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Abstract

For linear minimum-phase relative-degree-one systems subject to disturbances and nonlinear perturbations, results per-
taining to disturbance rejection and adaptive tracking of constant reference signals are presented and discussed in the
context of related results in the literature.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let L(n) denote the class of linear, n-dimensional, real, single-input, single-output, minimum-phase plants
having relative degree one. Let L+(n) ⊂ L(n) denote the subclass of systems with positive high-frequency
gain. It is well known (see, for example, the seminal work in [3,9,10]) that the following adaptive proportional
output feedback

u(t) =−k(t)y(t); k̇(t) = y2(t); k(0) = k0 ∈R
applied to any system �∈L+(n), with n∈N, renders the plant zero state globally attractive and, moreover,
the adaptive gain k converges to a Anite limit.
The purpose of the present note is to show that the inclusion of certain nonlinear terms and a non-adaptive

convolution component in the above feedback strategy ensures (a) asymptotic tracking of constant reference
signals r, (b) rejection of disturbances d which are Anite linear combinations of constant and sinusoidal
functions, (c) robustness with respect to globally Lipschitz state-dependent perturbations f and polynomial
output-dependent perturbations g of degree deg(g)6 
, where 
¿ 1 is known, see Fig. 1.

Moreover, the quadratic gain adaptation law (k̇ =y2) in the above strategy is generalized to a considerably
wider class of adaptation laws which, for linear systems, encompasses adaptation laws (k̇ =  (|y|)) with
bounded  . See [6] for a treatment of generalized gain adaptation laws in a diCerent context of controlled
functional diCerential equations.
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Fig. 1. Tracking control of perturbed systems.

1.1. System class

For 
; m∈N and != (!1; : : : ; !m)∈Rm
¿0 (that is, a vector ! with positive components), deAne the system

class S(
; m; !) to be the family of all Anite-dimensional, linear, single-input, single-output, minimum-phase
plants (A; b; c) having relative degree one and positive high-frequency gain cb¿ 0, and subject to a glob-
ally Lipschitz state-dependent perturbation f, a polynomial output-dependent perturbation g∈R[y] of degree
deg(g)6 
 and disturbance consisting of a Anite linear combination of constant and sinusoidal functions:



�̇(t) = A�(t) + b[f(�(t)) + g(y(t)) + d(t) + u(t)]; �(0) = �0;

y(t) = c�(t); cb¿ 0;

det

[
sIn − A b

c 0

]
�= 0 for all s∈C with Re s¿ 0;

f : Rn → R globally Lipschitz; g∈R[y] with deg(g)6 
;

d : R→ R; t �→ d0 +
m∑
i=1

(�i cos!it + �i sin!it); d0; �i; �i ∈R:

(1)

1.2. Control objective

The objective is tracking, by the output of any system of class S(
; m; !), of any constant reference signal
r ∈R. In particular, an (adaptive) output feedback control strategy is sought which depends only on the data

; m∈N, !∈Rm

¿0 and r ∈R and which, when applied to any plant (1) of class S(
; m; !), ensures that all
signals (internal and external) are bounded and y(t) → r as t → ∞.

1.3. Control strategy

Firstly, we deAne two classes of locally Lipschitz functions, each parameterized by 
∈N.

�
 :=
{
’: R¿0 → R¿0 |’ locally Lipschitz and non-decreasing;

lim inf
s→∞ (s
−1=’(s))¿ 0;∃j¿ 0: ’(s)¿ j[1 + s
−1]∀s¿ 0

}
; (2)

 
 :=
{
 : R¿0 → R¿0 |  locally Lipschitz;  (s) = 0 ⇔ s= 0;

lim inf
s→∞ ( (s)=s
−1)¿ 0;∃!¿ 0 :  (s)6 !s
+1∀s¿ 0

}
: (3)
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For future reference, we note that, for each ’∈�
 and  ∈ 
, there exist !; j¿ 0 such that

 (s)6 (!=j)’(s)s2 for all s¿ 0: (4)

