
Available online at www.sciencedirect.com

Systems & Control Letters 52 (2004) 247–255
www.elsevier.com/locate/sysconle

Transfer functions for in nite-dimensional systems
Hans Zwart∗

Department of Applied Mathematics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, Netherlands

Received 21 October 2003; received in revised form 21 December 2003; accepted 9 February 2004

Abstract

In this paper, we study three de nitions of the transfer function for an in nite-dimensional system. The  rst one de nes
the transfer function as the expression C(sI − A)−1B + D. In the second de nition, the transfer function is de ned as the
quotient of the Laplace transform of the output and input, with initial condition zero. In the third de nition, we introduce
the transfer function as the quotient of the input and output, when the input and output are exponentials. We show that these
de nitions always agree on the right-half plane bounded to the left by the growth bound of the underlying semigroup, but
that they may di8er elsewhere.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The notion of transfer function is classical in
systems theory. One could even state that without
transfer functions there is no systems theory. There
are, however, di8erent de nitions of a transfer func-
tion, such as the Laplace transform of the impulse
response, or the quotient of the Laplace transform of
the output and the Laplace transform of the input, or
just C(sI − A)−1B + D for a state linear system. For
 nite-dimensional systems all these de nitions lead to
same rational function, see Polderman and Willems
[4, Chapter 8], provided one makes the necessary
analytic continuation. However, as is shown in Cur-
tain and Zwart [2, Example 4.3.8], these notions may
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di8er for in nite-dimensional systems. Hence there is
a need for clari cation on this point. In this paper, we
start by studying transfer functions for the state linear
system

ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

y(t) = Cx(t) + Du(t); (1)

where A is the in nitesimal generator of a C0-
semigroup on the state space X , B is a bounded linear
operator from input space U to X , C is a bounded
linear operator from X to the output space Y , and
D is a bounded operator from U to Y . The spaces
X , U and Y are assumed to be Banach spaces. To
simplify notation, we denote by L(U; Y ) the space
of bounded linear operators from U to Y . For sys-
tem (1), we introduce the following notions of a
transfer function. To avoid confusion, we give dif-
ferent names to the di8erent de nitions of transfer
functions.
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De�nition 1.1. For system (1) we introduce

1. The characteristic function of system (1) is de ned
as

G(s) = C(sI − A)−1B+ D; s∈ �(A); (2)

where �(A) denotes the resolvent set of A.
2. Assume that x0=0, and let û(s) and ŷ(s) denote the

(one-sided) Laplace transforms of u and y, respec-
tively. If there exists a real � such that for all input
–output pairs whose Laplace transform exists on
{s∈C|Re(s)¿�} we can write ŷ(s) = H (s)û(s)
on Re(s)¿�, and H (s) is aL(U; Y )-valued func-
tion of a complex variable de ned for Re(s)¿�,
then we call H (s) the input–output transfer func-
tion of (1).

For these de nitions we summarize the following
results, see [2, Lemma 4.3.6]:

• The function H as de ned above exists, and
equals the Laplace transform of the impulse re-
sponse h(t) := CT (t)B + D�(t), where T (t) is the
C0-semigroup generated by A. The region of con-
vergence of this Laplace transform is the right-half
plane {s∈C|Re(s)¿�}. Furthermore, �6!,
where ! is the growth bound of the semigroup.

• On the right-half plane C+
! := {s∈C|Re(s)¿!},

we have that G(s) = H (s).
• On the right-half plane C+

� := {s∈C|Re(s)¿�},
one may have that G(s) �= H (s), see Example 4.3.8
of [2].

