
cation or non-multiplication operators at every layer of the
backbone transformer network to balance model accuracy and
hardware efficiency.The searched transformers on WMT’ 14
En-Fr and WMT’14 En-De NLP datasets outperform the
baseline transformers and HAT models in terms of latency,
energy, and BLEU score. The searched CV transformer model
also outperforms the ResNet50 and other CV transformers on
ImageNet dataset.
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Fig. 30. ImageNet accuracy vs model size comparison of the searched
CV transformer models with manually designed models. The searched CV
transformers include: ViTAS [184], GLiT [197]], S3-NAS [196], TF-TAS
[204], NASformer [206]], AutoFormer [46], ViT-ResNAS [195]], BurgerFormer
[198]], As-ViT [207]

E. Quantitative comparison of searched CV transformers

In Figure 30| we summarize the parameter count and top-
1 accuracy on the ImageNet dataset of the searched models.
Based on the plot, it appears that a model must possess a
large number of parameters in order to achieve a high level
of accuracy. However, the trend is not linear, rather increases
with increasing parameter count and saturates after a point.
Methods such as NASformer [206] have better accuracy and
fewer parameters than manually designed models such as Swin
[7] and DeiT [52]]. This highlights the strengths of these search
methods.

IX. HARDWARE OPTIMIZATION TECHNIQUES

Hardware optimization techniques for transformers play
a crucial role in achieving efficient and high-performance
computing. These techniques involve improving the design and
architecture of hardware systems for efficient inference of the
neural network models to optimize performance and energy
efficiency. Table [X|shows key ideas of these techniques. In this
section, we discuss hardware optimization techniques, such
as pipelining (Section [[X-A)), optimizing matrix-multiplication
operations (Section and skipping redundant or trivial
operations (Section [[X-C). We also review dataflows to exploit
reuse (Section [[X-D), and block-circulant matrix to compress
weight storage (Section [[X-E).

A. Pipelining

Pipelining allows overlapping computation with data trans-
fer or overlapping different sub-computations. It helps achieve
load-balancing and is especially helpful for deep networks
such as transformers, which have multiple encoder and de-
coder layers.

PipeBERT [246] is a pipelining technique to accelerate
BERT models on big.LITTLE processors. This processor
has two clusters, big and LITTLE, each with four cores.
They divide the BERT network into two subgraphs and map
one subgraph each on big and LITTLE clusters. Mapping
is realized using the “affinity” functionality of CPU. They
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TABLE X
CLASSIFICATION OF HARDWARE-LEVEL TECHNIQUES

Reducing by skipping layers or input/output channels [231], ex-
computa- ploiting patch locality [232]], performing two multiplica-
tions tions in one go [115] 1233|, early terminating negative
computations [233], avoiding trivial operations [234]
Predicting LRT of Q and K [235], cosine of Hamming distance
attention between two vectors [54]], accounting for only the largest

score using positive and negative products [141], ternary (0/-1/1)

quantization of key matrix [236]

Loop- unrolling [[118], reordering [118], fusion [237]
optimizations

Systolic 1186, 1116} 232} 238-240]

array

What is | output-block [241], output [239], weight [232} 239], key
stationary in | [242], sparse attention scores [240]

dataflow

LUT for log [130], multiplications [130, 237], reciprocal [54],

exponent [86} 232]], softmax [233], cosine values [54],
adder-tree [241], inverse square root [[116], GeLU [243]
computing multiplication of large values exactly and

Approximate

computing small values approximately [233], truncating mantissa
bits [234]

GD of | exploited for quantization [123| [I129] and trivialization

weights [234]

Intelligent storing encoder/decoder layers on-chip and embedding

data storage layer off-chip [244], storing weight matrices in HBM and
remaining data in DDR [243]

matrix reordering to expose reuse in dilated window
attention [239], splitting/compressing weight matrices to
make them SA-friendly [116] or FPGA buffer-friendly
[L15]], custom data-layout to remove bank-conflicts [114],
formats for storing sparse matrices [118} [121]

FFT [114} (114} 244, 245], tiling [239} 242\ 243], early-
exit [130], block-circulant matrix [244} [245]], double-
buffering [114, 117, [232], load-balancing [235| 1238l
240l 243]), multi-FPGA accelerator [243], agglomerative
clustering [129]

[541 12361 2401 1246]

[80% 1864 1981 [103} [10S5 [114H116L [121} 1231112911130} [141}
233| 1233112351 12371 1239 1244]

CV [2311 1232, 1234} 1235 2391 1241}, 242]

Memory op-
timizations

Others

BERT
NLP

propose a latency-aware binary search algorithm to achieve a
load-balanced division of the subgraph. They first observe the
ratio, say R, of the throughput of BERT on big and LITTLE
clusters. Let the total number of operations in the entire graph
be Z. They start with the initial allocation of [Z-Z/R, Z/R]
operations to [big, LITTLE] clusters. Then, the latencies of
both clusters are recorded. If they differ by more than a
threshold, then half of the operations from the slower cluster
are moved to the lighter cluster. This process is repeated till
the latency difference falls below the threshold. Their binary
search algorithm completes much faster than naive binary
search and brute-force search. The subgraphs on two clusters
operate in a pipelined fashion. On the HiKey970 system, their
technique achieves much higher throughput than executing on
four big cores and a much lower “energy-delay product” than
the best single-cluster execution.