Let 
; m∈N; !∈Rm
¿0; r ∈R, and ’∈�
,  ∈ 
. Denote the tracking error by e(t) = y(t) − r. The pro-

posed strategy is a combination of a nonlinear error feedback with an adaptive gain, k(t)’(|e(t)|)e(t), and a
non-adaptive convolution component:



e(t) = y(t)− r;

u(t) =−k(t)’(|e(t)|)e(t)− #0

∫ t

0
e(s) ds−

m∑
i=1

#i

∫ t

0
[cos!i(t − s)]e(s) ds;

k̇(t) =  (|e(t)|); k(0) = k0 ∈R;

(5)

where #i ¿ 0; i = 0; : : : ; m, are arbitrary positive constants.
We emphasize the Iexibility of choice of the functions ’ and  . For example, typical choices for ’∈�


and  ∈ 
 are given by

’(s) = 1
2 [1 + s
−1];  (s) = min{|s|
+1; |s|
−1}:

In particular, if 
 = 1, then the functions s �→ ’(s) = 1 and s �→  (s) = min{s2; 1} are admissible and, in
addition, if the disturbance is constant (i.e. d(t) = d0 for all t), then the following PI control with gain
adaptation only on the proportional term is feasible

u(t) =−k(t)e(t)− #0

∫ t

0
e(s) ds; k̇(t) = min{e2(t); 1}; k(0) = k0 ∈R:

1.4. Discussion

Before proceeding to the main result, we contrast the above strategy (5) with related strategies in the
literature. In the context of the linear system class L(n), adaptive controls that ensure tracking (and disturbance
rejection) of signals that correspond to bounded solutions of known linear time-invariant diCerential equations
are well established (encompassing the constant reference signals, the periodic disturbance signals and the
system class L+(n) of the present note): such controls are based on an internal model principle wherein
the “dynamics” of the reference signal (and disturbance) are incorporated in the plant dynamics via an
appropriately chosen pre-Alter or pre-compensator (see, for example, [4] and references therein). These results
are extended to a linear, multivariable, inAnite-dimensional setting in [8]. From an “internal model” viewpoint,
the convolution term in (5) may be interpreted as a compensator C (designed on the basis of an internal
model principle), with transfer function given by

C(s) =
#0
s
+

m∑
i=1

#is
s2 + !2

i
;

and having the tracking error signal e as input. Against this more general background, the main contribution
of the present note (Theorem 1 below) is of modest content but is distinguishable from the above-cited results
in two ways: robustness with respect to nonlinear perturbations f and g; the explicit nature and simplicity of
the compensator C which has the tracking error e as input (and is non-adaptive, in contrast to the pre-Alters
or pre-compensators of [4] and [8] which have the signal ke as input, k being an adaptive parameter of a
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“high-gain” nature). The merits and demerits of (5) vis-La-vis other existing alternatives and related results in
the literature will be discussed further in Section 3 below.

2. The main result

Theorem 1. Let 
; m∈N, !∈Rm
¿0, ’∈�
 and  ∈ 
. For every r ∈R, �0 ∈Rn and k0 ∈R, the application

of the adaptive feedback (5) to any plant (1) of class S(
; m; !) yields a closed-loop initial-value problem
which has unique maximal solution (�; e; k) : [0; %) → Rn+2. Moreover,

(i) %=∞,
(ii) limt→∞(�(t); e(t)) = (0; 0),
(iii) limt→∞ k(t) exists and is @nite,
(iv) limt→∞(u(t) +

∑m
i=1(�i coswit + �i sinwit)) exists and is @nite.

Proof. Let �0; k0 be arbitrary.
Step 1: Firstly, we express the closed-loop initial-value problem (1), (5) in a convenient form. Since cb¿ 0

in (1), we have Rn = ker c⊕ im b and hence, under an appropriate coordinate transformation � �→ (z; y), we
may express plant (1) in the form{

ż(t) = A1z(t) + A2y(t); z(0) = z0;

ẏ(t) = A3z(t) + A4y(t) + cb[f(z(t); y(t)) + g(y(t)) + d(t) + u(t)]; y(0) = y0
(6)

for real matrices A1; : : : ; A4 of conforming formats, ((z0)T; (y0)T)T = �0, and where the minimum phase
property of (1) implies that A1 is Hurwitz.
DeAne constants

