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Abstract

In this paper a new methodology is developed for the closed-form solution of a
generalized version of the finite-horizon linear-quadratic regulator problem for LTI
discrete-time systems. The problem considered herein encompasses the classical
version of the LQ problem with assigned initial state and weighted terminal state, as
well as the so-called fixed-end point version, in which both the initial and the terminal
states are sharply assigned. The present approach is based on a parametrization of all
the solutions of the extended symplectic system. In this way, closed-form expressions
for the optimal state trajectory and control law may be determined in terms of the
boundary conditions. By taking advantage of standard software routines for the
solution of the algebraic Riccati and Stein equations, our results lead to a simple
and computationally attractive approach for the solution of the considered optimal
control problem without the need of iterating the Riccati difference equation.
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1 Introduction

The finite-horizon linear quadratic regulator (LQR) is a well-known and deeply investigated
problem in control theory. The solution of this optimization problem is obtained in the literature
by resorting to the solution of a suitable Riccati differential/difference equation (see for example
[1], [8] and [11]), which is very demanding from a computational point of view. To lighten
this computational burden, in [5] a new approach has been presented for the solution, in the
continuous-time case, of the finite-horizon LQ problem, when both the initial and terminal
states are assigned as well as in the case when either is assigned and the other is weighted in the
performance index. This method is based on a parametrization of all the state-costate functions
satisfying the Hamiltonian differential equation.
The present paper is intended to be the counterpart of [5] for discrete-time systems. Though,
the extension is not straightforward as we consider the general case when the matrix weighting
the control input is possibly singular and without any assumptions on the invertibility of the
state dynamics of the system. We refer to [3] and [12], for continuous and discrete-time singular
LQ problems, respectively.
We remark that the problem considered in this paper is pretty general, since we allow each one
of the initial and terminal states to be either fixed or quadratically weighted in the performance
index, thus encompassing the standard LQ problem, in which the initial state is assigned and
the terminal state is quadratically weighted, and the so-called fixed end-point LQ problem, in
which the extreme states are both sharply assigned. We refer to [7], [14] and references therein
for a discussion on the presence of constraints in the initial and terminal states. See also [2] for
a feedback compensation scheme that guarantees optimality only for a given set of initial states.
The contribution of this paper is that of providing closed-form expressions for the input and
state evolutions, which depend only on the stabilizing solution of a discrete-time algebraic
Riccati equation and on the solution of a symmetric Stein equation (also known as discrete-
time Lyapunov equation) and do not require the iteration of a difference Riccati equation. This
result hinges on a parametrization of the solutions of the extended symplectic system associated
with the optimal control problem. To obtain this parametrization, several ancillary results of
independent interest on the discrete-time Riccati equation are derived.
The approach presented is particularly convenient for manifold reasons:

• Several versions of the LQ problem (encompassing the classical and the fixed end-point
ones) are treated in a unified framework.

• The closed-form expression of the optimal trajectory and of the optimal cost can be
exploited for the analysis of the structural properties of the optimal solutions and for
solving more general (possibly parametric) optimization problems, e.g. problems having
the LQ as a subproblem. For example, consider the case of two (or more) optimal control
problems that are coupled by constraints or by a weight on the respective boundary
conditions (see Section 5.1).

• The optimal state-costate trajectories and control law are expressed as functions of two
stable matrices, thus ensuring the robustness of the obtained solution even for very large
time-horizons.

• Standard software routines can be exploited for the solution of the algebraic Riccati and
Stein equations.

Throughout this paper, the symbol R
n×m denotes the space of n×m real matrices, I denotes

the identity matrix, A+ denotes the Moore-Penrose pseudoinverse of matrix A. The symbol
σ(A) denotes the spectrum of A.
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2 Description of the problem

Consider the linear time-invariant discrete-time state equation:

x(k + 1) = A x(k) + B u(k), (1)

where, for all k≥ 0, x(k)∈R
n is the state, u(k)∈R

m is the control input, A∈R
n×n and

B ∈R
n×m. Consider an n×n matrix Q, an m×m matrix R and an n×m matrix S such

that

Π :=

[

Q S
S> R

]

= Π> ≥ 0.

The set of matrices (A, B, Π) is often referred to as a Popov triplet, and will be denoted by
Σ. Let kf > 0, and P0, Pf ∈R

n×n be symmetric and positive semidefinite. Moreover, define the
quadratic cost functional

J(x, u) := x>(0)P0 x(0) +

kf−1
∑

k=0

[

x>(k) u>(k)
]

[

Q S
S> R

] [

x(k)
u(k)

]

+ x>(kf )Pf x(kf ). (2)

In this paper, we will consider the following optimal control problems.

Problem 1 (Assigned initial and terminal states). Given x0, xf ∈R
n, find a control law u(k),

k∈{0, . . . , kf − 1}, minimizing (2) with P0 = Pf = 0 under the constraints x(0)=x0, x(kf )= xf

and (1).

