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Abstract

This paper is concerned with the gap metric approach to controller discretisation problems
for continuous-time nonlinear systems with disturbances in both input and output channels. The
principal idea is to construct a discrete controller based on a given stabilizing continuous time
controller via a fast sampling and hold procedure and to calculate the gap between the two con-
trollers. It is expected that, under general conditions, the computed gap depends on the discrete
sample size and the faster the sample rate, the smaller the gap and, therefore, existing gap metric
robust stability theorems can be applied to obtain both stability and performance results for the
appropriately discretised controller. This is shown for the case of memoryless controllers and for a
more general class of controllers specified by stable, causal operators. In both cases, both regional
and global results are obtained under respective local and global incremental stability assumptions
on the controllers.
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1 Introduction

Despite the prevalence of digital platforms for the implementation of modern control designs, the
theory of nonlinear sampled data and discrete time systems has not been extensively developed: the
majority of nonlinear controllers are synthesised in continuous time and then implemented via a
strategy of fast sample and hold. Such a procedure is justified and well understood in the context of
linear systems (see for example [1, 2, 10] and the references therein); however there is relatively little
theoretical justification for this approximation in the context of nonlinear controllers and plants.

The purpose of this paper is thus to provide rigorous fast sampling results which hold in a general
i/o setting. When the underlying continuous-time closed loop system is known to be stable, we
investigate the existence and estimation of a stabilizing sampling rate for corresponding sampled-data
system based on sample and hold.

Most existing fast sampling results are for specific controller or system structures, however general
settings in which the fast sampling and hold procedure has been justified can be found in [5, 11, 13,
14, 15, 16] and the references therein. In particular, general justifications for fast sampling are given
in [15, 16] under the assumption of the existence of a quadratic Lyapunov function. In [11, 13, 14],
sampled-data nonlinear systems (both with and without external disturbances) are considered within
an ISS framework. The approach is via approximate discrete-time models, and explicit connections
to the stability of the continuous-time plant model are made in [12]. The state-space results of
[11, 12, 13, 14] yield semi-global practical stability of the closed loop.

The main results of this paper are obtained within an input/output framework and are closely
related to [11, 12]. Results of both a regional and a global nature are obtained, the latter results
under more restrictive global conditions (but which, for example, recover the global stability properties
for linear systems). All our results are obtained under either local or global incremental stability
assumptions, which enable stability results (as opposed to the practical stability results if [11, 12]) to

1



be obtained. In particular this stronger form of stability enables a direct application of the robust
stability results of [7] to the resulting sampled data closed loop, and consequently the gap metric
robust stability margin is preserved asymptotically under suitably fast sampling. Furthermore, our
results are in the context of i/o stability, and do not require e.g. the finite dimensional state space
structures of [11, 12].

Discretisation of continuous-time controllers is clearly an approximation procedure, hence the
aims of this paper can be viewed as developing conditions under which such fast sampling and holding
controller approximations preserve both the stability and the performance of the original continuous
time closed loop. By viewing the resulting discrete approximation of the continuous controller as a
perturbation to the original controller, it is natural to address such questions within the framework
of the nonlinear gap metric theory [3, 6, 7, 9]. The principal idea is to construct a discrete controller
based on a given stabilizing continuous time controller via a fast sampling and hold procedure and to
calculate the gap between the two controllers.

We will consider two classes of controllers: the case of continuous, memoryless controllers and the
more general case of controllers specified by stable, causal operators. In both cases, it is shown that,
under general conditions, the computed gap depends on the discrete sample size such that the faster
the sample rate, the smaller the gap and, therefore, existing gap metric robust stability theorems can
be applied to obtain both stability and performance results for an appropriately discretised controller.
In both cases, we require that the controllers are incrementally stable, and observe that many existing
continuous time controllers lie within these categories. Unstable controllers are not considered in this
paper; however, this class is clearly important and remains the subject of future work. However, we
do note that the unstable case would appear to be substantially more technically involved.

The structure of the paper is as follows: Section 2 contains the background material on the gap
metric and robust stability theorems. In Section 3, we give the definitions of discrete controller and
obtain some of its basic properties. The main results on the stability and performance of the closed
loop with the discretised controller corresponding to the case of a memoryless controller or a controller
specified by a causal, stable operator are given in Sections 4 and 5 respectively.

2 Preliminaries

Let U ,Y represent normed input and output signal spaces and let Ue,Ye denote the auxiliary extended
spaces, that is Ue = {u : Tτu ∈ U for all τ > 0},Ye = {y : Tτy ∈ Y for all τ > 0}, where Tτ is
the truncation operator. Let Uω = {u : Tτu ∈ U for all τ ∈ (0, ω)}, where ω ∈ (0,∞], and let
Ua = ∪ω∈(0,∞]Uω. Yω and Ya are understood in the same manner. Plant operators will map from Ua

to Ya and controller operators will map from Ya to Ua. In the main context, we let U = L∞(R+,R
n) =:

L∞n (R+) (or L∞n ), i.e. the set of all essentially bounded n-valued functions over R+, and let Y be a
subspace of L∞m (R+). The space of all bounded n-valued (m-valued, resp.) sequences is denoted by l∞n
(l∞m , resp.). The space of all continuous n-valued signals is denoted by C(R+,R

n) and we also write
L∞ = L∞1 , l∞ = l∞1 .