( := −A−1
1 A2r; p0 := A3(+ A4r + cb[d0 + f((; r) + g(r)]

and functions

p : R→ R; t �→ d(t) + f((; r) + g(r) + [A3(+ A4r]=cb;

fr : Rn−1 × R→ R; (x; e) �→ f(x + (; e + r)− f((; r); gr : R→ R; e �→ g(e + r)− g(r):

Evidently, fr is globally Lipschitz with fr(0; 0)=0 and gr is polynomial of degree 
 with gr(0)=0. Introducing
the variables

x(t) := z(t)− (; e(t) := y(t)− r ;

and writing

v0(t) := p0 − #0

∫ t

0
e(s) ds;

vi(t) := �i cos!it + �i sin!it − #i

∫ t

0
[cos!i(t − s)]e(s) ds; i = 1; : : : ; m;

wi(t) := v̇i(t) + #ie(t); i = 1; : : : ; m
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the closed-loop initial-value problem (1), (5) may be expressed in the form


ẋ(t) = A1x(t) + A2e(t); x(0) = z0 − (;

ė(t) = A3x(t) + A4e(t) + cb[fr(x(t); e(t)) + gr(e(t))]

+cb
m∑
i=0

vi(t)− cbk(t)’(|e(t)|)e(t); e(0) = y0 − r;

v̇0(t) =−#0e(t); v0(0) = p0;[
v̇i(t)

ẇi(t)

]
=

[
wi(t)− #ie(t)

−!2
i vi(t)

]
;

[
vi(0)

wi(0)

]
=

[
�i

�i − #i[y0 − r]

]
; i = 1; : : : ; m;

k̇(t) =  (|e(t)|); k(0) = k0:

(7)

Noting that the functions on the right-hand sides of the above system of diCerential equations are locally Lips-
chitz, it follows that the initial-value problem (7) has a unique maximal solution (x; e; v0; (v1; w1); : : : ; (vm; wm); k)
: [0; %) → Rn+2(m+1)+1, for some %∈ (0;∞].
Introducing the matrices Â∈R2(m+1)×2(m+1) and B̂∈R2(m+1) given by

Â :=




[
−1 cb

−#0 0

] [
cb 0

0 0

]
· · ·

[
cb 0

0 0

]
[
−#1 0

0 0

] [
0 1

−!2
1 0

]
0

...
. . .[

−#m 0

0 0

]
0

[
0 1

−!2
m 0

]




; B̂ :=




[
1

0

]
[
0

0

]

...[
0

0

]




and deAning q : [0; %) → R2(m+1) and . : [0; %) → R by

q(t) := [e(t); v0(t); v1(t); w1(t); : : : ; vm(t); wm(t)]T; (8)

.(t) := A3x(t) + A4e(t) + cb[fr(x(t); e(t)) + gr(e(t))]− cbk(t)’(|e(t)|)e(t) + e(t); (9)

the system of diCerential equations in (7) may be written as


ẋ(t) = A1x(t) + A2e(t); x(0) = x0;

q̇(t) = Âq(t) + B̂.(t); q(0) = q0;

k̇(t) =  (|e(t)|); k(0) = k0:

(10)

Step 2: Next, we show that Â is Hurwitz. A straightforward (but tedious) calculation shows that Â has
characteristic polynomial given by

/(s) := [cb #0 + (1 + s)s]
m∏

j=1

(s2 + w2
j ) +

m∑
j=1

cb#j

m∏
k=1
k �=j

(s2 + w2
k):

Noting that /(i�) �= 0 for all �∈R, we may write

/(s) =
/̃(s)

s
∏m

j=1(s
2 + !2

j )
;
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where

/̃(s) := 1 + s+ cb


#0

s
+

m∑
j=1

#is
s2 + !2

j


 for all s∈C with Re(s)¿ 0:

Observe that, for all s∈C with Re(s)¿ 0,

Re(/̃(s)) = 1 + cbRe(s)


 1
cb

+
#0
|s|2 +

m∑
j=1

#j(!2
j + |s|2)

|s2 + !2
j |2


¿ 0:

