
Available online at www.sciencedirect.com

Systems & Control Letters 52 (2004) 329–338
www.elsevier.com/locate/sysconle

A constructive condition for dynamic feedback linearization
Stefano Battilotti, Claudia Califano∗

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Universit�a di Roma “La Sapienza”, Via Eudossiana 18,
00184 Roma, Italy

Received 28 August 2002; received in revised form 26 October 2003; accepted 10 February 2004

Abstract

The paper deals with dynamic feedback linearization of continuous time a2ne systems. A constructive procedure based on
prolongations is proposed. Based on necessary geometric conditions, the algorithm computes a set of prolongation indices.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The feedback linearization problem has been
widely studied both in continuous and in discrete
time (see [11,20] and the references therein). The
:rst works deal with the exact linearization prob-
lem [4,5,10,12,14–18], while dynamic solutions were
considered in [6,13,19]. In [7], su2cient geomet-
ric conditions via prolongations and di7eomorphism
were given. The su2ciency concerns two aspects: the
a priori knowledge of a candidate set of prolongation
indices and the restriction to solutions which guaran-
tee a projective relation between the extended system
and the original one. The equivalence of di7erentially
Bat systems to dynamic feedback linearizable systems
was instead considered in [8,9] where the concept of
endogenous feedback was introduced: the solution is
in this case based on the knowledge of a set of Bat
outputs, i.e. linearizing output functions depending
on the state, the control and its derivatives. Algebraic
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necessary and su2cient conditions under endogenous
feedback, were given in [1,2]. A bound on the number
of integrators necessary to achieve linearization was
given in [21].
In the present work we propose an algorithm for

the computation of a dynamic solution consisting of
prolongations and based on a set of necessary geo-
metric conditions which become su2cient when the
prolongation indices are at most equal to 2. The basic
idea beyond the algorithm is that the loss of involutiv-
ity and/or constant dimensionality of the distributions
Gi := span{g · · · adi

fg}, which characterize the static
feedback solution, is linked to appropriate directions
which must be added to the Gi’s. This corresponds to
identify those inputs which should not be extended
through prolongations. Furthermore, the geometric in-
terpretation in terms of directions immediately clari-
:es the use of more general feedback laws. In fact,
the above-mentioned directions may not coincide, in
general, with the directions of the adi+1

f gj’s, but rather
with linear combinations of them. They can then be
obtained by recombining the inputs via a static feed-
back, so that the algorithm may provide linearizing
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feedback laws more general than prolongations. This
generalization would require, at each step, the compu-
tation of the new closed-loop vector :elds. To avoid
this computational burdening, we have restricted our-
selves to the class of dynamic feedback laws com-
posed of prolongations plus a :nal static feedback on
the extended system. The procedure is illustrated on
a dynamic feedback linearizable system used in [7]
to show that it did not satisfy the proposed su2cient
conditions. The proposed algorithm computes the de-
sired prolongation indices. Preliminary results were
proposed in [3].
Statement of the problem. Consider the continuous

time analytic system

ẋ = f(x) +
m∑
i=1

gi(x)ui; (1)

where x∈Rn, and f(x); g1(x); : : : ; gm(x) are analytic
de:ned on a open set of Rn. Find, if there exists, a
regular dynamic feedback

uj = 
j;1; 
̇j = Aj
j + Bjvj;

Aj =

(
0 I

0 0

)
; Bj =

(
0

1

)
; j = 1; : : : ; m (2)

with Aj and Bj of dimension �j × �j and �j × 1,
respectively, 
j = (
j;1; : : : ; 
j;�j)

T, 
 = (
T1 ; : : : ; 

T
m)

T,
and such that the extended system(

ẋ


̇

)
= F(x; 
) +

m∑
i=1

Gi(x; 
)vi (3)

is static feedback equivalent to a linear system, i.e.
there exists a regular static state feedback v=�(x; 
)+
�(x; 
)w, such that the closed-loop system is di7eo-
morphic to a linear system. In (2) if uj = vj we set
�j = 0.
We recall that the indices �i are the prolongation

indices and (1) will be said dynamic feedback lin-
earizable with prolongation indices (�1 · · · �m). If (1)
is dynamic feedback linearizable with prolongations
only, then at least one prolongation index can be set
to zero, i.e. 0 = �16 · · ·6 �m [21].