Notice that in this case kf must be greater than the reachability index of the pair (A, B) to
guarantee the existence of the solution for any x0, xf ∈R

n.

Problem 2 (Assigned initial state and weighted terminal state). Given x0 ∈R
n, find u(k),

k∈{0, . . . , kf − 1}, minimizing (2) with P0 = 0 under the constraints x(0)=x0 and (1).

Problem 3 (Assigned terminal state and weighted initial state). Given xf ∈R
n, find u(k),

k∈{0, . . . , kf − 1}, minimizing (2) with Pf = 0 under the constraints x(kf )= xf and (1).

Problem 4 (Weighted initial and terminal states). Find u(k), k∈{0, . . . , kf − 1}, minimizing
(2) under the constraint (1).

In the case of Problem 4, a trivial optimal solution is the identically zero state trajectory and
control law.

3 Mathematical background and preliminary results

It is well-known (see e.g. [6], [9]) that the optimal state trajectory and control law satisfy the
extended symplectic system ESS(Σ)

x(k + 1) = A x(k) + B u(k), (3)

λ(k) = Qx(k) + A> λ(k + 1) + S u(k), (4)

0 = S> x(k) + B> λ(k + 1) + R u(k), (5)

with k∈{0, . . . , kf − 1}, which is obtained by extending the state x(k) of system (1) with the
costate λ(k)∈R

n. More precisely, if x(k) is the optimal state trajectory of any of the Problems
1-4 (whatever the assigned initial or terminal conditions), then a costate trajectory λ(k) and an
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input function u(k) exist such that the vector
[

x>(k) λ>(k) u>(k)
]>

satisfies (3)-(5). Notice
that (3)-(5) can be written in the descriptor form

F p(k + 1) = G p(k), k ∈ {0, . . . , kf − 1}, (6)

where

F :=





I 0 0
0 −A> 0
0 −B> 0



 , G :=





A 0 B
Q −I S
S> 0 R



 and p(k) :=





x(k)
λ(k)
u(k)



 .

The matrix pencil z F −G is known as the extended symplectic pencil associated with Σ.

Remark 1 If the extended symplectic pencil z F −G is regular, the system of equations (6) has
2n +m linearly independent solutions, spanning a (2n +m)-dimensional space (see e.g. [4] and
[10]). Notice however that, since u(kf ) is irrelevant both to the value of the cost function and to
the satisfaction of the constraints (for each one of the four optimal control problems considered),
we may regard as equivalent two solutions p1(k) and p2(k) of (6) if they only differ for the value
of u(kf ). On the other hand, a solution p(k) of (6) remains such when we exchange u(kf ) with
an arbitrary ū∈R

m. Therefore, the dimension of the space of non-equivalent solutions of (6)
equals 2n. We set as a representative element of each equivalence class of the solutions of (6)
the vector p(k) such that the corresponding u(kf ) is zero.

We make the following standing assumptions.

(A1) the pair (A, B) is reachable;

(A2) The extended symplectic pencil z F −G associated to Σ is regular and has no generalized
eigenvalues on the unit circle.

Moreover, without loss of generality we may assume that Θ :=
[

B> R
]>

is full-column rank.
Indeed, if Θ has non-trivial kernel, there exists a subspace U0 of the input space that does not
influence the state dynamics and the cost function. Then, by performing a suitable (orthogonal)
change of basis in the input space, we may eliminate U0 and obtain an equivalent problem for
which this condition is satisfied.

Recall that the discrete-time algebraic Riccati equation DARE (Σ)

P = A> P A − (A> P B + S) (R + B> P B)−1(B> P A + S>) + Q (7)

has a (unique) symmetric positive semidefinite solution P+ such that all the eigenvalues of the
closed-loop matrix

A+ = A − B (R + B> P+ B)−1(B> P+ A + S>) (8)

lie inside the unit disk if and only if the pair (A, B) is stabilizable and assumption (A2) holds,
and a (unique) symmetric negative semidefinite solution P− such that all the eigenvalues of

A− = A − B (R + B> P− B)−1(B> P− A + S>) (9)

are outside the unit disk if assumptions (A1)-(A2) hold and in addition the extended symplectic
pencil zF −G has no generalized eigenvalues at zero.
The matrices P+ and P−, when they exist, are respectively called the stabilizing and anti-
stabilizing solutions of the DARE (Σ).
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If A is invertible, we define as in [6, p.105] the time-reversed system associated with (1) as

x(k) = Ā x(k + 1) + B̄ u(k), (10)

where Ā = A−1 and B̄ = −A−1 B. The weighting matrix associated with (10) is

Π̄ :=

[

Q̄ S̄
S̄> R̄

]

,

where Q̄ :=A−> QA−1, R̄ :=R−S> A−1 B − B> A−> S + B> A−> QA−1 B and S̄ :=A−> S −
A−> QA−1 B. The set of matrices Σ̄ := (Ā, B̄, Π̄) is the time-reversed Popov triplet. The link
between the extreme solutions of the DARE(Σ) and DARE(Σ̄) is described by the following
theorem (see e.g. [6, p.106]).