We may now conclude that the polynomial / has no roots in the closed right-half complex plane {s∈C |Re(s)
¿ 0} and so the matrix Â is Hurwitz.
Step 3: We highlight some consequent inequalities. Since q̇ = Âq + B̂. is an exponentially stable linear

system with input ., there exists c0 = c0(Â; B̂; q0)¿ 0 such that

|e(t)|6 ‖q(t)‖6 c0

[
1 + max

s∈[0; t]
|.(s)|

]
∀t ∈ [0; %): (11)

By properties of ’∈�
, and noting that gr is polynomial of degree 
 with gr(0) = 0, we may infer the
existence of constants j; 1¿ 0 such that

|gr(e)|6 1[1 + |e|
−1]|e|6 (1=j)’(|e|)|e| ∀e∈R: (12)

By (9), together with the global Lipschitz property of fr (with fr(0; 0) = 0) and property (12) of gr , there
exists a constant c1 ¿ 0 such that

|.(t)|6 c1[‖x(t)‖+ |e(t)|+ (1 + |k(t)|)’(|e(t))|e(t)|] ∀t ∈ [0; %): (13)

Since ẋ = A1x + A2e, with A1 Hurwitz, there exists a constant c2 ¿ 0 such that

‖x(t)‖6 c2

[
1 + max

s∈[0; t]
|e(s)|

]
∀t ∈ [0; %): (14)

Combining (11), (13) and (14), we may infer the existence of c3 ¿ 0 such that

max
s∈[0; t]

|.(s)|6 c3

[
1 + max

s∈[0; t]
[(1 + |k(s)|)’(|e(s)|)|e(s)|]

]
∀t ∈ [0; %); (15)

whence, invoking (8), (10) and (11), the existence of constants c4; c5 ¿ 0 such that
d
dt

|e(t)|6 |ė(t)|6 ‖q̇(t)‖6 c4[‖q(t)‖+ |.(t)|]

6 c5

[
1 + max

s∈[0; t]
[(1 + |k(s)|)’(|e(s)|)|e(s)|]

]
∀t ∈ [0; %): (16)

We will exploit the above inequality in due course.
Since A1 is Hurwitz, there exists symmetric positive-deAnite P ∈R(n−1)×(n−1) such that PA1 +AT

1P+ I =0.
Consider the C1-function V : [0; %) → R given by

V (t) :=
1
2

[
x(t)TPx(t) + e2(t) +

v20(t)
#0

+
m∑
i=1

v2i (t) + (wi(t)=!i)2

#i

]
+ k(t)

with derivative

V̇ (t) =− 1
2‖x(t)‖2 + [AT

2P + A3]x(t)e(t) + cbfr(x(t); e(t))e(t) + A4e2(t)

+cbgr(e(t))e(t)− cb’(|e(t)|)e2(t) +  (|e(t)|) ∀t ∈ [0; %):
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Invoking the Lipschitz property of fr (with Lipschitz constant 4) and deAning

c6 := 1
2 [‖AT

2P + A3‖+ cb4]2 + |A4|+ cb4;

then elementary estimates yield

V̇ (t)6 c6e2(t) + cbgr(e(t))e(t)− cb’(|e(t)|)e2(t) +  (|e(t)|) ∀t ∈ [0; %):

By (4), together with property (12) of gr and setting c7 := (cb1 + c6 + !)=j, we have

V̇ (t)6 [c7 − cbk(t)]’(|e(t)|)e2(t) ∀t ∈ [0; %): (17)

Step 4: We now establish boundedness of k and e on [0; %).
Seeking a contradiction, suppose that the non-decreasing function k is unbounded. Then V is also unbounded.
By (17), there exists T ∈ [0; %) such that V̇ (t)6 0 for all t ∈ [T; %) which contradicts unboundedness of V .
Therefore, k is bounded on [0; %).