2. Preliminaries

The following notation will be used. Given a num-
ber p, �p� will denote its inferior integer and p! :=

p(p−1) · · · 1 the factorial number. Given two smooth
vector :elds f and gi, adfgi := [f; gi]=(9gi=9x)f−
(9f=9x)gi, is the standard Lie bracket of vector :elds,
and adk

fgi=adf(adk−1
f gi);

∑2
i=1 fi 9=9xi denotes the

vector :eld (fT
1 ; f

T
2 )

T in the coordinates (xT1 ; x
T
2 )

T. We
will denote by g = (g1 · · · gm), by G = (G1 · · ·Gm),
by Gi the distribution Gi := span{g; : : : ; adi

fg}, by LGi,
the involutive closure of Gi. The Gi’s play a crucial
role in the solution of the regular static feedback lin-
earization problem. We recall the following result.

Theorem 1 (Hunt et al. [10]). Suppose that the ma-
trix g(x0) has rank m. Then the state space exact lin-
earization problem is solvable if and only if

(i) for each 06 i6 n − 1, the distribution Gi has
constant dimension near x0,

(ii) the distribution Gn−1 has dimension n,
(iii) for each 06 i6 n − 2, the distribution Gi is

involutive.

In [7] instead, it was shown that if, after a pos-
sible reordering of the inputs, there exists a set
of integers 0 = l16 · · ·6 lm, such that the dis-
tributions �0 = span{gj: lj = 0}; �i+1 = �i +
adf�i + span{gj: lj = i + 1} i¿ 0 satisfy appro-
priate properties, then the problem is solvable via
prolongations.

Theorem 2 (Charlet et al. [7]). If locally around x0
there exists 0 = l16 · · ·6 lm, such that

(i) �i is involutive and of constant dimension for
06 i6 n+ lm − 1,

(ii) dim(�n+lm−1) = n,
(iii) [gs; �i] ⊂ �i+1, ∀s such that ls¿ 1 and ∀i,

06 i6 n+ lm − 1,

then (1) is locally dynamic feedback lineariz-
able with prolongation indices �1 · · · �m, with
�i = li; i = 1; : : : ; m.

The su2ciency of the previous conditions stands
essentially in condition (iii). In fact let us :rst note
that since li =�i, i=1; : : : ; m, for l=0 : : : ; n+�m −1,

�l = span{gi; : : : ; ad
l−�i
f gi; i = 1; : : : ; j − 1;

j: �j ¿ l¿ �j−1; j¿ 2}: (4)
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Consider now the extended system (3) and let Ge
i :=

span{G; adFG; : : : ; adi
FG}. Since (3) is given by (1)–

(2), (iii) implies that the ads
FGj’s have the form

Ads
FGj

=

(s−�1∑
i=0

!i1(
)adi
fg1 + · · · +

s−�m∑
i=0

!im(
)adi
fgm

)
9
9x

+!(x; 
)
9
9


which is a particular case since the projection of Ge
i

onto Rn is given by �i. Moreover, Theorem 2 is
based on the a priori knowledge of the prolongation
indices �1; : : : ; �m. With respect to this result we will
propose an algorithm which allows the following
improvements:

• A constructive computation of a set of prolongation
indices with respect to which the distributions �i

satisfy conditions (i) and (ii) of Theorem 2.
• The computation of solutions which do not neces-
sarily satisfy condition (iii), so that the projection
of Ge

i may not coincide with �i.

2.1. The properties of the extended system

Consider the extended dynamics (1)–(2), and as-
sume it is static feedback linearizable. After a possi-
ble reordering of the inputs, 0 = �16 · · ·6 �m. Let s
be the smallest index s.t. �s¿ 1; then the closed-loop
system is given by

ẋ = f(x) +
s−1∑
i=1

g1(x)vi +
m∑
i=s

gi(x)
i1


̇j = Aj
j + Bjvj; j = s; : : : ; m: (5)

The extended system (3) is thus characterized by the
following vector :elds:

F =

(
f(x) +

m∑
j=s

gj(x)
j1

)
9
9x +

m∑
j=s

Aj
j
9
9
j

;

Gi =




gi(x)
9
9x ; i∈ [1; s − 1];

Bj
9
9
j

; j ∈ [s; m]:

As a consequence, the generic term adl+�i
F Gi, (with

l+ �i¿ 0) has the form

adl+�i
F Gi =(−1)�i

(
"li (x; 
)

9
9x + (−1)lAl+�i

i Bi
9
9
i

)
:

(6)

In (6), for −�i6 l¡ 0, "li = 0, and Al+�i
i Bi = el the

canonical vector with the lth element equal to one and
the others all zero; for l¿ 0, Al+�i

i Bi = 0 and

"li (x; 
) := adl
fgi

+
m∑
j=s

min(�j;l)∑
k=1

l−k∑
r=0

ckirad
r
f[gj; adl−k−r

f gi]
jk

+O(‖
‖2); (7)

where

cjir =
(r + j − 1)!
r!(j − 1)!

and O(‖
‖2) represents terms of order greater than one
in 
. Let Ls be the smallest integer such that � Ls¿ 2; for
the :rst terms one gets

