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Abstract

We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener class of matrix-valued
functions. The approach is via J -spectral factorization and frequency-domain techniques.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a transfer function bounded on the imag-
inary axis and assume that its corresponding Hankel
operator is compact. Let �k ’s denote the Hankel sin-
gular values of G, and let � be a number satisfy-
ing �l+1 ¡�¡�l. Roughly speaking, the sub-optimal
Hankel norm approximation problem is the following:
Find a matrix-valued function K with at most l poles
in the closed right half-plane (none of them on the
imaginary axis) such that

‖G + K‖∞6 �;

where ‖ · ‖∞ denotes the L∞-norm.
The sub-optimal Hankel norm approximation prob-

lem has been studied extensively in the literature, see
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for example, [1,4,8,11,12,14,18–21]. The new contri-
bution of this paper is to present an elementary deriva-
tion of the reduction of the sub-optimal Hankel norm
approximation problem to a J -spectral factorization
problem. We do this for the Wiener class of functions.
Moreover, an explicit parameterization of all solutions
to the sub-optimal Hankel norm approximation prob-
lem is provided.
Although not stated explicitly in their paper, we

believe that the paper by Ball and Helton [3] is the
<rst paper which shows the connection between the
sub-optimal Hankel norm approximation problem and
a J -spectral factorization problem. Various corollaries
of this abstract paper have been derived in Ball and
Ran [4] and Curtain and Ran [8], but there is a gap
between the abstract theory in [3] and the elementary
looking corollaries. This motivated the search for an
elementary self-contained proof in many papers (see
Curtain and Ichikawa [6], Curtain and Oostveen [7],
Curtain and Zwart [9], Sasane and Curtain [20,21] and
Iftime and Zwart [16]).
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doi:10.1016/j.sysconle.2003.11.002

mailto:iftime@math.rug.nl
mailto:a.j.sasane@math.rug.nl


76 O.V. Iftime, A.J. Sasane / Systems & Control Letters 52 (2004) 75–83

In this paper we solve the sub-optimal Hankel norm
approximation problem for the Wiener class of func-
tions. The proofs are based on frequency-domain tech-
niques and make use of the factorization theory as
presented in Clancey and Gohberg [5], Gohberg et al.
[13] and Iftime and Zwart [16].

2. Notation and preliminaries

In this section we quote some general results and
introduce our notation. We begin by de<ning our class
of stable functions (the causal Wiener class) via their
impulse responses. We say that f∈A if f has the
representation

f(t) =

{
fa(t) + f0(t); t¿ 0;

0; t ¡ 0;

where f0 ∈C (the set of complex numbers),∫∞
0 |fa(t)| dt ¡∞, and  represents the delta dis-
tribution at zero. For any f∈A we de<ne f̂, the
Laplace transform of f,

f̂(s) =
∫ ∞

0
e−stfa(t) dt + f0; (2.1)

for s∈C+, where C+ := {s∈C |Re(s)¿ 0}. We
de<ne the causal Wiener class Â as

Â := {f̂ |f∈A}:
From the de<nition ofA it is easy to see that for every
f∈A, f̂ is well-de<ned on C+, it is bounded and
analytic in C+ := {s∈C |Re(s)¿ 0}, continuous on
C+, and it has a well-de<ned limit at in<nity, that is,

sup
s∈C+ ; |s|¿�

∣∣∣f̂(s)− f0

∣∣∣→ 0 as � → ∞:

Furthermore, Â is a commutative Banach algebra with
identity under pointwise addition and multiplication
(see [10, Corollary A.7.48]). For a complex function
f, we use the notation f∼ to mean the following:

f∼(s) = f(− Ls); (2.2)

where by Lz we mean the complex conjugate of the
complex number z.
We consider the algebra

Ŵ= {g∈L∞(iR;C) | g(i·) = g1(i·) + g2(i·);
with g1; g∼2 ∈ Â};

where

L∞(iR;C) =
{
f : iR→ C |

‖f‖L∞ := ess sup
s∈iR

|f(s)|¡∞
}

and we call Ŵ the Wiener class of functions. Ŵ is
a Banach algebra under pointwise addition and multi-
plication. The elements of Ŵ are bounded and contin-
uous on the imaginary axis, they have limits at ±i∞
and these limits are equal.
ByR∞ we denote the class of proper, rational func-

tions g with complex coeMcients such that g has no
poles in C+, and has a nonzero limit at in<nity. By
Â∞ we mean the set of all functions in Â that have
all their zeros contained in the open right half-plane
and a nonzero limit at in<nity.
Now we introduce notation for some matrix-valued

function spaces which will be used in the sequel:

1. By Âp×m we denote the set of complex p × m
matrix-valued functions with entries in Â.

2. By Â
p×m
l we denote the set of complex p × m

matrix-valued functions K of a complex variable
with a decomposition

K = G + F;

where G is a rational matrix-valued transfer func-
tion of a system of MacMillan degree at most equal
to l, with all its poles in the open right half-plane,
and F ∈ Âp×m.