Length Adpative Co-design: Peng et al. [237] note that
when the sequence lengths of the inputs in a batch vary
greatly, e.g., in SQuAD v2.0, the maximum and average
lengths are 975 and 171, respectively. Padding of inputs creates
unnecessary overheads. They predict relative attention scores
at low-precision. Multiplication is realized through an LUT,
e.g., with 4b integers, only 256 entry LUT is required. Then,
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Q'K'" is computed. After this, sorting is done to choose top-
L (i.e., most dominant) attention scores. For these L values,
exact MatMul and softmax are done to obtain QK. This
is more efficient than computing the attention scores of all
the elements. They split the encoder into three coarse-grain
pipelines: (1) linear layer using MatMul and approximate
attention computation. (2) attention computation and (3) FFN.
Stages 1 and 3 utilize on-chip memory and loop allocation
to overcome the memory wall. Stage 2 is further subdivided
into a three-stage pipeline for trading resource utilization with
data locality. Various attention operators are fused into a single
loop using the fine-grain pipelining capability of FPGA. The
reconfigurability of FPGA allows fusing loops with diverse
iteration counts, whereas GPU can only fuse selected loops.

Variable input sequence lengths lead to stalling of the
pipeline. They propose a sequence-length aware coarse-grain
pipeline, which adjusts the resource allocation according to
the requirement of a stage. It works based on the obser-
vation that with sparse attention, all operators have linear
complexity. It sorts the inputs of a batch in decreasing order
of length. Transformers usually have multiple encoder layers,
and the inputs sequentially go through those layers. Their
technique patches the pipeline stages of different sequence
length inputs and different encoder layers. This removes
pipeline bubbles and improves hardware efficiency. Pipelining
and data-prefetching facilitate the overlapping of compute
with data transfer. Their technique leads to better throughput
than padding and cutting schemes. Their technique provides
higher throughput for a marginal accuracy loss than CPU and
GPU implementation and higher energy efficiency than a GPU
design using CUBLAS GEMM.

B. Optimizing matrix-multiplication

Transformer computations involve the multiplication of
large matrices, and hence, optimizing matrix multiplication
can significantly boost compute efficiency.

Lu et al. [116] present a hardware accelerator for MHA and
FFN blocks in the transformer. The computation of FFN is
shown as FF'N(z) = ReLU (W1 + b1)W3 + ba. They note
that all four tensors have a shape of [batchSize, s, dmode]-
Both MHA and FFN blocks involve GEMM computations. In
all the heads, the GEMM computations of linear sublayers can
be done by an systolic array (SA) of size s x 64. However, the
use of this SA is still a challenge for large matrices such as
Wi, Wy and Wg. They note that in well-known transformers,
Amodet = 64h, and dy; = 4d,04¢1. Based on this, they divide
the weight matrices W7, W5 and Wy in a manner shown in
Figure Then, most GEMMs can be performed using an
SA of size s x 64, where s denotes the max sequence length.
The use of a single SA saves hardware resources.

The s x 64 SA has s rows and 64 columns, which produces
the output matrix column by column. Then, the bias and the
residual input are added using two sets of s adders. The
softmax calculations are done in parallel to the calculations of
“value” to enhance the hardware usage of this SA. They ensure
that the softmax produces the output before the SA computes
the “value” so that the overall latency is dictated by the SA
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Fig. 31. Division of weight matrices in the technique of Lu et al. [116]

and layerNorm block. In the softmax block, they avoid LUT
and multipliers by using the “log-sum-exp” strategy, which
uses linear approximation for logarithmic and exponentiation
functions. Both MHA and FFN blocks need to compute
layerNorm; hence, layerNorm is on the critical path. They
minimize its latency by starting their computation early. They
implement their technique on FPGA and show that it provides
high speedup compared to the GPU.

DFX: Hong et al. [243] present a multi-FPGA accelerator
for text-generation workloads such as GPT. The GPT-2 model
produces tokens in two stages: summarization and generation.
These stages have different properties. The parallel compute
capability of GPU makes it effective for summarization,
however, the sequential nature of generation renders GPU
ineffective. Acceleration of GPT-2 requires accelerating not
only attention and FFN but LayerNorm, LM head, residual and
token embedding. While residual and LayerNorm account for
only 0.1% of operations, they account for 22.8% of the GPT-
2 latency. This highlights the need for a custom accelerator.
Further, given the massive size of GPT-2, a single FPGA
device is insufficient, and hence, they connect a cluster of
four FPGAs with a single CPU host.

In pipelining, all the workers process one input completely,
leading to large latency. Instead, they use intra-layer model
parallelism, which reduces MatMul latency and incurs low
synchronization delay. Every FPGA (worker) handles weight
matrices at head granularity in MHA and column granularity
in FC layers. Unlike GPU cores, which depend on massive
parallelism, their compute core is optimized for processing in-
dividual tokens. Their ISA includes (1) matrix instructions for
performing matrix-vector operations, (2) vector instructions
for performing vector-vector and vector-scalar operations. The
vector instructions execute LayerNorm and softmax, (3) DMA
instructions and (4) router instructions. An FPGA has 8GB
HBM and 32GB DDR with bandwidths of 460GB/s and
38GB/s. The weight matrices are kept in HBM since they are
frequently accessed. The remaining infrequently accessed data
are kept in DDR.