Again seeking a contradiction, suppose that e is unbounded. For each n∈N, deAne

%n := inf{t ∈ [0; %)| |e(t)|= |e(0)|+ n+ 1}; !n := sup{t ∈ [0; %n)| |e(t)|= |e(0)|+ n}:
Observe that, for all n∈N,

max
s∈[0; t]

|e(s)|= max
s∈[!n; t]

|e(s)|6 |e(0)|+ n+ 16 2(|e(0)|+ n)6 2|e(t)| ∀t ∈ [!n; %n]:

Furthermore, for all n∈N and all t ∈ [!n; %n], |e(t)|¿ |e(0)|+ n¿ 1 and so, for all n∈N and all t ∈ [!n; %n],

1 + max
s∈[0; t]

’(|e(s)|)|e(s)|6 |e(t)|
 + 2’(2|e(t)|)|e(t)| (18)

wherein we have appealed to monotonicity of ’. Recalling that lim inf s→∞ (s
−1=’(s))¿ 0, there exists N1 ∈N
and c8 ¿ 0 such that

’(2|e(t)|)6 c8|e(t)|
−1 ∀n¿N1 ∀t ∈ [!n; %n];

which, together with (16) and (18) and boundedness of k, yields
d
dt

|e(t)|6 c9|e(t)|
 ∀n¿N1 ∀t ∈ [!n; %n];

for some constant c9 ¿ 0. Recalling that lim inf s→∞( (s)=s
−1)¿ 0, there exists N2 ∈N and c10 ¿ 0 such
that

 (|e(t)|)¿ c10|e(t)|
−1 ∀n¿N2 ∀t ∈ [!n; %n]:

We may assume that N2¿N1. We may now conclude that

ln
(

n+ 1 + |e(0)|
N2 + 1 + |e(0)|

)
= ln |e(%n)| − ln|e(!N2 )|=

n∑
j=N2

[ln |e(%j)| − ln|e(!j)|]

6
n∑

j=N2

∫ %j

!j

(d=dt)|e(t)|
|e(t)| dt6 c9

n∑
j=N2

∫ %j

!j

|e(t)|
−1 dt

6
c9
c10

n∑
j=N2

∫ %j

!j

 (|e(t)|) dt = c9
c10

n∑
j=N2

[k(%j)− k(!j)]

6
c9
c10

[k(%n)− k(!N2 )] ∀n¿N2

which contradicts the fact that k is a bounded function. Therefore, e is bounded.
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Step 5: Finally, we establish assertions (i)–(iv). By boundedness of e and k, together with (11), (14)
and (15), it follows that the unique maximal solution (x; e; v0; (v1; w1); : : : ; (vm; wm)) is bounded and so % =
∞. This establishes assertion (i). Since k is bounded with k̇(t) =  (|e(t)|) for all t ∈ [0;∞), we have
 (|e(·)|)∈L1[0;∞). By boundedness of (e; k) and (16), ė is bounded and so e is uniformly continuous.
By continuity of  together with boundedness and uniform continuity of e, the function  (|e(·)|)∈L1[0;∞)
is uniformly continuous. By BarbPalat’s lemma [1], it follows that  (|e(t)|) → 0 as t → ∞. By properties of
the continuous function  , it follows that e(t) → 0 as t → ∞ which in turn, by the Hurwitz property of A1

and the Arst of equations (10), implies that x(t) → 0 as t → ∞. This establishes Assertion (ii). Assertion
(iii) is an immediate consequence of boundedness and monotonicity of k.
Assertions (i)–(iii) imply that the function ., given by (9), is such that .(t) → 0 as t → ∞. Since

Â is Hurwitz, it follows from the second of equations (10) that q(t) → 0 as t → ∞ and so, by (8),
(v0(t); (v1(t); w1(t)); : : : ; (vm(t); wm(t)) → 0 as t → ∞. With u0 := d0 + f(zr; r) + g(r) + (cb)−1[A3zr + A4r]
we see that

u0 + u(t) +
m∑
i=1

(�i coswit + �i sinwit) =−k(t)’(|e(t)|)e(t) +
m∑
i=0

vi(t) → 0

as t → ∞, whence assertion (iv). This completes the proof.

3. Remarks on related results

3.1. PI regulators for nonlinear systems

In a context of systems of the form

z(n)(t) = F(z(t); ż(t); : : : ; z(n−1)(t)) + bu(t); b¿ b0 ¿ 0 (19)

and assuming availability of the full state 8(t) := (z(t); ż(t); : : : ; z(n−1)(t)) for feedback purposes, PI regulators
have been studied in [2]. (To conform with the notation of the present note, we alter the nomenclature of
[2].) The function F is assumed globally Lipschitz. We will show that variants of the results in [2] are
easily obtained using ideas from the present note. Let c = (c1; : : : ; cn−1; 1)∈Rn be such that the polynomial
/(s)=c1+ · · ·+cn−1sn−1+sn does not have any root with non-negative real part. In [2], under the assumption
that F is continuously diCerentiable it is shown that, for suRciently large Axed gain k ¿ 0, the following PI
control (see [2, Eq. (7)]) ensures exponential convergence to zero of the state 8:

u(t) =−k
[∫ t

0
〈c; 8(s)〉 ds+ 8n(t)− 8n(0)