Hence in the right-half plane bounded by the growth
bound of the semigroup there is no confusion about the
notion of the transfer function. However, one would
like to know how one may extend this. Recall that
for  nite-dimensional systems one normally de nes
the transfer function as the characteristic function, and
this equals the analytic continuation ofH (s). Since for
 nite-dimensional systems the transfer function is ra-
tional, it is clear what is meant by the analytic contin-
uation. However, for an in nite-dimensional system
this is not clear at all. For example, consider a system
with impulse response

h(t) =
1√
t
:

Its Laplace transform equals

H (s) =

√
�
s

for s∈C with Re(s)¿ 0:

By standard Laplace theory, we have that this function
is analytic on its domain. Unlike the rational case,
there does not exist “the” analytic continuation for this
function. First one has to specify the branch cut of√
s. Normally, one chooses the negative real line, but

any (straight) line starting at zero and contained in the
open left half plane will do.
As can be seen from the fact that H (s) = C(sI −

A)−1B + D on C+
! = {s∈C|Re(s)¿!}, it is natu-

ral to relate an analytic continuation of H to that of
C(sI −A)−1B+D, i.e., to that of (sI −A)−1. Starting
from the resolvent operator (sI−A)−1 de ned on C+

! ,
there is a natural domain for its analytic continuation.
This domain is the largest component of the resolvent
set containing C+

! , and is denoted by �∞(A), see [2,
Section 2.5]. On �∞(A) the resolvent operator has a
unique analytic continuation which equals (sI−A)−1,
as is easy to see. The analytic continuation of H (s)
from C+

! to �∞(A) equals G(s).
In Lemma 4.3.6 of [2] it is claimed that

H (s) = G(s) on �∞(A):

In Example 2.2 we show that this is wrong. The reason
for this lies in the construction of the analytic continu-
ation. We have that H (s)=G(s) on C+

! . As mentioned
above, we can see G(s) as the analytic continuation
of H (s) from C+

! to �∞(A). On the other hand, the
analytic continuation of H (s) from C+

! to C+
� equals

H (s). Suppose now that �= 0, and that the spectrum
of A is the positive half circle, see Fig. 1. So the point
1
2 is an element of C

+
� and an element of �∞(A), but

any path contained in �∞(A) connecting 1
2 with 2 must

leaveC+
� . Since an analytic continuation is completely

dependent on the allowed paths, it is likely that the
value obtained in 1

2 using these paths will di8er from
the value obtained by going from 2 to 1

2 over the real
axis. This is what happens in Example 3.2.
In De nition 1.1 we gave two de nitions for transfer

function of system (1). For  nite-dimensional systems
there is another characterization of a transfer func-
tion, namely the exponential input, e�t ; t ∈R, gives
as output the same exponential multiplied by a com-
plex number. This number equals the transfer func-
tion G(�). When working with ( nite-dimensional)
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Fig. 1. A situation in which �∞(A) ∩ C+
� consists of two com-

ponents.

systems on the time axis [0;∞), one has to make the
proper choice for the initial condition in other to ob-
tain an exponential output. For in nite-dimensional
systems this notion of a transfer function has hardly
been investigated. In the next section we study this no-
tion and relate it to the other notions of transfer func-
tions. Maybe the most surprising result is that G(�)
need not have a unique value at �. Note that work-
ing on the time axis [0;∞) is the natural choice for
in nite-dimensional state linear systems, since the ab-
stract di8erential equation ẋ(t)=Ax(t) may have only
the trivial solution on the time axis R, even when A
is the in nitesimal generator of C0-semigroup.
In Section 3, we give some examples showing the

di8erence between the di8erent notions. Throughout
most of the paper we assume that B and C are bounded
operators. In Section 4, we shall summarize the re-
sults if this assumption does no longer hold. Please
note that the diOculties arising for transfer functions
for in nite-dimensional systems are not caused by the
unboundedness of A. It is purely a consequence of the
fact that the state space is in nite-dimensional.

2. Transmission functions

We begin by giving a signal characterization of the
characteristic function for state linear system (1). We
leave the proof up to the reader.

Lemma 2.1. Consider system (1). For every
�∈ �(A) there exists an input-state-output triple
(u(t); x(t); y(t)) of the form (u0e�t ; x0e�t ; y0e�t),

t¿ 0, satisfying (1). Furthermore, for a given u0,
the initial condition x0 and y0 are unique and are
given by (�I − A)−1Bu0 and G(�)u0, respectively.