In conventional attention operation, the key is transposed,
however, they transpose ‘value’ since it is read column-wise
but written row-wise. Thus, transpose is performed inherently
during the write operation, not the read operation. To hide
the latency of the transpose operation, they start it in advance
while Q and K are being computed. Both matrix and vector
operations are mapped to DSPs, whereas non-linear operations
are performed using DSP, LUT and combinational logic.
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GeLU is realized using piecewise linear approximation and
an LUT. A parallel tree of comparators is used for finding
the largest value of a vector. A router is used to synchronize
different FPGAs over a ring network. They evaluate their
technique using four Alveo U280 FPGAs and show that it is
superior to four V100 GPUs in performance, energy efficiency
and cost efficiency.

C. Skipping redundant, ineffectual or trivial computations

A large fraction of computations performed in transformers
are either repeated (e.g., due to patch locality), have no impact
on the final output (because only high attention scores decide
the final result) or are trivial (e.g., multiplication with zero or
one). Identifying and avoiding such computations can boost
efficiency significantly.

Since softmax is a normalization approach, what matters
is only the relative values of attention scores and not the
absolute values. Based on this, some works [235, 237, [240]
quantize K and Q from the FP32 value to a low-precision
(1b or 4b) integer format. Since quantization and exponential
are monotonic functions, the relative ordering of attention
scores is maintained. Compared to 16-bit dense attention, 4-bit
computations incur only 1/16X overhead. A few works predict
attention scores based on low-rank transformations (LRT) of
Q and K [233].

ELSA technique [54]] reduces computations in attention
operation. Without performing full computations, they seek
to select, for every query, the key that would lead to high
attention scores. They compute approximate self-attention in
three steps (1) They compute Hamming distance between k-
bit hashes of two vectors (say key and query) to guess the
angle between them. The hash function is computed by using
a structured orthogonal matrix. (2) A higher value of the cosine
of the angle shows a higher value of dot-product between
them and hence, the higher similarity between them. (3) The
relevance of a key to a query is ascertained by comparing
the approximate similarity to a threshold. Then, irrelevant
relations are filtered out, and the exact dot-product is computed
only for significant relations. While computing exact dot-
product requires d multiplications, their algorithm requires
only two multiplications, a cosine function and Hamming
distance calculation. An LUT of cosine values can further re-
duce the computations. Based on the amount of approximation
acceptable to a user (s), their technique decides the threshold
for each sub-layer. For this, the target model is run with the
training set and for a sub-layer, the keys whose softmax-
normalized attention score is more than s/n are considered
relevant, where n is the count of input elements. With only
1% accuracy loss, their proposed accelerator provides high
speedup and energy efficiency gain compared to the GPU.

DOTA [235] technique reduces computation wastage. Al-
though 90% of connections in FC attention layers can be
safely pruned, still, the attention scores and softmax need to be
computed to find the prominent attention weights. To avoid this
wastage, they detect ineffectual connections based on idea that
connections with low attention weights also have a low value
of attention score S = QK7 The authors propose a learning
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approach to identify the relative importance of connections
in attention graphs. Their technique predicts attention scores
(S) based on LRT of Q and K. Weak attentions are identified
by comparing S with a threshold. Masking weak attentions
reduces the denominator in softmax and affects the quality. To
address this, their technique optimizes the parameters of the
network and LRT by minimizing the weighted sum of network
loss and attention detection loss. At the end of the training,
LRT parameters are trained to detect stronger connections and
the network parameters are trained to work with the sparse
attention graph and still achieve high accuracy. The rank of S
depends on the target task complexity.

Long-sequence  transformers  operate  on  large
GEMM/GEMV computations with configurable hidden
dimensions. Hence, they identify the building blocks of each
computation and propose a single architecture for efficiently
handling various layers. They propose a reconfigurable MM
engine (RMME) to support multi-precision calculations at
row-granularity. RMME is a 32*16 array of PEs that can
support 16b fixed-point, INT2, INT4 and INT8 calculations.
RMME initially estimates S in INT2 or INT4 precision
and then selects significant attentions. For the sake of
hardware-friendliness, it selects an equal number of attention
connections in all the rows of the attention matrix. Then,
only significant attentions are computed in 16b fixed-point
precision. The QKT results are converted to FP before
computing the softmax function to avoid overflow. The
softmax output is again quantized to perform A % V in
fixed-point. Their technique provides large gains over a GPU.

The A3 technique [I41] proposes two approximation
schemes for accelerating attention computations. (1) Since key
and value matrices are acquired at the time of knowledge
understanding and not query response, they preprocess the key
matrix to reduce the number of operations required and query
response time. Specifically, for a d-dimensional query, the dot-
product between a query and a key matrix row is a sum of
multiplications of each dimension. Their key idea is that if the
multiplication of a single dimension is a large positive number,
the final dot-product result is also expected to be large. If this
value is a large negative number, the final result is unlikely to
be a large positive number.

