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Abstract

Hysteresis in smart material actuators makes the effective use of these actuators

quite challenging. The Preisach operator has been widely used to model smart mate-

rial hysteresis. Motivated by positioning applications of smart actuators, this paper

addresses the value inversion problem for a class of discretized Preisach operators,

i.e., to find an optimal input trajectory given a desired output value. This problem

is solved through optimal state transition of a finite state machine (FSM) that cor-

responds to the discretized Preisach operator. A state-space reduction scheme for

the FSM is developed, which significantly saves the memory and the computation

time. As an example, micro-positioning control of a magnetostrictive actuator is

investigated. Experimental results are presented to demonstrate the effectiveness of

the proposed approach.

Key words: Preisach operator, Inversion, Hysteresis, Magnetostriction, Position

control
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1 Introduction

Smart materials, such as magnetostrictives, piezoelectrics, electroactive poly-

mers (EAPs) and shape memory alloys (SMAs), all display certain coupling

phenomena between applied electro-magnetic/thermal fields and their me-

chanical/rheological properties. Actuators and sensors made of such materials,

often called smart actuators and smart sensors, have been receiving tremen-

dous interest in the past two decades, due to their broad applications in areas

of aerospace, manufacturing, defense, and civil infrastructure systems. How-

ever, the hysteretic behavior widely existing in these materials makes their

effective use quite challenging. Control of hysteresis in smart materials has

attracted attention in recent years [1].

A fundamental idea in coping with hysteresis is to formulate the mathematical

model of hysteresis and use inverse compensation to cancel out the hysteretic

effect, see, e.g., [2–6]. Hysteresis models can be roughly classified into physics-

based models and phenomenological models. The most popular phenomeno-

logical hysteresis model used for smart materials has been the Preisach model

[7,2,8–10,6,11]. A similar type of operator, called Krasnosel’skii-Pokrovskii

(KP) operator has also been used [12,5]. Although in general the Preisach

model does not provide physical insight into the problem, it provides a means

of developing phenomenological models that are capable of producing behav-

iors similar to those of physical systems [13].

The inverse compensation approach mentioned above is concerned with the

trajectory inversion problem: given a desired output trajectory, one computes

the corresponding input trajectory whose output trajectory matches the de-
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sired one. In many applications like micro-positioning, we are more interested

in the following problem: given a desired output value, find the input trajec-

tory such that the final value of the output matches the desired value. To

distinguish this problem from trajectory inversion, we name it the value in-

version problem. This problem has been well studied for linear systems (see,

e.g., [14] and the references therein), but to our best knowledge, very little has

been done in the context of hysteretic systems.

In this paper the value inversion problem for a class of discretized Preisach

operators is formulated and solved. Such an operator is represented as a finite

state machine (FSM), and the value inversion problem is transformed into a

reachability problem for the FSM. The hysteretic dynamics of the FSM is fully

characterized, based on which its reachability is proved. Construction of the

input sequence for a given state transition is described through an example.

Having observed that there may exist a large number of equivalent states for

the FSM in practice, we propose a state space reduction scheme, which signif-

icantly saves the storage space and the computation time. An algorithm for

generating the optimal (the sense of “optimality” will be clear later) repre-

sentative state in each equivalent class is presented. As an example, we have

investigated micro-positioning control of a magnetostrictive actuator. Experi-

mental results have demonstrated the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 provides an

introduction to the Preisach operator. Section 3 describes the discretization

scheme and studies the state reachability problem for the FSM. Section 4 is

devoted to the state space reduction scheme. Experimental results are reported

in Section 5. Concluding remarks are provided in Section 6 .
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2 The Preisach Model

For a pair of thresholds (β, α) with β ≤ α, consider a simple hysteretic element

γ̂β,α[·, ·], as illustrated in Fig. 1. For u ∈ C([0, T ]) and an initial configuration

ζ ∈ {−1, 1}, the function

v = γ̂β,α[u, ζ ] : [0, T ] → {−1, 1}

is defined as follows [15]:

v(0)
�
=




−1 if u(0) ≤ β

ζ if β < u(0) < α

1 if u(0) ≥ α

,

and for t ∈ (0, T ], setting Xt
�
= {τ ∈ (0, t] : u(τ) = β or α},

v(t)
�
=




v(0) if Xt = ∅

−1 if Xt �= ∅ and u(maxXt) = β

1 if Xt �= ∅ and u(maxXt) = α

.