]
:

Regarding y(t) = 〈c; 8(t)〉 as an output from system (19) and deAning

x(t) := (z(t); ż(t); : : : ; zn−2(t))∈Rn−1;

it is readily veriAed that system (19) may be expressed in the form

ẋ(t) = A1x(t) + A2y(t); ẏ(t) = A3x(t) + A4y(t) + f(x(t); y(t)) + bu(t); (20)

where A1 ∈R(n−1)×(n−1) has characteristic polynomial / (and so is Hurwitz) and f : Rn → R is the globally
Lipschitz function (with Lipschitz constant 4¿ 0) given by

f : (x; y) �→ F

(
x; y −

n−1∑
i=1

cixi+1

)
:
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Evidently, system (20) is of form (6) with g= 0; d= 0 and b¿ b0 ¿ 0 playing the rôle of cb. By Theorem
1 (with r = 0), it immediately follows that the adaptive PI control (with arbitrary #¿ 0)

u(t) =−k(t)y(s)− #
∫ t

0
y(s) ds; k̇(t) = y(t)2; k(0) = k0 ∈R

ensures convergence to zero of the state of (19) for all initial data and convergence of the control u to
−F(0)=b.
To obtain a variant of the non-adaptive result in [2, Theorem 4.1] (and without positing continuous diCeren-

tiability of F), we seek a threshold value k∗¿ 0 such that, for all Axed k ¿k∗ and all #¿ 0, the non-adaptive
PI control

u(t) =−ky(t)− #
∫ t

0
y(s) ds (21)

ensures global asymptotic stability of the closed-loop system and convergence of the control u to −F(0)=b.
To this end, we Arst express the closed-loop system in the form of a non-adaptive analogue of (7):


ẋ(t) = A1x(t) + A2y(t); x(0) = x0;

ẏ(t) = A3x(t) + A4y(t) + f0(x(t); y(t))− bky(t) + v(t); y(0) = y0;

v̇(t) =−(#b)e(t); v(0) = f(0; 0);

(22)

where f0(x; y) := f(x; y)−f(0; 0) and v(t) := f(0; 0)− #b
∫ t
0 y(s) ds. Since the right-hand side of the above

system of equations is globally Lipschitz, for each (x0; y0)∈Rn−1 × R, the initial-value problem (22) has
unique solution (x; y) : [0;∞) → RN . Let j¿ 0 be arbitrarily small and let P=PT ¿ 0 be the unique solution
of PA1 + AT

1P + (1 + 29)I = 0. Then, writing

c0 := [‖PA2 + A3‖+ 4]2 + |A4|+ 4;

the function V : [0;∞) → [0;∞); t �→ 1
2 [〈x(t); Px(t)〉+ y(t)2 + v(t)2=(#b)], satisAes

V̇ (t) = − 1
2 (1 + 2j)‖x(t)‖2 + [AT

2P + A3]x(t)y(t) + f0(x(t); y(t))y(t) + [A4 − bk]y(t)2

6− j‖x(t)‖2 − [c0 − bk(t)]y(t)2 ∀t ∈ [0;∞):

DeAning k∗ := c0=b0 it immediately follows that, for each Axed k ¿k∗, the closed-loop system is stable.
Moreover, an application of LaSalle’s invariance principle yields global attractivity of the origin, whence
global asymptotic stability of the closed-loop system (22). Since (x(t); y(t); v(t)) → (0; 0; 0) as t → ∞, it
follows from (20) and (22) that u(t) → −F(0)=b.
In the special case of the scalar example ẏ(t)=f(y(t))+bu(t) with f globally Lipschitz (Lipschitz constant

4) and b¿ b0 ¿ 0 considered in [2, Section 4.2], the function t �→ V (t) := 1
2y(t)

2 + v(t)2=(#b) has derivative
V̇ (t) = f0(y(t))y(t)− bky(t)26 [4− b0k]y(t)2 for all t ∈ [0;∞) which yields a threshold gain value of 4=b0
(a signiAcant improvement on the threshold value 9:1244=b0 given in [2, Corollary 4.2]).

