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Abstract

We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener class of matrix-valued
functions. The approach is via J-spectral factorization and frequency-domain techniques.

(© 2003 Elsevier B.V. All rights reserved.

Keywords: Hankel norm approximation problem; Infinite-dimensional systems; J-spectral factorization; Wiener class of functions

1. Introduction

Let G be a transfer function bounded on the imag-
inary axis and assume that its corresponding Hankel
operator is compact. Let g;’s denote the Hankel sin-
gular values of G, and let ¢ be a number satisfy-
ing ;41 < ¢ < ;. Roughly speaking, the sub-optimal
Hankel norm approximation problem is the following:
Find a matrix-valued function K with at most [ poles
in the closed right half-plane (none of them on the
imaginary axis) such that

1G4+ K|l <0,

where || - ||oo denotes the L,,-norm.
The sub-optimal Hankel norm approximation prob-
lem has been studied extensively in the literature, see
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for example, [1,4,8,11,12,14,18-21]. The new contri-
bution of this paper is to present an elementary deriva-
tion of the reduction of the sub-optimal Hankel norm
approximation problem to a J-spectral factorization
problem. We do this for the Wiener class of functions.
Moreover, an explicit parameterization of all solutions
to the sub-optimal Hankel norm approximation prob-
lem is provided.

Although not stated explicitly in their paper, we
believe that the paper by Ball and Helton [3] is the
first paper which shows the connection between the
sub-optimal Hankel norm approximation problem and
a J-spectral factorization problem. Various corollaries
of this abstract paper have been derived in Ball and
Ran [4] and Curtain and Ran [8], but there is a gap
between the abstract theory in [3] and the elementary
looking corollaries. This motivated the search for an
elementary self-contained proof in many papers (see
Curtain and Ichikawa [6], Curtain and Oostveen [7],
Curtain and Zwart [9], Sasane and Curtain [20,21] and
Iftime and Zwart [16]).
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In this paper we solve the sub-optimal Hankel norm
approximation problem for the Wiener class of func-
tions. The proofs are based on frequency-domain tech-
niques and make use of the factorization theory as
presented in Clancey and Gohberg [5], Gohberg et al.
[13] and Iftime and Zwart [16].

2. Notation and preliminaries

In this section we quote some general results and
introduce our notation. We begin by defining our class
of stable functions (the causal Wiener class) via their
impulse responses. We say that f € .o/ if f has the
representation

Sa(t) + foo(r), =0,
f@)=
0, t <0,
where fo€C (the set of complex numbers),

fooo | fa(t)] dt < oo, and o represents the delta dis-

tribution at zero. For any f € .o/ we define f , the
Laplace transform of f,

7(s) = /O e fu(0)d 4 fo, @.1)

for s€Cy, where C; := {scC|Re(s) >0}. We
define the causal Wiener class ./ as

oA ={f|fed}

From theAdeﬁnition of .o/ it is easy to see that for every
fe, [ is well-defined on C., it is bounded and
analytic in C := {s € C|Re(s) > 0}, continuous on
C,, and it has a well-defined limit at infinity, that is,

sup f(s)ffo‘ﬂo as p — oo.

SECy, |s|=p

Furthermore, ./ is a commutative Banach algebra with
identity under pointwise addition and multiplication
(see [10, Corollary A.7.48]). For a complex function
f, we use the notation /™ to mean the following:

F7 ()= f(=5), (2.2)

where by z we mean the complex conjugate of the
complex number z.
We consider the algebra

W ={g € Loo(iR, C) | g(i-) = g1 (i) + ga(i),

with g1,95" € .},

where

Loo(iR,C)—{f:iRaC

11 = ssssup | 7)) < o0}
s€iR

and we call ¥ the Wiener class of functions. " is
a Banach algebra under pointwise addition and multi-
plication. The elements of " are bounded and contin-
uous on the imaginary axis, they have limits at +ico
and these limits are equal.