"0i (x; 
) = gi(x);

"1i (x; 
) = adf(x)gi(x) +
m∑
j=s

c1i0adgj(x)gi(x)
j1;

"2i (x; 
) = ad2
fgi(x)

+
m∑
j=s

1∑
r=0

c1irad
r
f(x)[gj(x); ad1−r

f(x)gi(x)]
j1

+
m∑
j=Ls

c1i0adgj(x)gi(x)
j2 + O(‖
‖2):

The distributions Ge
i associated with the extended

system (1)–(2), are then

Ge
0 = span

{
g1
9
9x ; : : : ; gs−1

9
9x

}

+span
{

9
9
s;�s

; : : : ;
9

9
m;�m

}
Ge
i =Ge

i−1 + span
{
"(i−�l)
l

9
9x ; l= 1; : : : ; j

}

+span
{

9
9
l;�l−i

; l= j + 1; : : : ; m
}

i¿ 0;

(8)
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where the index j ∈ [1; m], is such that �j6 i¡�j+1,
and by de:nition �m+1 = +∞. Since the extended
system is linearizable via regular static feedback,
the distributions Ge

i must be involutive and regular
(Theorem 1). This fact induces certain properties on
the Lie brackets of the vector :elds de:ned on the
original system as stated below and proven in the
Appendix.

Proposition 1. Suppose that (1) is dynamic feed-
back linearizable with prolongation indices 0 =
�16 · · ·6 �m around (x0; 
0) = (x0; 0), and consider
the distribution �s de:ned in (4). Locally around x0,
the following properties hold:

(a) �s has constant dimension and is involutive, for
06 s6 n+ �m − 1,

(b) dim�n+�m−1 = n;
(c) for any two indices (t; l) such that �t6 s and

t ¡ l,

[adr1
f gl; ad

r2
f gt]∈�s; ∀r1; r2¿ 0:

r1 + r2 = s−�l+1; : : : ; s − �l +
⌊
�l − �t

2

⌋
:

Moreover, if �m6 2 the conditions are also
su<cient.

Theorem 2 states that if the system is controllable,
the distributions�s are involutive, which are necessary
conditions, and additionally [gj; �s] ⊂ �s+1, then the
problem is solvable. This last condition corresponds
to require that[
9
9
l;k

; "it(x; 
)
9
9x

]
=
9("it(x; 
))
9
l;k

9
9x ∈Ge

s

for k = 1; : : : ; �l:

As opposite to (c) in Proposition 1, this condition must
be satis:ed even though 9=9
l;k �∈ Ge

s .

3. Main result

Hereafter we propose an algorithm to compute a
set of prolongation indices �16 · · ·6 �m w.r.t. which
the associated distributions �i satisfy the necessary
conditions of Proposition 1. At the generic step s we

will denote by �s
i , the prolongation index �i and by �s

i
the distribution �i.
The algorithm starts with �0

1 = · · · = �0
m = 0 and

k0=k: dim(�0
k)=nwhile dim(�0

k−1)¡n. The generic
step s + 1 starts with �s

16 · · ·6 �s
m and a given ks

for which Proposition 1 is satis:ed by the distribu-
tions �s

j, j¿ ks. The algorithm checks if it is satis-
:ed for j = ks − 1 also. If not, the prolongation in-
dices are modi:ed accordingly. This is done in two
phases. Phase 1 concerns condition (a) of Proposition
1: if �s

ks−1 is not involutive, the algorithm computes
its involutive closure which is contained in �s

ks . By
construction

�s
ks = �s

ks−1 + span
{
adks−�s

1
f g1 · · · adks−�s

l
f gl;

l: �s
l6 ks ¡�s

l+1

}
:

The algorithm adds to �s
ks−1 the minimum number j of

elements adks−�s
i

f gi, such that the obtained distribution

�s
ks−1 + span

{
ad

ks−�s
l1

f gl1 · · · adks−�s
lj

f glj

}
⊇ L�s

ks−1

and has constant dimension locally around x0; since
the involutivity may not be preserved, the algorithm
computes the smallest integer Lks¿ ks such that

L�s
Lks−1 ≡ �s

Lks−1 + span
{
ad

Lks−�s
l1

f gl1 · · · ad
Lks−�s

lj

f glj

}

:=�s+1
ks+1

:

The prolongation indices are updated accordingly.
Phase 2 concerns instead condition (c) of Proposi-

tion 1. The algorithm checks the condition and adds
the minimum number L&¿ 0 of elements of the form

ad
Lks−�s

li
f gli in order to satisfy the cited condition. This

operation changes the prolongation indices which are
updated accordingly. As a consequence the operation
must be iterated on the new obtained distribution until
condition (c) is satis:ed by the :nal computed distri-
bution �̃k̃s+1