Their technique seeks to estimate a “rough-score” for each
row in a greedy fashion. This is illustrated in Figure In Jth
iteration, their technique checks the J*" largest and smallest
number in the result (key*query) and adds them to the rough-
score of their row. This is repeated for Z iterations. The rows
with positive rough-score have large positive elements and vice
versa. Then, their technique further processes only the rows
having positive rough-score. They sort the key matrix during
knowledge comprehension to reduce critical path delay. Then,
when the query arrives, the above technique is applied. The
preprocessing overhead is easily amortised in networks where
many queries use the same key matrix (e.g., 320 in BERT).

(2) They compute the attention score of the above-selected
rows in an exact manner and further note that the softmax
function transforms score values into weights, such that small
scores lead to small weights. These small weights do not im-
pact the model validation accuracy. In fact, they arise because
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Fig. 32. Approximate computation of attention score (Z = 3) in the technique
of Ham et al. [141]

of using a differentiable version of the argmax function, which
is required in training, not inference. Hence, these near-zero
weights can be treated as zeros. Based on this idea, if a row’s
score is within 7% of the score of the top row, only then it
is passed to the softmax function. They quantize FP inputs
to FX and use different bitwidths in different layers. They
also propose an accelerator for their technique, which achieves
magnitude-order gains in performance and energy efficiency
over CPU and GPU.

Chen et al. [236] present modifications to the A3
technique[141]]. They store a key’ matrix, such that near-
zero/positive/negative numbers in key matrix becomes 0/1/-
1 in the key’ matrix. On multiplying key’ with the query,
the relative ordering of attention scores does not change, as
illustrated in Figure [33] Their technique allows finding ¥ rows
with positive rough-score. Further, while Ham et al. [141]
perform exact dot-product for these rows and then further
shortlist top-K rows, Chen et al. [236] select top-K rows
from the Y rows selected based on their rough-scores. Their
technique causes a 1% accuracy loss on the BERT model while
boosting energy efficiency.

Query Vector -1.23 | 0.09 | 0.73 0.84 (1]
-0.45 | 0.71 | 048 O -0.07 | -0.10 | 1.38 | = 076 (2]
@ -0.31 | 0.99 | -1.97 15

Sign bit of key matrix Predicted Score

Query Vector 1 1 1 0.22
045 | -071 | 048 |o| 1 | 1 1 | = 164 (1)
() -1 1 -1 -0.74

Query Vector -1 0 1 0.93 [I]
-0.45 | -0.71 | 048 [0 o 0 1| = 0.48
© -1 1 -1 -0.74

Fig. 33. Ternary pruning [236]

Wang et al. [233] present three approximate-computing
techniques for accelerating transformer computations. (1) To
avoid the ineffectual computations due to weakly-related to-
kens, they present a PE that calculates small values with high
errors for saving energy but computes large values exactly
since these strongly-related tokens have a high impact on the
final attention score. It uses an inexact multiplier that gauges
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the magnitude from the MSB and then, for small values, gates
the LSB computations. Although this multiplier produces a
high error, the softmax operation reduces the magnitude of
those errors.

(2) In @ * KT computation, near-zero values from softmax
become zero after N-bit quantization. This sparsity pattern
depends on X,,,,, which varies for every row. To deal with
this issue, they present a “bidirectional asymptotic speculation
engine”. It uses diagonal-prior computing to find row-wise
Xmaz- It first performs positive MACs, and on observing
sparsity, terminates negative computations. A token is strongly
related to its neighboring tokens. Based on this locality
property of attention, they first compute eight scores on the
matrix diagonal to find an estimate of X/, .. An update-unit
iteratively generates a new estimate of X,,,, and compares
it with X/ . to finally obtain actual X,,,,. From this, it
predicts sparsity and avoids redundant computations.

(3) For the near-zero probability values, many MSB values
are zero. Due to them, in PV, many partial products are zero.
To address this issue, they present a scheduler that reorders
operands to merge two operations in a single multiplication.
This removes zero-valued partial products. They fabricate a
die that takes only 6.8mm? area, 272mW power and achieves
14.28TOS/W at 510MHz. Their processor outperforms GPU
and previous accelerators.

Dynamic ViT Inference: Sreedhar et al. [231] note that re-
cent vision transformers [[7, 18, 1247-249] use CONV backbones
and CONV layers in the encoder. They evaluate the impact
of selective skipping of computations in CONV and attention
layers on the predictive performance of object detection and
semantic segmentation applications. In DETR and deformable
DETR [8 250]] object detection models, the transformer ac-
counts for nearly 15% of execution time, whereas ResNet-50
accounts for the remaining time. Especially at higher batch-
size, the latency of ResNet-50 increases further. In Segformer
and Swin-tiny semantic segmentation models, ~70 and ~90%
of total computations are in CONV layers. However, CONVs
account for only 26% of latency on GPUs since CONV
is implemented efficiently on GPUs. MatMul and softmax
operations of attention account for 27% of latency. Thus, both
CONV and MatMul need to be accelerated in the overall
semantic segmentation application.