By %+, we denote the class of proper, rational func-
tions g with complex coefficients such that g has no
poles in C,, and has a nonzero limit at infinity. By

of oo we mean the set of all functions in </ that have

all their zeros contained in the open right half-plane
and a nonzero limit at infinity.

Now we introduce notation for some matrix-valued
function spaces which will be used in the sequel:

1. By /P*" we denote the set of complex p X m
matrix-valued functions with entries in ..

2. By /7" we denote the set of complex p x m
matrix-valued functions K of a complex variable
with a decomposition

K=G+F,

where G is a rational matrix-valued transfer func-
tion of a system of MacMillan degree at most equal
to /, with all its poles in the open right half-plane,
and F € .o/ P*".

3. o [’;]X " denotes the set of complex p x m
matrix-valued functions K of a complex variable
with a decomposition K = G + F, where G is a
rational matrix-valued transfer function of a sys-
tem of MacMillan degree equal to /, with all its /
poles in the open right half-plane, and F € A P<M

4. We use the notation % ?*™ for the class of pXxXm
matrix-valued functions with entries in %"

We omit the size when there is no danger of confu-
sion. Also, the indices are replaced by dots when we
leave them unspecified. For complex matrix-valued
functions we define

G™(s) == [G(=5)I",

where * is used to denote the transpose complex conju-
gate of a matrix. For scalar functions this corresponds
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to the notation (2.2). It can be seen that G~ (iw) =
[G(—iw)]* = G(iw)* for all w € R.

We will be using the following properties of the
above classes of functions. These properties can be
proved in a manner analogous to the ones in Section
2.5 of Sasane [19]:

Pl. If f €./ and g€ ./, such that g has at most
[ zeros (all in the open right half-plane), then

flge .

P2. If Fe.o/**%, F(iw) is invertible for every
o€ R, lim;_, 1 F(s) (=F) is invertible, then
F(-) ' eahxk,

P3. If K € /7", then there exists a right coprime

factorization of K over sz:/ , K =NM~', (that is,
there exist X and Y in .oZ®***® such that the fol-
lowing Bezout identity holds:

XM — YN =1

forall s € C. ), where M is rational, det(M ) € X,
has at most / zeros in C, and they are all con-
tained in C .

P4. If K € .o/2*™ then given any ¢ > 0, there exists
a 0 > 0 such that whenever 0 < { < 0, we have

K+ 1)loo < 1Ko + &,

where || - || denotes the L.,-norm.
P5. If Keo/*", Ky €o/P-*P, and K, € /™",
then KKK, € /="~

In order to define the Hankel operator, we need the
following notations:

L’z’:{f:iR—HE”

+o0
1113, = / i) do < oo},

—00

H} = {f :C, — C"| f analytic in C; and

+oo

115 = sup / .f(r+iw)||2dw<oo},
r>0J -0

Hp = {f :C_ — C"| f analytic in C_ and

+o00

Hin]zL = supo/ | f (r+iw)|? da)<oo},
r<0.J -0

where C_ := {s€ C|R(s) < 0}. It is well known
that L2 is the direct sum of HJ and H."* with respect
to the usual inner product. The Hankel operator with
symbol G € Lo (iR, CP*™), is defined as

Hg :HY — HP', Hou=11_Gu for all ue Hy',

where IT_ is the orthogonal projection from L2 to
HP" It adjoint is

HE:HP ™ — HY,
Hiy=1I1,G~y forall yEHzp’l,

where 11 is the orthogonal projection from L7 to H3".
Ifthe Hankel operator with symbol G € L. (iR, CZ*™)
is compact, then we denote the singular values of Hg
(that is, the nonnegative square roots of the eigen-
values of H3Hg), by a1 = 0 = --- (= 0). The o;’s
are then referred to as the Hankel singular values of
G. If G(i-) is continuous on the imaginary axis with
equal limits at Fico, then from Hartman’s theorem
(see for example Partington [17, Corollary 4.10, p.
46)), it follows that the Hankel operator with symbol
G is compact.