−1

+1

β α u

v

Fig. 1. An elementary Preisach hysteron γ̂β,α[·, ·].
The operator γ̂β,α is sometimes referred to as an elementary Preisach hysteron

(we will call it a hysteron in this paper), since it is a building block for the
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Preisach operator. The Preisach operator is a weighted superposition of all

possible hysterons. Define P0
�
= {(β, α) ∈ R

2 : β ≤ α}. P0 is called the

Preisach plane, and each (β, α) ∈ P0 is identified with the hysteron γ̂β,α. For

u ∈ C([0, T ]) and a Borel measurable initial configuration ζ0 of all hysterons:

ζ0 : P0 → {−1, 1},

the output of the Preisach operator Γ is defined as

y(t) = Γ[u, ζ0](t) =
∫ ∫

P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα. (1)

The weighting function µ is often referred to as the Preisach function [13] or

the density function [16]. Throughout the paper it is assumed that µ ≥ 0.

Furthermore, to simplify the discussion, we assume that µ has a compact

support, i.e., µ(β, α) = 0 if β < β0 or α > α0 for some β0, α0. In this case

it suffices to consider the finite triangular area P �
= {(β, α) ∈ R

2|α ≥ β, β ≥
β0, α ≤ α0}, as shown in Fig. 2(a). The memory effect of the Preisach operator

can be captured by curves in P. At each time instant t, define

P−(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is − 1},

P+(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is + 1},

so that P = P−(t) ∪ P+(t), ∀ t. Eq. (1) can be rewritten as:

y(t) =
∫ ∫

P+(t)
µ(β, α)dβdα−

∫ ∫
P−(t)

µ(β, α)dβdα. (2)

Now assume that at some initial time t0, the input u(t0) = u0 < β0. Then

the output of every hysteron is −1. Therefore P−(t0) = P, P+(t0) = ∅ and it

corresponds to the “negative saturation” (Fig. 2(b)). Next we assume that the

input is monotonically increased to some maximum value at t1 with u(t1) = u1.

The output of γ̂β,α is switched to +1 as the input u(t) increases past α. Thus at

5



time t1, the boundary between P−(t1) and P+(t1) is the horizontal line α = u1

(Fig. 2(c)). Next assume that the input starts to decrease monotonically until

it stops at t2 with u(t2) = u2. It’s easy to see that the output of γ̂β,α becomes

−1 as u(t) sweeps past β, and correspondingly, a vertical line segment β = u2 is

generated as part of the boundary (Fig. 2(d)). Further input reversals generate

additional horizontal or vertical boundary segments.

=α β
α 0

β0

(a)

α

β

t0 (   )−

=α β
α 0

β0

(b)

α

β

− t1(   )

t1(   )+

u1

=α β
α 0

β0

(c)

α

β u2

u1− t2(   )

t2(   )+

=α β
α 0

β0

(d)

α

β

Fig. 2. Memory curves in the Preisach plane.

From the above illustration, one can see that each of P− and P+ is a connected

set, and the output of the Preisach operator is determined by the boundary

between P− and P+. The boundary is called the memory curve. The memory

curve has a staircase structure and its intersection with the line α = β gives the

current input value. The memory curve ψ0 at t = 0 is called the initial memory

curve and it represents the initial condition of the Preisach operator. Let ζψ0

denote the hysteron configuration corresponding to the memory curve ψ0. In

the sequel we will put the initial memory curve ψ0 as the second argument of

Γ, where Γ[·, ψ0]
�
= Γ[·, ζψ0].
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3 The Value Inversion Problem

3.1 The discretized Preisach operator

To use the Preisach operator, one first needs to know the Preisach density.

An identification method as well as a review of other identification methods

can be found in [6]. Discretization of the Preisach operator is involved in one

form or another in any practical identification method and in this paper we

will follow the discretization scheme used in [6].