Theorem 1 Let A be invertible. Let P̄ be a symmetric solution of the DARE (Σ̄). Then −P̄ is a
solution of the DARE (Σ) if and only if the extended symplectic pencil zF −G is regular and has
no generalized eigenvalues at zero or, equivalently, if and only if R−S>A−1B is non-singular.

Recall the following theorem about the Stein equation.

Theorem 2 Let A∈R
n×n and B ∈R

n×m. The symmetric Stein equation

A X A> − X + B B> = 0 (11)

has a unique symmetric solution X ∈R
n×n if and only if the spectrum of A does not contain

reciprocal pairs, i.e., if and only if λ∈σ(A) implies that λ−1 /∈σ(A). Moreover, if the pair (A, B)
is reachable, then A is a stability matrix if and only if (11) admits a unique positive definite
solution.

In the following theorem, we present an efficient method for the computation of the maximal
solution P̄+ of the time-reversed DARE and of the corresponding closed-loop system matrix Ā+,
which is based on the solution of a symmetric Stein equation. This result is an extension of a
well-known property of continuous-time systems (see [13, p.354]). Then, in Section 4, it will be
shown that, even when the system matrix A is singular and the time-reversed system Σ̄ is not
defined, these formulas still provide two matrices, say P∗ and A∗, that can be exploited to derive
a parametrization of all the solutions of the extended symplectic system.

Theorem 3 Let A be invertible. Let P+ and P̄+ be the positive semidefinite solutions of the
DARE (Σ) and DARE (Σ̄), respectively. Then, the matrix ∆ := P+ + P̄+ is positive definite and
it is the inverse of the unique solution W of the Stein equation

A+ W A>
+ − W + B (R + B> P+ B)−1B> = 0. (12)

Proof: First, suppose that L :=R−S>A−1B is invertible. In this case the DARE(Σ̄) has
a maximal positive semidefinite solution P̄+. By virtue of Theorem 1, the matrix −P̄+ is a
solution of the DARE (Σ), and being negative semidefinite it is indeed P−. Hence, ∆ equals the
difference P+ −P−, and satisfies the homogeneous algebraic Riccati equation

∆ = A>
+ ∆ A+ + A>

+ ∆ B R−1
1 B> ∆ A+, (13)

where R1 :=R +B>P+B −B>∆B; moreover, ∆0 is a solution of (13) if and only if ∆0 = P+ −P0,
where P0 is a solution of the DARE(Σ) (see [16, Lemma 3.2]). Now, consider the Stein equation

(12). Since (A, B) is reachable, (A+, B) is such, and hence (A+, B (R + BT P+B)−
1

2 ) remains
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reachable in view of the non-singularity of (R + BT P+B)−
1

2 . By virtue of Theorem 2, it follows
that equation (12) does admit a unique solution W , and this solution is positive definite.
Moreover, since the extended symplectic pencil is regular and has no generalized eigenvalues
at zero, we may conclude that A+ is non-singular. It follows that (12) can be written as

W = A−1
+ W A−>

+ − A−1
+ B(R + B>P+B − B>W−1B + B>W−1B)−1B>A−>

+

= A−1
+ W A−>

+ − A−1
+ ΞB(R + B>P+B − B>W−1B + B>W−1A+A−1

+ ΞB)−1B> Ξ> A−>
+ ,

where Ξ :=WA−>
+ A>

+W−1 = I. Both sides of the former can be inverted, and by applying the
well-known matrix inversion lemma, we get

W−1 = A>
+ W−1 A+ + A>

+ W−1 B R−1
1 B> W−1 A+.

Conversely, the same calculation in the reverse order shows that if ∆̄ is a non-singular solution
of (13), then ∆̄−1 is a solution of (12). As a result, W−1 is the unique positive definite solution
of (13). Now we show that W−1 =∆. As already observed, since W−1 is a solution of (13), we
have W−1 =P+ −P0, where P0 is a solution of the DARE(Σ). On the other hand, P− is the
minimal solution of the DARE(Σ), hence W−1 =P+ −P0 ≤P+ −P− = ∆. It follows that ∆ is
positive definite as well. Since W−1 is the unique positive definite solution of (13), it follows
that ∆ =W−1.

Now, let L be singular. A real δ > 0 can be found such that, for any ε∈ (0, δ), by defining
Rε :=R + ε Im, the matrix

Lε :=Rε − S>A−1B (14)

is non-singular. Choose for example δ := min
{

|Re {λ}|
∣

∣

∣
λ ∈ σ(L) \ {0}

}

. Note that for all

ε∈ [0, δ) the matrix

Πε :=

[

Q S
S> Rε

]

is symmetric positive semidefinite. In fact, more is true: for all 0≤ ε1 ≤ ε2 < δ we have
0≤Π≤Πε1

≤Πε2
. Let Σε := (A, B,Πε) and Σ̄ε be the corresponding time-reversed Popov triplet.

