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Abstract

In this paper we consider the problem of distributed controller design in spatially invariant systems
for which communication among sites is limited. In particular, the controller is constrained so that
information is propagated with a delay that depends on the distance between sub-systems–a structure
we refer to as “funnel”-causality. We show that the problem of optimal design can be cast as a convex
problem provided that the plant has a similar funnel-causality structure, and the propagation speeds in
the controller as at least as fast as those in the plant. As an example, we consider the case of the wave
dynamics with limited propagation speed control.

1 Introduction

We consider spatially distributed systems where all signals are functions of both spatial and temporal vari-
ables. The theory of such spatio-temporal systems has been worked out in some detail. We consider only
spatially distributed systems with the additional property that the dynamics are spatially invariant. For
recent work on this class and some of the background for the present work, we refer the reader to [1, 2, 3, 4]
and the references therein.

One of the major issues in the design of such distributed controllers is the communications requirements
between individual controller sub-systems. One of the applications of this design methodology is to design
controllers for large arrays of Micro-Electro-Mechanical System (MEMS), in which there are potentially tens
of thousands of actuator/sensor and imbeded control sub-systems. For systems of this size and configuration,
centralized controllers are not an option. It turns out that optimally designed centralized controllers have an
inherent localization property which enables them to be implemented using distributed control elements with
limited communication requirements [2]. Several researchers have recently been looking at the problem of
explicity imposing constraints on communication requirements between controller subsystems. Among these
are approcahes based on LMI’s and convex optimization techniques (see [5, 3, 4] and the references therein).
The same structure of controllers as the plant is imposed and a relaxation is used to obtain stability and
performance conditions via LMIs. More recently, an interesting algebraic characterization of plant-controller
structures that leads to convex maps has been provided in [6]. The work in [6] nicely generalizes the classes
of convex structural problems presented earlier in [7].

In this paper, we consider the case of spatially invariant systems, where the controller is constrained so
that information is propagated with a delay that depends on the distance between sub-systems–a structure
we refer to as “funnel”-causality. We show that the problem of optimal design can be cast exactly as a
convex problem provided that the plant has a similar funnel-causality structure. We also provide explicit
constructions of the appropriate coprime factors that lead to a convex model matching formulation for
important classes of problems such as the control of systems governed by the wave equation. This work
generalizes some of the results in [8] where a special case of funnel causality, termed as cone-causality, is
considered.
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Figure 1: (a) Cone causality (b) Funnel causality

2 Spatio-temporal causality

We begin our exposition by presenting some material on the many possibilities for spatio-temporal causality.
Our description of distributed systems will be in terms of their spatio-temporal impulse and frequency
responses. A signal u(x, t) is a function of a spatial variable x and a temporal variable t. In what follows, x
and t can be either discrete or continuous.

Two signals, u and y are related by a spatially-invariant distributed system if we can write

y(x, t) =
∫ ∫

h(x− ξ, t− τ) u(ξ, τ) dτ dξ, (1)

where h is the spatio-temporal impulse response. For uniformity of notation, we use this convolution integral
to denote sums as well in the case when dτ and dξ are discrete measures on the set Z. We will restrict attention
to the class of temporaly causal impulse responses that have the following property,

sup
t∈[0,T ]

∫ ∞

−∞
|h(x, t)| dx <∞,

for any T > 0. This can be understood as requiring h to be in L1 in the spatial coordinate, and in L∞e
(the extended L∞ space) in the temporal coordinate. This class is large enough to contain most temporaly
causal (but not necessarily stable) spatio-temporal systems. The above bound allows for composition and
inversion of such systems.

The spatio-temporal impulse response h(x, t) can be visualized as a function in the plane (x, t). Temporal
causality of h is equivalent to the requirement that h(x, t) = 0 in the half plane t ≤ 0. Physical systems have
temporal causality, but not necessarily spatial causality. As opposed to purely temporal systems, where only
one notion of causality is natural, there are many possible notions of causality for spatio-temporal systems.
Systems that have a constant finite propagation speed (e.g. the wave equation) are such that h has its
support in a “light cone”, i.e.

h(x, t) = 0, for t < γx

(see Figure 1.a), where 1/γ is the speed of propagation. This type of causality maybe referred to as “cone-
causality”. We will be considering systems where the impulse response has support in slightly more general
domains.

