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Abstract

It is shown how noisy closed-loop frequency response measurements can be used to

obtain pointwise in frequency bounds on the possible difference between an other-

wise unknown closed-loop system and the closed-loop comprising a nominal model

of the plant and a stabilising controller. To this end, the Vinnicombe’s gap metric

framework for robustness analysis plays a central role. Indeed, an optimisation prob-

lem and corresponding algorithm are proposed for estimating the chordal distance

between the frequency responses of the nominal plant model and a plant that is

consistent with the closed-loop data and a priori information, when projected onto

the Riemann sphere.
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Notation

Let C denote the field of complex numbers, C
n×m the space of n×m matrices with complex

entries, T := {z ∈ C : |z| = 1} the unit circle, and Dρ := {z ∈ C : |z| < ρ} the open disc

of radius ρ > 0. The symbol D̄ρ is used to denote the closure of Dρ and for convenience, the

sets D1 and D̄1 are denoted by D and D̄, respectively. Given ρ ≥ 1, let H∞,ρ := {f : C →

C : f is analytic in Dρ and ‖f‖∞,ρ := supz∈Dρ
|f(z)| < ∞} and for convenience, denote H∞,1

and ‖f‖∞,1 by H∞ and ‖f‖∞, respectively. The ball of radius γ > 0 in H∞,ρ is denoted

by B̄H∞,ρ(γ) := {f : C → C : f is analytic in Dρ and ‖f‖∞,ρ := supz∈Dρ
|f(z)| ≤ γ} .

Given f ∈ B̄H∞,ρ(γ), it can be shown that each term fk, of the impulse response of the

system corresponding to multiplication by the frequency domain symbol f , is bounded as

|fk| ≤ γρ−k. Given a matrix Q, the notation QT , Q∗ and σ̄(Q) is used to represent the

transpose, complex conjugate transpose and maximum singular value of Q, respectively.

Finally, given a set {Xi}
n
i=1 of matrices, the direct sum

n
⊕

i=1

Xi denotes the diagonal matrix

diag(X1, X2, . . . , Xn).

1 Introduction

As many modern techniques for control system design are model based, it is of practical

interest to know in what sense a system model should be accurate. Indeed, significant research

effort has been devoted to answering such questions over the last few decades. Within the

context of feedback compensator design, the gap and ν-gap metric frameworks for robustness

analysis are particularly useful [1–3]. In fact, these metrics induce the coarsest topology with

respect to which both feedback stability and closed-loop performance are robust properties.

This is established within a general linear setting in [4], using the following inequalities:

Given linear systems P1, P2 and C, such that the standard feedback configurations [P1, C]

and [P2, C] are both stable, let

H(Pi, C) :=









(I − CPi)
−1 −C(I − PiC)−1

Pi(I − CPi)
−1 −PiC(I − PiC)−1









.

Then

gap(P1, P2) ≤ ‖H(P1, C) − H(P2, C)‖ ≤ ‖H(P1, C)‖ ‖H(P2, C)‖ gap(P1, P2), (1)

2



where gap(P1, P2) denotes the gap metric distance between P1 and P2, and ‖ · ‖ denotes

the `2 induced norm.

For linear time-invariant (LTI) systems the bounds in (1) hold pointwise in frequency ϕ :=

ejω, with gap(P1, P2) replaced by the chordal distance

κ(P1(ϕ), P2(ϕ)) = σ̄
(

(I − P1P
∗

1 )−1/2(P1 − P2)(I − P ∗

2 P2)
−1/2(ϕ)

)

,

between the stereographic projection of the frequency responses Pi(ϕ) (i = 1, 2) onto the

Riemann sphere [3,5] – i.e.

κ(P1(ϕ), P2(ϕ)) ≤ σ̄ (H(P1(ϕ), C(ϕ)) − H(P2(ϕ), C(ϕ))) ≤
κ(P1(ϕ), P2(ϕ))

ρ1(ϕ) · ρ2(ϕ)
, (2)

where ρi(ϕ) := ρ(Pi(ϕ), C(ϕ)) := 1/σ̄ (H(Pi(ϕ), C(ϕ))) ≤ 1. Furthermore,

arcsin ρ(P2(ϕ), C(ϕ)) ≥ arcsin ρ(P1(ϕ), C(ϕ)) − arcsin κ(P1(ϕ), P2(ϕ)) (3)

for all ϕ = T. Indeed, supϕ∈T ρ(Pi(ϕ), C(ϕ)) =: b(Pi, C) is the generic measure of performance

and robustness in the H∞ loop-shaping paradigm for design [6,5]. Observe that the bounds

in (1), (2) and (3) imply that gap-like metrics capture the important difference between

open-loop systems from the perspective of closed-loop behaviour.

