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Abstract

This paper is concerned with a KYP-type result for descriptor systems. Matrix in-
equalities are shown that provide necessary and sufficient conditions of dissipativity
of descriptor systems, without such restriction on the realization of descriptor sys-
tems as in many of previous results. Furthermore, LMI conditions are presented for
synthesis of control gains to attain dissipativity of feedback systems represented in
the descriptor form.
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1 Introduction

It has been well understood that the descriptor form provides system repre-
sentations that are more natural and general than state-space systems (See
e.g., [4]). The descriptor form is useful to represent such as mechanical sys-
tems, electric circuits, interconnected systems, parameter-varying systems and
so on. Among considerable number of basic notions of dynamical systems gen-
eralized to descriptor systems, dissipativity, including positive and bounded
realness, is one of the most important properties and plays crucial roles in
various problems of analysis and synthesis of control systems.

For linear time-invariant systems, Kalman-Popov-Yakuvobich (KYP) Lemma
and its related results give characterization of positive or bounded realness
in terms of the state-space realization [1,13,7]. The KYP lemma is valid with
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an arbitrary state-space realization that is controllable and has no poles on
the imaginary axis. Those results have been generalized to descriptor sys-
tems and several matrix equations and inequalities have been proposed to
give a criterion for positive or bounded realness [9,6,12,11,8,14,2]. However,
for continuous-time systems, most of the existing results require a certain as-
sumption or restriction on the realization of descriptor systems in addition to
such as regularity on the imaginary axis and controllability (See Subsection
2.2).

In this paper, we propose a new matrix inequality condition that is necessary
and sufficient for dissipativity of descriptor systems [5]. Unlike previous re-
sults, the proposed criterion only assumes on a descriptor realization so that
the system pencil is regular on the imaginary axis and its finite dynamics
is controllable, as the counterpart of the assumptions in the KYP lemma for
state-space systems. Moreover, our result is applicable to any quadratic supply
rates, not only to ones related to positive or bounded realness. A criterion for
the nonstrict dissipativity inequality is given with assuming that the descrip-
tor system is impulse-free. We also provide a criterion for strict dissipativity
inequality with admissibility 1 , where the criterion implies that the descriptor
system has no impulsive modes.

Next, we utilize the new condition for synthesis of feedback gains for de-
scriptor systems to attain dissipativity and admissibility of the closed-loop
system. Since the proposed matrix inequality does not have a form for which
widely-known change-of-variables technique is directly applicable, we provide
an equivalent LMI condition for dissipativity through which we derive LMIs
for synthesis. Numerical examples are presented to illustrate the new dissipa-
tivity criteria and the LMIs for synthesis.

Notation. Let R and C denote the sets of real and complex numbers, respec-
tively. For a matrix X, we denote by X−1, XT, X−T and X∗ the inverse,
the transpose, the inverse of the transpose and the conjugate transpose of X,
respectively. HeX stands for X + XT. For a symmetric matrix represented
blockwise, offdiagonal blocks are abbreviated with ‘∗’, such as

⎡
⎢⎣ X11 X12

XT
12 X22

⎤
⎥⎦ =

⎡
⎢⎣ X11 X12

∗ X22

⎤
⎥⎦ =

⎡
⎢⎣ X11 ∗

XT
12 X22

⎤
⎥⎦ .

1 A generalization of internal stability to descriptor systems.
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2 Preliminaries

2.1 Dissipativity of descriptor systems

Consider the following descriptor system:

⎧⎪⎨
⎪⎩

Eẋ = Ax + Bw,

z = Cx + Dw,
(1)

where x ∈ Rn is the descriptor variable, w ∈ Rm is the input and z ∈ Rp is
the output of the system. Let E ∈ Rn×n and rankE = r ≤ n.

Definition 1 (1) The pencil sE −A is regular if det(sE −A) is not identi-
cally zero.

(2) Suppose that sE−A is regular. The exponential modes of sE−A are the
finite eigenvalues of sE − A, namely, s ∈ C such that det(sE − A) = 0.

(3) Let a vector v1 satisfy Ev1 = 0. Then the infinite eigenvalues associ-
ated with the generalized eigenvectors vk satisfying Evk = Avk−1, k =
2, 3, 4, . . . are impulsive modes of (E, A).

(4) The descriptor system (1) is impulse-free if the pencil sE − A is regular
and has no impulsive modes.

(5) The descriptor system (1) is said to be admissible if the pencil sE −A is
regular, impulse-free and has no unstable exponential modes.