. The previous operation may in general
not preserve the involutivity for the new distributions,
so that the algorithm computes the :rst index r such
that �̃k̃s+1+r ≡ �ks+1+r and has constant dimension lo-
cally around x0. Finally, a Bag is introduced which
points out whether checking condition (c) on �ks+1 en-
sures that it is satis:ed on �ks+1+i, for any i¿ 0 or not.
In this case ks+1 is modi:ed appropriately.
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Table 1
The left-hand side indicates the integrators to be added on each
input channel. At each step an integrator is added/eliminated s.t.
each row has the same number of elements of the :rst row

g1 · · · ad
ks−�sm
f g1 · · · adks

f g1
...

...
...

... · · ·
... · · ·

... · · · adks
f gis;�sm

...
... · · ·

... . .
.

9
9'

m;�s−1
m

· · · 9
9'm;1

gm · · · ad
ks−�sm
f gm

︸ ︷︷ ︸
�s
ks

3.1. The algorithm

Suppose that the system is locally controllable
around u= 0, i.e. dimGn−1 = n; and let k be the :rst
integer such that dimGk = n and dimGk−1 ¡n.

Step 0: Set �0
1 = · · ·= �0

m = 0, k0 = k and consider
�0

k0 =span{g; : : : ; adk0
f g}. By construction �0

k0 satis:es
Proposition 1 since it has constant dimension n.

Step s + 1: Let 0 = �s
16 · · ·6 �s

m be the prolon-
gation indices computed at Step s and let the corre-
sponding distribution (represented in Table 1) be

�s
ks =�0

ks−�s
m

+
�s
m∑

j=1

span
{
adks−�s

m+j
f g1; : : : ; ad

ks−�s
m+j

f gis; j

}
:

Phase 1. Consider now �s
ks−1 which satis:es

�s
ks = �s

ks−1 + span
{
adks−�s

1
f g1; : : : ; ad

ks−�s
l

f gl;

l: �s
l6 ks ¡�s

l+1

}
:

Let L�s
ks−1 be the involutive closure of �s

ks−1 and
set ps+1 = dim L�s

ks−1 − dim�s
ks−1. Then there exist

ps+1 vector :elds, (1; : : : ; (ps+1 , linear combi-
nation of elements of �s

ks , s.t. L�s
ks−1 = �s

ks−1 +
span{(1 · · · (ps+1} ⊆ �s

ks .
Let j, with l¿ j¿ps+1, and r¿ 0, be the small-

est integers such that �s
ks−1 + span

{
ad

ks−�s
l1

f gl1 · · ·

ad
ks−�s

lj

f glj

}
has constant dimension dim(�s

ks−1) + j

locally around x0 and

L�s
ks−1 ⊆ �s

ks−1 + span
{
ad

ks−�s
l1

f gl1 · · · adks−�s
lj

f glj

}
;

L�s
ks−1+r ≡ �s

ks−1+r

+span
{
ad

ks−�s
l1
+r

f gl1 · · · adks−�s
lj
+r

f glj

}
:

Set Lks = ks + r and

�s+1
ks+1

:= �s
Lks−1 + span

{
ad

Lks−�s
l1

f gl1 · · · ad
Lks−�s

lj

f glj

}
:

By construction �s+1
ks+1

≡ L�s
Lks−1

. If r = 0, �s+1
ks+1

is the
involutive closure of�s

ks−1. After a possible reordering
of the inputs

L�s
Lks−1 = �0

ks+1−�s+1
m

+
�s+1
m∑

j=1

span
{
adks+1−�s+1

m +j
f g1;

: : : ; adks+1−�s+1
m +j

f gis+1; j

}
:=�s+1

ks+1

with the new prolongation indices �s+1
1 ; : : : ; �s+1

m .
Phase 2. If �s+1

m ¿ks+1
s , let t be the greatest index

such that �s+1
m − �s+1

t �= �s
m − �s

t and set ) = ks+1 −
�s+1
m + �(�s+1

m − �s+1
t )=2�. If such t does not exist or

�s+1
m 6 ks+1, set )=0. For any two indices (t; l) such

that t ¡ l check condition (c) of Proposition 1.
Case A: Condition (c) is satis:ed. If )¿ 0 go to

Step s + 2, else set k̃s+1 = ks+1 − ). Rename k̃s+1 as
ks+1 and go back to Phase 2 of Step s+ 1.
Case B: Condition (c) is not satis:ed, i.e. there exist

& pairs (lp; tp), s.t.[
ad

rlp
f glp ; ad

rtp
f gtp

]
∈�s

ks ; while[
ad

rlp
f glp ; ad

rtp
f gtp

]
�∈ �s+1

ks+1
; for p= 1; : : : ; &:

Let L&¿ & be the smallest integer such that{[
ad

rlp
f glp ; ad

rtp
f gtp

]
; p= 1; : : : ; &

}
∈�s+1

ks+1

+span
{
ad

ks−�s
j1

f gis; j1
· · · adks−�s

j L&

f gis; j L&

}
:
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Update Table 1 of �s+1
ks+1

by adding the elements

ad
ks−�s

j1
f gis; j1

· · · adks−�s
j L&

f gis; j L&
, and the prolongation

indices accordingly. Iterate Case B with respect to
the new prolongation indices until condition (c) of
Proposition 1 is satis:ed.
Let �̃s+1

1 · · · �̃s+1
m be the new prolongation indices,

and

�̃s+1
k̃s+1

=�s+1
ks+1

+ span
{
ad

ks−�s
j1

f gis; j1
· · · adks−�s

j&s+1
f gis; j&s+1

}
:

Let r be the :rst index such that

adr
fad

ks−�s
jp

f gis; jp ∈�s+1
ks+1+r ; p∈ [1; &s+1]:

Set k̂s+1 = k̃s+1 + r, rename k̂s+1 as ks+1 and go back
to Phase 2, Step s+ 1.
Step k∗: Suppose that the algorithm ends with pro-

longation indices 0 = �k∗
1 6 · · ·6 �k∗

m . Consider the
extended system obtained by adding the dynamic com-
pensator (2) with �i=�k∗

i ; i=1; : : : ; m. If �m6 2 stop
else apply the algorithm on the new system.
Let us note that at Step s+1—Phase 1, the number

j of elements added to �ks−1 is in general greater than
ps+1 = dim L�ks−1 − dim�ks−1; moreover the choice
of the elements to be added may not be unique though
the number of possible choices is :nite. This problem
can be overcome if a more general compensator is
considered, which uses static state feedback also. In
this case a recombination of the input channels permits
to get the ps+1 desired directions. As for Phase 2, note
that condition (c) of Proposition 1 is trivially satis:ed
whenever �l − �t6 1, which happens for example at
Step 1. The Bag ) is needed to determine if checking
condition (c) on �s+1

ks+1
is su2cient.

Next result, proven in the Appendix, shows that
at the generic step s + 1 the algorithm computes
a partition of the inputs and prolongation indices
(�s+1

1 ; : : : ; �s+1
m ) w.r.t. which the associated distribu-

tions �s+1
i for i¿ ks+1 satisfy Proposition 1. If the

algorithm ends and �m6 2 then these conditions are
also su2cient and the dynamic controller de:ned by
the given prolongation indices solves the problem.
Else if �m ¿ 2 one must iterate the procedure on the
extended system. In this case the :nal controller may
have �1 �= 0.

Theorem 3. Suppose that Step s + 1 ends with pro-
longation indices (�s+1

1 ; : : : ; �s+1
m ).Then ∀i¿ 0�s

ks+1+i
is involutive and satis:es the conditions of
Proposition 1.

Next example consists of a system dynamic feed-
back linearizable with prolongation indices �1 = 0,
�2 =3, which does not satisfy Theorem 2 [7]. We will
show how the proposed algorithm computes the above
prolongation indices.

Example. Consider the system

ẋ1 = x2 + x3u2; ẋ2 = x3 + x1u2;

ẋ3 = u1 + x2u2; ẋ4 = u2:

Step 0: Set �0
1=�0

2=0 and compute the distributions
�0
0; : : : ; �

0
3 which are

�0
0 = span

{
9
9x3

; x3
9
9x1

+ x1
9
9x2

+ x2
9
9x3

+
9
9x4

}
;

�0
1 = �0

0 + span
{
9
9x2

;−x1
9
9x1

+
9
9x3

x3

}
;

�0
2 = �0

3 ≡ R4:

Locally around the origin dim(�0
2) = 4, while

dim(�0
1)=3 in the origin and dim(�0

1(x))=4 as soon
as x1 �= 0, i.e. the origin is a singular point for �0

1.
Step 1: [Phase 1] [g1; g2]= ad2

fg1, so that �0
1 is not

involutive and we must compute L�0
1, which is given by

L�0
1 = �0

1 + span
{
9
9x1

}

:=�1
2

g1 adfg1 ad2
fg1

9
9
21 g2 adfg2

with

{
�1
1 = 0;

�1
2 = 1:

Step 2: [Phase 1] Consider now�1
1={g1; g2; adfg1}.