3. Â
p×m
[l] denotes the set of complex p × m

matrix-valued functions K of a complex variable
with a decomposition K = G + F , where G is a
rational matrix-valued transfer function of a sys-
tem of MacMillan degree equal to l, with all its l
poles in the open right half-plane, and F ∈ Âp×m.

4. We use the notation Ŵp×m for the class of p×m
matrix-valued functions with entries in Ŵ.

We omit the size when there is no danger of confu-
sion. Also, the indices are replaced by dots when we
leave them unspeci<ed. For complex matrix-valued
functions we de<ne

G∼(s) := [G(− Ls)]∗;

where ∗ is used to denote the transpose complex conju-
gate of a matrix. For scalar functions this corresponds
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to the notation (2.2). It can be seen that G∼(i!) =
[G(−i!)]∗ = G(i!)∗ for all !∈R.
We will be using the following properties of the

above classes of functions. These properties can be
proved in a manner analogous to the ones in Section
2.5 of Sasane [19]:

P1. If f∈ Â and g∈ Â∞ such that g has at most
l zeros (all in the open right half-plane), then
f=g∈ Âl.

P2. If F ∈ Âk×k , F(i!) is invertible for every
!∈R, lims→±i∞ F(s) (=F∞) is invertible, then
F(·)−1 ∈ Âk×k

• .
P3. If K ∈ Â

p×m
l , then there exists a right coprime

factorization of K over Â, K = NM−1, (that is,
there exist X and Y in Â•×• such that the fol-
lowing Bezout identity holds:

XM − YN = I

for all s∈C+), whereM is rational, det(M)∈R∞
has at most l zeros in C+ and they are all con-
tained in C+.

P4. If K ∈ Â
p×m
• , then given any �¿ 0, there exists

a ¿ 0 such that whenever 06 �6 , we have

‖K(�+ i·)‖∞6 ‖K(i·)‖∞ + �;

where ‖ · ‖∞ denotes the L∞-norm.
P5. If K ∈ Â

p×m
l , K1 ∈ Âp∗×p, and K2 ∈ Âm×m∗ ,

then K1KK2 ∈ Â
p∗×m∗
l .

In order to de<ne the Hankel operator, we need the
following notations:

Ln2 =
{
f : iR→ Cn |

‖f‖2L2 =
∫ +∞

−∞
|f(i!)|2 d!¡∞

}
;

Hn
2 =

{
f : C+ → Cn |f analytic in C+ and

‖f‖2H2
= sup

r¿0

∫ +∞

−∞
‖f(r+i!)‖2 d!¡∞

}
;

Hn;⊥
2 =

{
f : C− → Cn |f analytic in C− and

‖f‖2H⊥
2
= sup

r¡0

∫ +∞

−∞
‖f(r+i!)‖2 d!¡∞

}
;

where C− := {s∈C |R(s)¡ 0}. It is well known
that Ln2 is the direct sum of Hn

2 and Hn;⊥
2 with respect

to the usual inner product. The Hankel operator with
symbol G ∈L∞(iR;Cp×m), is de<ned as

HG : Hm
2 → Hp;⊥

2 ; HGu=$−Gu for all u∈Hm
2 ;

where $− is the orthogonal projection from Lp2 to
Hp;⊥

2 . Its adjoint is

H∗
G : Hp;⊥

2 → Hm
2 ;

H∗
Gy =$+G∼y for all y∈Hp;⊥

2 ;

where$+ is the orthogonal projection from Lm2 to Hm
2 .