Let S = ST ∈ R(m+p)×(m+p) and consider the following quadratic form of
(w, z):

s(w, z) =

⎡
⎢⎣ w

z

⎤
⎥⎦

T

S

⎡
⎢⎣ w

z

⎤
⎥⎦ , (2)

which defines a supply rate.

Definition 2 The descriptor system (1) is said to be dissipative with respect
to the supply rate s(·, ·) if the pencil sE − A is regular, the descriptor system
(1) have no impulsive modes and for any T ≥ 0 and for any w ∈ L2[0, T ] it
holds that

T∫
0

s(w(t), z(t))dt ≤ 0 (3)
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provided x(0) = 0.

The time-domain condition (3) is equivalent to the following frequency-domain
condition:

⎡
⎢⎣ I

G(jω)

⎤
⎥⎦
∗

S

⎡
⎢⎣ I

G(jω)

⎤
⎥⎦ ≤ 0, ∀ω ∈ R ∪ {∞}, (4)

where G(s) = C(sE − A)−1B + D. By setting

M =

⎡
⎢⎣ 0 I

C D

⎤
⎥⎦

T

S

⎡
⎢⎣ 0 I

C D

⎤
⎥⎦ , (5)

the inequality (4) is written as

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦
∗

M

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦ ≤ 0, (6)

which we consider in the next subsection.

2.2 A KYP-type lemma for descriptor systems

For every regular pencil sE −A, there exist regular matrices L, R with which
sE − A is transformed into the Weierstrass canonical form as follows:

LT(sE − A)R =

⎡
⎢⎣ sI − A1 0

0 sΛ − I

⎤
⎥⎦ , (7)

where A1 ∈ Rr̄×r̄, Λ ∈ R(n−r̄)×(n−r̄) and Λ is nilpotent. Let LTB =
[
BT

1 BT
2

]T

with B1 ∈ Rr̄×m. We say that (E, A, B) is finite dynamics controllable if
(A1, B1) is controllable in the sense of state-space systems.

Consider the inequality (6), without assuming that M has the structure of
(5).

Theorem 3 Suppose that the following assumptions (1◦)–(3◦) hold.

(1◦) det(jωE − A) 	= 0, ∀ω ∈ R.

4



(2◦) limω→∞(jωE − A)−1 exists.
(3◦) (E, A, B) is finite-dynamics controllable.

Then the two conditions below are equivalent:

(i) For any ω ∈ R ∪ {∞}, it holds that

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦
∗

M

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦ ≤ 0. (8)

(ii) There exist matrices X ∈ Rn×n and W ∈ Rn×m that satisfy the following
matrix equations and inequality:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ETX = XTE, ETW = 0,

M + He

⎡
⎢⎣ XT

WT

⎤
⎥⎦

[
A B

]
≤ 0.

(9)

Proof. Let L and R be regular matrices for which sE−A is transformed to the
Weierstrass form (7). Since limω→∞(jωE − A)−1 exists, it holds that Λ = 0
and r̄ = r. Then we have that

(jωE − A)−1B = R

⎡
⎢⎣ (jωI − A1)

−1B1

−B2

⎤
⎥⎦ (10)

and that (A1, B1) is controllable. Let

M̃ =

⎡
⎢⎣ R 0

0 I

⎤
⎥⎦

T

M

⎡
⎢⎣ R 0

0 I

⎤
⎥⎦ .

Then the inequality (8) is expressed as

⎡
⎢⎣ (jωI − A1)

−1B1

I

⎤
⎥⎦
∗

⎡
⎢⎢⎢⎢⎢⎣

I 0

0 −B2

0 I

⎤
⎥⎥⎥⎥⎥⎦

T

M̃

⎡
⎢⎢⎢⎢⎢⎣

I 0

0 −B2

0 I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ (jωI − A1)

−1B1

I

⎤
⎥⎦ ≤ 0.