In the next de nition, we remove the assumption
that the state must be of the form x0e�t .

De�nition 2.2. Consider system (1). For �∈Cwe de-
 ne an element y� ∈Y to be a transmission value for
u0 exp(�t) if for the input u0 exp(�t), t¿ 0, there ex-
ists an initial condition x�(0)∈X such that the output
of (1) equals y� exp(�t) for t¿ 0. We say that G(�)
is a transmission function (at �) if for every u0 ∈U y�

can be written as y� = G(�)u0.

We can solve Eq. (1) for u0 exp(�t), by simply tak-
ing the Laplace transform of this equation. For s∈C
with Re(s)¿max{Re(�); !}, where ! is the growth
bound of semigroup generated by A, we have

sX�(s)− x�(0) = AX�(s) + Bu0
1

s− �
; (3)

Y�(s) = CX�(s) + Du0
1

s− �
: (4)

Or equivalently

X�(s) = (sI − A)−1x�(0) + (sI − A)−1Bu0
1

s− �
;

(5)

Y�(s) =C(sI − A)−1x�(0) + C(sI − A)−1Bu0
1

s− �

+Du0
1

s− �
: (6)

With the concept of characteristic function, i.e.,G(s)=
C(sI − A)−1B+ D, we can write the last equation as

Y�(s) = C(sI − A)−1x�(0) + G(s)u0
1

s− �
: (7)

So we have that y� is a transmission value for
u0 exp(�t) if and only if

y� =C(sI − A)−1(s− �)x�(0)

+C(sI − A)−1Bu0 + Du0 (8)

on C+
max{!;Re(�)}.

From Lemma 2.1 the following result is immedi-
ately.
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Lemma 2.3. For every � in the resolvent set of A, we
have thatG(�) := C(�I−A)−1B+D is a transmission
function at �.

Since we have that G(�) is always a transmission
function, one might expect that this is the only one.
However, there can be more as the following example
shows.

Example 2.4. Let A be the left shift on ‘2(Z). So

(Az)k = zk+1; k ∈Z:
We have that

!(A) = !c(A) = {s∈C : |s|= 1}:
We de ne B as the vector in ‘2(Z) having all coef-
 cients zero except the coeOcient at the position −1
which is taken to be 1, i.e., Bk =�−1; k . The output op-
erator C is de ned as Cz= z0 and D= 0. The growth
bound of the semigroup generated by A is one, and a
simple calculation shows that if |�|¿ 1, then

((�I − A)−1B)k = �k for k ¡ 0; otherwise 0:

On the other hand, if |�|¡ 1, then

((�I − A)−1B)k =−�k for k¿ 0; otherwise 0:

So the characteristic function G(�)=C(�I−A)−1B=
−1 if |�|¡ 1, but otherwise it is zero.
Let �∈ �(A) and choose x�(0) in (6) as p(�)(�I −

A)−1B, where p(�) is an arbitrary constant, then we
 nd that

Y�(s) =C(sI − A)(�I − A)−1Bp(�) + 0

=p(�)
1

s− �
C(�I − A)−1B:

Thus for |�|¿ 1 this is zero, but for |�|¡ 1, we  nd
that any multiple, p(�), can be a transmission value
for u0 exp(�t). So we  nd that the transmission func-
tion and value are only unique on some region of the
complex plane.

As we have seen in the previous example, we can
only expect that the transmission value and function
are unique in some region of the complex plane. The
following theorem shows that this indeed holds. In or-
der to prove this theorem, we need some results which
are listed next. First, we show that any analytic con-
tinuation of C(sI−A)−1, s∈C+

! to a point in �∈ �(A)

equals C(�I − A)−1. This lemma is an extension of
Lemma 2.3 of Curtain [1].