Considering the operating limits of actuators, we assume the input range to

be [umin, umax]. This range is uniformly discretized into L + 1 levels. The set

of input levels is denoted as U
�
= {ul, 1 ≤ l ≤ L + 1} with ul = umin + (l −

1)δu, where δu = umax−umin

L
. L will be called the discretization level . Input

discretization leads to discretization of the Preisach plane. Fig. 3(a) shows

the discretization scheme for L = 3. The density distribution inside each

cell is assumed to concentrate at the cell center (represented by dark dots in

Fig. 3(a)) and this results in a discretized Preisach operator, which is now a

weighted sum of L(L+1)
2

hysterons (see Fig. 4). In Fig. 4, ν(βi, αi) denotes the

weight for the hysteron γ̂βi,αi
. Note that although uniform discretization is

considered here, the results presented in this paper apply directly to the case

of non-uniform discretization.

3.2 The value inversion problem

Since the Preisach operator is rate-independent, and at any time t the memory

curve (and thus the output value) depends only on the dominant maximum
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Fig. 3. (a) Discretization of the Preisach plane (L = 3); (b) Memory curve “001”

(bolded lines).
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Fig. 4. The discretized Preisach operator.

and minimum values in the past input [13], we restrict ourselves to the discrete

time setting and put a sequence instead of a continuous time function as the

first argument of Γ.

Let S be the set of input strings taking value in U = {ul, 1 ≤ l ≤ L+ 1}, i.e.,

if s ∈ S is a string of length n, then s[i] ∈ U, 1 ≤ i ≤ n. To avoid ambiguity,

it is tacitly understood that the input is changed monotonically from s[i] to

s[i+ 1]. Define SA to be the set of alternating input strings [16], in the sense

that, if sa ∈ SA, then (sa[i+ 2] − sa[i+ 1])(sa[i+ 1] − sa[i]) < 0, ∀i > 0.

In micro-positioning, one is mainly interested in the final position and cares

less about the transient trajectory. This motivates us to study the value in-
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version problem for the (discretized) Preisach operator. Let Ψd denote the set

of memory curves for the discretized Preisach operator. The value inversion

problem is formulated as: given a desired output value y and an initial memory

curve ψ0 ∈ Ψd, find s∗a ∈ SA, such that

|Γf [s∗a, ψ0] − y| = min
sa∈SA

|Γf [sa, ψ0] − y|, (3)

where Γf [s, ψ0] denotes the final value of the output of the Preisach operator

under input sequence s; If there is more than one such string achieving (3),

find the one with the minimum length.

Remarks:

(1) A discretized Preisach operator is not “onto” since its output takes

values in a finite set. Therefore perfect match is not sought in the defini-

tion above;

(2) Any s ∈ S can be reduced to some sa ∈ SA using the following rules,

starting from i = 1: if (s[i+1]−s[i])(s[i+2]−s[i+1]) ≥ 0, delete s[i+1]

and re-index. For example, s = (u1, u3, u3, u5, u4, u2) ∈ S can be reduced

to sa = (u1, u5, u2) ∈ SA. The final values of the output under s and sa

are identical (easy to verify). Hence one only needs to search the optimal

input sequence in SA;

(3) The length of an alternating input string is directly linked to the

number of input reversals and thus the complexity of implementing that

input. Therefore we seek s∗a with the minimum length.
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3.3 The state reachability problem

The discretized Preisach operator is a finite state machine (FSM). Since there

are L(L+1)
2

hysterons in a discretized Preisach model with discretization level

L and each hysteron takes value in {−1, 1}, the number of states appears to

be 2L(L+1)/2. This is not the case in general, recalling that each of P− and P+

is a connected set (refer to Section 2) and the true state is the memory curve.

Proposition 3.1 For a discretized Preisach operator with discretization level

L, the number of states is 2L.

Proof. For a discretized Preisach operator, each memory curve consists of L

horizontal or vertical segments of length δu, so the total number of memory

curves is 2L. �

The proof motivates an indexing scheme for the memory curve. Starting from

the upper left corner, we number each memory curve with L bits correspond-

ing to the L segments: 0 represents vertical, and 1 represents horizontal. For

instance, the memory curve represented by the bolded lines in Fig. 3(b) reads

“001”. To fix the ordering of bits, we refer to the leftmost (rightmost, resp.)

bit as bit L (bit 1, resp.).