Definition 1 A scalar valued function f(x) is said to be a propagation function if f is non-negative, f(0) = 0
and such that {f(x), x ≥ 0} and {f(x), x ≤ 0} are concave functions respectively.

Definition 2 A system is said to have the property of funnel-causality if its impulse response is such that

h(x, t) = 0, for t < f(x),

where f(x) is a propagation function. In other words, if its impulse response is supported in a funnel shaped
region (see figure 1.b).
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Intuitively, any effect in a funnel-causal systems takes at least f(x) time units to travel a distance x. The
reason for restricting the propagation function f to have concave segments is that such a class of systems
turns out to be closed under convolutions. This latter property will be useful in establishing the convexity
of controller design problems later on.

We now state a result on the composition of two funnel-causal systems. If h is a spatio-temporal system,
we use the same symbol h to refer to its spatio-temporal impulse response (the function h(x, t)), and we
use the expression supp (h) to refer to the region in the (x, t) plane where h(x, t) is supported. If f is a
propagation function, we denote by Sf the set

Sf := {(x, t); t ≥ f(x)} .

Sf is the set “above” the curve f in Figure 1.b.

Lemma 1 Let h1 and h2 be two funnel-causal systems such that

supp (h1) ⊂ Sf , supp (h2) ⊂ Sf ,

where f is some propagation function. Then the composition h3 = h1 ∗ h2 is such that

supp (h3) ⊂ Sf .

Proof: We begin with

h3(x, t) =
∫ ∫

h1(x− ξ, t− τ) h2(ξ, τ) dτ dξ.

Since supp (h1) ⊂ Sf and supp (h2) ⊂ Sf , we have that h1(ξ, τ) = 0 for τ < f(ξ) and h1(x− ξ, t− τ) = 0
for t− τ < f(x− ξ) (i.e. t− f(x− ξ) < τ). Thus the limits of integration can be adjusted to

h3(x, t) =
∫ ∫ t−f(x−ξ)

f(ξ)

h1(x− ξ, t− τ) h2(ξ, τ) dτ dξ.

From this we can in particular conclude that

h3(x, t) = 0 if ∀ ξ, t− f(x− ξ) ≤ f(ξ). (2)

To see for which t this condition is valid, note the following implication

∀ ξ, t ≤ f(x− ξ) + f(ξ) ⇐ t ≤ inf
ξ

(f(x− ξ) + f(ξ)) . (3)

We now claim that the concavity of f implies that

inf
ξ

(f(x− ξ) + f(ξ)) = f(x). (4)

To see this, assume for simplicity that x > 0, and note that over each of the three intervals ξ ∈ (−∞, 0], or
[0, x] or [x,∞) the function (f(x− ξ) + f(ξ)) is the sum of two concave functions (see figure 2). Therefore,
over each of the three intervals separately, the function (f(x− ξ) + f(ξ)) is concave, and its infimum must
then be achieved at the boundaries, i.e. at ξ = 0 or ξ = x. In either case, we have equation (4), which when
combined with (3) and (2) gives

h3(x, t) = 0 for t < f(x)

which is the desired conclusion.

The preceding lemma characterizes an important property of funnel-causal systems. The composition
of two such systems is also a funnel-causal system where effects propagate as fast as the fastest of the two
systems. To make this precise, let h1 and h2 be systems whose support is such that supp (h1) ⊂ Sf1 and
supp (h2) ⊂ Sf2 , where Sf1 ⊂ Sf2 . This means that effects in h2 propagate faster than in h1. Lemma 1 then
implies that supp (h1 ∗ h2) ⊂ Sf2 .
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Figure 2: The function f(x− ξ) + f(ξ)

Lemma 1 implies that for a given propagation function, the class of funnel-causal systems is closed
under compositions. It is a trivial fact that this class is closed under additions as well. Furthermore,
it can also be shown that this class is closed under inversions. The proof of this latter fact is relegated
to the Appendix. Taking all three properties together, i.e. closure under additions, compositions and
inversions, we conclude that the class of funnel-causal systems is closed under general linear fractional
transformations with coefficients that are themselves funnel-causal. This then implies that the Youla et.al.-
Kucera (YJBK)parameterization (e.g., [9]) can be used to nicely parameterize all funnel-causal stabilizing
controllers.