Lemma 2.5. Let �∈ �(A), and assume further that
the operator C(sI − A)−1 has the analytic contin-
uation %(s) from C+

! = {s∈C|Re(s)¿!}, to the
(connected) region & containing � and this right-half
plane C+

! . Then %(�)=C(�I −A)−1. Thus any ana-
lytic continuation of C(sI − A)−1 from C+

! to � has
the same value.

Proof. Let % denote the analytic continuation of
C(sI − A)−1 from C+

! to &. On C+
! we have that for

all x0 ∈D(A)

%(s)(sI − A)x0 = C(sI − A)−1(sI − A)x0 = Cx0:

Since % has an analytic continuation to & and since
(sI −A)x0, and Cx0 are entire functions, we have that
the above relation also holds on &. In particular, there
holds

%(�)(�I − A)x0 = Cx0:

This holds for every x0 ∈D(A), and so we have that

%(�) = C(�I − A)−1:

So the analytic continuation of C(sI − A)−1 to � is
unique.

In order to see the particular nature of this theorem
consider the function

√
s. This function is analytic

in C+
0 , but its value at −1 depends on the way we

have reached this point. Note that the result of the
above lemma does not hold for C(sI −A)−1x0, as can
be seen from Example 2.4. For this function we can
prove the following lemma. In this result we use
�∞(A), the largest component of the resolvent set
that contains an interval [r;∞).

Lemma 2.6. Let x0 be an element of X . Then the
following assertions are equivalent:

1. C(sI−A)−1x0=0 for all s in &, where & ⊂ �∞(A)
contains an accumulation point;

2. C(sI − A)−1x0 = 0 for all s∈ �∞(A);
3. x0 is non-observable, i.e., CT (t)x0= for all t¿ 0.

Proof. The implications (3) ⇔ (1) follow easily by
taking the Laplace transform of CT (t)x0.



H. Zwart / Systems & Control Letters 52 (2004) 247–255 251

It is clear that (2) implies (1). Let us assume that (1)
holds, and let s be an arbitrary element in �∞(A). We
can see (sI − A)−1 as the inverse of (sI − A), but we
can also regard it as the evaluation at s of the analytic
continuation of the resolvent from & to �∞(A). Since
both interpretations give the same value, we have that
C(sI −A)−1x0 equals the analytic continuation of the
zero function on &. Thus C(sI − A)−1x0 = 0.

Theorem 2.7. Let �∈ �(A). Then the transmission
value for u0 exp(�t) is non-unique if and only if there
exists a x0, such that C(sI − A)−1x0 = 0 on �∞(A)
and C(�I − A)−1x0 �= 0.
Furthermore, all transmission values for exp(�t)u0

are characterized as elements of the set

C(�I − A)−1Bu0 + Du0 + C(�I − A)−1N; (9)

where N = {x0 ∈X |C(sI − A)−1x0 = 0 on �∞(A)}.
Thus they form a (a9ne) linear subspace of Y . Note
that N is the non-observable subspace, see Lemma
2.6.

Proof. Suppose that there exists a x0 with the prop-
erties as stated above, then choose x�(0) = (�I −
A)−1Bu0 + p�(�I − A)−1x0, with p� ∈C.
Y�(s) =C(sI − A)−1x�(0)

+C(sI − A)−1Bu0
1

s− �
+ Du0

1
s− �

=C(sI − A)−1(�I − A)−1Bu0

+p�C(sI − A)−1(�I − A)−1x0

+C(sI − A)−1Bu0
1

s− �
+ Du0

1
s− �

=C(�I − A)−1Bu0
1

s− �

+p�C(�I − A)−1x0
1

s− �

−p�C(sI − A)−1x0
1

s− �
+ Du0

1
s− �

=C(�I − A)−1Bu0
1

s− �
+ Du0

1
s− �

+p�C(�I − A)−1x0
1

s− �
+ 0;

where we have used the resolvent identity. So we
have that C(�I −A)−1Bu0 +Du0 +p�C(�I −A)−1x0
is a transmission value for exp(�t)u0. Since C(�I −
A)−1x0 �= 0, this expression has in nitely many val-
ues, depending on the choice of p�. Furthermore, the
transmission value is in set (9).
Now we shall prove the converse. Suppose that y1; �

and y2; � are both transmission values for exp(�t)u0
and let x1; �(0) and x2; �(0) be the corresponding initial
conditions. From Eq. (8) we see that

y1; � − y2; � = C(sI − A)−1(s− �)[x1; �(0)− x2; �(0)];

s∈C+
max{!;Re(�)}: (10)