Let G~ € .2/™*P be a given matrix-valued function
and let ¢ be a real number such that g;.1 < . Then,
the sub-optimal Hankel norm approximation problem
that we consider is the following: Find K € .«7"*"
such that ||G(i-) + K(i-)||c < 0.

The following theorem is a consequence of a
slightly more general result proved by Sasane and
Curtain in [21]. They give sufficient conditions for
the sub-optimal Hankel norm approximation problem
to have a solution.

Theorem 2.1. Suppose that the following assump-
tions hold:

S1. The matrix-valued function G € #°P*™ (let 6}.’s
denote the Hankel singular values of G).

S2. o141 <0 <O0].

S3. There exists a A € o/ PTMXPm) sych that

I, 01[1, © I, G(s)
G(s)* Iy

0 —d’I, 0 I
1
—AGs)" | "
0

A(s)

m

for all s €iR.
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S4 The matrix-valued function A is invertible as an
element of /PrM*Ptm) that s, there exists
a Ve Prmxetm such that A(s)V(s) = Lpm
forall s€C,.

S5. Timy_ 4o A(iw) = {’ﬂ 0 }

0 ol
6. A ()~ e,
then K € /7™ and ||G(i-) + K (i-)|| oo < 0 iff K(-) =
Ri(DRy(-)~!, where
Ri(+)
Ry(+)
for some Q € AP*" satisfying ||O(-)||oe < 1.

] m

4o [Q(-)]

Remark 2.1. The conditions S3-S4 say that the
matrix-valued function

I, 01[1, ©
G(S)* ]m 0 _O_zlm
(2.3)

admits a J-spectral factorization (see the exact defini-
tion in the following section).

I, G(s)

W(s) .=
(s) o I

In this paper, our main result is the following:

Theorem 2.2. Let G be such that G~ € /"> and let
a be a strictly positive real number such that ¢ # oy
for all k € N. Then there exists a A € ./ (P+m)>x(p+m)
such that S3, S4 and S5 hold. Moreover, the following
are equivalent:

1. 041 <0 <oy

2. There exists a KG&A/[";]X'" such that ||G(i-) +

3. The matrix-valued function A€ of(Prm*(p+m)
which satisfies S3-S5, satisfies also A (-)~' €
&}'[p[]x’].

Furthermore, all solutions to the sub-optimal Hankel
norm approximation problem are given by

K()=Ri(HR(-)"",
where
Ri(- .
[ ( )1 . [Q( >1
RZ() [m

for some Q € AP*™ satisfying 0G0 < 1.

Remark 2.2. The above theorem generalizes the re-
sult obtained, for ¢ > o) = ||Hg||, by Iftime and
Zwart in [16]. In this case, the sub-optimal Hankel
norm approximation problem becomes the so-called
sub-optimal Nehari problem. The sub-optimal Nehari
problem can also be seen as an application of the
results obtained by Ball et al. in [2], using the band
method approach.

Remark 2.3. Using some of the methods in [21] we
obtain, for the Wiener class, a stronger result. In [21],
sufficient conditions (S1-S6) for the sub-optimal Han-
kel norm approximation problem to have a solution
were presented. We prove that, for the Wiener class,
the assumption S3, S4 and S5 hold. Moreover the as-
sumption S2 is equivalent to the solvability of the
sub-optimal Hankel norm approximation problem and
equivalent to a stronger version of assumption S6.

3. Existence of a J-spectral factorization

We consider the signature matrix

L, 0
Jo,p,m = 2 5
0 —o°l,

where p and m are in N and ¢ is a strictly positive real
number. Sometimes we simply use J, for the above,
and if o is 1, we use J,,,, or simply J.