If the Hankel operator with symbolG ∈L∞(iR;Cp×m)
is compact, then we denote the singular values of HG

(that is, the nonnegative square roots of the eigen-
values of H∗

GHG), by �1¿ �2¿ · · · (¿ 0). The �k ’s
are then referred to as the Hankel singular values of
G. If G(i·) is continuous on the imaginary axis with
equal limits at ±i∞, then from Hartman’s theorem
(see for example Partington [17, Corollary 4.10, p.
46]), it follows that the Hankel operator with symbol
G is compact.
Let G∼ ∈ Âm×p be a given matrix-valued function

and let � be a real number such that �l+1 ¡�. Then,
the sub-optimal Hankel norm approximation problem
that we consider is the following: Find K ∈ Â

p×m
l

such that ‖G(i·) + K(i·)‖∞6 �.
The following theorem is a consequence of a

slightly more general result proved by Sasane and
Curtain in [21]. They give suMcient conditions for
the sub-optimal Hankel norm approximation problem
to have a solution.

Theorem 2.1. Suppose that the following assump-
tions hold:

S1. The matrix-valued function G ∈Ŵp×m (let �k ’s
denote the Hankel singular values of G).

S2. �l+1 ¡�¡�l.
S3. There exists a &∈ Â(p+m)×(p+m) such that[

Ip 0

G(s)∗ Im

][
Ip 0

0 −�2Im

][
Ip G(s)

0 Im

]

=&(s)∗
[
Ip 0

0 −Im

]
&(s)

for all s∈ iR.
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S4 The matrix-valued function & is invertible as an
element of Â(p+m)×(p+m), that is, there exists
a V ∈ Â(p+m)×(p+m) such that &(s)V (s) = Ip+m

for all s∈C+.

S5. lim!→±∞ &(i!) =
[
Ip
0

0
�Im

]
,

S6. &11(·)−1 ∈ Â
p×p
l ,

then K ∈ Â
p×m
l and ‖G(i·)+K(i·)‖∞6 � iA K(·)=

R1(·)R2(·)−1, where[
R1(·)
R2(·)

]
= &(·)−1

[
Q(·)
Im

]

for some Q∈ Âp×m satisfying ‖Q(i·)‖∞6 1.

Remark 2.1. The conditions S3–S4 say that the
matrix-valued function

W (s) :=

[
Ip 0

G(s)∗ Im

][
Ip 0

0 −�2Im

][
Ip G(s)

0 Im

]

(2.3)

admits a J -spectral factorization (see the exact de<ni-
tion in the following section).

In this paper, our main result is the following:

Theorem 2.2. Let G be such thatG∼ ∈ Âm×p and let
� be a strictly positive real number such that � �= �k
for all k ∈N. Then there exists a &∈ Â(p+m)×(p+m)

such that S3, S4 and S5 hold.Moreover, the following
are equivalent:

1. �l+1 ¡�¡�l.
2. There exists a K ∈ Â

p×m
[l] such that ‖G(i·) +

K(i·)‖∞6 �.
3. The matrix-valued function &∈ Â(p+m)×(p+m)

which satisBes S3–S5, satisBes also &11(·)−1 ∈
Â

p×p
[l] .

Furthermore, all solutions to the sub-optimal Hankel
norm approximation problem are given by

K(·) = R1(·)R2(·)−1;

where[
R1(·)
R2(·)

]
= &(·)−1

[
Q(·)
Im

]

for some Q∈ Âp×m satisfying ‖Q(i·)‖∞6 1.

Remark 2.2. The above theorem generalizes the re-
sult obtained, for �¿�1 = ‖HG‖, by Iftime and
Zwart in [16]. In this case, the sub-optimal Hankel
norm approximation problem becomes the so-called
sub-optimal Nehari problem. The sub-optimal Nehari
problem can also be seen as an application of the
results obtained by Ball et al. in [2], using the band
method approach.

Remark 2.3. Using some of the methods in [21] we
obtain, for the Wiener class, a stronger result. In [21],
suMcient conditions (S1–S6) for the sub-optimal Han-
kel norm approximation problem to have a solution
were presented. We prove that, for the Wiener class,
the assumption S3, S4 and S5 hold. Moreover the as-
sumption S2 is equivalent to the solvability of the
sub-optimal Hankel norm approximation problem and
equivalent to a stronger version of assumption S6.

3. Existence of a J -spectral factorization

We consider the signature matrix

J�;p;m =

[
Ip 0

0 −�2Im

]
;

where p and m are inN and � is a strictly positive real
number. Sometimes we simply use J� for the above,
and if � is 1, we use Jp;m or simply J .