When we take the limit for s → ∞, we obtain that

y1; � − y2; � = C[x1; �(0)− x2; �(0)]:

Writing in (10) s − � as sI − A + A − �I , and using
the above relation we see that

y1; � − y2; � =C[x1; �(0)− x2; �(0)] + C(A− �I)

×(sI − A)−1[x1; �(0)− x2; �(0)]

= y1; � − y2; � + C(A− �I)(sI − A)−1

×[x1; �(0)− x2; �(0)]:

Using Lemma 2.6 we obtain that for all s∈ �∞(A)

C(A− �I)(sI − A)−1[x1; �(0)− x2; �(0)] = 0: (11)

Take s0 a  xed point in �∞(A), then it follows from
the above equation that

0 =C(A− �I)(s0I − A)−1[x1; �(0)x2; �(0)]

−C(A− �I)(sI − A)−1[x1; �(0)− x2; �(0)]

= (s− s0)C(A− �I)(s0I − A)−1(sI − A)−1

×[x1; �(0)− x2; �(0)]

= (s− s0)C(sI − A)−1(A− �I)(s0I − A)−1

×[x1; �(0)− x2; �(0)]:

De ning x0 as x0 = (A − �I)(s0I − A)−1[x1; �(0) −
x2; �(0)], we see that C(sI − A)−1x0 = 0, and

C(�I − A)−1x0 =C(�I − A)−1(A− �I)(s0I − A)−1

×[x1; �(0)− x2; �(0)]
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=−C(s0I − A)−1[x1; �(0)− x2; �(0)]

by (11)

=
−1

s0 − �
[y1; � − y2; �] �= 0:

From the above theorem we can make some simple
observations:

• If the transmission value is non-unique for a u0 ∈U ,
then it is non-unique for every u∈U . Even for u0=
0.

• The undetermined part of the transmission value is
independent of u0.

• If the transmission value for u0 exp(�t) is unique,
then the transmission function at � exists and equals
the characteristic function at �.

From Theorem 2.7 we have the following direct
consequences.

Corollary 2.8. (1) For �∈ �∞(A) the transmission
value is unique, and is given by

y� = C(�I − A)−1Bu0 + Du0:

Furthermore, the transmission function equals the
characteristic function.
(2) IfP(A;−; C) is approximately observable, then

the transmission value is unique on �(A). Further-
more, the transmission function equals the charac-
teristic function.

So on �∞(A) the transmission value and function
are unique, but as we have seen from Example 2.4 it
can be completely undetermined on another compo-
nent of the spectrum. Since the three notions of the
transfer functions agree on C+

! , we may de ne this to
be the transfer function of the system.

De�nition 2.9. Consider system (1), and let ! denote
the growth bound of the semigroup generated by A.
The function

G(s) = C(sI − A)−1B+ D; s∈C+
!

is de ned as the transfer function of (1).

Using the characterization of the transmission
value, we obtain conditions when it is unique.

Lemma 2.10. For the transmission value and func-
tion we have the following uniqueness results:

1. If ((A;−; C) is output stable, then the transmis-
sion value and function are unique at every point
in the intersection of the closed right-half plane
and the resolvent set.

2. Let �∈ �(A). Assume further that the operator
C(sI − A)−1 has the analytic continuation %(s)
fromC+

! to the (connected) region& containing �.
Then the transmission value and function at � are
unique, and the transmission function at � equals
the characteristic function at �.