A complete description for the FSM can now be given. It has state space

Ψd = {ψ : ψ = (αL, αL−1, · · · , α1), αj ∈ {0, 1}, j = 1, · · · , L}

and input space U . It is a state output automaton [17] since the output y of the

Preisach operator depends only on the memory curve ψ. Therefore, the value

inversion problem is solved if any state of the FSM is reachable, because then

all we have to do is to find the state whose corresponding output is closest to

10



the desired value ȳ.

A state-space representation of a general Preisach operator can be found in

[18] and it is shown there that the state space is approximately reachable. This

“approximate reachability” result was also stated in [13,15] (in a more casual

way). As we shall see next, the hysteretic dynamics of a discretized Preisach

operator can be characterized elegantly in terms of the FSM. The reachability

of the FSM then follows from the characterization.

The state transition function Ξd : Ψd × U → Ψd for the FSM can be best

described in terms of two state operations, INC: Ψd → Ψd and DEC: Ψd →
Ψd. For any state ψ ∈ Ψd, one can immediately determine the current input

ũ(ψ): ũ(ψ) = un+1 if ψ contains n “1”s. For ψ ∈ Ψd, define

INC(ψ)
�
=




ψ, if ũ(ψ) = uL+1

the state after the input is increased by one level, if ũ(ψ) �= uL+1

,

and

DEC(ψ)
�
=




ψ, if ũ(ψ) = u1

the state after the input is decreased by one level, if ũ(ψ) �= u1

.

As one can easily verify, INC changes the first “0” bit counting from the

right to “1” and leave other bits untouched. A symmetric remark applies to

the operation DEC. Therefore bit L (bit 1, resp.) is the most (least, resp.)

important bit, in the sense that to switch bit j from 0 (1, resp.) to 1 (0, resp.),

one has to first switch all the lower bits to 1 (0, resp.). Fig. 5 illustrates the

INC and DEC operations for the case of L = 3.
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Fig. 5. Operations INC and DEC for L = 3.

Given u ∈ U , the state transition function can be expressed as:

Ξd(ψ, u) =




ψ, if u− ũ(ψ) = 0

INC ◦ · · · INC︸ ︷︷ ︸
n INCs

(ψ), if u− ũ(ψ) = nδu

DEC ◦ · · ·DEC︸ ︷︷ ︸
n DECs

(ψ), if u− ũ(ψ) = −nδu

,

where “◦” denotes composition of functions.

Proposition 3.2 Any state is reachable. Let ψi, i = 1, 2, be two states. Let

bit n0 be the leftmost bit at which ψ1 and ψ2 differ, and let na be the number

of alternating bit pairs in ψ2 from bit n0 through bit 1. Then ψ2 is reachable

from ψ1 by applying an input string s∗a ∈ SA of length na + 1, and the length

of any other sa ∈ SA achieving the state transition from ψ1 to ψ2 is no less

than na + 1.

The proposition is a straightforward consequence of the state transition map

Ξd.

Corollary 3.1 Any state is reachable from any other state with some s∗a ∈ SA

of length no more than L.
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The following example illustrates Proposition 3.2 as well as how to actually

construct the input string.

Example 3.1 Assume L = 5, ψ1 = 00100, ψ2 = 01011. Then n0 = 4, na = 2,

and the alternating input string s∗a for achieving the state transition has length

3. The procedure for the state transition is as follows:

• Step 0. ψ1 contains one “1”, so the current input value is u2;

• Step 1. Apply u5 (3 consecutive INCs) to make bit 4 “1” and the state

becomes 01111;

• Step 2. Apply u2 (3 consecutive DECs) to make bit 3 “0” and the state

becomes 01000;

• Step 3. Apply u4 (2 consecutive INCs) to get ψ2.

4 A State Space Reduction Scheme

4.1 Reduction of the state space

In general one needs to store the output values of 2L states for the value in-

version problem. For a reasonable discretization level L, this may take lots of

memory. In addition, computation cost for sorting and searching these states

will be very high. Therefore reducing the number of states without compro-

mising control accuracy is of practical interest.