The Euclidean norm of R
n is denoted by | · | and that of a normed signal space, (say) U , is denoted

by ‖ · ‖U . The product space of U and Y is denoted by W, i.e. W = U × Y with norm
∥

∥

∥

∥

(

u
y

)
∥

∥

∥

∥

W

= ‖(u, y)>‖W = max
{

‖u‖U , ‖y‖Y
}

.

The closed disc in W centred at 0 with radius r is denoted by Sr. We also let Wa = Ua × Ya,We =
Ue × Ye and let K∞ be the set of all continuous increasing function g : [0,∞) → [0,∞) such that
g(0) = 0, g(∞) =∞.

Given a signal operator H : Ua → Ya, we define a domain and graph, respectively, as follows:

Dom(H) = {u ∈ U : Hu ∈ Y}, GH =
{

(y,Hy)> : u ∈ Dom(H)
}
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and let

‖H‖ := sup

{

‖Hu‖Y
‖u‖U

: u ∈ GH with ‖u‖U 6= 0

}

,

γ[H](r) := sup
{

‖Hu‖Y : u ∈ GH with ‖u‖U ≤ r
}

for r ≥ 0,

‖H‖4 := sup

{

‖Hu1 −Hu2‖Y
‖u1 − u2‖U

: u1, u2 ∈ GH

}

.

Definition 2.1. A signal operator H is said to be: (i) gain stable if ‖H‖ < ∞; (ii) gf-stable (gain
function stable) if γ[H](r) <∞ for each r ≥ 0; and (iii) incrementally stable if ‖H‖4 <∞.

Obviously a necessary condition for gain stability is Hu → 0 as u → 0. Hence, throughout this
paper, every signal operator is assumed to have an equilibrium at 0, that is, H(0) = 0.

We now consider the control system [P,C] described by the standard configuration Figure 1. Here

u0
u1 y1

P

C y0
u2 y2

−

+

+

−

Figure 1: Standard Feedback Configuration.

ui ∈ Ua, yi ∈ Ya for i = 0, 1, 2, and both the plant P : Ua → Ya and compensator C : Ya → Ua are
causal and in general nonlinear.

Definition 2.2. If, for each (u0, y0) ∈ W, there exist unique signals u1, u2 ∈ Ua and y1, y2 ∈ Ya such
that

u0 = u1 + u2, y0 = y1 + y2, y1 = Pu1, u2 = Cy2 (2.1)

and the feedback operator

HP,C :W →We ×We :

(

u0
y0

)

7→

((

u1
y1

)

,

(

u2
y2

))

(2.2)

is defined and causal, then the closed loop [P,C] is said to be globally well-posed. If D ⊂ W and
HP,C |D is defined and causal, then [P,C] is said to be globally well posed on D.

A further weaker notion of well-posedness is also introduced as in [7], namely

Definition 2.3. The system is said locally well-posed if, for each (u0, y0) ∈ W, there exist unique
signals u1, u2 ∈ Ua and y1, y2 ∈ Ya satisfying (2.1) over a maximal interval [0, ω) with 0 < ω ≤ ∞,
HP,C : W → Wa ×Wa is causal on [0, ω) and, if ω < ∞, then ‖(u1, y1)

>‖L∞[0,t) → ∞ as t → ω from
below.

The stability of a closed loop system [P,C] is determined by the stability of the corresponding
operator HP,C :

Definition 2.4. A well-posed closed loop [P,C] is said to be gain stable (resp. gf-stable, incrementally
stable) if HP,C is stable in the same sense.
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It is well known that stability of [P,C] is equivalent to the same notion of stability of either of the
following mappings:

ΠP//C :

(

u0
y0

)

7→

(

u1
y1

)

, ΠC//P :

(

u0
y0

)

7→

(

u2
y2

)

There are a number of generalizations of the gap metric concept for nonlinear systems, see eg.
[3, 7, 9]. Here we recall the gap metric defined in [7] by Georgiou and Smith. That is, for two signal
operators H,H1, we define the directed gap as follows:

~δ(H,H1) :=

{

infΦ∈O ‖I − Φ‖ if O 6= ∅
∞ if O = ∅

(2.3)

where

O = {Φ : GH → GH1 | Φ0 = 0, Φ is causal, surjective}. (2.4)

Using this definition Georgiou and Smith in [7] studied the robustness of nonlinear systems. Within
the language of this paper, the following results follow from [7]:

Theorem 2.5. Suppose [P,C] is globally well posed and [P,C1] is locally well-posed.
(i) If [P,C] is gain stable and ~δ(C,C1) < ‖ΠC//P ‖

−1, then [P,C1] is globally well posed, gain stable
and

‖ΠC1//P ‖ ≤ ‖ΠC//P ‖
1 + ~δ(C,C1)

1− ~δ(C,C1)‖ΠC//P ‖
.

(ii) If [P,C] is gf-stable, there exists a surjective mapping Φ : D → GC1 where D ⊂ GC , and there
exists a function ε(·) ∈ K∞ such that γ[I − Φ] ◦ γ[ΠC//P ](r) ≤ (1 + ε)−1(r) for all r ≥ 0, then [P,C1]
is globally well posed and gf-stable.

Theorem 2.6. Let r > 0. Suppose [P,C] is globally well-posed on Sr, [P,C1] is locally well-posed and
‖ΠC//P |Sr‖ ≤ p. Suppose that there exists a mapping Φ : GC ∩Spr → GC1 such that ‖(Φ−I)|GC∩Spr‖ =
q < 1/p and (Φ − I)ΠC//P |Sr is continuous and compact. Then [P,C1] is globally well-posed and
bounded on S(1−pq)r and

‖ΠC1//P |S(1−pq)r
‖ ≤ ‖ΠC//P |Sr‖

1 + q

1− q‖ΠC//P |Sr‖
.