Given a nominal model Pm of a true plant Pt, suppose that a feedback compensator C is

known to stabilise both the nominal model and the true plant. 1 In addition to stability,

a handle on the actual behaviour/performance of Pt in closed-loop with C is typically of

interest. To this end, two approaches could be taken: (i) One could try to identify H(Pt, C)

at frequencies of interest from closed-loop measurements; or (ii) since the nominal closed-

loop [Pm, C] is known, one could estimate κ(Pm(ϕ), Pt(ϕ)) at frequencies of interest and

then use the bounds in (2) and (3). In approach (i), the technique for identifying H(Pt, C)

should involve constraints to reflect the relationships between the blockwise elements of

H(Pt, C); for example, the quotient of the 12-block and the 11-block, which is known a

priori to be C. Such constraints and noisy data makes this a difficult problem. Furthermore,

identifying H(Pt, C) only yields information that is directly pertinent to the closed-loop

behaviour of Pt with the particular controller C. Approach (ii), on the other hand, can be

posed in terms of a tractable optimisation problem (as will be shown shortly). Moreover,

and most importantly, if the estimate of κ(Pm(ϕ), Pt(ϕ)) is large (close to 1) at a particular

1 Observe that if Pt and Pm are known to be stable, then C = 0 will do.
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frequency, the following conclusion can be made: For any controller C1 that stabilises both

the true plant and the nominal model, the closed-loop [Pt, C1] differs significantly from the

nominal [Pm, C1]. That is, a better nominal model of the plant may be required for model-

based feedback compensator design. Motivated by this, the following sections are dedicated

to presenting a numerical technique for determining a sensible estimate of κ(Pm(ϕ), Pt(ϕ)),

from noisy closed-loop measurements. Work that is related in terms of assessing closed-loop

performance from measured-data/identified-sets, but distinct in terms of the approach taken,

can be found in [7,8] and the references therein.

2 Estimating the chordal distance at sample frequencies

For the sake of notational simplicity, the plant and controller are taken to be SISO systems.

The MIMO case follows similarly with appropriate notational modifications.

The a priori information for the problem introduced above includes a model Pm of an

unknown true system Pt, and a controller C which stabilises both Pm and Pt. Since C

stabilises Pt, it is possible to obtain a sample of

Xt =









Xt,1

Xt,2









:=









I

Pt









(I − CPt)
−1

at frequencies of interest [9,10]. Note that, unless C is itself stable, the factorisation Pt =

X−1
t,1 Xt,2 is not necessarily coprime over H∞, and hence, Xt is not necessarily a graph symbol

in the usual sense [5]. However, if ϕ ∈ T is not a pole of C, then Xt(ϕ) is left-invertible by

[ I −C(ϕ) ]. Thus, the range of Xt(ϕ) is the graph of Pt(ϕ) and correspondingly,

κ(Pm(ϕ), Pt(ϕ)) = min
Q∈C

σ̄(Gm(ϕ) − Xt(ϕ)Q), (4)

where Gm denotes any normalised right graph symbol for Pm [5]. Such a graph symbol can

be constructed as Gm = [ Dm

Nm
], from any normalised right coprime factorisation NmD−1

m of

Pm.

The a posteriori information is a set of noisy frequency response samples {Xi}
N
i=1 ⊂ C

2×1 of

Xt; i.e. each Xi = Xt(ϕi) + Vi, for some Vi ∈ C
2×1 and ϕi ∈ T. It is assumed that these, not

necessarily uniform over frequency, samples are consistent with the following additional a
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priori information: (i) Xt ∈ B̄H∞,ρ(γ), for specified constants γ > 0 and ρ > 1, which reflect

the allowable behaviour of the true system; 2 and (ii) Each ‖Vi‖ ≤ εi for a specified εi > 0,

which reflects the level of noise one is prepared to associate with the sample of Xt(ϕi).

Towards explaining the observed data in terms of noise and true closed-loop behaviour,

consider the following constrained optimisation problem:

min
V ∈C2×n

max
i∈[1,n]

(

min
Qi ∈C

σ̄(Gm(ϕi) − (Xi − Vi)Qi)
)

(5)

where Vi donotes the i-th column of V ∈ C
2×n, subject to

‖Vi‖ ≤ εi and Xi − Vi = X̂t(ϕi) for i = 1, . . . , n and an X̂t ∈ B̄H∞,ρ(γ). (6)

Now, let λ? denote the globally optimal cost. Then from (4), it follows that λ? is the smallest

number for which there exists an X̂t ∈ B̄H∞,ρ(γ), and εi-bounded noise terms Vi, so that

for each i = 1, 2, . . . , n:

(1) the measured data is interpolated as Xi = X̂t(ϕi) + Vi;

(2) κ(Pm(ϕi), Quot(X̂t(ϕi)) ) ≤ λ?, where Quot([ Xd

Xn
]) := X−1

d Xn.