Since Πε = Π>
ε ≥ 0, two matrices Cε and Dε exist such that Πε can be partitioned as Πε = F>

ε Fε,
with Fε :=

[

Cε Dε

]

, where Dε is full-column rank since Rε = D>
ε Dε > 0 for all ε in (0, δ). The

injectivity of Dε for all ε∈ (0, δ), assumptions (A1)-(A2) and the non-singularity of Lε ensure
the existence and uniqueness of the positive semidefinite solution of the DARE (Σε) and of the
DARE(Σ̄ε), here denoted by P+,ε and P̄+,ε, respectively. Moreover, P+,ε and P̄+,ε are continuous
in [0, δ) since the mapping ε−→Πε is continuous in [0, δ) and monotonically non-decreasing on
[0, δ), i.e. P+,ε −→P+,0 = P+ and P̄+,ε −→ P̄+,0 = P̄+ as ε−→ 0+ (see1 [17, p.107]). Let A+,ε be
the stable closed-loop matrix corresponding to P+,ε and let Vε := B (Rε + B>P+B )−1B>. Note
that A+,ε and Vε are continuous in [0, δ) as Rε and P+,ε are continuous in [0, δ). It follows that
the solution Wε of the Stein equation

A+,ε Wε A>
+,ε − Wε + Vε = 0 (15)

is continuous in [0, δ). Moreover, Wε is invertible by virtue of Theorem 2 since the pair (A+,ε, Vε)
is reachable, as can be proved by using the same arguments presented in the case of L invertible.
It follows that Wε is invertible by virtue of Theorem 2, and its inverse ∆ε :=W−1

ε is continuous in
[0, δ). Now, since for all ε∈ (0, δ) the matrix Lε is non-singular, it follows that P+,ε + P̄+,ε = ∆ε

1In [17, p.107], the further assumption of full-column rankness of matrix D0 is not necessary here: in fact in
that context the injectivity of matrix Dε for all ε∈ [0, δ) guarantees the existence and uniqueness of the positive
semidefinite solution of the DARE(Σε), which is here ensured by assumptions (A1)-(A2).
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for all ε∈ (0, δ). Therefore, since the two functions P+,ε + P̄+,ε and ∆ε are continuous in
[0, δ) and they are equal in (0, δ), then they are equal at ε = 0 as well. As a consequence,
∆0 = P+,0 + P̄+,0 = P+ + P̄+ = ∆. By the continuity of ∆ε in [0, δ) it follows that ∆−1 is the
unique solution of (15) at ε = 0, which is exactly (12).

Theorem 4 Let A be invertible. Let P+ and P̄+ be the positive semidefinite solutions of the
DARE (Σ) and DARE (Σ̄), respectively. Let Ā+ be the stable closed-loop matrix of the time-
reversed system, defined by

Ā+ := Ā − B̄ (R̄ + B̄> P̄+ B̄)−1(B̄> P̄+ Ā + S̄>). (16)

The following relation holds:

Ā+ = ∆−1 A>
+ ∆. (17)

Proof: First suppose that L :=R−S>A−1B is invertible. As already seen in the proof of
Theorem 3, in this case we have P− = − P̄+. Define (as it is done in [6, p.107])

G(P−) := R + B> P− B, H(P−) := A> P− B + S, K(P−) := A> P− A − P− + Q.

By exploiting the DARE (Σ), that can be written as K(P )= H(P )G−1(P )H>(P ), and the
identity L= G(P−)−H>(P−)A−1 B (see [6, p.107]), we get

L> G−1(P−)H>(P−) =
(

G(P−) − H>(P−)A−1 B
)>

G−1(P−)H>(P−) =

= H>(P−) − B> A−> K(P−) =

= S> + B> A−> P− − B> A−> Q.

yielding the following identity:

(R − B>A−> S)−1(S> + B>A−> P− − B>A−>Q) = (R + B> P−B)−1(B>P−A + S>). (18)

On the other hand, notice that Ā−1
+ , in view of the well-known matrix inversion lemma, can be

expressed as

Ā−1
+ = A + A B̄

(

R̄ − B̄> P− B̄ − (S̄> − B̄> P− Ā)A B̄
)−1

(S̄> − B̄> P− Ā)A =

= A − B (R̄ + S̄> B)−1 (S̄> A − B̄> P−) =

= A − B (R − B> A−> S)−1 (S> + B> A−> P− − B> A−> Q).

Hence, by taking into account the latter, (9) and (18), it follows that A− = Ā−1
+ . On the other

hand, by using (8) and (9) and by exploiting the fact that both P+ and P− are solutions of the
DARE(Σ), it can be checked that A− =∆−1 A−>

+ ∆. Hence (17) holds.