Definition 3.1. Let W =W~ € #*** We say that the
matrix-valued function W has a J-spectral factoriza-
tion if there exists an invertible A € .<Z** such that
A(-)' e a/%*k and the equality

W(s)=A~(s)JA(s)
is satisfied for all s € iR. Such a matrix-valued function

A will be called a J-spectral factor of W.

We now introduce the concept of equalizing
vectors.

Definition 3.2. A vector u is an equalizing vector
for the matrix-valued function W € W >k if y is a
nonzero element of Hé‘z and Wu is in Hé‘"l.

The following theorem gives equivalent conditions
for the existence of a J-spectral factorization for a
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matrix-function W = W™~ e %%k A proof can be
found in [15].

Theorem 3.1. Let W = W™ € Wk be such that
det W(s) # 0, for all sc€iR U {xico}. Then the
following statements are equivalent:

1. The matrix-valued function W admits a J-spectral
factorization;

2. The matrix-valued function W has no equalizing
vectors.

We prove the existence of a J-spectral factorization
in a similar way as in Iftime and Zwart [16]. Note that
here we have  # oy, for k € N.

Theorem 3.2. Let G be a matrix-valued function of

a complex variable such that G~ € /" ? and ¢ a
positive real number such that ¢ # oy for all k € N.
Then there exists a (p+m) x ( p+m) matrix-valued
function of a complex variable A€ </ such that W,
defined by

I, Gis)]”~ I, Gs)
W(S): [(;7 I, a, p,m [ ! . ] 5 (34)

has a J, w-spectral factorization
W(s)= A(s)~J pmA(s). (3.5)

Moreover, if G is strictly proper, then A can be cho-
sen such that

o [Ip 0 ]
lim A(iw) = . (3.6)
w—+oo 0 O'Im
Proof. It is easy to see that W(s) = W™~(s) and
det(W(s))#0 for all s€e R U {xico}. In order
to prove that the matrix-valued function W(s)
has a J-spectral factorization, it is enough to
show that W(s) has no equalizing vectors (see
Theorem 3.1).

Let u be an equalizing vector for the matrix-valued
function W, that is,

Ui %1
u= cH,, u;éO, Wu =

1 eH.  (3.7)
up

U2

So we have that

Uy
= Wu
%)
I, 07]7[1, 0 I, G
G~ I,||0 —¢’,||0 I,

[p G u
G~ G G-d, | |w|

which is equivalent to

up
2%

vy =u; + Gup and
vy =G~ uy + G~ Guy — o*us. (3.8)

In the first equality of (3.8) we split Gu, using the
projections I1_ and IT,. We obtain that

uy + I,Guy =vy — II_Gup, and
G~ (u1 + Guy) — 6%ur = vy. (3.9)

From (3.7) and the definition of the projection op-
erators we have that the left-hand side of the first
equality u; + I1.Guy € H, and the right-hand side
vy —I_Guy € HZJ-. This implies that

up +,Gu; =0 and v — I1_Gu =0. (3.10)

Now we replace u in the second equality of (3.9) and
split the term G~ II_Gu; using the projections. We
have that

G~ _Guy — 6°uy = vy
S H_G7I_Guy + .G 1l _Guy — uy = vy
< I, G7I_Guy — 2uy = vy — [1_G~ 1 _Guy.
Using similar arguments as before we have that
.G~ _Gu, — c*uy =0,

which is equivalent to (H;Hg — 021, )uy = 0. Since
o is not a singular value of the Hankel operator, we
obtain that u, must be zero. From (3.10) we see that
also u; must be zero, so u = 0. We conclude that the
matrix-valued function W has no equalizing vectors,
which implies that W has a J-spectral factorization
(3.5).