They study the resilience of semantic segmentation models
towards computation bypassing techniques. Here, they modify
the model execution graph to execute subsets of the original
model using (1) skipping a layer (2) reducing the input or
output channels of a layer (3) decreasing sampling scale
factors in spatial-downscaling attention. The Pareto-optimal
sub-models are identified that achieve higher accuracy with
lower resource consumption. In Segformer-B2, scheme (3)
degrades accuracy without reducing latency. Rather, Pareto-
optimal points are obtained by changing the number of encoder
layers in every stage and the input channels to CONV layers.
This technique reduces mloU (mean intersection over union)
by 6 percentage point on the ADE20K dataset while bringing
a 17% reduction in latency. This bypassing approach without
retraining can save up to 25% of execution latency. However,
saving 50% latency requires retraining the model. The Swin-
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Tiny model does not have similar resilience as Segformer-
B2. They further propose a dynamic inference technique,
which performs computation skipping by using an LUT to
store Pareto-optimal configurations and their latency saving.
During inference, a configuration is searched from this LUT
based on the target and resource constraint. Their technique
populates this LUT during inference and avoids the need for
pruning+retraining.

DiVIT technique [232]] is based on observation that since
neighboring patches of ViT have high locality, many compu-
tations in self-attention operation are redundant. It proposes a
“delta encoding” technique to exploit patch locality, which is
shown in Figure [34] In the transformer, an input feature x is
multiplied with the weight w. If a neighboring patch is z’, then
dx = a2’ — = shows the delta patch. In a bit-serial multiplier,
the actual multiplication workload depends on the number of
non-zero bits. With patch locality, dx has a lower number of
non-zero bits than z’. Based on this, delta encoding replaces
' *w with zxw+ 0z *w. By reusing the value of x*w from a
neighboring patch, their technique can significantly accelerate
multiplications in MHA without losing accuracy.

(a) Self-Attention (b) Differential-Attention
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Fig. 34. Delta encoding in technique of Li et al. [232]

Their proposed accelerator computes differential attention
based on the “bit-pragmatic architecture” [251]], which pro-
cesses only non-zero bits of input features in a bit-serial
manner. Their PE array computes the input patch features in
a bit-serial manner. The offset generators change the patch
features into powers of two. In every cycle, a weight is
multiplied with a power-of-two using a shifter. Then, an add or
subtract operation is performed, depending on the sign. Their
engine can parallelly compute 32 patches while reusing the
same group of weights.

They use a 32*32 PE array, where neighboring patches are
assigned to neighboring columns. Thirty-two channels of patch
features are assigned to every column. Instead of multipliers,
this engine uses shifters and a 32-input adder tree. The PEs in
the same row reuse the same group of 32 weights. Specifically,
the first column works on the raw values of the patch. After
finishing, it passes the result to the second column, which
works on the second patch feature in a delta computation
manner. This goes on till the last column (number 32), which
passes its result back to column 1 for computation on the next
set of 32 patches. This pipelining operation hides the latency
of accumulating delta results. The MLP units are handled
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by an SA. Their accelerator shows high speedup and energy
efficiency gains over CPU and GPU.

AxBy-ViT technique [234] avoids trivial operations in ViT.
In the operation a*b, if a or b is zero, it is termed fully trivial,
whereas if a or b equal 41, it is termed semi-trivial. They
note that the operands in input-embedding, MHA, MLP and
FC computations show Gaussian distribution such that more
than 50% operands are concentrated around zero. Also, a small
fraction of values in input-embedding and FC are +1. They
note that exactly matching the operands with 0 or £1 finds
the scope of trivialization in only 0.1% of the operands.

They propose two approximate matching techniques that
increase this scope by 1000x. (1) Assuming FP32 operands,
values having biased exponents lower than a threshold (#) are
considered zero. For example, if 6 is 121, then any |z| below
0.015625 is approximated to zero. Say, for 0.01171875, the
biased exponent is 120, which is smaller than 121, and hence,
it is approximated to zero. This can be seen from the fact that
0.01171875 < 0.015625. (2) To match a number with 41, they
truncate certain mantissa bits and then compare the number.
For example, on truncating 19 (K) bits, 1.015625 has the same
representation as 1.0. However, on truncating only 16 bits, its
representation is not similar to that of 1.0. By approximating
1.015625 to 1.0, a computation such as 1.0001*6 reduces
to 1*6, which is trivial. On increasing 6 and K, the error
increases exponentially. On setting 6 to 121, MHA and MLP
show an accuracy drop below 3%, but input-embedding and
FC show a larger accuracy drop. Thus, different blocks in ViT
have different error tolerance.

D. Dataflows for exploiting reuse

In a hardware accelerator, it is important to choose the right
dataflow to exploit reuse and improve hardware utilization.
For example, input stationary (IS) and weight stationary (WS)
dataflows reduce the energy of reading inputs and weights, re-
spectively, whereas output stationary (OS) reduces the energy
of accessing the partial sums.

Output Block Stationary (OBS): Zhao et al. [241] note
that since CNN kernels show substantial weight-sharing, using
WS dataflow is advantageous for CNN accelerators. However,
transformer models show much less weight reuse than CNN,
rather they show a comparable amount of input and weight
sharing. They propose output-block stationary dataflow, which
divides the matrix-multiplication operation into several smaller
matrix multiplications. To enable reuse, it uses two levels of
broadcasting. Consider the matrix-multiplication P = A x B.
(1) They divide A and B into b x b block matrices and compute
the resultant block P;; as > i AirBy;. To compute four output
block-matrices shown in Figure [33] they broadcast four blocks,
viz., Ak, AGiy1)k> Brj» and Byji1). (2) Inside a block-
matrix, they broadcast the rows of A;;, and columns of By,
as shown in Figure [35] In comparison with OS, the two-level
broadcasting approach of OBS lowers the memory accesses
for input and weight. Further, it reduces the requirement of
output writing bandwidth. However, OBS has a slightly lower
hardware utilization (96% vs 89%).