Proof. (1) Let �∈ �(A) ∩ {s∈C|Re(s)¿ 0} and let
y1; � and y2; � be transmission values for exp(�t)u0.
Then, see (10),

y1; � − y2; � = C(sI − A)−1(s− �)[x1; �(0)− x2; �(0)]:

Or, equivalently,

C(sI − A)−1[x1; �(0)− x2; �(0)] =
y1; � − y2; �

s− �

for s∈C+
max{!;Re(�)}. In time-domain the above equa-

tion reads as

CT (t)[x1; �(0)− x2; �(0)] = [y1; � − y2; �] exp(�t):

Since the system is output stable and since Re(�)¿ 0,
this implies that y1; �−y2; �=0. Thus the transmission
function at � is unique.
(2) If at � the transmission value and function would

not be unique, then by Theorem 2.7 we know that
there would exist a x0 such that C(sI −A)−1x0 =0 on
�∞(A) and C(�I − A)−1x0 �= 0. On �∞(A) we have
that %(s)x0 =C(sI −A)−1x0 = 0, and since % has an
analytic continuation to &, we  nd that %(s)x0 =0 on
&. Especially,%(�)x0=0. However, from Lemma 2.5
we know that%(�)=C(�I−A)−1. Thus we conclude
that C(�I−A)−1x0=0, providing a contradiction.

Examples 2.4 and 3.2 of the next section, show
that the input–output transfer function can be di8erent
from the characteristic and/or the transmission func-
tion. In the following lemma we show that if the sys-
tem is output stable, then they are all equal on the open
right-half plane. For the proof we refer to Lemma 2.3
in [1].
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Lemma 2.11. If ((A; B; C; D) is output stable, then
the transmission function and the input–output trans-
fer function are equal on �(A) ∩ C+

0 .

3. Analytic continuations of the transfer function

In this section, we show that the input–output trans-
fer function need not be a transmission function, even
when the transmission function is unique. But  rst we
need to discuss the following simple example.

Example 3.1. Consider the di8erential equation on
[− 1; 1]

9
9t x(); t) = i)x(); t) + (1− )2)−1=4u(t): (12)

As state space we choose L2(−1; 1). The system op-
erator A0 is given by

A0,()) = (i)),())

and this is a bounded operator, with bound 1,
on L2(−1; 1). Since it is a multiplication oper-
ator, it is easy to see that its spectrum equals
!(A0)={s∈C|Re(s)=0 and |Im(s)|6 1}. The input
operator B0 is de ned as B0u = (1 − )2)−1=4u, and
since (1 − )2)−1=4 ∈L2(−1; 1), we know that B0 is
a bounded operator from C to L2(−1; 1). As output
operator, we take the dual of B0. Thus,

y(t) =
∫ 1

−1
x(); t)(1− )2)−1=4 d): (13)

The characteristic function of this system is given by
the expression

G0(s) =
∫ 1

−1
(1− )2)−1=2 1

(s− i))
d): (14)

We rewrite this in a form which gives the closed-form
expression. Let s be a positive real number, then we
have that

G0(s) =
∫ 1

−1

1
s− i)

(1− )2)−1=2 d)

=
∫ 0

−1

1
s− i)

(1− )2)−1=2 d)

+
∫ 1

0

1
s− i)

(1− )2)−1=2 d)

=
∫ 1

0

1
s+ i)

(1− )2)−1=2 d)

+
∫ 1

0

1
s− i)

(1− )2)−1=2 d)

= 2
∫ 1

0

s

(s2 + )2)
√
1− )2

d): (15)

Now using the substitution x =
√

)−2 − 1 this last
integral becomes

2
∫ ∞

0

s
s2 + 1 + s2x2

dx =
�√

s2 + 1
:

Note that for s¿ 0 we have to take the usual (posi-
tive) square root of s2 + 1. Thus G0( 12 )= 2�=

√
5. For

s¡ 0 we have that G0(s) = −G0(−s), see (15), e.g.
G0(− 1

2 ) =−2�=√5.
Concluding we have that the characteristic function

is the (unique) analytic continuation of �=
√
s2 + 1 to

the resolvent set of A, i.e., every complex s except
for the interval [−i,i] on the imaginary axis. Since the
resolvent set is connected, we have that the charac-
teristic function and the transmission function are the
same on the whole resolvent set.
The impulse response of the system is

h0(t) = C0eA0tB0 =
∫ 1

−1

ei)t√
1− )2

d);

which is � times the Bessel function of the  rst kind
and the zero order.