One thus gets that

L�1
1 = �1

1 + span
{
9
9x1

}

:=�2
2;

g1 adfg1 ad2
fg1

9
9
22

9
9
21 g2

{
�2
1 = 0;

�2
2 = 2:



S. Battilotti, C. Califano / Systems & Control Letters 52 (2004) 329–338 335

[Phase 2] ) = 1¿ 0. We must now check condi-
tion (c) of Proposition 1, i.e. if [adfg2; g1]∈�2

2. Since
[adfg2; g1] = g1 ∈�2

2, we can go to the next step.
Step 3: [Phase 1] Compute �2

1 = {g1; adfg1} and
its involutive closure

L�2
1 ≡ �2

1 = span
{
9
9x3

;
9
9x2

}

:=�3
1;

g1 adfg1
9
9
22

9
9
21

{
�3
1 = 0;

�3
2 = 2:

[Phase 2] )=0. In this case condition (c) of Propo-
sition 1 is not satis:ed, since [g2; g1] �∈ �3

1 whereas
[g2; g1]∈�3

1 + span{ad2
fg1}. Set

�̃3
2 = �3

1 + span
{
9
9x3

}
;

g1 adfg1 ad2
fg1

9
9
23

9
9
22

9
9
21

{
�̃3
1 = 0;

�̃3
2 = 3:

Condition (c) of Proposition 1 is satis:ed for the new
distribution �̃3

2, with the new prolongation indices. In
fact r1 + r2 = 0 and [g2; g1]∈ �̃3

2.
According to the algorithm we must compute the

:rst index r: adr
f[g2; g1] = adr+2

f g1 ∈�3
1+r . In the

present case, r=1 since ad3
fg1=0. We thus set k3=2

and �3
2= �̃3

2. The new distribution �3
2 is characterized

by ) = 0 and satis:es condition (c) so that we go to
next step.
Step 4: [Phase 1] Compute �3

1 = {g1; adfg1} and
its involutive closure

L�3
1 = �3

1 = span
{
9
9x3

;− 9
9x2

}

:=�4
1;

g1 adfg1
9
9
23

9
9
22

{
�4
1 = 0;

�4
2 = 3:

[Phase 2] )=0. Since condition (c) of Proposition
1 is trivially satis:ed, we can go to next step.

Step 5: [Phase 1] compute �4
0 and its involutive

closure which is given by

L�4
0 = �4

0 = span
{
9
9x3

}

:=�5
0;

g1
9
9
23

{
�5
1 = 0;

�5
2 = 3:

[Phase 2] ) = 0. Condition (c) of Proposition 1 is
trivially satis:ed. The algorithm ends with �1=�5

1 =0
and �2 = �5

2 = 3, which are the searched prolongation
indices.
For the extended system (1)–(2) the linearizing out-

put functions are y1=x4 and y2=x1−x2
21, or, equiv-
alently, the Bat outputs for system (1) are ỹ 1 = x4 and
ỹ 2 = x1 − x2u2.

4. Conclusions

In this work we have proposed an algorithm
for computing a dynamic controller, based on pro-
longations, which renders a given system lineariz-
able via regular static feedback. The algorithm is
based on geometric necessary conditions which
are su2cient if the prolongation indices are at most
equal to 2.
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Appendix A.

Proof of Proposition 1. Since the Ge
i ’s satisfy the

conditions of Theorem 1 they must have constant
dimension around (x0; 
0)= (x0; 0), which implies ac-
cording to (7)–(8) the necessity of (a). Condition (b)
is a controllability condition and thus clearly neces-
sary. As for (c), due to the involutivity of Ge

i , for any
j1; j26 i, and any l; t ∈ [1; m], [adj1

F Gl; ad
j2
F Gt]∈Ge

i .
Recall that

adj1
F Gl = (−1)j1

9
9
l; (�l−j1)

; for j16 �l − 1;
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adj2
F Gt = (−1)�t "( j2−�t)

t
9
9x ; for j2¿ �t:

Consider now t ¡ l and such that i¿�t . Then for
j2¿ �t , and 06 j16 �l − 1

(−1)(j1+�t)[adj1
F Gl; ad

j2
F Gt]

=
9("( j2−�t)

t (x; 
))
9
l; (�l−j1)

9
9x ∈Ge

i :

Setting s= j2 − �t and k = �l − j1, let us note that

9("st (x; 
))
9
l;k

9
9x = 0 for s¡k;

whereas for s¿ k one gets from (7)
s−k∑
j=0

(
k − 1 + j

k − 1

)
adj

f[gl; ad
s−k−j
f gt]

9
9x

+ &(x; 
)
9
9x ∈Ge

i

with &(x; 0) = 0. Since this relation must be satis:ed
for any (x; 
) in a neighborhood of (x0; 0), it must be
satis:ed for 
= 0. As a consequence
s−k∑
j=0