De!nition 3.1. LetW=W∼ ∈Ŵk×k . We say that the
matrix-valued function W has a J -spectral factoriza-
tion if there exists an invertible &∈ Âk×k such that
&(·)−1 ∈ Âk×k , and the equality

W (s) = &∼(s)J&(s)

is satis<ed for all s∈ iR. Such amatrix-valued function
& will be called a J -spectral factor of W .

We now introduce the concept of equalizing
vectors.

De!nition 3.2. A vector u is an equalizing vector
for the matrix-valued function W ∈Ŵk1×k2 if u is a
nonzero element of Hk2

2 and Wu is in Hk1 ;⊥
2 .

The following theorem gives equivalent conditions
for the existence of a J -spectral factorization for a
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matrix-function W = W∼ ∈Ŵk×k . A proof can be
found in [15].

Theorem 3.1. Let W = W∼ ∈Ŵk×k be such that
detW (s) �= 0, for all s∈ iR ∪ {±i∞}. Then the
following statements are equivalent:

1. The matrix-valued functionW admits a J-spectral
factorization;

2. The matrix-valued function W has no equalizing
vectors.

We prove the existence of a J -spectral factorization
in a similar way as in Iftime and Zwart [16]. Note that
here we have � �= �k , for k ∈N.

Theorem 3.2. Let G be a matrix-valued function of
a complex variable such that G∼ ∈ Âm×p and � a
positive real number such that � �= �k for all k ∈N.
Then there exists a (p+m)× (p+m) matrix-valued
function of a complex variable &∈ Â such that W,
deBned by

W (s) =

[
Ip G(s)

0 Im

]∼
J�;p;m

[
Ip G(s)

0 Im

]
; (3.4)

has a Jp;m-spectral factorization

W (s) = &(s)∼Jp;m&(s): (3.5)

Moreover, if G is strictly proper, then & can be cho-
sen such that

lim
!→±∞&(i!) =

[
Ip 0

0 �Im

]
: (3.6)

Proof. It is easy to see that W (s) = W∼(s) and
det(W (s)) �=0 for all s∈R ∪ {±i∞}. In order
to prove that the matrix-valued function W (s)
has a J -spectral factorization, it is enough to
show that W (s) has no equalizing vectors (see
Theorem 3.1).
Let u be an equalizing vector for the matrix-valued

function W , that is,

u=

[
u1

u2

]
∈H2; u �= 0; Wu=

[
v1

v2

]
∈H⊥

2 : (3.7)

So we have that[
v1

v2

]
=Wu

=

[
Ip 0

G∼ Im

][
Ip 0

0 −�2Im

][
Ip G

0 Im

][
u1

u2

]

=

[
Ip G

G∼ G∼G − �2Im

][
u1

u2

]
;

which is equivalent to

v1 = u1 + Gu2 and

v2 = G∼u1 + G∼Gu2 − �2u2: (3.8)

In the <rst equality of (3.8) we split Gu2 using the
projections $− and $+. We obtain that

u1 +$+Gu2 = v1 −$−Gu2 and

G∼(u1 + Gu2)− �2u2 = v2: (3.9)

From (3.7) and the de<nition of the projection op-
erators we have that the left-hand side of the <rst
equality u1 + $+Gu2 ∈H2 and the right-hand side
v1 −$−Gu2 ∈H⊥

2 . This implies that

u1 +$+Gu2 = 0 and v1 −$−Gu2 = 0: (3.10)

Now we replace u1 in the second equality of (3.9) and
split the term G∼$−Gu2 using the projections. We
have that

G∼$−Gu2 − �2u2 = v2

⇔ $−G∼$−Gu2 +$+G∼$−Gu2 − �2u2 = v2

⇔ $+G∼$−Gu2 − �2u2 = v2 −$−G∼$−Gu2:

Using similar arguments as before we have that

$+G∼$−Gu2 − �2u2 = 0;

which is equivalent to (H∗
GHG − �2Im)u2 = 0. Since

� is not a singular value of the Hankel operator, we
obtain that u2 must be zero. From (3.10) we see that
also u1 must be zero, so u= 0. We conclude that the
matrix-valued function W has no equalizing vectors,
which implies that W has a J -spectral factorization
(3.5).
If G is a strictly proper matrix-valued function we

see that the limit of W at ±i∞ is the identity matrix.
Consequently, it is easy to check that if there exists
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a J -spectral factor &0 which has the limit say &∞ at
±i∞, then & de<ned by

&(s) =

[
Ip 0

0 �Im

]
&−1

∞ &0(s)

is clearly a J -spectral factor with the limit
[
Ip
0

0
�Im

]
at

±i∞.