3 The Digital Controllers

In this section, we construct a discrete-time controller Cd which, under the sample and hold operation,
approximates a given continuous-time controller C, with the additional property that the stability of
[P,C] is preserved when the sample and hold implementation of Cd is utilized in place of C. The
construction is a standard approach and is described next.

We first introduce the concrete signal space setting in which we will present our results. Let
α > 0, τ > 0 be given and define normed input and output spaces as:

U = {u ∈ L∞(R+,R
n) : sup

t≥0
|u(t)| <∞} (3.1)

Yα,τ =











y ∈ L∞(R+,R
m) :

y is continuous on each interval [kτ, (k + 1)τ),

k ∈ N and sup
t,s∈[kτ,(k+1)τ)

k∈N,t6=s

|y(t)− y(s)|

|t− s|α
<∞











. (3.2)
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where

‖u‖U = sup
t≥0

|u(t)|, ‖y‖Yα,τ = max











‖y‖L∞m , sup
t,s∈[kτ,(k+1)τ)

k∈N,t6=s

|y(t)− y(s)|

|t− s|α











. (3.3)

The signal space Yα,τ is the set of all piecewise regular signals; we note that similar regular signal
spaces have been exploited in [8] for the analysis of the robustness of a relaxation oscillator. For
notational simplicity we sometimes write Y = Yα,τ , Ye = (Yα,τ )e,Ya = (Yα,τ )a.

Since the input and output of the controller are both continuous-time signals, two further opera-
tions are needed as shown in Figure 2 below. Sτ denotes a sample operator which discretises the input
continuous-time signal so that the discrete-time controller Cd can be applied. A second operator (the
hold operator) Hτ transforms the discrete signal-time back to piecewise continuous-time signal for the
system P to recognize. Here, τ represents the step size of the sample and hold operation. The sample

u0
u1 y1

P

Hτ Cd Sτ y0
u2 y2

−

+

+

−

Figure 2: Standard Feedback Configuration.

operator, Sτ , is naturally chosen to be:

Sτ : Yα,τ → l∞m , Sτy = z = (zk) with zk = y(kτ), k = 0, 1, 2, · · · for any y ∈ Yα,τ .

There are several choices for Hτ . Here we consider the “ZOH operator”:

Hτ : l∞n → U , (Hτz)(t) = zk for t ∈ [kτ, (k + 1)τ) for any z = (zk) ∈ l∞n .

The controller Cd : l∞m → l∞n depends on a known stable continuous-time controller C : Yα,τ → U
via a process of sampling. We consider the cases where C is either governed by a memoryless function
or is a stable operator between signal spaces. If C is memoryless, i.e. there exists a memoryless
function K : R

m → R
n such that C : u2(t) = K(y2(t)), then we let

Cdz = {K(zk)}k≥0, for all z = {zk}k≥0 ∈ l∞m . (3.4)

If C is given by a stable causal operator, we let

Cdz = SτCHτz for all z ∈ l∞m . (3.5)

Note that (3.5) is a generalization of (3.4). We notice that since C is stable, (Cy)(t) is defined for
every piecewise continuous function y and for all t ≥ 0 thus ensuring Cd and HτCτ are defined in both
cases in (3.4) and (3.5). Under such assumptions, Cd is always a causal operator from l∞m to l∞n .

Let Cτ : Yα,τ → U be defined:

Cτ = HτCdSτ = HτSτCHτSτ ,

and note this maps signals in Yα,τ to step functions. To study the properties of Cτ , we first consider
the operator HτSτ . From the definitions, it follows that

‖HτSτy‖L∞m ≤ ‖y‖L∞m and ‖HτSτx−HτSτy‖L∞m ≤ ‖x− y‖L∞m (3.6)
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for any piecewise continuous functions x, y ∈ L∞m . In particular, HτSτ c = c for constant function c.
Consequently, if understand HτSτ as an operator from either L∞m or Yα,τ to L∞m , we have

‖HτSτ‖ = 1 for each τ. (3.7)

For any y ∈ Yα,τ and k ∈ N, by the definitions of ‖ · ‖Y , we also have

‖y − y(kτ)‖L∞m [kτ,(k+1)τ) ≤ τα‖y‖Y , (3.8)

‖y −HτSτy‖L∞m ≤ τα‖y‖Y . (3.9)

Proposition 3.1. (i) If C is gain stable (resp., gf-stable), then Cτ is gain stable (resp., gf-stable);
(ii) If C is incrementally stable, then Cτ is incrementally stable and ‖Cτ‖4 = ‖C‖4;
(iii) If C|Sr is incrementally stable, then Cτ |Sr is incrementally stable and ‖Cτ |Sr‖4 = ‖C|Sr‖4.

Proof: (i) Since Cτ = HτSτCHτSτ , the conclusion follows from (3.7).
(ii) Suppose x, y ∈ Yα,τ and C is incrementally stable. Then, by (3.6), we have

‖Cτy − Cτx‖U = ‖HτSτCHτSτy −HτSτCHτSτx‖U

≤ ‖C(HτSτy)− C(HτSτx)‖U ≤ ‖C‖4‖y − x‖L∞m ≤ ‖C‖4‖y − x‖Yα .