In the speciAc context of the second-order system considered in [2, Section 5.1], namely, Sw(t)=1+cosw(t)+
u(t), and writing y(t)=w(t)+ẇ(t), we have A1=−1=A3; A2=1=A4, 4=1 and P=9+ 1

2 . Chosing 9= 1
2 , then

the above result implies that the control u(t)=−ky(t)− #
∫ t
0 y(s) ds ensures global asymptotic stability of the

closed-loop system for all #¿ 0 and k ¿k∗ =2 (by exploiting the fact that, in this example, the nonlinearity
depends only on w(t), the latter threshold may be sharpened to k∗ =1). Again, this compares favorably with
the result in [2] which, in the current notation, shows that the control u(t) = −k[

∫ t
0 y(s) ds + ẇ(t) − ẇ(0)]

stabilizes the system for all k ¿ 25.
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3.2. Tracking by discontinuous feedback

Consider again a system of the form (1) belonging to S(
; m; !). This system is encompassed by the
considerably more general framework of [12] and the approach therein applies to conclude that the adaptive
discontinuous output feedback strategy (suitably interpreted in a set-valued sense)

u(t) =−k(t)[1 + |e(t)|
−1]e(t)− k(t) sgn(e(t));

k̇(t) = |e(t)|+ e(t)2 + |e(t)|
+1; k(0) = k0 ∈R (23)

ensures boundedness of all signals, convergence to zero of the tracking error and convergence to a Anite limit
of the gain function k. Here, the (non-adaptive) convolution term in (5) has been replaced by an adaptive
discontinuous feedback term. This approach has additional beneAts: the requisite tracking, disturbance rejection,
boundedness of signals and convergence of gain properties persist when the constant reference signal r and
the disturbance signal d (of the type considered in the present note) are replaced by any functions r and d of
Sobolev class W 1;∞ (absolutely continuous and bounded with essentially bounded derivative). The price paid
in replacing (5) by (23) lies primarily in the discontinuous nature of the feedback: small measurement noise
and/or inaccuracies in the implementation of sgn(e(t)) may lead to errors with destabilizing eCects. Moreover,
stability analysis of the closed-loop system necessitates the adoption of an existence theory within framework
of diCerential inclusions wherein uniqueness of solutions of the closed-loop initial value may not be assured.

3.3. Approximate tracking by continuous feedback

Let sat4 and d4 denote the (globally Lipschitz) functions R→ R given by

sat4(e) :=

{
sgn(e); |e|¿ 4;

e; |e|¡4;
d4(e) := max{0; |e| − 4}

and parametrized by 4¿ 0. Elaborating further the approach of Section 3.2, we remark that, if in place of
the discontinuous feedback strategy, the following continuous feedback is employed{

u(t) =−k(t)[1 + |e(t)|
−1]e(t)− k(t)sat4(e(t));

k̇(t) = [1 + |e(t)|+ |e(t)|
]d4(e(t)); k(0) = k0 ∈R;
(24)

then the results of [7] (with precursors [5,11]), applied in the context of the plants belonging to S(
; m; !),
ensure boundedness of all signals in the closed-loop system and convergence of the gain to a Anite limit.
Moreover, the Lipschitz nature of the right-hand sides of the diCerential equations governing the closed-loop
behaviour ensure uniqueness of solutions for the initial-value problem. The price paid in replacing (5) by
(24) is that convergence to zero of the tracking error is not assured: instead, convergence to the prescribed
interval [− 4; 4] is guaranteed, where 4¿ 0 may be chosen arbitrarily small. However, the boundedness and
convergence properties persist when the constant reference signal r and the disturbance signal d (of the type
considered in the present note) are replaced by any functions r and d of Sobolev class W 1;∞. This added
generality, together with the relative simplicity of the strategy and the fact that the accuracy quantiAer 4¿ 0
may be chosen arbitrarily small, might argue for preference of (24) over (5).
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