The partial sums of the output are accumulated in the DSP
using an LUT-based adder tree. For a block size of b, a block-



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

P
!
P Y Vi@
() P Qi R [ .|
TIT
P
_————r Q__ = __Y ___
| g p;"g
) qy [ q,
b, | )

Fig. 35. In OBS dataflow [241], broadcasting at (a) block and (b) vector level

multiplication unit requires b3 DSPs. At b = 1, OBS dataflow
reduces to OS dataflow. Given the limited number of DSPs,
b value can be at most 8. They observe that b = 8 leads
to lower energy consumption than b = 4, and hence, they
choose b = 8. They experimentally compare WS with OBS for
the “transformer-in-transformer” (TNT) network. In TNT, an
“outer TE” embeds an “inner TE” and they extract patch- and
pixel-level attention, respectively. The outer TE accounts for
more than 83% of operations, and OBS provides nearly 84%
utilization for this. OBS lowers memory accesses by more than
6.7x and power consumption by one-third.

Sanger [240] is a technique to accelerate sparse attention
models. Unlike ReLU, which leads to exact-zero activations,
the softmax operation does not output exact zero at any
position. Hence, the authors use a threshold to zero out
small attention weights. This creates an attention mask with
unstructured sparsity. Also, the dynamic sparsity patterns are
unstructured and hence, hardware-unfriendly. To deal with this
issue, they first vertically split the attention mask into sub-
matrices, of the same width as the vertical input ports of the
PE array. Then, sub-rows with all zero elements are removed.
After this, to keep comparable non-zero elements in each
sub-row, those with more non-zero elements than PE array
row-width are split into multiple rows. This creates structured
blocks with an almost equal load. This process is illustrated

in Figure 36

Quantized Attention mask (column-
attention score wise partitioned)
Binary
thresholding
— —

Structured blocks Split over-full rows Skipping empty rows

Fig. 36. Encoding of attention matrix into fine-granular structured blocks
[240]

Still, the exact distribution of non-zero elements can be
random. This creates non-uniform data accesses in SDDMM
and SpMM operations. The output of SDDMM is the score
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matrix, which is fed as input to SpMM. Since Q/K/V matrices
are dense, but the score matrix is sparse, it leads to decoding
overheads. They propose a “score-stationary” dataflow, which
stores sparse scores in PE till the end of computations. In a
4*4 block with every row containing two non-zero values,
they use a 4*2 PE array. Then, corresponding to the zero
locations, bubbles are inserted, representing a ghost PE. This
alleviates decoding overheads. For this, the input data registers
are dynamically connected with the PEs based on the attention
mask. Further, this unifies SDDMM and SpMM operations
and hence, saves chip area since a single SA can be used for
both of them. Still, there are some differences between these
two operations; hence, they reconfigure the SA between them.
Their technique can prune the network to 0.08-0.27x model
size without accuracy loss and attains high speedup over CPU,
GPU and previous attention accelerators.

SALO [239] is a technique to speed up attention for tasks
with long input sequences. Their accelerator has a data sched-
uler and a spatial engine. The sparse attention pattern is char-
acterized by the window size (w) of sliding window attention
and dilation (d) of dilated window attention. The spatial engine
has a PE array that maximizes data reuse by computing sliding
window attention using diagonal connections. The engine also
has a global PE row/column for computing global attention.

Their datapath seeks to optimize data-reuse between (R1)
various queries within sliding window attention and be-
tween (R2) sliding window attention and global attention.
For (R1), they note that if ¢; attends to key vectors
[Kitas kivast - Kkits), then, ¢;4q attends to key vectors
[kita+1; Kitat2---kitvo+1]. Hence, b — a key vectors are
reused. Their engine streams input k and v vectors diagonally
and ¢ vectors horizontally, as shown in Figure[37] An incoming
key vector k;4p+1 replaces the outgoing vector k;y, and the
same strategy is used for replacing value vectors. For (R2),
the K/Q of global tokens attend to all the K/Q of input
sequences. Since SW attention works on all Q/K/V elements,
global attention needs no additional data access. Hence, both
attention computations can be performed simultaneously.

Global P
K, V K, v, obal PE

\ 4\ \ \ \ column K,V

R R e
K7. m (e }-{ PE] -
-

Weighted
sum unit

\

Q,

Global PE row

Fig. 37. Accelerator design of Shen et al. [239]

They further propose data division and reorganization
schemes to convert hybrid sparse attention into a pattern
suitable for their accelerator. They divide matrices into tiles
and compute attention in multiple passes. Specifically, they
divide the sequence and the window based on the PE array
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dimensions. Window division splits an attention computation
into multiple parts that are weighted and finally accumulated.
This is done by the weighted sum unit. The dilated window
attention cannot be directly executed on their dataflow. They
propose reordering () matrix such that g; is grouped with g; 4,
Qi+24, etc. This exposes reuse in dilated window attention
with a period d, which is similar to sliding window attention.
Hence, it can be accelerated on their spatial engine.