Let now L be singular. Consider a real δ > 0 such that for any ε∈ (0, δ) the matrix Lε defined
in (14) is non-singular. Let Σε be defined as in the proof of Theorem 3 and let Σ̄ε be its time-
reversed representation. The existence and uniqueness of the positive semidefinite solutions of
the DARE(Σε) and DARE(Σ̄ε), say P+,ε and P̄+,ε, respectively, and their continuity in [0, δ) was
proved in the proof of Theorem 3. It was also shown that their difference ∆ε is continuous and
positive definite in [0, δ), whereas A+,ε is continuous in [0, δ). As a consequence, the product
∆−1

ε A>
+,ε ∆ε is continuous in [0, δ). Moreover, since Ā+,ε is defined by applying (16) to the

time-reversed representation of Σε, Ā+,ε is obviously continuous in [0, δ). The functions Ā+,ε

and ∆−1
ε A>

+,ε ∆ε are continuous in [0, δ) and equal in (0, δ). It follows that they are equal at
ε = 0. Hence (17) follows.
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4 Optimal state-costate trajectories and control law

In this section, it is first shown how the solutions of the extended symplectic system can be
parametrized in closed-form. Then, as a second step, we show how to exploit such parametriza-
tion for the solution of Problems 1-4.

4.1 Solutions of the extended symplectic system

The following theorem parametrizes the set of representatives (in the sense of Remark 1) of the
solutions of the extended symplectic system (6) in terms of two n-dimensional vectors p and q.

Theorem 5 Let assumptions (A1)-(A2) hold. Denote by P+ the stabilizing solution of the
DARE (Σ) and by ∆ the inverse of the (unique) positive definite solution of the Stein equation
(12). Let P∗ :=∆−P+,

A∗ := ∆−1 A>
+ ∆, (19)

and let K+ and K∗ be the stabilizing gains defined by

K+ := (R + B>P+B)−1(B>P+A + S>), (20)

K∗ := (R + B> B)−1
(

B> (A A∗ − I) + S> A∗ − B> P∗

)

. (21)

The set of representatives of the solutions of the extended symplectic system (6) is parametrized
by the following expression in terms of p, q ∈R

n:





x(k)
λ(k)
u(k)



 =











































I
P+

−K+



Ak
+ p +





A∗

−P∗ A∗

−K∗



A
kf−k−1
∗ q 0 ≤ k ≤ kf − 1





I
P+

0



A
kf

+ p +





I
−P∗

0



 q k = kf

(22)

Proof: First, suppose A to be invertible. By virtue of Theorems 3 and 4 it is found that
P∗ = P̄+ and A∗ = Ā+. Now we prove that K∗ = K̄+, where K̄+ is the stabilizing gain matrix
for Σ̄, defined as

K̄+ := (R̄ + B̄>P̄+B̄)−1(B̄>P̄+Ā + S̄>). (23)

As a consequence of (23) and of A∗ = Ā+ we have

A A∗ − B K̄+ = I, (24)

that can be proved by direct substitution. The DARE (Σ̄) can be written as

A−> (P∗ + Q)A−1 − P∗ −
(

A−> S − A−> (P∗ + Q)A−1 B
)

K̄+ = 0. (25)

By premultiplying (25) by B> and by adding the identity thus obtained with (23), one gets

B> P∗ = S> A∗ − R K̄+. (26)

From the injectivity of
[

B> R
]>

, it follows that B>B + R is invertible. Hence, by
premultiplying (24) by B> and by taking into account (26), we get K̄+ = K∗.
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We are now ready to show that (22) are indeed solutions of the ESS(Σ). First, let k < kf − 1.
Substitute (22) in (6), and notice that the terms in p are equal since





I
−A> P+

−B> P+



A+ =





A − B K+

Q − P+ − S K+

S> − R K+



 . (27)

Indeed, the first block-row equation holds by definition of A+ and the remaining are equivalent
to (7) with (20). Likewise, the terms in q are equal since





I
A> P∗

B> P∗



 A∗ =





A A∗ − B K∗

QA∗ + P∗ A∗ − S K∗

S> A∗ − R K∗



 A∗ (28)

holds owing to (24), (26) and by noticing that the second block-row equality follows by premul-
tiplying (25) by −A>.
Let now k = kf − 1. Since (27) and (28) still hold, relation (22) satisfies (6) for k = kf − 1 as
well.