4. Proof of Theorem 2.2

In this section we prove the main result of this paper.
We consider a matrix-valued function of a complex
variable G such that G∼ ∈ Âm×p. Let �k denote the
Hankel singular values of G, and let � be a positive
real number such that � �= �k for all k ∈N. Theorem
3.2 shows that conditions S3–S5 are satis<ed. The
equivalence between the <rst and the second items of
Theorem 2.2.

1. �l+1 ¡�¡�l.
2. There exists a K ∈ Â

p×m
[l] such that ‖G(i·) +

K(i·)‖∞6 � is a consequence of the fact that

inf
K∈Âl

‖G(i·) + K(i·)‖∞ = �l+1: (4.11)

In the following two lemmas we prove the equiva-
lence between the last two items of Theorem 2.2. We
start with the implication “3 ⇒ 2”.

Lemma 4.1. Let &∈ Â(p+m)×(p+m) be a matrix-
valued function which satisBes S3–S5, and&11(·)−1 ∈
Â

p×p
[l] . Then there exists K0 ∈ Â

p×m
[l] such that

‖G(i·) + K0(i·)‖∞6 �.

Proof. De<ne

K0(s) := V12(s)V22(s)−1;

where V is the inverse of &. The rest of the proof
follows as in [19, Chapter 4, Theorem 4.2.1].

The following lemma proves the implication “2 ⇒
3”. The proof is the same as in Sasane [19], but here
we consider a diRerent transfer function algebra.

Lemma 4.2. Suppose that there exists a K∗ ∈ Â
p×m
[l]

such that ‖G(i·) + K∗(i·)‖∞6 �. Let &∈
Â(p+m)×(p+m) be a matrix-valued function which
satisBes S3–S5. Then &11(·)−1 ∈ Â

p×p
[l] .

Proof. We will split the proof in six steps. In the <rst
two steps we prove some properties of V , the inverse
of &. In the third step we prove that V22(·)−1 ∈ Âm×m

[l∗]
for some l∗ ∈N. In the fourth step we de<ne[
U1

U2

]
:= &

[
N

M

]
;

where K = NM−1 is a right-coprime factorization of
K over Â, and prove that U2 is invertible over the
imaginary axis and ‖U1U−1

2 ‖∞6 0. Using a Nyquist
argument, in Step 5 we show that l∗6 l. Finally, we
obtain in the last step that &11(·)−1 ∈ Â

p×p
[l] .

Step 1: From S5,

V (s)−
[
Ip 0

0 1
� Im

]

=V (s)

([
Ip 0

0 �Im

]
− &(s)

)[
Ip 0

0 1
� Im

]

and the fact that V (·)∈ Â, it follows that

lim
|s|→∞
s∈C+

V (s) =

[
Ip 0

0 1
� Im

]
: (4.12)

Step 2: The matrix-valued function & satis<es S3,
and so, taking inverses, we obtain

V (i!)

[
Ip 0

0 −Im

]
V (i!)∗

=

[
Ip G(i!)

0 −Im

]−1 [ Ip 0

0 − 1
�2 Im

]

×
[

Ip 0

G(i!)∗ −Im

]−1

(4.13)

for all!∈R. Considering the (2,2)-block of the above
yields

V21(i!)V21(i!)∗ − V22(i!)V22(i!)∗ =− 1
�2 Im;

where !∈R: (4.14)

Thus for u∈Cm we have

‖V22(i!)∗u‖2 = ‖V21(i!)∗u‖2 + 1
�2 ‖u‖2:

So, if V22(i!)∗u= 0 for all !∈R, then u= 0. Hence
it follows that V22(i!)∗ is invertible for all !∈R, or
equivalently, V22(i!) is invertible for all !∈R.
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From (4.14), we have ‖V22(i!)−1V21(i!)u‖2 −
‖u‖2 = −1=�2‖V22(i!)−1u‖2. Let M ¿ 0 be such
that ‖V22(i!)‖6M for all !∈R. We obtain ‖u‖26
‖V22(i!)‖2‖V22(i!)−1u‖26M 2‖V22(i!)−1u‖2.
Thus

‖V22(i!)−1V21(i!)‖26 1− 1
�2M 2 ¡ 1

for all !∈R;

and so we have ‖V22(i·)−1V21(i·)‖∞ ¡ 1.
Step 3: From (4.12), we know that

lim
|s|→∞
s∈C+

V22(s) =
1
�
Im:

Thus applying property P2 to V22(·), we obtain that
V22(·)−1 ∈ Âm×m

[l∗] for some l∗ ∈N.