3 Optimal performance and YJBK parametrization

In the design of distributed controllers for spatio-temporal systems it is often desired to impose some decen-
tralized structure on the controller. A fully centralized controller is often impractical in large scale systems
though it has the best performance. Explicit decentralization is a notoriously difficult control problem.
Perhaps an indication of the difficulty of this problem is that the set of all achievable closed loop maps
with decentralized control is not in general a convex set. However, we will now consider controllers with
prescribed funnel-causality which yield convex closed loops for certain plants.

Let a propagation function f be given, and denote by Lf the set of all linear spatially invariant systems
with impulse responses that have support in Sf . Consider the standard configuration for disturbance atten-
uation in Figure 3 where the plant G and the controller K are spatially and temporally invariant systems.
Let g22 denote the impulse response of G22, the part of G that maps u to y. A central observation in this
paper is that if supp (g22) ⊂ Sf for some propagation function f , then the problem of designing controllers
with support in Sf is convex. The problem of interest is cast as follows

Optimal performance problem: Consider the standard problem in Figure 3 withG22 such that supp (g22) ⊂
Sf for some propagation function f . Find the optimal feedback controller with the same funnel-causality
constraint as G22, i.e.

inf
K stabilizing
K ∈ Lf

‖F(G;K)‖, (5)

where the norm in question is any norm of the closed loop F(G;K) defined on spatio-temporal systems.

G

K

��

-

�

wz

uy

Figure 3: The Standard Problem
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Convexity of the set of closed loops

In order to employ the YJBK paramterization for the case of an unstable G22 we will assume the existence
of a co-prime factorization. We will assume that we can factor G22 = NM−1, and that there exists X and
Y that solve the Bezout identity XM −Y N = I, where N,M,X, Y are stable spatio-temporal systems. The
next results shows that for a funnel-causal system, if a co-prime factorization can be found with funnel-causal
factors, then the decentralization constraints on K transform to convex constraints on the Youla parameter
Q, which in turn produces a convex set of achievable closed loop maps. In the next section we explain how
we can find Bezout identity factors that are funnel causal for a class of spatio-temporal systems.

Proposition 1 Let G22 ∈ Lf for some propagation function f . Let G22 = NM−1 and XM − Y N = I with
N,M,X, Y ∈ Lf and stable. Then all stabilizing controllers K such that K ∈ Lf are given by

K = (Y +MQ)(X +NQ)−1, (6)

where Q is a stable system in Lf .

Proof: All stabilizing (possibly without the structure) controllers K are given by K = (Y + MQ)(X −
NQ)−1, where Q is a stable system without any additional structure. This follows from the standard
YJBK argument [9]. Now the class Lf is closed under additions, compositions and inversions. These facts
guarantee that Q ∈ Lf in (6) implies that K ∈ Lf . Conversely, since for any stabilizing controller K, we
have Q := (XK − Y )(M −NK)−1, then again K,M,N,X, Y ∈ Lf imply that Q ∈ Lf .

With the above parametrization, problem (5) becomes

inf
Q stable
Q ∈ Lf

‖H − UQV ‖, (7)

where H, U , V are stable maps that depend only on G. Now since the set of stable Q ∈ Lf is a linear
subspace, and the mapping Q 7→ (H − UQV ) is linear affine, then problem (7) is a convex problem, in
particular, it is a minimum distance to a subspace problem. The difficulty of such a problem and whether
it is finite or infinite-dimensional will depend on the norm used and the nature of the set Lf (equivalently,
the type of propagation function f). A manageable instance of this problem can be found in [8] where the
H2 problem is solved in the case of a relaxed version of cone-causality.

4 Some specific factorizations

Co-prime factorizations and Bezout identities can be developed for spatio-temporal systems in a very similar
manner to those for finite dimensional systems. Our interest however is to ensure that the factors and
corresponding Bezout identity elements satisfy the same funnel-causality constraints as the plant. Rather
than develop the most general procedure for doing co-prime factorization, we concentrate on the special case
of plants where decentralized proportional feedbacks can be used to obtain stablizing state feedback and
observer gains. This covers a large class of spatio-temporal systems derived from physical partial differential
equations.