In other words, any plant that is consistent with both the a priori assumptions (i.e. γ, ρ,

{εi}
n
i=1 and C) and the a posteriori data (i.e. the closed-loop frequency response samples

{Xi}
n
i=1), lies no closer than λ? to the nominal model Pm, in terms of worst case chordal

distance over all sample frequencies.

An algorithm for solving the optimisation problem (5-6) is presented in the next section. It

is closely related to an algorithm proposed in [11] and the Pick interpolation based worst

case identification algorithms presented in [12,13]. Before proceeding, however, it is worth

noting that since the manifestation of noise is captured in terms of a bound on the level

only, solving the optimisation problem always yields and estimate that is less than the

true chordal distance. As such, one should ensure that the bounds used for the noise are not

overly conservative. Furthermore, this implies that an estimate obtained via the optimisation

problem is only useful if it is large. In this case, the estimate is evidence that the nominal

model Pm may not be suitable for model based design. In particular, for any controller C1

that stabilises both Pm and Pt, the difference between H(Pm, C1) and H(Pt, C1) would be

larger than the estimate of the chordal distance at the corresponding frequency.

2 Recall that the k-th term of the impulse response of a function in B̄H∞,ρ(γ) is bounded by γρ−k.
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3 A co-ordinate decent approach

The optimisation problem (5-6) is not convex and as such, it is difficult to obtain a global

solution. In fact, it is equivalent to a linear cost problem with bi-affine constraints (cf. Step

2 of Algorithm 1 below), which is known to be NP-hard [14]. Although various branch and

bound type algorithms have been proposed for solving these problems (e.g. [15]), they are

known to be useful only when there is a small number of variables which need to be fixed

to yield affine constraints [16]. In the context of the problem considered here, the number

of such variables corresponds to the number of frequency response samples, which could be

large. In view of this, a so-called co-ordinate decent approach is presented in Algorithm 1

below.

Algorithm 1

(1) Given the set {ϕi}
n
i=1 ⊂ T of sample frequencies, let E ∈ C

n×n denote the matrix with

entries

Ek,l = 1

/(

1 −
earg(ϕk)−arg(ϕl)

ρ2

)

.

Note that det(E) 6= 0. Then for i = 1, 2, . . . , n, let Q?
i,0 = 1. Finally, set k = 1.

(2) Solve 3

V ?
k =

[

V ?
1,k V ?

2,k · · · V ?
n,k

]

:= argmin
[ V1 V2 ··· Vn ]∈C2×n

λ (7)

subject to the affine matrix inequality constraints

n
⊕

i=1









λI
(

Gm(ϕi) − (Xi − Vi) Q?
i,k−1

)

(

Gm(ϕi) − (Xi − Vi) Q?
i,k−1

)

∗

λ









≥ 0, (8)

n
⊕

i=1









εiI Vi

V ∗

i εi









≥ 0, (9)

n
⊕

i=1









1
x∗

i,1
−v∗

i,1

γ

xi,1−vi,1

γ
1









≥ 0, (10)

3 If the set of Vis satisfying (9-13) is empty, then (6) is infeasible and the a priori information (ρ,

γ, {εi}
n
i=1) would need to be adjusted accordingly. The constraint (8) is always feasible for large

enough λ.
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









E−1 ⊕n
i=1

(

x∗

i,1
−v∗

i,1

γ

)

⊕n
i=1

(

xi,1−vi,1

γ

)

E











≥ 0, (11)

n
⊕

i=1

















1
x∗

i,2
−v∗

i,2

γ

xi,2−vi,2

γ
1

















≥ 0, (12)

and










E−1 ⊕n
i=1

(

x∗

i,2
−v∗

i,2

γ

)

⊕n
i=1

(

xi,2−vi,2

γ

)

E











≥ 0, (13)

where for each i = 1, 2, . . . , n,









xi,1

xi,2









:= Xi and









vi,1

vi,2









:= Vi.

Then define

λ?,i
k,k−1 := σ̄(Gm(ϕi) − (Xi − V ?

i,k)Q
?
i,(k−1)) (14)

and λ?
k,(k−1) := maxi∈[0,n] λ

?,i
k,(k−1).

(3) For i = 1, 2, . . . , n, solve the unconstrained linear least-squares problem

Q?
i,k := argmin

Qi∈C

σ̄(Gm(ϕi) − (Xi − V ?
i,k)Qi).

Then define

λ?,i
k,k := σ̄(Gm(ϕi) − (Xi − V ?

i,(k−1))Q
?
i,k), (15)

and λ?
k,k := maxi∈[0,n] λ

?,i
k,k.