Step 4: Let K∗(·)∈ Â
p×m
[l] satisfy ‖G(i·) +

K∗(i·)‖∞6 � and suppose it has the coprime factor-
ization K∗ = NM−1 over Â, where N and M are in
Â, M is rational, and det(M)∈R∞ has l zeros in C+

and none on the imaginary axis. De<ne[
U1

U2

]
:=

[
&11N + &12M

&21N + &22M

]

= &

[
N

M

]
= &

[
K∗

Im

]
M: (4.15)

We prove that U2 is invertible over the imagi-
nary axis and ‖U1U−1

2 ‖∞ ¡ 1. First we prove that
ker(U2(i!)) = 0 for all !∈R. From (4.15) we have
that[
U1(i!)

U2(i!)

]
=&(i!)

[
Ip G(i!)

0 Im

]−1

×
[
G(i!) + K∗(i!)

Im

]
M (i!)

for all !∈R. Note that the following equality holds:

U1(i!)∗U1(i!)− U2(i!)∗U2(i!)

=

[
U1(i!)

U2(i!)

]∗ [
Ip 0

0 −Im

][
U1(i!)

U2(i!)

]

for all!∈R. Multiplying equality (3.5) to the left and
to the right with appropriate matrices, we have that[

Ip 0

G(i!)∗ Im

]−1

&(i!)∗
[
Ip 0

0 −Im

]

&(i!)

[
Ip G(i!)

0 Im

]−1

=

[
Ip 0

0 −�2Im

]
:

Thus

U ∗
1 U1 − U ∗

2 U2

=M∗
[
G + K∗

Im

]∗ [ Ip 0

0 −�2Im

][
G + K∗

Im

]
M

(4.16)

on the imaginary axis. Hence for all u∈Cm and all
!∈R, we have from Eq. (4.16) that

‖U1(i!)u‖2 − ‖U2(i!)u‖2

=‖(G(i!) + K∗(i!))M (i!)u‖2

− �2‖M (i!)u‖26 0: (4.17)

Since ‖G(i·)+K∗(i·)‖∞6 �, andM (i!) is invertible
on the imaginary axis, we conclude that U1 and U2

satisfy the following inequality:

‖U1(i!)u‖6 ‖U2(i!)u‖: (4.18)

Multiplying to the left equality (4.15) with V , the
inverse of &, we obtain that

V

[
U1

U2

]
=

[
K∗

Im

]
M; (4.19)

and so

V21U1 + V22U2 =M: (4.20)

We claim that ker(U2(i!)) = {0} for all !∈R. Sup-
pose on the contrary that there exists 0 �= u0 ∈Cm and
a !0 ∈R such that U2(i!0)u0 = 0. Then from (4.18)
and (4.20), we obtain M (i!0)u0 = 0, which implies
that u0 = 0, a contradiction.
From (4.17), we deduce that

‖U1(i!)U2(i!)−1y‖26 ‖y‖2 for all !∈R;
and so U1(i·)U2(i·)−1 ∈L∞(R;Cp×m) satis<es
‖U1(i·)U2(i·)−1‖∞6 1.
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Step 5: We prove, using the Nyquist index, that
l∗ ¡l, where l∗ ∈N is the one from Step 3. Consider
U1 and U2 as de<ned in (4.15). We know that &21 is
strictly proper and both &22 and M are proper with
invertible limits at in<nity in C+. Thus from (4.15)
we see that

lim
|s|→∞
s∈C+

U2(s) exists and is invertible: (4.21)

Thus it follows that s �→ det(U2(s)) has only <nitely
many zeros in C+, and they are all contained in C+.