If G is a strictly proper matrix-valued function we
see that the limit of W at +ico is the identity matrix.
Consequently, it is easy to check that if there exists
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a J-spectral factor Ay which has the limit say 4., at
+ioo, then A defined by
Iy
A(s) = A Ao(s)
0 al,

is clearly a J-spectral factor with the limit [16’ U(; } at
+ico. [

4. Proof of Theorem 2.2

In this section we prove the main result of this paper.
We consider a matrix-valued function of a complex
variable G such that G~ € /"> P Let oy denote the
Hankel singular values of G, and let o be a positive
real number such that ¢ # oy for all £ € N. Theorem
3.2 shows that conditions S3-S5 are satisfied. The
equivalence between the first and the second items of
Theorem 2.2.

1. 0,11 <0 <ay.
2. There exists a K €.o/f;" such that [G(i-) +
K(i+)||oo < o is a consequence of the fact that

inf |GG+ K(i)lloe = o141 4.11)
Ket,

In the following two lemmas we prove the equiva-
lence between the last two items of Theorem 2.2. We
start with the implication “3 = 2”.

Lemma 4.1. Let Ae.o/Ptm>tm pe g matrix-
valued function which satisfies S3-S5, and Ay, ()" €
AP Then there exists Ko /" such that
|G (i) + Ko(i)[| oo < 0

Proof. Define
Ko(s) := Via(s)Vaa(s) ™!,

where V' is the inverse of A. The rest of the proof
follows as in [19, Chapter 4, Theorem 4.2.1]. [

The following lemma proves the implication “2 =
3”. The proof is the same as in Sasane [19], but here
we consider a different transfer function algebra.

Lemma 4.2. Suppose that there exists a K, € o/ [’;]X "
such that ||G() + Ki(i)|eo <o. Let A€
AP Ptm) pe g matrix-valued function which
satisfies S3-S5. Then Ay,(-)~' € J;/[‘;]Xp.

Proof. We will split the proof in six steps. In the first
two steps we prove some properties of V/, the inverse
of A. In the third step we prove that Va(-)~! € .o/ E’;f]’”
for some /, € N. In the fourth step we define

U N
= A s
M

U,
where K = NM~! is a right-coprime factorization of
K over o7, and prove that U, is invertible over the
imaginary axis and ||U; U, '||« < 0. Using a Nyquist
argument, in Step 5 we show that /, < /. Finally, we
obtain in the last step that A;;(-)~' € .o/ ﬁ]x P,
Step 1: From S5,
1 0
ORI
0

1
o 1m

B I, 0 I, 0
role ale)s

and the fact that V' (-) € o, it follows that
1, 0
lim V(s)= 0 .

|s] — oo 1
s€Cy 13 I’"

(4.12)

Step 2: The matrix-valued function A satisfies S3,
and so, taking inverses, we obtain

Glw)*  —I,

for all w € R. Considering the (2,2)-block of the above
yields

.
V(i) V(iw)*
0 —m
[, Glw) ', 0
o -1, 0 -+,
I 0]
x ? ] (4.13)

1
) [m,

Var(io) Va1 (io)* — Var(iw) Vs (im)* = — >

where o € R. (4.14)

Thus for u € C® we have
V(i) ul* = [[Var (i) ul® + p [ul |

So, if Vy(imw)*u =0 for all w € R, then u =0. Hence
it follows that V5, (iw)* is invertible for all w € R, or
equivalently, V(i) is invertible for all w € R.



O.V. Iftime, A.J. Sasane ! Systems & Control Letters 52 (2004) 7583 81

From (4.14), we have |[Vy(iw)™'Wa(io)ul|?* —
|lul]> = —1/6?||Vaa(iw)~'ul|>. Let M >0 be such
that ||V (im)|| < M for all ® € R. We obtain ||ul]> <
[Vaa(i)|*[[Vaa(io) " ul> < M?|[Var(io) ™ ul]*.
Thus

. p— - 1
[Va2(io) ™ Vo (iw)|* < 1 - 202 = 1

for all w € R,

and so we have || V(i) '121()]eo < 1.
Step 3: From (4.12), we know that

lim V22(S) = l Im.
[s|] =00 g

seCy

Thus applying property P2 to V5,(-), we obtain that
Var(-)~' e 5/{'}3’” for some /, € N.