Their 2D SA performs computations in five stages: (1) The
SA multiplies Q and K using output-stationary dataflow. (2)
exponential is computed using the piece-wise linear function
that the MAC unit can compute. (3) Exponential values
of PEs in the same row are accumulated (3 Exp(S;;) to
compute the denominator of softmax. At the last PE of a
row, (3" Exp(S;;)~"! is computed and broadcast to PEs in
a row. This avoids the need for a divider circuit. (4) Every PE
computes S7; = Exp(Si; x (3 Exp(Si;)~". (5) PEy; now
receives value vector v;. Using weight stationary dataflow,
each PE;; computes v; X ng, adds it to the previous partial
sum and passes it to the next PE. The PE row output enters
the weighted sum unit and is merged with the previous
output. The global PE row computes the attention of queries
of global tokens and hence, reuses the K/V vectors from
the PE array. Analogously, the global PE column reuses Q
vectors. Due to data-division, a single row/column suffices for
handling global tokens found in real-world applications. On
ViL and Longformer, their technique achieves higher speedup
and energy efficiency compared to CPU and GPU.

ViTCoD [242] technique seeks to mitigate data-movement
and PE under-utilization issue in accelerators for ViT work-
loads. In the NLP transformers, the token count depends
on the input, but ViTs use a fixed token count (e.g., 196).
This avoids the need to predict sparse attention schemes and
simplifies the design of hardware accelerators. Further, to keep
the accuracy loss small, more than 90% of attention maps in
ViTs can be pruned with fixed sparsity layouts for all inputs,
whereas in NLP transformers, only 50 to 70% sparsity can be
achieved even with dynamic sparsity layouts. However, this
high sparsity in ViTs can create multiple challenges. In ViTs,
the non-zero elements in sparse attention maps are found in
the diagonal lines. This causes a large data movement and
under-utilization of PEs.

They first compute average and normalized attention maps
by applying the pretrained models on all training images and
then prune based on the amount of the remaining information.
To lower the irregularity of resultant sparse maps, they find
and cluster the query-key pairs into just two types: sparser
or denser. Here, the tokens with more than € non-zero ele-
ments are brought to the front as the denser pattern, and the
remaining tokens are kept as the sparser pattern. This is shown
in Figure The denser layouts capture the tokens having a
substantial correlation with the remaining tokens. The sparser
layouts are those except the diagonal lines, where a majority
of values are zero. This happens because a high correlation is
found in neighbouring tokens. After reordering, they finetune
the model to restore the accuracy. The above reordering
operation enforces fixed sparse attention patterns, which do
not change during finetuning. The sparser layouts suffer from

35

high data-movement overhead. By exploiting the redundancy
across attention heads, an auto-encoder compresses K and Q to
50% of their original size. Evidently, the pruning+reordering
technique reduces computations, and the auto-encoder trades
computations for reducing memory accesses.

Denser  Sparser

01234567 —

(b) Sparse attention (¢) Fixed sparse attention
obtained from reordering

(a) Dense attention

Fig. 38. Reordering of sparse attention weight matrices [242]

Their proposed accelerator has separate engines for pro-
cessing dense and sparse layouts. The denser engine performs
Q.KT (during sampled GEMM) and S.V (during SpMM).
The sparser engine performs the rest of the irregular compu-
tations, including activation functions. Since both denser and
sparser engines work in parallel, they are likely to work on
the same Q vectors. Hence, the sparser engine first queries
the Q buffer of the denser engine and, only in case of a miss,
accesses the off-chip memory. They use K-stationary dataflow,
which reads K vectors and sequentially multiplies them with
different Q vectors. It outputs attention values in a column-
wise manner. This dataflow enables the full reuse of K vectors
and requires a small on-chip storage for storing the interim
results. This dataflow does not spatially map and multiply all
Q/K features but only multiplies paired features depending on
the non-zero indexes in S. Under 90% attention sparsity, their
accelerator provides much higher performance than CPU, GPU
and previous accelerators.

E. Block-circulant matrix for reducing weight storage

The block-circulant matrix (BCM) reduces the weight stor-
age by replacing the original weight matrix with one or more
blocks of circulant matrices, where every row/column is a
cyclic reformulation of the other. This allows storing only one
first row/column vector, called the index vector, instead of
the entire matrix. Further, matrix vector multiplication can be
replaced by an FFT operation, which reduces the complexity
from O(b?) to O(blogb), where b is the row (or column) size
of the circulant matrix.