Now, let A be singular. A preliminary state feedback u(k)= F x(k) can be performed so as
to obtain a non-singular system matrix AF :=A + B F (note that this is always possible since
(A, B) is reachable). As shown in [6, p.96], to this feedback transformation there corresponds a
new Popov triplet ΣF := (AF , BF , ΠF ) with BF = B and

ΠF :=

[

QF SF

S>
F RF

]

where QF :=Q + S F + F> S> + F> R F , RF :=R and SF :=S + F> R. Notice that P+ is the
maximal solution of the DARE(Σ) if and only if it is the maximal solution of the DARE(ΣF ) for
all F (see [6, p.100]). Moreover, A+, ∆ and A∗ are independent of F . As a consequence, equation
(19) provides the stable closed-loop system matrix of the time-reversed representation of ΣF , say
Σ̄F , for any F such that AF is non-singular. Hence, equation (22), written with respect to ΣF

and to Σ̄F , furnishes for all p, q ∈R
n solutions of the ESS(ΣF ). However, by taking into account

(3)-(5), it can be easily checked that pF (k) :=
[

x>
F (k) λ>

F (k) u>
F (k)

]>
is a solution of the

ESS(ΣF ), if and only if p(k) :=
[

x>(k) λ>(k) u>(k)
]>

, where x(k) :=xF (k), λ(k) :=λF (k)
and u(k) :=uF (k)+ F xF (k), is a solution of the ESS(Σ). Notice that





I
−A>

F P+

−B>
F P+



A+ =





AF − BF (K+ + F )
QF − P+ − SF (K+ + F )

S>
F − R (K+ + F )



 , (29)

which follows after simple algebraic manipulations: the equality of the first block-row derives
from the definition of A+; the second is implied by the relation obtained by (27) written with
respect to ΣF and by the definition of K+; the third follows from (27) as well. Moreover, there
holds





I
A>

F P∗

B>
F P∗



 A∗ =





AF A∗ − BF (K∗ + F A∗)
QF A∗ + P∗ A∗ − SF (K∗ + F A∗)

S>
F A∗ − RF (K∗ + F )



 A∗ (30)

that follows from (28) written with respect to ΣF . As a result of (29) and (30), it follows that
for all k∈{0, . . . , kf − 1}





xF (k)
λF (k)
uF (k)



 =





I
P+

−K+ − F



 Ak
+ p +





A∗

−P∗ A∗

−K∗ − F A∗



A
kf−k−1
∗ q (31)
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for any p and q in R
n. Equation (31) shows that the vector p(k) defined above is a trajectory

of (22).

Conversely, let us show that all functions satisfying the ESS(Σ) can be expressed by means of
(22). To this aim, we show that (22) has 2n linearly independent trajectories. Let in fact

V1 :=





I
P+

−K+



 , V2 :=





A∗

−P∗ A∗

−K∗



 .

It is easy to verify that F V1 A+ = G V1 and F V2 = G V2 A∗, where F and G are defined in Section
3. It follows that V1 and V2 are basis matrices for two deflating subspaces of the symplectic pencil
z F −G, since A+ −λ I and I −λ A∗ are both regular pencils (see e.g. [15]). From [9, Theorem
1.6.5], it follows that V := imV1 ∩ im V2 is still a deflating subspace of z F −G. Moreover, since
the generalized eigenvalues of z F −G corresponding to the deflating subspaces imV1 and imV2

are the eigenvalues of A+ (hence stable) and the reciprocal of the eigenvalues of A∗ (hence with
modulus greater than 1 and possibly infinity), respectively, the set of generalized eigenvalues of
z F −G corresponding to V is empty. Hence, V = {0}. Hence, for any given pair p, q ∈R

n, the

two trajectories V1 Ak
+ p and V2 A

kf − k− 1
∗ q are linearly independent. Therefore, the dimension

of the linear space of trajectories in (22) is given by the sum of the dimensions n1 and n2 of the
subspaces of trajectories of (22) corresponding to p =0 and to q = 0, respectively. Setting k = 0
and k = kf , we easily see that n1 = n and n2 = n, respectively. In conclusion, (22) has 2n linearly
independent solutions. Since the dimension of the linear space of non-equivalent solutions of
the ESS(Σ) is exactly 2n (see Remark 1), it follows that (22) represents the complete set of
solutions of the ESS(Σ) with u(kf )= 0.

4.2 Optimal trajectories

In Theorem 5 it has been shown that under assumptions (A1)-(A2) the matrices P+ and P∗

yield an explicit formula parametrizing in terms of p and q all the solutions of the extended
symplectic system (6), which is a set of necessary conditions for an optimum. Now, from this
set of trajectories we select those that satisfy the boundary conditions, so that the trajectories
thus obtained are solutions of the complete set of Pontryagin equations written for the optimal
control problem considered. Notice that, in general, the Pontryagin equations are only neces-
sary for an optimum. However, in the present case they are also sufficient, by the convexity
of Problems 1-4 and by the reachability of (A, B) (the latter ensuring that a state and input
functions satisfying the constraints of any of Problems 1-4 exist).
Now we show how to compute the values of the parameters p and q in terms of the boundary

conditions. Let π :=
[

p> q>
]>

.