Step 4: Let K.()eo/f™ satisty [G(-) +
K.(i")||co < o and suppose it has the coprime factor-
ization K, = NM ! over o , where N and M are in
</, M is rational, and det(M) € R+, has [ zeros in C.
and none on the imaginary axis. Define

U, AN + ApM
Uy | | AuN + ApM
N K.
— A -y M. (4.15)
M 1,

We prove that U, is invertible over the imagi-
nary axis and |U;U, '||oc < 1. First we prove that
ker(U,(iw)) = 0 for all w € R. From (4.15) we have
that

Ui(iw)

Ip G(iw)
In

G(iw) + K. (iw) ]
M(iw)

m

= A(iw)

X

for all w € R. Note that the following equality holds:

Ui(io)* Ui (io) — Uz(io) " Us(iw)

Ui (io)
Us(io)

I, 0
0 I,

Ui(iw)
Us(iw)

for all w € R. Multiplying equality (3.5) to the left and
to the right with appropriate matrices, we have that

—1
I 0 I, 0
? Alw)* |7
Glw)* I, 0 —I,

. —1
1, G(iw) 1 0
Aiw) | 7 =7 .
I, 0 —d°l,
Thus
U Uy — Uz Us
JG+k ] [ 0 G +K.
B I, 0 —d%, I,
(4.16)

on the imaginary axis. Hence for all u € C” and all
o € R, we have from Eq. (4.16) that

[U (i)ul[* — || Un(ie)ul]®
=[l(G(iw) + K.(iw))M (io)ul|
— o?||M (iw)u||* < 0. (4.17)

Since ||G(i+) + K. (i+)|| oo < g, and M (iw) is invertible
on the imaginary axis, we conclude that U; and U,

satisfy the following inequality:
U1 Gio)ul| < [|Ua(ioo)u]. (4.18)

Multiplying to the left equality (4.15) with V, the
inverse of /A, we obtain that

U, K,

% - M, (4.19)
U2 Im

and so

VorUy + Voo Uy = M. (420)

We claim that ker(U,(iw)) = {0} for all ® € R. Sup-
pose on the contrary that there exists 0 # uy € C” and
a wg € R such that U,(iwg)ug = 0. Then from (4.18)
and (4.20), we obtain M (iwg)uy = 0, which implies
that ug = 0, a contradiction.

From (4.17), we deduce that

| U (i) Ua(io) " y[|* < | v]2

and so Uj(i)Up(i-) 7! € Loo(R, CPX™)
[U1()Ua(i) " |oo < 1.

for all w € R,

satisfies
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Step 5: We prove, using the Nyquist index, that
I, < I, where I, € N is the one from Step 3. Consider
U, and U, as defined in (4.15). We know that A5, is
strictly proper and both A, and M are proper with
invertible limits at infinity in C_.. Thus from (4.15)
we see that

‘llim U,(s) exists and is invertible. (4.21)

seCH

Thus it follows that s — det(U,(s)) has only finitely
many zeros in C_, and they are all contained in C_.

The zeros of det(V;), det(M) and det(U,) are
contained in some half-plane C, ., where ¢ > 0.
Since  [[V22(i)"21(1)]lo < 1, there exists a
0 <r <1 such that ||V22(1)_1V2|(1)||oo =1-r.
It follows from P4 that there exists a 6; > 0 such
that 0; <e¢ and for any { satisfying 0 < { < dy,
[V22(C + 1) V21 (L + i)]lso < 1 — r/2. Similarly it
follows from Lemma P4 that there exists a 0, > 0
such that d, < ¢ and for any { satisfying 0 < { < d»,