So Cτ is incrementally stable and ‖Cτ‖4 ≤ ‖C‖4. Since Cτy = Cy for y(t) ≡ c (constant), we also
see that ‖Cτ‖4 ≥ ‖C‖4.
(iii) Similar to (ii).

4 Closed Loop Stability with a Memoryless Controller

In this section, we study the stability of the closed loop [P,Cτ ] in terms of the stability of [P,C] in
the case where C is memoryless. Our results show that the sampled data controller Cτ stabilizes the
nominal plant P provided [P,C] is stable in the same sense and τ is sufficiently small.

The approach is to consider Cτ to be a perturbation to C and exploit the gap metric theory of [7].
To apply the results in [7], we need to construct a surjective mapping Φ from GC to GCτ

, see (2.3) and
(2.4). Throughout this paper, we consider the natural surjective mapping

Φτ : GC → GCτ
, Φτ

(

y2
Cy2

)

=

(

y2
Cτy2

)

. (4.1)

Lemma 4.1. Let τ > 0 and suppose C : Yα,τ → U be memoryless. Then:

(i) If C is incrementally stable then ‖I − Φτ‖ ≤ τα‖C‖4 and therefore ~δ(C,Cτ ) ≤ τα‖C‖4.
(ii) If C|Sr is incrementally stable then ‖(I − Φτ )|Sr‖ ≤ τα‖C|Sr‖4.
(iii) If there exist a non-decreasing function h : R+ → R+ such that

|C(y(t))− C(y(s))| ≤ h (max{|y(t)|, |y(s)|}) |y(t)− y(s)|, for each y ∈ Yα,τ , t, s ∈ R+ (4.2)

then γ[I − Φτ ](r) ≤ rh(r)τα.

Proof: Let τ > 0 and suppose C : Yα,τ → U is memoryless i.e. C(y2)(t) = K(y2(t)) where K : R
m →

R
n.
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(i) Since Cτy2 = HτCdSτy2, we have

‖I − Φτ‖ = sup
(y2,u2)>∈GC
‖(y2,u2)>‖W 6=0

‖(I − Φτ )(y2, u2)
>‖W

‖(y2, u2)>‖W
= sup

y2∈Dom(C)
y2 6=0

‖(0, Cy2 −HτCdSτy2)‖W
‖(y2, Cy2)>‖W

≤ sup
y2∈Dom(C)

y2 6=0

‖Cy2 −HτCdSτy2‖U
max{‖y2‖Y , ‖Cy2‖U}

By the incremental stability of C and (3.8), we obtain

‖Cy2 −HτCdSτy2‖U = sup
t∈[kτ,(k+1)τ)

k>0

|C(y2)(t))− (HτCSτy2)(t))| = sup
t∈[kτ,(k+1)τ)

k>0

|K(y2(t))−K(y2(kτ))|

≤ ‖C‖4 sup
t∈[kτ,(k+1)τ)

k>0

|y2(t)− y2(kτ)| ≤ τα‖C‖4‖y2‖Y

Hence ‖I − Φτ‖ ≤ τα‖C‖4 and, therefore, ~δ(C,Cτ ) ≤ τα‖C‖4.
(ii) Similar to (i).
(iii) Suppose there exists a non-decreasing function h : R → R+ such that (4.2) holds. Then for each
r > 0,

γ(I − Φτ )(r) = sup
(y2,Cy2)>∈GC
‖(y2,Cy2)>‖W≤α

sup
t∈[kτ,(k+1)τ)

k>0

|C(y2(t))− C(y2(kτ))|

≤ sup
(y2,Cy2)>∈GC
‖(y2,Cy2)>‖W≤α

sup
t∈[kτ,(k+1)τ)

k>0

h(max{|y2(t)|, |y2(kτ)|})|y2(t)− y2(kτ)|

≤ sup
(y2,Cy2)>∈GC
‖(y2,Cy2)>‖W≤α

h(‖y2‖Y)‖y2‖Y ≤ rh(r)τα,

as required.

We remark that when C is Lipschitz or incrementally stable, (4.2) is satisfied with h(r) ≡ ‖C‖4.
Suitable functions h(·) also exist for operators with nonlinear growth, eg. if K(y) = −y2, then
h(r) = 2r.

Hence, by Theorem 2.5, we obtain the following global result:

Theorem 4.2. Let τ > 0 and let U ,Yα,τ be defined as in (3.1)-(3.3). Suppose that P : Ua → (Yα,τ )a is
causal, C : (Yα,τ )a → Ua is memoryless, [P,C] is globally well-posed and [P,Cτ ] is locally well-posed.
(i) If [P,C] is gain stable, C is incrementally stable and τα < ‖ΠC//P ‖

−1‖C‖−14 , then [P,Cτ ] is globally
well-posed, gain stable and

‖ΠCτ//P ‖ ≤ ‖ΠC//P ‖
1 + τα‖C‖4

1− τα‖C‖4‖ΠC//P ‖
.

(ii) If [P,C] is gf-stable, inequality (4.2) is satisfied and there exists ε ∈ K∞ such that

τα ≤
(1 + ε)−1(r)

h
(

γ[ΠC//P ](r)
)

γ[ΠC//P ](r)
for all r ≥ 0,

then [P,Cτ ] is globally well-posed and gf-stable.
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We remark that Theorem 4.2 part (ii) may yield sharper estimates for the stabilizing sample rate
than part (i).