Problem 1 (Assigned initial and final states).
In this case the boundary equations are x(0)=x0 and x(kf )= xf . By evaluating (22) at k = 0
and k = kf we get

ξ1 = N1 π where ξ1 :=

[

x0

xf

]

and N1 :=

[

I A
kf
∗

A
kf

+ I

]

. (32)

The corresponding values of p and q can be computed by matrix inversion, since N1 is invertible.
In fact, for any x0, xf ∈R

n, a state trajectory such that x(0)= x0 and x(kf )= xf exists since kf

is supposed to be greater than the reachability index. Hence, an optimal trajectory for Problem
1 exists by the convexity of Problem 1 and, as a result, there exist p and q such that (32) holds.
The arbitrariness of x0 and xf implies that N1 is invertible.
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Problem 2 (Assigned initial state and weighted terminal state).
Since the terminal state is quadratically weighted in the performance index, the Pontryagin set
of equations includes a boundary condition on λ(kf ), expressed by λ(kf )= Pf x(kf ). From this
equation and from (22) we obtain

(Pf − P+)A
kf

+ p + (Pf + P∗) q = 0. (33)

Equation x(0)=x0 and (33), in view of (22) evaluated at k = 0, leads to the compact expression

ξ2 = N2 π where ξ2 :=

[

x0

0

]

and N2 :=

[

I A
kf
∗

(Pf − P+)A
kf

+ Pf + P∗

]

. (34)

If N2 is invertible, p and q are obtained from the former by inversion. If N2 is singular, the
convexity of Problem 2 ensures the existence of an optimal state trajectory. Hence ξ2 ∈ im N2.
As a consequence, the set of all parameters p and q providing optimal solutions is given by
π = N+

2 ξ2 +K v, where K is a basis matrix for kerN2. Then, the set of all optimal state
trajectories are given by (22), where the values of p and q are parametrized by the latter.

Problem 3 (Assigned terminal state and weighted initial state).
Since the initial state is quadratically weighted in the performance index, the Pontryagin set of
equations includes a boundary condition on λ(0), expressed by λ(0)= − P0 x(0). We obtain

(P0 + P+) p + (P0 − P∗)A
kf
∗ q = 0. (35)

Equations x(kf )= xf and (35), in view of (22) evaluated at k = kf , leads to the compact
expression

ξ3 = N3 π where ξ3 :=

[

0
xf

]

and N3 :=

[

P0 + P+ (P0 − P∗)A
kf
∗

A
kf

+ I

]

. (36)

Let K is a basis matrix for kerN3. Again, p and q can be obtained by π = N+
3 ξ3 + K v, since

ξ3 ∈ im N3.

Problem 4 (Weighted initial and terminal states).
Relation (22) evaluated at k = 0 and k = kf can be expressed in compact form as

[

0
0

]

= N4

[

p
q

]

where N4 :=

[

P0 + P+ (P0 − P∗)A
kf
∗

(Pf − P+)A
kf

+ Pf + P∗

]

. (37)

Let K be a basis matrix for kerN4. Clearly, p and q can be obtained by π = K v.

4.3 Optimal cost

In this section, we present general expressions for the optimal value of the cost function cor-
responding to the four optimal control problems described in Section 2. First we express such

value as a quadratic forms in π :=
[

p> q>
]>

.

Lemma 1 The following identities hold.

P+ − A>
+ P+ A+ − Q + S K+ + K>

+ S> − K>
+ R K+ = 0, (38)

P∗ − A>
∗ , P∗ A∗ − A>

∗ QA∗ + A>
∗ S K∗ + K>

∗ S> A∗ − K>
∗ R K∗ = 0, (39)

A>
+ P∗ − P∗ − QA∗ + S K∗ + K>

+ S> A∗ − K>
+ R K∗ = 0. (40)
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Proof: The first equality reduces to the DARE(Σ) written with respect to P+ by virtue of (8).
The second and the third identities follow from (24), (26) and (28).

Theorem 6 Consider Problem i, i∈{1, 2, 3, 4}. The optimal cost is Jo =π> Vi π, where

V1 :=

[

P+ − (A>
+)kf P+ A

kf

+ (A>
+)kf P∗ − P∗ A

kf
∗

(A>
∗ )kf P+ − P+ A

kf

+ P∗ − (A>
∗ )kf P∗ A

kf
∗

]

, (41)

V2 :=

[

P+ + (A>
+)kf (Pf − P+)A

kf

+ (A>
+)kf (Pf + P∗) − P∗ A

kf
∗

(Pf − P+)A
kf

+ + (A>
∗ )kf P+ (Pf + P∗) − (A>

∗ )kf P∗ A
kf
∗

]

, (42)

V3 :=

[

(P+ + P0) − (A>
+)kf P+ A

kf

+ (A>
+)kf P∗ + (P0 − P∗)A

kf
∗

(A>
∗ )kf (P+ + P0) − P+ A

kf

+ P∗ + (A>
∗ )kf (P0 − P∗)A

kf
∗

]

, (43)

V4 := 0. (44)

Proof: Consider Problem 1. From (2) and (22), the optimal cost can be written as

Jo =

kf−1
∑

k=0

[

p> (A>
+)k q> (A>

∗ )kf−k−1
]