UV +i)Un(C+ 1) |0

r/4 1
- = :
1—r/4 1—r/4

<1

Let 0 := min{d;,0,}, and fix a { satisfying 0 < { < J.
Define

d(o,5) = det(ala (L +s)Ui (L + )
+ Vo (l+s)Un(E ),

where o € [0, 1].
a. We know that

d(0,-) = det(V (L + ) Un(E ),

o(1,-)=det(V (L + UL+ )
+ V(L + )Ua(E )

are meromorphic (in fact analytic!) in C_gp ..

b. ¢(0,-) has a nonzero limit at infinity in C, :
det(V») has a nonzero limit at infinity in C, and
det(U,) has a nonzero limit at infinity in C. (see
(4.21)). ¢(1,-) has a nonzero limit at infinity in C,,
since V3 is strictly proper, U; is proper in C,, and
the above.

c. (o, 8) — ¢p(a,5) : [0,1] xiR — C is a continuous
function, and

$(0,im) = det(V2 (£ + iw) Uz ({ + im))
= det(Var({ + i) det(Us({ + im)),
P(1,iw) = det(V21({ + i) Ui ({ + iw)
+ Vo ({ + i0)Ua({ + iw)).
d. We have
P(a,iw) = det(V2(C + iw)) det(Ua({ + iw))
det(/ + oV (C +iw) Vo ({ + iw)
xUi({ +i0)Us({ +iw) ™)
#0,

since
V22 (L + i)™ P+ iU+ i)V +i) oo
<Vl +i) P + i)l
|| UL+ i)V +i) oo

r 1
< [1 2} s b
det(V22(¢ +iw)) # 0 and det(U,({ + iw)) # 0.

e. ¢(a,00) # 0, since V3 is strictly proper, U is
proper in C,, and det(V>;) det(U, ) has a nonzero limit
at infinity in C,..

Thus the assumptions in Lemma A.1.18 [10, p. 570]
are satisfied by ¢, and hence it follows that the Nyquist
indices of ¢(0,-) and ¢(1,-) are the same. Conse-
quently, the number of zeros are the same (the num-
ber of poles is zero, as ¢(0,-), ¢(1,-) are analytic in
C_s/2,+) and so the sum of the number of zeros of

s +— det(V22({+35)) in Cf plus the number of zeros of
s +— det(U({ +5)) in C, equals the number of zeros
of s — det(V21({+$)Ui({ +5) + Voo ({+5)Ua({ +5))
(=det(M({ + s), using (4.20)) in C.

In particular, we obtain that the number of zeros of
s — det(Var({ + 5)) in C, is less than or equal to
[. But since the choice of { can be made arbitrarily
small, it follows that s — det(/>;) has at most / zeros
in C. Thus Vay(-) € [;{" where I, < L.

Step 6: Finally it can be checked easily that
AL =V = ViV, Varand Vyy' = Agy — Ay A A
It follows from PS5 that Ap(-)~'e/!*7. If
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A ()™ EUQAZ[k] with k < [,, using once more P5
we obtain that V,(-)~! € .«Z;, which is a contradic-
tion. Using (4.11) and Lemma 4.1, we obtain that
An() eyt O

Remark 4.1. Finally we remark that under the as-
sumptions of Theorem 2.2, if 6; < ¢ < g4, then all
solutions to the sub-optimal Hankel norm approxima-
tion problem are given by

K()=Ri(R:(),

where
Ri(- .
O] _ ey [20

for some Q €.o/P*" satisfying ||Q(i-)||lso < 1. This
follows as in the proof of Theorem 2.1.

References

[1] V.M. Adamjan, D.Z. Arov, M.G. Krein, Analytic properties
of the Schmidt pairs of a Hankel operator and the generalized
Schur—Takagi problem, Mat. Sb. N.S. 86 (1971) 34-75.

[2] J.A. Ball, I. Gohberg, M.A. Kaashoek, Recent Development
in Operator Theory And Its Applications, Operator Theory,
Advances and Applications, Vol. 87, Birkhduser, Basel,
1996.