Two states ψ1, ψ2 ∈ Ψd are equivalent, denoted as ψ1 ≡ ψ2, if

Γ[s, ψ1] = Γ[s, ψ2], ∀s ∈ S.

We call a hysteron in the discretized Preisach operator non-trivial if its asso-
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ciated weight is not zero, and trivial otherwise. Existence of trivial hysterons

leads to equivalent states. This is illustrated in Fig. 6(a), where the hysterons

marked with “•”(and labeled by γ1, · · · , γ5) are assumed to be non-trivial and

those marked with “◦” are assumed to be trivial. It’s easy to verify that the

following states in Fig. 6(a) are equivalent: 0101, 0110, 1001 and 1010. From

the experimental result of measure identification (see Fig. 10), we see that in-

deed many hysterons carry weights of zero or close to zero, and this provides

room for the state space reduction.

γ5

γ3 γ4

γ1

γ2

γ5

γ3 γ4

γ1

γ2

(b)(a)

Fig. 6. (a) Existence of equivalent states (L = 4); (b) Illustration of the shaded set.

The original state space Ψd is thus a disjoint union of equivalent classes of

states. Ψd can be reduced, so that in the reduced state space Ψ̃ each element

is an equivalent class in Ψd, i.e., Ψ̃ = Ψd/ ≡. Denote the set of non-trivial

hysterons as N , i.e., N �
= {γ̂β,α : νβ,α > 0}, where νβ,α is the weight of γ̂β,α.

For ψ ∈ Ψd, define S(ψ) to be the set of non-trivial hysterons underneath

the memory curve corresponding to ψ. From the example above, we can see

that ψ1 ≡ ψ2 if and only if S(ψ1) = S(ψ2). Therefore, a member of Ψ̃ can be

identified with a subset ψ̃ of N that satisfies the following condition: there

exists ψ ∈ Ψd, such that ψ̃ = S(ψ). To better capture the latter property, we

introduce the notion of a Lower-Left-Shaded Set . The Lower-Left-Shaded Set

(abbreviated as the shaded set hereafter) A(γ̂β,α) of a hysteron γ̂β,α ∈ N is
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defined to be

A(γ̂β,α) = {γ̂β′,α′ ∈ N : γ̂β′,α′ �= γ̂β,α, β
′ ≤ β, α′ ≤ α}.

The geometric interpretation of the shaded set of γ̂β,α is clear: imagining two

rays from γ̂β,α in the Preisach plane, one pointing downwards and the other to

the left, the shaded set consists of non-trivial hysterons lying between the two

rays. For example, in Fig. 6(b), A(γ5) = {γ1, γ2, γ3}. If γ̂β,α lies underneath

some memory curve ψ′, it follows from analysis of the Preisach plane that all

elements of A(γ̂β,α) must also lie underneath ψ′. Therefore we conclude that

ψ̃ ⊂ N is identified with a member of Ψ̃ if and only if the following holds:

A(γ̂β,α) ⊂ ψ̃ , ∀ γ̂β,α ∈ ψ̃. (4)

To ease presentation, from now on we will simply write ψ̃ ∈ Ψ̃ if (4) is satisfied.

One can now list all members in Ψ̃ using a tree-structured algorithm:

• Step 1. List the equivalent class having no non-trivial hysterons (negative

saturation);

• Step 2. List equivalent classes with one constituent non-trivial hysteron,

i.e., the shaded set of every such hysteron is empty;

• Step 3. Starting from each equivalent class (parent class) ψ̃ with n non-

trivial hysterons, we list equivalent classes (children classes) with n + 1

non-trivial hysterons by finding another hysteron γ̂ ∈ N such that:

– γ̂ is not included in ψ̃,

– A(γ̂) ⊂ ψ̃, i.e., ψ̃ ∪ γ̂ is an eligible member of Ψ̃, and

– ψ̃∪ γ̂ does not coincide with any other equivalent class ψ̃ ′ with n+1

constituent hysterons that has been listed so far;

• Step 4. Continue Step 3 until ψ̃ = N (positive saturation) is listed.
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The equivalent classes are sorted according to their output values during the

above enumeration process. One can save computation time by using the fact

that the output of a child class is always greater than that of its parent.