Ftrans [244]] technique proposes an improved BCM ap-
proach for compressing transformer models. The previous
works on BCM only take the first row/column as the index
vector but fail to represent the remaining rows/columns. To
better capture the parameter values and maintain accuracy,
they take P;; = (Z;’.:l Wi;)/b, where W;; is the circulant
matrix. Thus, they also take the representation of the remaining
rows/columns. The encoder/decoder layers, which account
for two-thirds of total parameters, are stored on-chip, which
reduces off-chip communication. The embedding layer has
only one-third of the total parameters; hence, they store
it off-chip. They develop two PEs for performing matrix-
vector multiplication of different matrix sizes and one PE for
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performing FFT/IFFT. The matrix-vector multiplication PEs
can also perform scaling and softmax in an overlapped manner
with matrix multiplication. Computation of K VE etc., takes
much larger time than the computation of MHA. To achieve
a balanced pipelined execution of different layers, they use
a scheduling algorithm to allocate more resources (e.g., the
number of PEs) to the slowest layer. Their technique brings up
to 16X reduction in model size and also improves performance
and energy efficiency over CPU.

X. CONCLUSION AND FUTURE WORK

Transformers have become one of the most widely used
architectures in NLP and computer vision domains due to
their capability to capture long-range interdependencies. As
the complexity of the transformers continues to grow, there
is an increasing need for model compression and hardware
optimization methods to accelerate these models. To address
the enormous challenges faced by the transformers, researchers
have developed several model enhancement techniques, in-
cluding pruning, quantization, neural architecture search, dis-
tillation, and lightweight self-attention design. In this pa-
per, we provide taxonomy and a comprehensive overview
of the recently proposed inference optimization techniques
for transformer-based networks. We discuss the optimization
methods, both from transformer architecture and hardware
perspectives. We plot the predictive performance against the
number of parameters/FLOPs of several optimization tech-
niques to provide meaningful insights. We conclude this paper
by emphasizing the future directions in this rapidly evolving
field of research. We hope our effort will create further interest
in developing novel optimization methods to facilitate efficient
inference of large models on a wide range of hardware.

The development of optimization techniques for efficient
transformer inference has become an important area of re-
search due to their broad applications across various architec-
tures and domains. The current solutions have been effective
in developing more robust and efficient algorithms for the
family of transformer architectures. However, there is still
ample room for improvement in both algorithmic and hardware
optimization methods. There exist several challenges, such as
scalability, interpretability, and fair comparison of the per-
formance of different optimization techniques. The following
list identifies the limitations and gaps in current research to
enhance the development of efficient and effective methods:

AutoML for Model Compression: The automatic ML
and NAS techniques are becoming mainstream for designing
networks for several architectures, datasets and tasks. These
methods have great potential to be applied to transformer
model compression. This could involve exploring different
search approaches, such as automatic identification of sparse
weights and mixed precision quantization and obtaining opti-
mal models in terms of accuracy and computational efficiency.
While AutoML methods for CNNs has received significant
attention, their use for CV transformers has not been studied in
as much detail. There is a need to use AutoML for transformer
model compression, to improve the scalability and efficiency
and adapting them to a wider range of application areas.
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Hardware-aware NAS for CV transformers: The HW-
NAS methods for CNNs has been well-studied on various
platforms, while the HW-NAS techniques for transformers is
not fully explored, especially for computer vision. Although
hardware-agnostic NAS algorithms on transformer architec-
tures are useful for research, hardware-aware methods are
crucial for real-time deployment. Thus, better hardware-aware
search space and NAS algorithms are needed to improve
accuracy and performance on multiple platforms.

Transformer NAS benchmarks: The computation resource
demand is a major bottleneck for developing novel transformer
NAS algorithms, as it requires training and evaluation of
several neural architectures during the search process. Also,
result reproducibility is challenging due to differences in
search space and experiment setting; thus, comparing different
methods becomes unfair. In this context, several NAS bench-
marks [252 253]] have been developed, which act as a look-
up-table to obtain the validation accuracy without actually
training them. HW-NAS benchmarks [254] help non-hardware
researchers by providing hardware performance metrics of
the neural architectures on the selected platforms. Moving
forward, transformer NAS and HW-NAS benchmarks will play
a key role in developing better NAS algorithms.

Transformer Inference Benchmarks: The existing bench-
mark suites such as MLPerf do not include transformer net-
works. There is a need to include SOTA transformer networks
in such benchmark suites to accelerate and standardize the
research on transformer.

Evaluating existing optimization techniques on emerg-
ing topologies: The current optimization techniques have
been shown to be effective on standard transformer models
on widely used datasets and applications. Recently, trans-
former/attention modules have been utilized in emerging neu-
ral architecture topologies, such as image segmentation [255]],
graph neural networks (GNN) [256], graph convolutional net-
work (GCN) [257]], 3D convolutional neural networks [258]],
point clouds [259] and spiking transformer neural network
[260]. Therefore, it is crucial to expand the scope of model
compression technqgiues to generalize over other tasks and
emerging network topologies.

Sparse transfer learning: Sparse transfer learning refers
to leveraging the sparsity pattern learned by a large and pre-
trained teacher model to fine-tune a smaller model. In this
way, the sparsity map learned by the large model can be
transferred to the smaller model without the need for pruning
and additional fine-tuning [261]]. This process is nascent and
requires experimentation and investigation on several trans-
former architectures and hardware platforms.

Reliability and security: The model compression tech-
niques can weaken fault-resilience and adversarial-robustness
of a model by removing parameters that are unimportant for
normal execution but are useful against perturbed input data
or faulty weights. As transformers get deployed in critical
applications, the future work must evaluate the adversarial-
robustness and fault-tolerance of the proposed optimization
methods.
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