To begin with, let the input-output distributed system y = Gu be given by a state space realization

∂tψ = Aψ + Bu
y = Cψ

, (8)

where ψ, u, and y are spatio-temporal signals, and A, B, C are translation invariant operators. These are
operators over L2 spaces over spatial domains Rn, Zn or cross products thereof. B and C are bounded
operators, while A is a possibly unbounded operator defined on a dense domain of L2, and we assume that it
generates a Co (not necessarily stable) semi-group. We refer the reader to [1] for the background and some
of the results we later use related to such systems.
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We now illustrate how to find co-prime factorizations and solve Bezout identities for such systems. The
procedure is very similar to the finite dimensional case. The Bezout identity is [10]

XM − Y N = I,

where G = NM−1, and N , M , X and Y are stable systems. State space realizations for elements of the
Bezout identity are given by

[
X −Y

]
=

[
A+ LC −B L
K I 0

]
,

[
M
N

]
=

 A+BK B
K I
C 0

 , (9)

where the spatial operators K and L are chosen such that A+BK and A+ LC generate stable evolutions.
The difficulty with obtaining good co-prime factorizations for the problem of funnel-causality is that even

if the original system is funnel-causal, the feedback gains K and L used to form the Bezout identity may
destroy this property. We present below a criterion which avoids this problem when simple proportional
gains K and L are used.

Proposition 2 Let a spatio-temporal system be given by the state space model (8) such that the impulse
responses etAB, CetA and CetAB are funnel-causal. If there exists proportional gains K and L (i.e. decen-
tralized feedbacks) such that A+BK and A+LC are stable, then all elements of the Bezout identity (9) are
funnel-causal.

Proof: We consider the right factor in the Bezout identity. Funnel-causality of the left factor can be shown
similarly. We simply note that the “strictly proper” part (i.e. without the D operator) of this factor can be
realized in the feedback diagram shown in Figure 4. By assumption, the upper part of the feedback diagram
is funnel causal, and so is K since it is a decentralized proportional gains. Since funnel-causal systems
are closed under compositions, additions and inversions, then any well posed feedback interconnection of
funnel-causal systems is also funnel-causal.

j
K �

6

 A B
C 0
I 0

� � �

�

Figure 4: Feedback decomposition

The proof above can be easily generalized to the case when the gains K and L are local spatial operators
(e.g. spatial derivatives of any order), as well as when they are any funnel causal system, but we will not
need this generality here. Although it is restrictive to assume that one can find stabilizing decentralized
state feedbacks and observer gains, this property seems to hold for a large class of spatio-temporal systems
with distributed control. A characteristic example is illustrated in the next subsection. We also note that
for vector-valued input and output signals, a non-commutative version of Proposition 1 can be stated. This
has the standard form [9], and we do not repeat the formulae here.

Example 1: The wave equation

We illustrate the forgoing ideas using the wave equation. The partial differential equation

∂2
t ψ(x, t) = c2∂2

xψ(x, t) + u(x, t), (10)

6



is the standard wave equation with a distributed input. Its transfer function is given by G(s, k) = 1
s2+c2k2 .

This system can not be stabilized by proportional decentralized output feedback alone. A realization of this
system has the form (8) as

∂t

[
ψ1

ψ2

]
=

[
0 I

c2∂2
x 0

] [
ψ1

ψ2

]
+

[
0
I

]
u

ψ =
[
I 0

] [
ψ1

ψ2

]
.

Following [1], this system can be analyzed by taking a Fourier transform in the spatial variables. Denoting
the spatial Fourier variable by k (the wave number), the Fourier representation of the above system is

d

dt

[
ψ1(k, t)
ψ2(k, t)

]
=

[
0 1

−c2k2 0

] [
ψ1(k, t)
ψ2(k, t)

]
+

[
0
1

]
u(k, t)

ψ(k, t) =
[

1 0
] [

ψ1(k, t)
ψ2(k, t)

]
,

where for simplicity of notation we use the same symbol to denote a signal ψ(x, t) and its spatial Fourier
transform ψ(k, t). To see that the system (10) has funnel causality, we compute etA. Note that the 2 × 2
matrix A can be diagonalized by[