(4) If k > 1 and |λ?
k,k−λ?

(k−1),(k−1)| is less than some desired tolerance, then stop. Otherwise,

set k = k + 1 and return to Step 2.

By virtue of Pick’s interpolation theorem (see [17,12] for example) the constraints (10–13)

are equivalent to the existence of analytic interpolants f1, f2 : D 7→ D̄ such that

f1(
ϕi

ρ
) =

xi,1 + vi,1

γ
and f2(

ϕi

ρ
) =

xi,2 + vi,2

γ
.
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Correspondingly,








γf1(
z
ρ
)

γ f2(
z
ρ
)









∈ B̄H∞,ρ(γ)

interpolates each (Xi − Vi), as required. Another important property of Algorithm 1, from

the perspective of the stopping condition, is that the cost is always non-increasing.

Lemma 1 λ?
k+1,k+1 ≤ λ?

k+1,k ≤ λ?
k,k for all k ≥ 1.

Proof : The proof follows from the definition of λ?
k+1,k and λ?

k,k via (14) and (15), respectively,

and the fact that V ?
k satisfies the constraints (8–13) with λ = λ?

k,k, for the first part (i.e. Step

2) of the (k + 1)-th iteration, for all k ≥ 1.

Remark 1 Co-ordinate decent algorithms, of the kind detailed in Algorithm 1 above, are

widely used – e.g. D-K iteration for µ-synthesis [18], the dual iteration for fixed order syn-

thesis [19], iterative identification and control re-design [20]. However, in such algorithms

decent directions are essentially constrained to be aligned with a strict subset of the overall

co-ordinates at each step. Correspondingly, convergence to a locally optimal solution cannot

be guaranteed [15]. In particular, the algorithm can converge to a saddle point when one

exists. An alternative iterative approach to linear cost optimisation problems with bi-affine

constraints was recently established in [21]. The approach involves the local optimisation of

suitable non-convex functions at each step and enjoys local convergence under certain condi-

tions.

4 Numerical Example

To illustrate the closed-loop validation procedure described above, consider the following

example. Suppose that the model

Pm(s) =
2(s − 1)

s2 − 0.4s + 2

is used to design a feedback controller C for the “true” SISO plant

Pt(s) =
2.1s − 2

s2 − 0.5s + 1.1
.

Although an explicit expression for the transfer function of Pt is specified here to provide

sufficient context, it should be considered to be unknown. Furthermore, for the purpose of
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constructing closed-loop frequency response data below, consider the controller

C(s) =
4.4s − 3.75

s + 15.25
,

which stabilises both Pm and Pt, and achieves b(Pm, C) = 0.22.

Let {ϕi}
25
i=1 denote the measurement frequencies, spaced logarithmically between 0.1 rad/s

and 40 rad/s, at which samples of Xt = [ I
Pt

](I − CPt)
−1 are taken. Gaussian-distributed

complex noise, with variance equal to 10% of the norm of Xt(ϕi), is then added to each

frequency-response sample. Finally, the measurement frequencies are mapped to the unit

circle, via the (conformal) bilinear transform z = (1+sT/2)
(1−sT/2)

for T = 0.9π
40

. This final step simply

maps the continuous-time problem under consideration to the discrete-time setting of the

paper.

Applying Algorithm 1, with ρ = 1.01, γ = 13 and εi = 1.04 (for i = 1, 2, . . . , 25), 4 yields

Figure 1. This shows the estimate of the smallest frequency-by-frequency chordal distance

from the nominal model Pm to a system that is consistent with both the a priori assumptions

and the data constructed above (see the solid curve). As expected, this is less than the actual

chordal distance at each frequency (see the dashed curve), due to the freedom in the level of

noise that can be used to explain the data. Despite this, it can be seen that the worst case

chordal distance is always greater than 0.14 at low frequencies. As such, Pm may not be a

suitable model for Pt from the perspective of closed-loop system design. Indeed, by (2), the

difference between the closed-loops H(Pm, C1) and H(Pt, C1) is no smaller than 0.14 at low

frequency, for any stabilising controller C1. This could be significant if the design objectives

include low frequency performance objectives (e.g. tracking, input disturbance rejection).

5 Conclusion

An algorithm is proposed for estimating the smallest pointwise chordal distance between a

nominal model of a plant and a system that is consistent with noisy closed-loop frequency

response samples and a priori assumptions on the closed-loop behaviour only. These esti-

mates allow the difference between nominal closed-loop behaviour and achieved closed-loop

behaviour to be quantified.

4 Recall that appropriate values for ρ and γ may be determined from the impulse response of

the closed-loop. The constants εi, on the other hand, are to be determined from knowledge of the

experiment used to obtain the frequency response samples.

9



10
−1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency

M
ag

ni
tu

de
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