(
k − 1 + j

k − 1

)
adj

f[gl; ad
s−k−j
f gt]∈�i:

Set kmin = max{(�l − i); 1}, and :x (s − k)∈
[max{(i−�l+1); 0}; i−�t−k ]. Then for k ∈ [kmin ; �l],
one gets the set of independent relations(

k − 1

k − 1

)
[gl; ads−k

f gt]

+

(
k

k − 1

)
adf[gl; ads−k−1

f gt]

+ · · · +
(

s − 1

k − 1

)
ads−k

f [gl; gt]∈�i

in the unknowns adj
f[gl; ad

s−k−j
f gt], with j =

0; : : : ; s − k. Due to the involutivity of �i, for

06 j6 i − �l; adj
f[gl; ad

s−k−j
f gt]∈�i;

which can be proven by using the Jacobi identity. For

s − k6 i − �l +
⌊
�l − �t

2

⌋

one thus gets j 6 �l − kmin independent equations in
j6 Lj unknowns. As a consequence for

r1 + r2 = i − �l + 1; : : : ; i − �l +
⌊
�l − �t

2

⌋
;

each term [adr1
f gl; ad

r2
f gt]∈�i even though adr1

f gl

does not, thus proving (c). Finally, the su2ciency of
these conditions if �m6 2 can be easily proven by
noting that in this case (c) implies condition (iii) of
Theorem 2.

Proof of Theorem 3. The proof is iterative. At step 0,
�0
1 = · · ·=�0

m =0 and �0
k0 has by assumption constant

dimension n locally around x0, so that Proposition 1 is
satis:ed for any �0

k0+i, with i¿ 0. Iteratively, suppose
that at step s, for any i¿ 0; �s

ks+i satis:es Proposition
1. Let the prolongation indices be 0 = �s

16 · · ·6 �s
m

and go to Step s + 1. We must show that the opera-
tions which modify the prolongation indices preserve
properties (a) and (c) of Proposition 1 on the new dis-
tributions �s

ks+i, for any i¿ 0.
Phase 1. Consider

�s+1
ks+1

= �s
Lks−1 + span

{
ad

Lks−�s
l1

f gl1 · · · ad
Lks−�s

lj

f glj

}

≡ L�s
Lks−1:

By construction each added element

ad
Lks−�s

lt
f glt ∈�s

Lks−1 + span{(i; i = 1 · · ·ps+1};
t ∈ [1; j];

where (i = ["1[ · · · ["r−1; "r] · · · ] · · · ] and "l ∈�s
Lks−1

.

By assumption �s
Lks
is involutive ( Lks¿ ks), so that

adf(i =
r−1∑
j=1

["1[ · · · [adf"j[ · · · ["r−1; "r] · · · ]]]]∈�s
Lks
:

Consequently ad
ks−�s

lt
+1

f glt ∈�s
Lks
+span{(i; adf(i; i=

1; : : : ; ps+1} ⊆ �s
Lks
, for any t ∈ [1; j], and for any i¿ 0,

ad
ks−�s

lt
+i+1

f glt ∈�s
Lks+i ≡ L�s

Lks+i ;

which proves, ∀i¿ 0, the involutivity and constant
dimensionality of �s+1

ks+1+i, since

�s+1
ks+1+i = �s

Lks−1+i

+span
{
ad

Lks−�s
l1
+i

f gl1 · · · ad
Lks−�s

lj
+i

f glj

}

≡ L�s
Lks−1+i : (9)
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Phase 2. According to the algorithm, three situations
are possible. Case A: Condition (c) is satis:ed for
�s+1

ks+1
and )¿ 0. Iteratively, suppose it satis:ed for

�s+1
j , j¿ ks+1. Assume :rst

j − �s+1
l +

⌊
�s+1
l − �s+1

t

2

⌋
¿ 0:

We must verify that

∀ Lr1; Lr2¿0: Lr1 + Lr2 = j−�s+1
l +2; : : : ; j − �s+1

l +1

+
⌊
�s+1
l − �s+1

t

2

⌋

[ad Lr1
f gt ; ad

Lr2
f gl]∈�s+1

j+1: (10)

It is su2cient to check that the previous relation is
satis:ed if �s+1

l − �s+1
t ¿ 1, and since

�s+1
j+1 ⊃ �s+1

j

for Lr1 + Lr2 = j − �s+1
l + 1 +

⌊
�s+1
l − �s+1

t

2

⌋
;

Lr2¿ j − �s+1
l + 2:

Set Lr2 = j − �s+1
l + 2, consequently

Lr1 =
⌊
�s+1
l − �s+1

t

2

⌋
− 1:

Recall that for

06i6
⌊
�s+1
l −�s+1

t

2

⌋
; [ad Lr1−i

f gt ; ad
Lr2+i−1
f gl]∈�s+1

j ;

so that by construction

�s+1
j+1 � adf[ad

Lr1−i
f gt ; ad

Lr2+i−1
f gl]

=[ad Lr1−i+1
f gt ; ad

Lr2+i−1
f gl]

+ [ad Lr1−i
f gt ; ad

Lr2+i
f gl]: (11)

Iteratively, for i=0; : : : ; ��s+1
l − �s+1

t =2�, assume that

[ad Lr1−i+1
f gt ; ad

Lr2+i−1
f gl]∈�s+1

ks+1+1

(true for i = 0) then due to (11),

[ad Lr1−i
f gt ; ad

Lr2+i
f gl]∈�s+1

ks+1+1:

Assume now that for some (t; l), with

t ¡ l; ks+1 − �s+1
l +

⌊
�s+1
l − �s+1

t

2

⌋
¡ 0;

then we will :rst show that necessarily �s+1
l − �s+1

t =
�s
l − �s

t . In fact by assumption )¿ 0 so that �s+1
m −

�s+1
t =�s

m −�s
t . Moreover �s+1

m ¿ �s+1
l ¿ ks+1¿ 0, so

that �s+1
m − �s+1

l = �s
m − �s

l and consequently �s+1
t −

�s+1
l = �s

t − �s
l and

�s+1
l − ks+1¿ 1: (12)

Consider now �j, j¿ ks+1. For

j¡�s+1
l −

⌊
�s+1
l − �s+1

t

2

⌋
= Lj;

condition (c) is trivially satis:ed. According to the
above discussion, it is then su2cient to verify (10)

∀ Lr1; Lr2¿ 0: Lr1 + Lr2 = 1 −
⌊
�s+1
l − �s+1

t

2

⌋
; : : : ; 0;

i.e. [gl; gt]∈�s+1
Lj for

1 −
⌊
�s+1
l − �s+1

t

2

⌋
¡ 0:

Recall that �s+1
l − ks+1 = �s

l − Lks + 1. Moreover,
due to (9), �s+1

Lj ≡ �s
Lks+ Lj−ks+1−1

, and by assumption
�s

Lks+i−1
veri:es Proposition 1, for any i¿ 0, so that

[gl; gt]∈�s
Lks+ Lj−ks+1−1

≡ �s+1
Lj , which ends the proof

since Lks − ks+1 − �s
l + Lj¡ 0 whereas

Lks − ks+1 − �s
l + Lj − 1 +

⌊
�s
l − �s

t

2

⌋
= 0:

Case A: Condition (c) is satis:ed but )¡ 0. In this
case �s+1

m − �s+1
t �= �s

m − �s
t , and checking condition

(c) on �s+1
ks+1

does not guarantee that it is satis:ed also
by �s+1

ks+1+i, for any i¿ 0. In order to verify condition
(c), the algorithm must check it on �s+1

ks+1−) which is

already involutive. It thus sets k̃s+1=ks+1−), renames
k̃s+1 as ks+1 and goes back to Phase 2 of Step s+ 1.
Case B: Condition (c) is not satis:ed, i.e. there

exist & pairs of indices (lp; tp), s.t.[
ad

rlp
f glp ; ad

rtp
f gtp

]
∈�s

ks ;

while
[
ad

rlp
f glp ; ad

rtp
f gtp

]
�∈ �s+1

ks+1
;

for p= 1; : : : ; &:
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The algorithm computes the smallest set of elements
such that{[

ad
rlp
f glp ; ad

rtp
f gtp

]
; p= 1; : : : ; &

}
∈�s+1

ks+1

+ span
{
ad

ks−�s
j1

f gis; j1
· · · adks−�s

j L&

f gis; j L&

}
:

Table 1 of�s+1
ks+1

is updated by adding the new elements,
as well as the prolongation indices. This operation is
iterated until condition (c) is satis:ed with respect to
the new prolongation indices, �̃s+1

1 · · · �̃s+1
m .

Since involutivity is not guaranteed anymore for the
new distribution

�̃s+1
k̃s+1

=�s+1
ks+1

+span
{
ad

ks−�s
j1

f gis; j1
· · · adks−�s

j&s+1
f gis; j&s+1

}
;

the algorithm computes the smallest integer r such
that �̃s+1

k̃s+1+r
≡ �s+1

ks+1+r . The algorithm sets k̂s+1 = ks+1

+ r, renames k̂s+1 as ks+1 and goes back to Phase 2,
since the new added vector :elds change the prolon-
gation indices but not the involutivity and constant di-
mensionality properties of �s+1

ks+1+r proved above, nor
those of �s+1

ks+1+r+i for any i¿ 0.
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