By Theorem 2.6, we have the following regional stability theorem:

Theorem 4.3. Let r, τ > 0 and let U ,Yα,τ be defined as in (3.1)-(3.3). Suppose that P : Ua → (Yα,τ )a
is causal, C : (Yα,τ )a → Ua is memoryless, [P,C] is globally well-posed on Sr and [P,Cτ ] is locally well-
posed. Suppose ‖ΠC//P |Sr‖ ≤ p and that the mapping Φτ defined in (4.1) is such that (Φτ−I)ΠC//P |Sr
is continuous and compact. If q = τα‖C|Sr‖4 < p−1, then [P,Cτ ] is globally well-posed and bounded
on S(1−pq)r, and

‖ΠCτ//P |S(1−pq)r
‖ ≤ ‖ΠC//P |Sr‖

1 + τα‖C|Sr‖4
1− τα‖C|Sr‖4‖ΠC//P |Sr‖

.

Next, we present some examples to show the applications of this theorem.

Example 4.4. (Gain stability of an integrator with saturation) We let n = m = α = 1 and consider
the feedback system given in Figure 3.

u0
u1 y1

SAT
1
s

−1 y0
u2 y2

−

+

+

−

Figure 3: Integrator with saturation.

In this system, the nominal plant P is defined by

ẋ(t) = SAT(u1(t)), x(0) = 0

y1(t) = x(t)

where SAT(u1) = u1 when |u1| ≤ 1 and is equal to sign(u1) when |u1| > 1. The memoryless controller
C is specified by K(y2) = −y2.

It is routine to check that P (U) ⊂ Y, C : Y → U is incrementally stable with ‖C‖4 = 1 and that

‖ΠC//P ‖ = sup
‖(u0,y0)>‖6=0

‖y0 − x‖Y
max{‖u0‖U , ‖y0‖Y}

≤ sup
‖(u0,y0)>‖6=0

‖y0‖Y + ‖x‖Y
max{‖u0‖U , ‖y0‖Y}

,

where x is the solution to the closed loop equation

ẋ(t) = SAT(u0(t) + y0(t)− x(t)), x(0) = 0. (4.3)

For a given u0, y0, consider the corresponding continuous function x(·) over any finite given interval
[0, T ]. Suppose the maximum of |x(t)| on [0, T ] is reached at t0 and x(t0) > 0. Then, for any
ε > 0, there exist t1 ∈ (0, t0) such that x(t1) > x(t0) − ε and ẋ(t) > 0. From (4.3), it follows
u0(t1) + y0(t1) > x(t1) > x(t0) − ε = ‖x‖L∞(0,T ) − ε. A similar argument when x(t0) < 0 establishes
‖u0 + y0‖L∞ ≥ ‖x‖L∞ . By (4.3) we have

|x(t)− x(s)| ≤ sup
r>0

|ẋ(r)||t− s| ≤ sup
r>0

|SAT(u0(r) + y0(r)− x(r))||t− s| ≤ ‖u0 + y0 − x‖L∞ |t− s|.

Hence ‖x‖Y ≤ max{‖x‖L∞ , ‖u0 + y0 − x‖L∞} ≤ 2‖u0 + y0‖L∞ and therefore

‖ΠC//P ‖ ≤ sup
‖(u0,y0)>‖6=0

‖y0‖Y + 2‖u0 + y0‖L∞

max{‖u0‖U , ‖y0‖Y}
≤ sup
‖(u0,y0)>‖6=0

2‖u0‖U + 3‖y0‖Y
max{‖u0‖U , ‖y0‖Y}

≤ 5.
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So [P,C] is globally well-posed and gain stable. Since [P,Cτ ] is locally well-posed by standard result
on differential systems, it follows by Lemma 2.5 and Theorem 4.2 that [P,Cτ ] is gain stable provided
τ < 1/5. 2

Example 4.5. (A gain stable system with cubic nonlineaity) Let m = n = α = 1 as in Example 4.4
and consider the system where the nominal plant P is defined by

ẋ(t) = −x3(t) + u1(t), y1(t) = x(t), x(0) = 0, (4.4)

and the controller C is defined by u2(t) = −y2(t).

For this system, the closed loop is [P,C] given by

ẋ(t) = −x3(t)− x(t) + u0(t) + y0(t), y1(t) = x(t), x(0) = 0 (4.5)

and the parallel projection ΠC//P is the mapping (u0, y0)
> 7→ (−y0+x, y0−x)>. From (4.5), it follows

x(t)ẋ(t) ≤ −|x(t)|4 − |x(t)|2 + |u0(t) + y0(t)||x(t)| and, therefore |x(t)|
3 + |x(t)| ≤ |u0(t) + y0(t)| ≤

‖u0 + y0‖L∞ for all t > 0. This yields

sup
t6=s

|x(t)− x(s)|

|t− s|
≤ max

t≥0
|ẋ(t)| ≤ max

t≥0
(|x(t)|3 + |x(t)|+ |u0(t) + y0(t)‖) ≤ 4‖(u0, y0)

>‖.

So ‖x‖Y ≤ 4‖(u0, y0)
>‖ and ‖y0−x‖Y ≤ 5‖(u0, y0)

>‖. That, is [P,C] is gain stable and ‖ΠC//P ‖ ≤ 5.
Hence, by Theorem 4.2, [P,Cτ ] is gain stable provided τ < 1/5. 2

5 Closed Loop Stability with a Dynamic Controller

We now consider the case where the controller is dynamic. In particular, we restrict our attention to
the case where C is given by a stable causal operator. In this context, a condition stronger then (4.2)
is utilized to estimate ‖I − Φτ‖.