[

M11 M12

M>
12 M22

]

[

Ak
+ p

A
kf−k−1
∗ q

]

,

with

M11 := Q − S K+ − K>
+ S> + K>

+ R K+ = P+ − A>
+ P+ A+,

M12 := QA∗ − S K∗ − K>
+ S> A∗ + K>

+ R K∗ = A>
+ P∗ − P∗ A∗,

M22 := A>
∗ QA∗ − A>

∗ S K∗ − K>
∗ S> A∗ + K>

∗ R K∗ = P∗ − A>
∗ P∗ A∗,

where the equalities follow from Lemma 1. Notice that

kf−1
∑

k=0

(A>
+)k (P+ − A>

+ P+ A+)Ak
+ = P+ − (A>

+)kf P+ A
kf

+ ,

kf−1
∑

k=0

(A>
+)k (A>

+ P∗ − P∗ A∗)A
kf−k−1
∗ = (A>

+)kf P∗ − P∗ A
kf
∗ ,

kf−1
∑

k=0

(A>
∗ )kf−k−1 (P∗ − A>

∗ P∗ A∗)A
kf−k−1
∗ = P∗ − (A>

∗ )kf P∗ A
kf
∗ ,

that, by substitution, yield (41). Consider Problem 2. By virtue of (22) evaluated at k = kf ,
the quadratic form x>(kf )Pf x(kf ) is summed by (41) to obtain (42). Consider Problem 3. By
virtue of (22) evaluated at k = 0, the quadratic form x>(0)P0 x(0) is summed by (41) to obtain
(43).

Alternative expressions of the optimal cost are provided as a quadratic form in the assigned
states.

Corollary 1 The following results hold.

• Consider Problem 1. Let N1 be defined in (32) and V1 be defined in (41). Let

x :=
[

x>
0 x>

f

]>
. The optimal cost is Jo =x> N−>

1 V1 N−1
1 x.

• Consider Problem 2. Let M ∈R
2 n×n be such that π = M x0. Let V2 be defined in (42).

The optimal cost is Jo = x>
0 M> V2 M x0.

• Consider Problem 3. Let N ∈R
2 n×n be such that π = N xf . Let V3 be defined in (43).

The optimal cost is Jo = x>
f N> V3 N xf .
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5 An example and concluding remarks

5.1 An example

The formulas that provide the optimal value of the cost can be exploited to solve non-standard
optimal control problems. For example, consider the case when x(0)=x0 and the optimal cost
to be minimized is

J(x, u) =
(

x(kf ) − ξf

)>

Pf

(

x(kf ) − ξf

)

+

kf−1
∑

k=0

[

x>(k) u>(k)
]

[

Q S
S> R

] [

x(k)
u(k)

]

, (45)

where ξf ∈R
n is given. This non-standard LQ problem can be tackled as follows. First,

determine the minimum of the sum in (45) with x(0)= x0 and x(kf )= x̄f . Such minimum
is a quadratic form in x0 and x̄f (see Theorem 6 and Corollary 1):

J ′(x0, x̄f ) = min
x(kf )=x̄f

kf−1
∑

k=0

[

x>(k) u>(k)
]

[

Q S
S> R

] [

x(k)
u(k)

]

=
[

x>
0 x̄>

f

]

N−>
1 V1 N−1

1

[

x0

x̄f

]

,

where N1 is defined in (32) and V1 is defined in (41). Now, the minimum of J(x, u) can be
attained by performing a minimization over x̄f :

min J(x, u) = min
x̄f

[

(x̄f − ξf )> Pf (x̄f − ξf ) + J ′(x0, x̄f )
]

.

Therefore, the problem reduces to the minimization of a static quadratic function in x̄f , which
is standard and easy to solve. Once x̄f is determined, p and q are computed by inversion of
equation (32), and (22) provides the optimal control. To the best of the authors’ knowledge,
this problem has not been solved (and is not easy to solve) with the classical approach to the
LQ problem.

5.2 Concluding remarks

A novel approach has been presented for the solution of a class of finite-horizon linear quadratic
problems in the discrete-time case. It has been shown that the set of solutions of the extended
symplectic system, which represents necessary conditions for optimality, can be parametrized in
closed-form in terms of two vectors p and q. Their values can be determined by imposing the
boundary conditions corresponding to the particular problem considered.
This procedure is particularly convenient since it yields reliable software algorithms for the
solution of all the optimal control problems considered herein: in fact, the result presented in
Theorem 5 involves the stabilizing solution of a discrete-time algebraic Riccati equation and the
solution of a Stein equation, that may be computed by standard and robust algorithms available
in any control package (see the MATLABR© routines dare.m and dlyap.m). Furthermore, the
expression of the optimal control is given in terms of powers of strictly stable matrices in the
overall time interval, thus ensuring that the solution proposed is robust even for large time-
horizons.
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