The zeros of det(V22), det(M) and det(U2) are
contained in some half-plane C�;+, where �¿ 0.
Since ‖V22(i·)−1V21(i·)‖∞ ¡ 1, there exists a
0¡r¡ 1 such that ‖V22(i·)−1V21(i·)‖∞ = 1 − r.
It follows from P4 that there exists a 1 ¿ 0 such
that 1 ¡� and for any � satisfying 0¡�¡1,
‖V22(� + i·)−1V21(� + i·)‖∞6 1 − r=2. Similarly it
follows from Lemma P4 that there exists a 2 ¿ 0
such that 2 ¡� and for any � satisfying 0¡�¡2,

‖U1(�+ i·)U2(�+ i·)‖∞

6 1 +
r=4

1− r=4
=

1
1− r=4

:

Let  := min{1; 2}, and <x a � satisfying 0¡�¡.
De<ne

-(.; s) = det(.V21(�+ s)U1(�+ s)

+V22(�+ s)U2(�+ s));

where .∈ [0; 1].
a. We know that

-(0; ·) = det(V22(�+ ·)U2(�+ ·));

-(1; ·) = det(V21(�+ ·)U1(�+ ·)
+V22(�+ ·)U2(�+ ·))

are meromorphic (in fact analytic!) in C−�=2;+.
b. -(0; ·) has a nonzero limit at in<nity in C+ :

det(V22) has a nonzero limit at in<nity in C+ and
det(U2) has a nonzero limit at in<nity in C+ (see
(4.21)). -(1; ·) has a nonzero limit at in<nity in C+,
since V21 is strictly proper, U1 is proper in C+, and
the above.

c. (.; s) �→ -(.; s) : [0; 1]× iR→ C is a continuous
function, and

-(0; i!) = det(V22(�+ i!)U2(�+ i!))

= det(V22(�+ i!)) det(U2(�+ i!));

-(1; i!) = det(V21(�+ i!)U1(�+ i!)

+V22(�+ i!)U2(�+ i!)):

d. We have

-(.; i!) = det(V22(�+ i!)) det(U2(�+ i!))

det(I + .V22(�+ i!)−1V21(�+ i!)

×U1(�+ i!)U2(�+ i!)−1)

�= 0;

since

‖.V22(�+ i·)−1V21(�+ i·)U1(�+ i·)U2(�+ i·)−1‖∞
6 1‖V22(�+ i·)−1V21(�+ i·)‖∞

×‖U1(�+ i·)U2(�+ i·)−1‖∞

6
[
1− r

2

] 1
1− r=4

¡ 1;

det(V22(�+ i!)) �= 0 and det(U2(�+ i!)) �= 0.
e. -(.;∞) �= 0, since V21 is strictly proper, U1 is

proper inC+, and det(V22) det(U2) has a nonzero limit
at in<nity in C+.
Thus the assumptions in Lemma A.1.18 [10, p. 570]

are satis<ed by-, and hence it follows that the Nyquist
indices of -(0; ·) and -(1; ·) are the same. Conse-
quently, the number of zeros are the same (the num-
ber of poles is zero, as -(0; ·), -(1; ·) are analytic in
C−=2;+) and so the sum of the number of zeros of
s �→ det(V22(�+s)) in C+

0 plus the number of zeros of
s �→ det(U2(�+ s)) in C+ equals the number of zeros
of s �→ det(V21(�+ s)U1(�+ s)+V22(�+ s)U2(�+ s))
(=det(M (�+ s), using (4.20)) in C+.
In particular, we obtain that the number of zeros of

s �→ det(V22(� + s)) in C+ is less than or equal to
l. But since the choice of � can be made arbitrarily
small, it follows that s �→ det(V22) has at most l zeros
in C+. Thus V22(·)∈ Âm×m

[l∗] where l∗6 l.
Step 6: Finally it can be checked easily that

&−1
11 =V11−V12V−1

22 V21 and V−1
22 =&22−&21&−1

11 &12.
It follows from P5 that &11(·)−1 ∈ Â

p×p
l∗ . If
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&11(·)−1 ∈ Â[k] with k ¡ l∗, using once more P5
we obtain that V22(·)−1 ∈ Âk , which is a contradic-
tion. Using (4.11) and Lemma 4.1, we obtain that
&11(·)−1 ∈ Â

p×p
[l] .

Remark 4.1. Finally we remark that under the as-
sumptions of Theorem 2.2, if �l ¡�¡�l+1, then all
solutions to the sub-optimal Hankel norm approxima-
tion problem are given by

K(·) = R1(·)R2(·)−1;

where[
R1(·)
R2(·)

]
= &(·)−1

[
Q(·)
Im

]

for some Q∈ Âp×m satisfying ‖Q(i·)‖∞6 1. This
follows as in the proof of Theorem 2.1.
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