Lemma 5.1. Let τ > 0 and suppose that C : Yα,τ → U is causal. Let Φτ be defined by (4.1). If there
exist non-decreasing functions h1, h2 : R+ → R+ and β1, β2 > 0 such that

‖Cx− Cy‖U ≤ h1(max{‖x‖L∞m , ‖y‖L∞m })‖x− y‖β1

L∞m
, for all x, y ∈ Yα,τ (5.1)

|Cy(t)− Cy(s)| ≤ h2(‖y‖Y)|t− s|β2 , for all x, y ∈ Yα,τ , t, s ∈ [kτ, (k + 1)τ), k ∈ N, (5.2)

then γ(I − Φτ )(r) ≤ rβ1h1(r)τ
α + h2(r)τ

β2. If, in addition, c∞ <∞ where

cR = max{ sup
R>r>0

rβ1−1h1(r), sup
R>r>0

h2(r)/r} <∞, (5.3)

then ~δ(C,Cτ ) ≤ c∞τα + c∞τβ2.

Proof: Let τ > 0 and suppose that C : Yα,τ → U is causal. By assumptions (5.1) and (5.2)

‖Cy2 −HτSτCHτSτy2‖U ≤ ‖Cy2 − CHτSτy2‖U + ‖CHτSτy2 −HτSτCHτSτy2‖U

≤ ‖Cy2 − CHτSτy2‖U + sup
t∈[kτ,(k+1)τ)

k≥0

|(CHτSτy2)(t)− (CHτSτy2)(kτ)|

≤ h1(max{‖y2‖, ‖HτSτy2‖})‖y2 −HτSτy2‖
β1

L∞m

+ sup
t∈[kτ,(k+1)τ)

k≥0

h2
(

‖HτSτy2‖Y
)

(t− kτ)β2

≤ h1(‖y2‖Y)‖y2‖
β1

Y τα + h2(‖y2‖Y)τ
β2 . (5.4)
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Let r > 0. Then, by the definitions of Φτ and Cτ

γ[I − Φτ ](r) = sup
(y2,Cy2)>∈GC
‖(y2,Cy2)‖W≤r

‖Cy2 −HτSτCHτSτy2‖U ≤ h1(r)r
β1τα + h2(r)τ

β2

In the case where c∞ := max{supr>0 r
β1−1h1(r), supr>0 h2(r)/r} <∞, then by (5.4), we have

‖I − Φτ‖ = sup
(y2,u2)>∈GC
‖(y2,u2)>‖6=0

‖(I − Φτ )(y2, u2)‖W
‖(y2, u2)>‖W

= sup
y2∈Yα,τ
y2 6=0

‖(0, Cy2 −HτSτCHτSτy2)‖W
‖(y2, Cy2)>‖W

≤ sup
y2∈Yα,τ ,y2 6=0

‖Cy2 −HτSτCHτSτy2‖U
max{‖y2‖Y , ‖Cy2‖U}

≤ c∞τα + c∞τβ2 .

We remark that, by the definition of Yα,τ , any y ∈ Yα,τ is such that |y(t)− y(s)| ≤ ‖y‖Y |t− s|α for
t, s ∈ [kτ, (k + 1)τ). Hence any memoryless controller of the form Cy(t) = K(yr(t)) with K Lipschitz
satisfies (5.1) and (5.2). Simple examples of dynamic controllers satisfying assumptions (5.1) and (5.2)
include cascades of Lipschitz memoryless blocks with stable linear systems, e.g.

u(t) = K

(
∫ t

0
Ce−A(t−s)By(s)ds

)

, or u(t) =

∫ t

0
Ce−A(t−s)BK(y(s))ds

where K : R
m → R

n is a Lipschitz function and (A,B,C) defines a stable linear system, see Example
5.4 below.

Applying Theorems 2.5 and 2.6, we obtain the following theorems for the respective cases of global
and regional stability:

Theorem 5.2. Let τ > 0 and let U ,Yα,τ be defined as in (3.1)-(3.3). Suppose P : Ua → (Yα,τ )a is
causal and C : Yα,τ → U is an operator satisfying the conditions of Lemma 5.1 for some h1, h2, β1, β2.
Suppose that [P,C] is globally well-posed and [P,Cτ ] is locally well-posed.
(i) If [P,C] is globally gain stable and τα + τβ2 < c−1∞ ‖ΠC//P ‖

−1 where c∞ > 0 is defined by equa-
tion (5.3), then [P,Cτ ] is globally well-posed, gain stable and

‖ΠCτ//P ‖ ≤ ‖ΠC//P ‖
1 + c∞τα + c∞τβ2

1− (c∞τα + c∞τβ2)‖ΠC//P ‖
.

(ii) If [P,C] is gf-stable, and there exists ε ∈ K∞ such that

(

γ[ΠC//P ](r)
)β1 h1

(

γ[ΠC//P ](r)
)

τα + h2
(

γ[ΠC//P ](r)
)

τβ2 ≤ (1 + ε)−1(r) for all r ≥ 0,

then [P,Cτ ] is globally well-posed and gf-stable.