4.2 Generation of best representative states

For the purpose of realizing state transition, one needs to find a representative

state ψ ∈ Ψd, i.e., a memory curve, for every ψ̃ ∈ Ψ̃. From Proposition 3.2, the

number of alternating bit pairs of a state ψ is closely related to the number of

input reversals required for the state transition. Therefore the best represen-

tative state ψ∗ ∈ Ψd for ψ̃ ∈ Ψ̃ should have the least number of alternating

bit pairs among all states in the equivalent class ψ̃.

An algorithm is developed here to generate the optimal representative ψ∗ for

ψ̃ ∈ Ψ̃. We first draw two candidate memory curves ψ∗
↓ and ψ∗

→, and then

pick ψ∗ to be the one whose number of alternating bit pairs is less. When

growing a memory curve starting from the left upper corner of the discretized

Preisach plane, one has two possible directions for each segment of the curve:

going downwards (denoted as “↓”) or going to the right (denoted as “→”).

The candidate ψ∗
↓ is obtained as follows: start with “↓” and continue that

direction as long as it is feasible to do so (i.e., no constituent hysteron of ψ̃ is

left out); when it is infeasible to continue “↓”, switch to “→” and keep going

with that direction until it is infeasible for ψ̃ (i.e., non-constituent hysterons

will be included). Continue with these rules until all L segments are drawn.

Similarly one obtains ψ∗
→ by starting with “→”. Note that “→” is feasible

whenever “↓” is not, and vice versa.
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Proposition 4.1 The representative ψ∗ obtained in the above scheme has the

least number of alternating bit pairs among all states in the equivalent class

ψ̃.

Proof. For any state ψ ∈ ψ̃ starting with “↓”, one can show its number of

alternating bit pairs is no less than that of ψ∗
↓ by exploiting the strategy in

generating ψ∗
↓.

Instead of giving a general proof, we will illustrate the essential idea by looking

at a concrete example with discretization level L = 8 (Fig. 7). Assume that

the memory curve represented by the bolded lines A-B-C-D-E (“00111001”) is

ψ∗
↓. Let ψ be any other state in the same equivalent class ψ̃ starting with “↓”.

Now imagine we are growing the two curves ψ∗
↓ and ψ segment by segment,

starting from the left upper corner. The curve ψ has to switch to “→” no later

than it reaches the point B (since otherwise it will be infeasible). This implies

that when the first alternating bit pair in ψ∗
→ occurs, at least one alternating

bit pair has occured in ψ. For the same reason, ψ has to switch to “↓” before

ψ∗
↓ does so at point C. This argument goes on until the line α = β is hit and

the drawing is completed. Hence the number of alternating bit pairs in ψ is no

less than that in ψ∗
↓ . The curve represented by the dashed lines A-F-G-H-I-E

in Fig. 7 gives an example of such ψ.

Analogously for any state ψ starting with “→”, one can show its number of

alternating bit pairs is no less than that of ψ∗
→. The proof is now complete. �

Example 4.1 For the equivalent class {γ1, γ2, γ3} in Fig. 6(a), ψ∗
↓ = 0110 with

2 alternating bit pairs and ψ∗
→ = 1001 with the same number of alternating

bit pairs. So ψ∗ = ψ∗
↓ (or ψ∗

→).
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Fig. 7. Illustration of the proof of Proposition 4.1.

5 Experimental Results

In this section the value inversion approach together with the state space

reduction scheme is applied to micro-positioning control of a magnetostric-

tive actuator. Magnetostriction is the phenomenon of strong coupling between

magnetic properties and mechanical properties of some ferromagnetic materi-

als (e.g., Terfenol-D): strains are generated in response to an applied magnetic

field, while conversely, mechanical stresses in the materials produce measur-

able changes in magnetization. Fig. 8 shows a sectional view of a Terfenol-D

actuator manufactured by ETREMA Products, Inc. By varying the current

in the coil, one varies the magnetic field in the Terfenol-D rod and thus con-

trols the displacement of the rod head. Fig. 9 displays the hysteresis in the

magnetostrictive actuator.