Example 3.2. Consider the di8erential equation on
[− 1; 1]
9
9t x(); t) =

1 + i)
1− i)

x(); t)

+(1− i))−1(1− )2)−1=4u(t): (16)

As state space we choose again L2(−1; 1). The system
operator A1 is given by

A1,()) =
1 + i)
1− i)

,())

and this is a bounded operator, with bound one,
on L2(−1; 1). Since it is a multiplication oper-
ator, it is easy to see that its spectrum equals
!(A1) = {s∈C|Re(s)¿ 0 and |s|=1}. The input op-
erator B1 is de ned as B1u=(1− i))−1(1− )2)−1=4u,
and since (1−i))−1(1−)2)−1=4 ∈L2(−1; 1), we know
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that B1 is a bounded operator from C to L2(−1; 1). As
output equation we take

y(t) = 2
∫ 1

−1
x(); t)(1− i))−1(1− )2)−1=4 d)

+
�√
2
u(t): (17)

Thus the system has a feed-through operator equal to
D1 := �=

√
2 and an output operator equal to

C1,= 2
∫ 1

−1
,())(1− i))−1(1− )2)−1=4 d):

For the calculation of the characteristic function we
need we the following simple, but important relations
between the system in Example 3.1 and the system
de ned above:

A1 = (I + A0)(I − A0)−1;

B1 = (I − A0)−1B0;

C1 = 2C0(I − A0)−1:

Furthermore, D1 = G0(1). So we have that

G1(s) :=C1(sI − A1)−1B1 + D1

= 2C0(I − A0)−1(sI − (I + A0)(I − A0)−1)−1

×(I − A0)−1B0 + D1

= C0[2(I − A0)−1(sI − (I + A0)(I − A0)−1)−1

×(I − A0)−1 + (I − A0)−1]B0:

Since for s∈ �(A1) and s �= −1, we have that((
s− 1
s+ 1

)
I − A0

)−1

=(I − A0)−1 + 2(I − A0)−1

×(sI − (I + A0)(I − A0)−1)−1(I − A0)−1;
(18)

we see that

G1(s) =G0

(
s− 1
s+ 1

)
=

�√
((s− 1)=(s+ 1))2 + 1

=
�√

(2s2 + 2)=(s+ 1)2
; s �= −1: (19)

We may simplify the above expression, but extra care
should be taken. Let us  rst de ne on the set �(A1)

the function

f(s) :=
�√

s2 + 1
:

Thus, we have taken the branch cut of the square root
of s2 + 1 equal to the positive half circle. This is
possible, see [3, Part II, Section 12]. Now de ne on
�(A1) the function

G2(s) =
1√
2
(s+ 1)f(s):

Then this function is analytic on �(A1) and it equals
G1(s) for s∈ (1;∞). This last follows since for s̃¿ 0,
one has to take the positive square root in G0(s̃), see
(19). Since two analytic functions on a given domain
are the same if they are equal on an interval, we con-
clude that G2(s) = G1(s) on �(A1). Or equivalently,

G1(s) =
�√
2

s+ 1√
s2 + 1

on �(A1):

Note that

G1(s) �= 1√
2
(s+ 1)G0(s);

since they have a di8erent domain. Direct calcula-
tions gives thatG1( 12 )=G0(− 1

3 )=−3�=√10, whereas
(1=

√
2)( 12 + 1)G0( 12 ) = 3�=

√
10.