Theorem 5.3. Let r, τ > 0 and let U ,Yα,τ be defined as in (3.1)-(3.3). Suppose P : Ua → (Yα,τ )a is
causal and C : Yα,τ → U is an operator satisfying the conditions of Lemma 5.1 for some h1, h2, β1, β2.
Suppose that [P,C] is globally well-posed on Sr and that [P,Cτ ] is locally well-posed. Also suppose
‖ΠC//P |Sr‖ ≤ p, (5.1) and (5.2) are satisfied, and that the mapping Φτ defined in (4.1) is such that

(Φτ −I)ΠC//P |Sr is continuous and compact. If cr > 0 is defined by (5.3), and q = cr(τ
α+τβ2) < p−1,

then [P,Cτ ] is globally well-posed and bounded on S(1−pq)r, and

‖ΠCτ//P |S(1−pq)r
‖ ≤ ‖ΠC//P |Sr‖

1 + crτ
α + crτ

β

1− cr(τα + τβ)‖ΠC//P |Sr‖
.
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Example 5.4. (A locally stable nonlinear system with a 2-dimensional state) Let α = n = m = 1 and
consider the system when P,C are defined respectively by

P : Ua → Ya, u1 7→ y1 :
ẋ1(t) = x1(t) + x2(t) + u1(t), x1(0) = 0,
ẋ2(t) = −σx2(t) + x21(t), σ ≥ 1, x2(0) = 0,
y1(t) = x1(t),

C : Ya → Ua, y2 7→ u2 :
ż(t) = −σz(t) + y22(t), z(0) = 0,
u2(t) = z(t)− 2y2(t).

For this system, the conditions for Lemma 5.1 are satisfied with β1 = β2 = 1, h1(r) = 2
σ r + 2,

h2(r) = 2r2 + 2r. The closed loop is given by

ẋ1(t) = −x1(t) + u0(t) + 2y0(t) +

∫ t

0
e−σ(t−s)(2y0(s)x1(s)− y20(s))ds, x1(0) = 0, (5.5)

so the parallel projection ΠC//P is the mapping

(

y0
u0

)

7→

(

y2
u2

)

=

(

y0(t)− x1(t)
∫ t
0 e−σ(t−s)(y0(s)− x1(s))

2ds− 2y0(s) + 2x1(s)

)

.

Multiplying x1 to both sides of (5.5) and using the fact
∫ t
0 e−σ(t−s)ds ≤ σ−1 we obtain

|x1(t)| ≤
2

σ
‖y0‖Y sup

s∈[0,t]
|x1(s)|+ ‖u0‖U + 2‖y0‖Y +

1

σ
‖y0‖

2
Y

which holds for all t > 0. Then, for r < σ/2 and (y0, u0)
> ∈ Sr, we have

‖x1‖Y ≤

(

1−
2

σ
r

)−1 [

‖u0‖U + 2‖y0‖Y +
1

σ
‖y0‖

2
Y

]

≤
3σr + r2

σ − 2r
, (5.6)

sup
‖(u0,y0)>‖≤r

‖x1‖Y
max{‖u0‖U , ‖y0‖Y}

≤

(

1−
2

σ
r

)−1
(

3 +
r

σ

)

=
3σ + r

σ − 2r
(5.7)

and

‖ΠC//P |Sr‖ = sup
‖(u0,y0)>‖≤r

∥

∥

∥

∫ t
0 e−σ(t−s)(y0(s)− x1(s))

2ds
∥

∥

∥

U
+ 2‖y0 − x1‖Y

max{‖u0‖U , ‖y0‖Y}

≤ sup
‖(u0,y0)>‖≤r

(‖y0‖Y + ‖x1‖Y)
2σ−1 + 2(‖y0‖Y + ‖x1‖Y)

max{‖u0‖U , ‖y0‖Y}

≤
(4σ − r)(2σ2 − r2)

σ(σ − r)2
=: p.

Now,

Φτ :

(

y
Cy

)

→

(

y
Cτy

)

, for

(

y
Cy

)

∈ GC .

We consider the mappings (I − Φτ )|Spr∩GC and (I − Φτ )ΠC//P |Sr . By inequality (5.4),

∥

∥

∥

∥

(I − Φτ )|Spr∩GC

(

y
Cy

)
∥

∥

∥

∥

= ‖Cy − Cτy‖ ≤

(

2

σ
‖y‖2Y + 2‖y‖Y + 2‖y‖2Y + 2‖y‖Y

)

τ (5.8)

which implies

∥

∥(I − Φτ )|Spr∩GC
∥

∥ ≤

(

4 +
5

2
pr

)

τ =

[

4 + 2r
(σ+1)(4σ − r)(2σ2 − r2)

σ2(σ − 2r)2

]

τ =: q.
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Since (I − Φτ )ΠC//P (y0, u0)
> = (0, Cy2 − Cτy2)

>, and by (5.4), (5.8), (5.6), (5.7) we obtain

‖(I − Φτ )ΠC//P |Sr‖ = sup
06=(y0,u0)>∈Sr

2(1 + 1/σ)‖y2‖
2
Y + 4‖y2‖Y

max{‖y0‖Y , ‖u0‖U}
τ

≤ sup
06=(y0,u0)>∈Sr

2(1 + 1/σ)(‖y0‖Y + ‖x1‖Y)
2 + 4(‖y0‖Y + ‖x1‖Y)

max{‖y0‖Y , ‖u0‖U}
τ

≤
4σ − r

σ − 2r

(

1 + 2
(σ + 1)(4σ2 − r2)

σ(σ − 2r)

)

τ.