[3] J.A. Ball, J.W. Helton, A Beurling-Lax theorem for the Lie
group U(m,n) which contains most classical interpolation
theory, J. Operator Theory 9 (1983) 107-142.

[4] JA. Ball, A.CM. Ran, Optimal Hankel norm model
reductions and Wiener—Hopf factorization I: the canonical
case, SIAM J. Control Optim. 25 (2) (1987) 362-382.

[5] K.F. Clancey, I. Gohberg, Factorization of Matrix Functions
and Singular Integral Operators, Operator Theory, Advances
And Applications, Vol. 3, Birkhéduser, Basel, 1981.

[6] R.F. Curtain, A. Ichikawa, The Nehari problem for
infinite-dimensional systems of parabolic type, Integral
Equations Operator Theory 26 (1996) 29-45.

[71 RE. Curtain, J.C. Oostveen, The Nehari problem for
nonexponentially stable systems, Integral Equations Operator
Theory 31 (1998) 307-320.

[8] R.E. Curtain, A. Ran, Explicit formulas for Hankel norm
approximations of infinite-dimensional systems, Integral
Equations Operator Theory 13 (1989) 455-469.

[9] R.E. Curtain, HJ. Zwart, The Nehari problem for the
Pritchard—Salamon class of infinite-dimensional linear
systems: a direct approach, Integral Equations Operator
Theory 18 (1994) 130-153.

[10] R.F. Curtain, H.J. Zwart, An Introduction to Infinite-
Dimensional Linear Systems Theory, Springer, New York,
1995.

[11] K. Glover, All optimal Hankel-norm approximations of linear
multivariable systems and their Lo, error bounds, Internat. J.
Control 39 (1984) 1115-1193.

[12] K. Glover, R.F. Curtain, J.R. Partington, Realization and
approximation of linear infinite-dimensional systems with
error bounds, SIAM J. Control Optim. 26 (1988) 863—898.

[13] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear
Operators, Operator Theory, Advances and Applications, Vol.
1, Birkhauser, Basel, 1990.

[14] O.V. Iftime, A.J. Sasane, Sub-optimal Hankel norm
approximation for the Wiener class, in: Proceedings of the
Fifteenth International Symposium on Mathematical Theory
of Networks and Systems, Notre Dame, IN, USA, August
2002.

[15] O.V. Iftime, H.J. Zwart, J-spectral factorization and
equalizing vectors, Systems Control Lett. 43 (2001) 321-327.

[16] O.V. Iftime, H.J. Zwart, Nehari problems and equalizing
vectors for infinite-dimensional sytems, System Control Lett.
45 (2002) 217-225.

[17] J.R. Partington, An Introduction to Hankel Operators, London
Mathematical Society Student Texts, Cambridge University
Press, Cambridge, 1988.

[18] A. Ran, Hankel norm approximation for infinite-dimensional
systems and Wiener—Hopf factorization, in: R.F. Curtain
(Ed.), Modelling Robustness and Sensitivity Reduction in
Control Systems, NATO ASI Series, Springer, Berlin, 1986,
pp. 57-70.

[19] AJ.  Sasane, Hankel Norm  Approximation For
Infinite-Dimensional Systems, Lecture Notes In Control and
Information Sciences, Vol. 277, Springer, Berlin, 2002.

[20] A.J. Sasane, R.F. Curtain, Sub-optimal Hankel norm
approximation problem for the Pritchard—Salamon class of
infinite-dimensional systems, Integral Equations Operator
Theory 39 (2001) 98-126.

[21] AJ. Sasane, R.F. Curtain, Sub-optimal Hankel norm
approximation problem for the analytic class of
infinite-dimensional systems, Integral Equations Operator
Theory 43 (2002) 356-377.



	Sub-optimal Hankel norm approximation problem: a frequency-domain approach
	Introduction
	Notation and preliminaries
	Existence of a J-spectral factorization
	Proof of Theorem 2.2
	References