0 1
−c2k2 0

]
=

[
1 1
ick −ick

] [
ick 0
0 −ick

] [
1/2 −i/2ck
1/2 i/2ck

]
,

with c > 0. This diagonalization then implies that

exp
{
t

[
0 1

−c2k2 0

]}
=

[
1 1
ick −ick

] [
eikct 0

0 e−ikct

] [
1/2 −i/2ck
1/2 i/2ck

]
=

1
2

[
eikct + e−ikct 1

ick

(
eikct − e−ikct

)
ick

(
eikct − e−ikct

)
eikct + e−ikct

]
=

[
1
2

(
eikct + e−ikct

)
t sinc(kct)

−c2k2 t sinc(kct) 1
2

(
eikct + e−ikct

) ]
As is well known, the symbol e−ickt is the Fourier representation of the operator Tct of right translation by
distance ct. Multiplication by t sinc(kct) represents convolution with the “rectangular” function 1

2c rec( 1
ctx),

where1

rec(x) :=
{

1 |x| ≤ 1
0 |x| > 1 .

If we denote by Rct the operation of spatial convolution with rec( 1
ctx), then we can represent etA as

etA =
1
2

[
Tct + T−ct

1
cRct

c∂2
x Rct Tct + T−ct

]
.

Now, ∂2
x is a local operator, while Tct, T−ct and Rct are non-local. However, they are all funnel causal with

propagation function f(x) = 1
c t (i.e. they are cone causal). To see this, note that their respective impulse

responses are

(Tct) (x, t) = δ(x− ct), (T−ct) (x, t) = δ(x+ ct), (Rct) (x, t) = rec(
1
ct
x),

all of which are supported in the region {(x, t); ct > x}.
We have thus established that all elements of etA are funnel-causal. Since B and C are constants, this

system satisfies the first set of assumptions of proposition 2. We now show how to easily find stabilizing
proportional state feedback and observer gains. First, to find a suitable state feedback gain K, note that

A+BK =
[

0 1
−c2k2 0

]
+

[
0
1

] [
k1 k2

]
=

[
0 1

−c2k2 + k1 k2

]
.

1This is obtained from the Fourier transform pair: rec( 1
α

x) ↔ 2α sinc(αk)

7



We set k1 = 0. Then, the eigenvalues of A+BK for each wave-number k are given by k2 ± 1
2

√
k2
2 − 4c2k2.

Thus for k2 < 0, the spectrum of the operator A+BK is the set
[
3
2k2,

1
2k2

] ⋃
(k2 +jR), which has negative

real part if k2 < 0. Similarly, to find the observer gain, note that

A+ LC =
[

l1 1
−c2k2 + l2 0

]
.

Setting l2 = 0, we find that the spectrum of A+LC has negative real part if l1 < 0. Choosing l1 = k2 = −1,
we obtain stabilizing gains

K =
[

0 −1
]
, L =

[
−1
0

]
.

Now we compute the co-prime factors using formulae (9)

[
X −Y

]
=

 −1 1 0 −1
−c2k2 0 −1 0

0 −1 1 0

 , [
M
N

]
=


0 1 0

−c2k2 −1 1
0 −1 1
1 0 0

 . (11)

We compute the factors to be

M = s2 + c2k2

s2 + s + c2k2

N = 1
s2 + s + c2k2

X = s2 + 2s + c2k2+1
s2 + s + c2k2

−Y = −c2k2

s2 + s + c2k2

.

The funnel-casuality of all the above factors is guaranteed by Proposition 2.
A closed loop mapping such as sensitivity can then be written in terms of the Q parameter as

(I +GK)−1 = XM + NM Q.

Example 2: Illustration of funnel causality

The preceding example involved a system whose impulse response is supported in a cone. An example in
which the support set is more complex can be constructed from the wave equation as follows. Consider the
addition of two wave-equation-like systems

∂2
t ψ1(x, t) = c21 ∂

2
xψ1(x, t) + u(x, t) (12)

∂2
t ψ2(x, t) = c22 ∂

2
xψ2(x, t) + u(x, t− T ) (13)

ψ(x, t) = ψ1(x, t) + ψ1(x, t),

where T is a given time delay. The impulse response of this system is simply the sum of the impulse responses
of the individual subsystems (12) and (13). The response of (12) is supported in the cone {(x, t); c1t ≥ x}
while that of (13) is supported in {(x, t); c2(t− T ) ≥ x}. Thus, the entire system from u to ψ has an impulse
response supported in the set shown in figure 5. The figure illustrates the case when c1 < c2, i.e. when the
speed of the ψ1 system is slower than that of ψ2.