Hence if

τ < min

{

σ − 2r

4σ − r

(

1 + 2
(σ + 1)(4σ2 − r2)

σ(σ − 2r)

)−1

,

[

4
σ(σ − 2r)2

(4σ − r)(2σ2 − r2)
+ 2

(

1 +
1

σ

)

r

]−1
}

,

then ‖(I − Φτ )|Spr∩GC‖ < 1/p and ‖(I − Φτ )ΠC//P |Sr‖ < 1.
Finally, we study the continuity and compactness of (I − Φτ )ΠC//P |Sr , equivalently by the conti-

nuity and compactness of the mapping

(y0, u0)
> 7→ Cy2 − Cτy2 = C(y0 − x1)− Cτ (y0 − x1).

By our assumptions and Proposition 3.1 (ii), both C and Cτ are continuous. By (5.5) (y0, u0)
> 7→ x1

is also continuous. So (I − Φτ )ΠC//P |Sr is continuous. To establish compactness, let {(y0,n, u0,n)
>}

be a bounded sequence in Sr and x1,n be the solution to (5.5) corresponding to y0,n, u0,n. Then {x1,n}
is bounded in L∞ and, therefore, from Proposition 4 of [7], it follows that

{

x1,n(t) =

∫ t

0
e−(t−s)

[

u0,n(s) + 2y0,n(s) +

∫ s

0
e−σ(s−µ)(2y0,n(µ)x1,n(µ)− y20,n(µ))dµ

]

ds

}

has a convergent subsequence, say {x1,ni}i≥0, in L∞. By (5.5), {ẋ1,ni}i≥0 is also convergent in L∞.
Hence {x1,ni}i≥0 is convergent in Y and so is {C(x0,ni −x1,ni)−Cτ (x0,ni −x1,ni)}i≥0. This proves the
compactness of (I − Φτ )ΠC//P |Sr .

Hence, by Theorem 5.3, [P,Cτ ] is globally well-posed and locally gain stable for small τ in the
sense that HP,Cτ

is bounded on S(1−pq)r. For example, in the case σ = 4, r = 0.25, the system will be
locally gain stable for τ < 0.03497. 2

6 Comments and Conclusions

In this paper, we investigated the existence of a sampling rate to ensure stability when a continuous-
time controller is implemented by a fast sampling and hold strategy. Stability for the sampled-data
systems was studied via gap metric approach when the underlying continuous-time closed loop system
is known to be stable. The digital controller Cτ was constructed based on sample and hold when the
continuous-time controller C is either memoryless or dynamic and stable.

Notice that limτ→0 ‖ΠCτ//P ‖ ≤ ‖ΠC//P ‖ in Theorems 4.2, 5.2 and limτ→0 ‖ΠCτ//P |S(1−pq)r
‖ ≤

‖ΠC//P |Sr‖. Analogous bounds can also be obtained for ‖ΠP//Cτ
‖ in Theorems 4.3, 5.3. This shows

that the digital controller asymptotically recovers the performance of the underlying continuous-time
controller.

We also observe that similar results hold for alternative sampling/holding operations. For example,
the holding operator Hτ can be replaced by the ‘first order hold’ Ĥτ :

(Ĥτz)(t) = zk−1 +
zk − zk−1

τ
(t− kτ) for any z = (zk) ∈ l∞, t ∈ [kτ, (k + 1)τ).

Let Ĉτ denote the corresponding digital controller Ĉτ = ĤτCdSτ . Then one can prove that the gap
between Cτ and Ĉτ decreases to zero as τ → 0 become smaller as τ becomes smaller. Hence analogous
fast sampling theorems are also valid for the first order hold.

12



References

[1] Anderson B. D. O., Chongsrid K., Limebeer D.J.N. and Hara S., Direct reduced order discretiza-
tion of continuous-time controllers, Inter J. Robust Nonlinear Control, 9(1999), 143-155

[2] K. J. Astrom and B. Wittenmark, Computer-controlled systems: theory and design, Pearson
Education, 1997

[3] Bian, W. and French, M., Graph topologies, gap metrics and robust stability for nonlinear sys-
tems, SIAM J. Contr. Optim. to appear

[4] Cantoni M. and Vinnicombe G., Controller discretisation: a gap metric framwork for analysis
and synthesis, IEEE Trans. Auto. Control, 49(2004), 2033–2039

[5] Castillo B., Di Gennaro S., Monaco S. and Normand-Cyrot D., On regulation under sampling,
IEEE Trans. Auto. Control, 42(1997), 864–868

[6] Georgiou T. and Smith M. C., Optimal robustness in the gap metric, IEEE Trans. Auto. Control,
35(1990), 673–686

[7] Georgiou T. and Smith M. C., Robustness analysis of nonlinear feedback systems: an input-output
approach, IEEE Trans. Auto. Control, 42(1997), 1200–1221

[8] Georgiou T. and Smith M. C., Robustness of a relaxation oscillator, Int. J. Robust Nonlinear
Control, 10(2000), 1005–1024

[9] James M. R., Smith M. C. and Vinnicombe G., Gap metrics, representations and nonlinear robust
stability, Preprint

[10] Keller J. P. and Anderson B. D. O., A new approach to the discretization of continuous-time
controllers, IEEE Trans. Auto. Control, 37(1992), 214–223

[11] Laila, D.S. Nesic, D. and Teel, A.R. Open and closed loop dissipation inequalities under sampling
and controller emulation, Europ. J. Contr. 8(2002), 109–125
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