Next we want to derive the impulse response. One
might try to calculate the impulse response via h1(t)=
C1eA1tB1 +D1�(t). However, this leads to an integral,
which could not be solved directly, and so we choose
another route. We know that the impulse response
is the inverse Laplace transform of the input–output
transfer function. Unfortunately, we do not know this
input–output transfer function, since we do not know
its region of convergence. However, one does not need
its precise region of convergence for the calculation
of the inverse Laplace transform. Knowing the input
–output transfer function on some right-half plane is
suOcient for obtaining its inverse Laplace transform.
In this example the growth bound of the semigroup
is one, and thus on C+

1 , we know that the input–out-
put transfer function equals the characteristic function.
Thus, we must calculate the inverse Laplace transform
of (�(s+ 1))=

√
2(s2 + 1). We  nd that this equals

h1(t) =
�√
2
[J0(t)− J1(t) + �(t)]; (20)

where J0 and J1 denote the Bessel functions of the  rst
kind and of the zeroth and  rst order, respectively.
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Since the absolute values of J0(t) and J1(t) de-
cay like 1=

√
t, [6, Section 7.1], we see that the

Laplace transform of h1(t) is analytic in the open
right-half plane C+

0 . However, this Laplace trans-
form only equals the transmission function on the
smaller right-half plane C+

1 . It is not hard to see
that the Laplace transform of h1(t) equals H1(s) =
(1=

√
2)(s+ 1)G0(s) on C+

0 .
In Example 2.4, we already saw that the Laplace

transform of the impulse response only equals the
transmission function on some right-half plane.
One might have had the impression that this was
caused by the non-uniqueness of the transmission
value. However, in the present example we have that
�(A1)=�∞(A1), and hence the transmission function
is unique, but still we do not have that the input–out-
put transfer function equals the transmission function.
The equality only holds on C+

! , with ! the growth
bound of the semigroup.

Note that the above example also shows that there
are di8erent meanings for the continuation of C(sI −
A)−1B. One could either mean to take an analytic con-
tinuation of (sI −A)−1 or to take an analytic continu-
ation of the expression C(sI−A)−1B. Please note that
if one  rst speci es the domain, then there can be no
confusion.

4. Transmission functions for well-posed linear
systems

Many of the results which are presented in Section
2 also hold for a more general class of systems. We
assume that U , Y and X are Hilbert spaces, and fur-
thermore we assume that we have a well-posed sys-
tem, see e.g. [5] for the precise de nition. Given this
well-posed linear system, there exist Hilbert spaces,
X1 and X−1, with X1 ⊂ X ⊂ X−1 and which satisfy
(sI − A)−1X ⊂ X1, and (sI − A)−1X−1 ⊂ X . Fur-
thermore, there exists a B; C with B∈L(U; X−1) and
C ∈L(X1; Y ), and an analytic L(U; Y )-valued func-
tion G on C+

! such that

Y (s) = C(sI − A)−1x(0) + G(s)U (s); s∈C+
! (21)

and

G(s)− G(s0) =C(sI − A)−1(s0I − A)−1

×B(s0 − s); s; s0 ∈C+
!: (22)

The above results can be found in [7–9], see also [5]
for a short summary of the results. Instead of describ-
ing the system via (1) we describe the system via (21).
Since this equation is the same as (7) and since we
have used Eq. (7) and not (1) in the proofs of Section
2, we see that all results as derived in Section 2 also
hold for well-posed linear systems. It remains to de-
 ne the characteristic function. This is easy via (22).
Fix an element s0 ∈C+

! then for s∈ �(A) we de ne
the characteristic function as

G(s) =G(s0) + C(sI − A)−1(s0I − A)−1

×B(s0 − s): (23)

It is easy to see that this de nition is independent of
the particular choice of s0. Furthermore, this function
is analytic on �(A) and, by the resolvent identity, this
function satis es (22) for all s; s0 ∈ �(A).
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