5 Conclusion

We considered optimal closed loop design for spatially distributed control where the propagation speeds
in the controller are at least as fast as the plant. By characterizing this type of spatio-temporal causality
as funnel causality, we have shown these optimal design problems to be convex. For important classes of
problems, an explicit construction for deriving the corresponding model matching problem from the original
plant data was provided using the YJBK parametrization and state space formulae for the required Bezout
identity. This construction guaranteed that the elements of the Bezout identity have the required funnel
causality structure as well. This allows us to handle a large class of spatially distributed unstable systems.

These convex optimal design problems are in general infinite dimensional. Developing efficient procedures
for solving or approximating the solutions of these problems is a significant question, and is the subject of
current research.
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Figure 5: The impulse response support set of Example 2

Appendix: Closure of funnel-causal systems under inversions

In order for the inversion operation to be well defined, we restrict ourselves to the class of temporaly causal
impulse responses such that for any T ≥ 0,

sup
t∈[0,T ]

∫ ∞

−∞
|h(x, t)| dx <∞. (14)

This class includes possibly unstable systems.
The class of temporaly causal systems is closed under composition. Consequently, if H is temporaly

causal, then Hn is temporaly causal for any n. It is then tempting to define inverses using the Neuman
series (I −H)−1 =

(
I +H +H2 +H3 + · · ·

)
, and conclude that (I −H)−1 must be temporaly causal if it

exists.
To make sense of the preceeding argument, we must show that the Neuman series converges in some

sense. To this end, we can employ a bound similar to that used to show the convergence of successive
iteration schemes for Volterra operators [11]. Let hn denote the impulse response obtained by convolving h
with itself n times. The following bound on hn(x, t) can be established by induction on n∫

|hn(x, t)| dx ≤ t(n−1)

(n− 1)!
sup

τ∈[0,t]

(∫
|h(x, τ)|dx

)n

. (15)

The induction argument follows from the following calculation∫
|hn(x, t)| dx =

∫
dx

∣∣∣∣∫ t

0

∫
hn−1(x− ξ, t− τ)h(ξ, τ) dξ dτ

∣∣∣∣
≤

∫ t

0

∫
dx

∫
|hn−1(x− ξ, t− τ)| |h(ξ, τ)| dξ dτ

≤
∫ t

0

(∫
|hn−1(x, t− τ)|dx

) (∫
|h(x, τ)|dx

)
dτ

≤
∫ t

0

tn−2

(n− 2)!
sup

τ∈[0,t]

(∫
|h(x, τ)|dx

)n−1

sup
τ∈[0,t]

(∫
|h(x, τ)|dx

)
dτ

=
t(n−1)

(n− 1)!
sup

τ∈[0,t]

(∫
|h(x, τ)|dx

)n

,

where the second inequality follows from the fact that for the L1 norm ‖f ? g‖ ≤ ‖f‖‖g‖, and the second
inequality is the induction step.

The bound (15) implies that the Neuman series converges for any H whose impulse response satisfies (14)
to an operator that satisfies (14) over finite time intervals. Note that no bounds on the norm of H were
needed (indeed since H is possibly unstable, it may have infinite gain), but causality is necessary. By a
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simple scaling, the above arguments imply that we can invert any temporaly causal system which is of the
form (αI +H), where α 6= 0 is a scalar. All the cases in which we apply this result are of this form.

The preceeding arguments imply that the Neuman series can be used to characterize inverses of temporaly
causal systems. Now, if a system H is in addition funnel-causal, then lemma 1 implies that Hn is funnel-
causal for any n. Therefore, the Neuman series for inversion of H has all terms which are funnel-causal,
and consequently, the inverse of H is funnel-causal. We note that in this case, since a component of the
identity is added to the series, then the “funnel” must include the support of the delta function, i.e. the point
(x, t) = (0, 0). An equivalent characterization is that the propagation function must be such that f(0) = 0.
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