From the KYP-Lemma for state-space systems [7], the above inequality holds
for all ω ∈ R ∪ {∞} if and only if there exists a matrix P = PT ∈ Rr×r such
that
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⎡
⎢⎢⎢⎢⎢⎣

I 0

0 −B2

0 I

⎤
⎥⎥⎥⎥⎥⎦

T

M̃

⎡
⎢⎢⎢⎢⎢⎣

I 0

0 −B2

0 I

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎣ PA1 + AT

1 P PB1

BT
1 P 0

⎤
⎥⎦ ≤ 0 (11)

holds. By the elimination lemma, (11) is equivalent that for some matrices
F, G, H it holds that

M̃ +

⎡
⎢⎢⎢⎢⎢⎣

PA1 + AT
1 P 0 PB1

0 0 0

BT
1 P 0 0

⎤
⎥⎥⎥⎥⎥⎦

+ He

⎡
⎢⎢⎢⎢⎢⎣

F

G

H

⎤
⎥⎥⎥⎥⎥⎦

[
0 I B2

]
≤ 0.

This inequality is rewritten as

M̃ + He

⎡
⎢⎢⎢⎢⎢⎣

P F

0 G

0 H

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ A1 0 B1

0 I B2

⎤
⎥⎦ ≤ 0,

which implies that the inequality in (9) holds. This is seen by setting

⎡
⎢⎣ XT

WT

⎤
⎥⎦ =

⎡
⎢⎣ R−T 0

0 I

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P F

0 G

0 H

⎤
⎥⎥⎥⎥⎥⎦

LT (12)

and performing congruent transformation. Also it is easy to see that the equal-
ity conditions in (9) hold if and only if X and W have the form of (12).

Remark 4 If E = I, we have W = 0, X = XT from (9) and the inequality
condition (9) reduces to that for state-space systems [7].

Remark 5 The result of Theorem 3 gives a necessary and sufficient condition
for the dissipativity inequality (8) to hold for ω ∈ R ∪ {∞}. A generalization
of the KYP lemma for descriptor systems with bounded regions of ω has been
discussed in [3]. On the other hand, LMIs for the dissipativity inequality in
(4) for positive realness required to hold for ∀ω ∈ R and not for ω = ∞ are
provided in [2]. The results there can handle impulsive positive real descriptor
systems.

There have been proposed several criteria for positive or bounded realness of
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descriptor systems [9,6,12,11,8,14,2]. Those results require certain assumptions
on the realization of descriptor systems other than such as finite-dynamics
controllability. In results for bounded realness or H∞-norm condition ‖G‖∞ <
γ, the formal feedthrough term D is assumed to be zero [6] or to satisfy
‖D‖ < γ [9]. Similarly, an LMI criterion has been derived in [14] that gives
a necessary and sufficient condition for extended strict positive realness with
assuming D + DT > 0. Also in [2] an LMI condition has been proposed that
is sufficient for positive realness, but not necessary unless the realization of
D satisfies an additional inequality condition. However, since D ∈ Rp×m can
be chosen arbitrarily with preserving the assumptions of Theorem 3 in the
descriptor realization, restrictions on the realization of D such as ‖D‖ < γ
are never essential for positive or bounded realness of descriptor systems; see
Subsection 2.3.

Below are corollaries of Theorem 3 for strict dissipativity.

Corollary 6 Suppose that the assumptions (1◦) and (2◦) hold. Then the fol-
lowing two conditions are equivalent:

(i) For any ω ∈ R ∪ {∞}, it holds that

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦
∗

M

⎡
⎢⎣ (jωE − A)−1B

I

⎤
⎥⎦ < 0. (13)

(ii) There exist matrices X ∈ Rn×n and W ∈ Rn×m satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ETX = XTE, ETW = 0,

M + He

⎡
⎢⎣ XT

WT

⎤
⎥⎦

[
A B

]
< 0.

(14)

Proof. The corollary is proved in the same way as Theorem 3 with replacing
inequalities ‘≤’ with ‘<’.

The following corollary gives a matrix inequality condition for dissipativity as
well as admissibility, without assuming (1◦)–(3◦) of Theorem 3.

Corollary 7 Consider partition of M as

M =

⎡
⎢⎣ M11 M12

MT
12 M22

⎤
⎥⎦ , M11 ∈ Rn×n

and suppose that M11 ≥ 0. Then the descriptor system (1) is admissible and
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satisfies (13) if and only if the matrix equations and inequality (14) hold as
well as ETX ≥ 0.

Proof. For the proof of admissibility, see [10,6].

Remark 8 The (1, 1)-block of (14) is ATX + XTA + M11 < 0. Hence the
inequality (14) together with M11 ≥ 0 implies that X is nonsingular.