When operated in a low frequency range (typically below 5 Hz), the displace-

ment y can be related to the bulk magnetization M by a square law λ = a1M
2

for some constant a1 > 0 [19], and the input current I can be related to the

magnetic field H (assumed uniform) along the rod direction by a proportional

law: H = c0I, where c0 is the coil factor. Then the magnetostrictive hysteresis

between y and I is fully captured by the ferromagnetic hysteresis between
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Fig. 8. Sectional view of the Terfenol-D actuator [19](Original source: Etrema Prod-

ucts Inc.).

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

70

Current input (Amp.)

D
is

pl
ac

em
en

t (µ
 m

)

Fig. 9. Hysteresis in the magnetostrictive actuator

M and H , which is modeled by the Preisach operator. The Preisach plane is

discretized with L = 25 which results in 300 hysterons. Fig. 10 displays the

Preisach weighting masses identified through a least squares algorithm [6]. By

treating 201 hysterons whose weights are zero or very small as trivial, we are

left with 99 nontrivial hysterons. The final number of states in the reduced

state space is 99,217 compared to 33,554,432 in the original state space.

Our experimental setup is as shown in Fig. 11. The displacement of the actu-

ator is measured with a LVDT sensor, which has a precision of about 1 µm.

DSpace ControlDesk is used to send control commands and collect data.

Given a sequence of 8 desired displacement values (10 µm, 30 µm, 15 µm,

40 µm, 20 µm, 40 µm, 60 µm and 50 µm),the control objective is to drive
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Fig. 10. Distribution of the Preisach weighting masses (L=25).

the actuator head to these positions consecutively. Three control schemes are

implemented to achieve the positioning goal. The first one is based on the

value inversion scheme, the second is based on the closest match algorithm for

trajectory inversion (see [6]), and the third scheme is based on a non-hysteretic

model where the input-output relationship is approximated by a single-valued

function y = −7.44I3−2.63I2 +40.81I+30.34. The trajectories of the current

input and the measured displacement under these schemes are shown in Fig. 12

through Fig. 14. For presentation purposes, we intentionally hold the input

current constant for about 1 second after each positioning is completed. Fig. 15

compares the errors of the three schemes for the eight positioning tasks. It can

be seen that Scheme 1 yields the minimum positioning error. As a trajectory

inversion algorithm, Scheme 2 does not allow input reversals for each desired

output value and thus has less control freedom than Scheme 1 does. This

explains why scheme 1 is better than scheme 2. Scheme 3 delivers the worst

performance because hysteresis is not taken into account.

20



Amplifier

A/D

   D/A

LVDT sensor
DSpace 
ControlDesk

Actuator
Control

Data

Fig. 11. Experimental setup.

0 2 4 6 8 10 12

−0.5

0

0.5

1

Time (sec.)

C
ur

re
nt

 (
A

m
p.

)

0 2 4 6 8 10 12

10

20

30

40

50

60

Time (sec.)

D
is

pl
ac

em
en

t (
 µ 
m

)

Fig. 12. Micro-positioning control based on the value inversion scheme.
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Fig. 13. Micro-positioning control based on the closest match algorithm.
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Fig. 14. Micro-positioning control based on a non-hysteretic model.
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Fig. 15. Comparison of three schemes. Scheme 1: the value inversion algorithm;

Scheme 2: the closest match algorithm; Scheme 3: the inversion algorithm based on

a non-hysteretic model.

6 Conclusions

In this paper a novel type of inversion problem, called the value inversion

problem, for a class of discretized hysteresis operators has been studied. Unlike

most inversion problems discussed in the literature on hysteresis control, the

value inversion problem is to find an optimal input trajectory given a desired

value of the hysteresis output. This problem was motivated by positioning
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applications of smart actuators.

The Preisach operator has been used for the modeling of hysteresis. When

discretized, it can be represented by a FSM. Based on a concise indexing

scheme for the memory curve, the dynamics of the FSM is captured by simple

rules. The original value inversion problem was converted to a state reach-

ability problem of the FSM. Implementation of state transitions were illus-

trated through examples. The notion of state space reduction was developed

for a discretized Preisach operator, and algorithms for generating the reduced

state space and for constructing the optimal representative state were also

presented. This approach has been applied to micro-positioning control of a

magnetostrictive actuator and its effectiveness has been demonstrated through

comparison with two other inversion schemes.
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