For convenience, we show LMI conditions about positive realness and H∞ norm
condition of descriptor systems with admissibility. Denote G(s) = C(sE −
A)−1B + D and let m = p. The descriptor system (1) is extended strictly
positive real (ESPR in short) if G(s) is analytic in {s ∈ C : Re(s) ≥ 0} and
satisfies G(jω) + G∗(jω) > 0 for ∀ω ∈ R ∪ {∞}[14].

Corollary 9 Suppose m = p. The descriptor system (1) is admissible and
ESPR if and only if there exist matrices X ∈ Rn×n and W ∈ Rn×m satisfying
the following LMI condition:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ETX = XTE ≥ 0, ETW = 0,⎡
⎢⎣ ATX + XTA ATW + XTB − CT

∗ WTB + BTW − D − DT

⎤
⎥⎦ < 0.

(15)

This LMI condition, yielded by setting S =

⎡
⎢⎣ 0 −I

−I 0

⎤
⎥⎦ in Theorem 3, is a

necessary and sufficient condition for admissibility and extended strictly pos-
itive realness, including impulse-free property and the dissipativity condition
at s = ∞. It has been shown in [2] that the LMI condition

ETX = XTE ≥ 0,

⎡
⎢⎣ ATX + XTA XTB − C

BTX − CT −D − DT

⎤
⎥⎦ ≤ 0 (16)

is sufficient for G(s) to be positive real, where G(s) is positive real if it is
analytic in C+ := {s ∈ C : Re(s) > 0} and satisfies G(s) + G∗(s) ≥ 0
for s ∈ C+. The LMI condition (16) is also necessary for positive realness,
provided that D+D ≥ M0 +M0, where M0 is the 0-th coefficient of expansion
of G(s) about s = ∞: G(s) =

∑p
i=−∞ Mis

i. Note that not-extended, not-strict
positive realness is considered in [2] and impulsive modes of a positive real
descriptor system can be admitted. On the other hand, Corollary 9 aims to
provide an LMI condition for admissibility as well as extended strict positive
realness so that it guarantees that a control system has no impulsive modes
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and no unstable exponential modes. If the descriptor system is impulse-free, it
holds that M0 = G(∞) = D − C2B2, where CR = [C1 C2], C1 ∈ Rp×r with
R in (7). Hence in general D 	= M0 and the condition D+D ≥ M0 +M0 is not
satisfied unless the descriptor realization is chosen so that C2B2+(C2B2)

T ≥ 0.

Corollary 10 The descriptor system (1) is admissible and H∞ norm from w
to z is less than γ if and only if there exist matrices X ∈ Rn×n and W ∈ Rn×m

that satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ETX = XTE ≥ 0, ETW = 0,⎡
⎢⎢⎢⎢⎢⎣
He

⎡
⎢⎣ XT

WT

⎤
⎥⎦

[
A B

]
+

⎡
⎢⎣ 0 0

0 −γ2I

⎤
⎥⎦ ∗

[
C D

]
−I

⎤
⎥⎥⎥⎥⎥⎦

< 0.
(17)

This corollary is a special case of Theorem 3, with S =

⎡
⎢⎣−γ2I 0

0 I

⎤
⎥⎦.

Remark 11 Sometimes it is pointed out that non-strict LMI condition K(ξ) ≥
0, where K(ξ) is a symmetric-matrix-valued affine function of ξ, is involved
with numerical singularity problems. This can be true if there exist no relatively
interior-point solutions to K(ξ) ≥ 0. The nonstrict inequality that appears in
Corollary 7 and later is ETX = XTE ≥ 0 and the other inequalities are strict.
The set of relatively interior-point solutions to ETX = XTE ≥ 0 is given by

⎧⎪⎨
⎪⎩X = L

⎡
⎢⎣ X11 0

X21 X22

⎤
⎥⎦ R−1 : X11 = XT

11 > 0

⎫⎪⎬
⎪⎭ ,

where L and R are regular matrices such that LTER = diag{Ir×r, 0}. This set
is nonempty.

2.3 Numerical Examples for dissipativity inequalities

In this section, we show examples of Corollaries 9 and 10.
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2.3.1 H∞ norm

Corollary 10 gives a necessary and sufficient condition that the descriptor
system (1) is admissible and its H∞ norm is less than γ. Consider the following
coefficient matrices for the descriptor system (1):

E =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

−3 −2 1

0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎥⎦

,

C =
[
2 5 1 − κ

]
, D = κ,

where κ is a scalar. For every κ,

G(s) = C(sE − A)−1B + D =
s2 + 7s + 5

s2 + 2s + 3
,

which has constant H∞ norm ‖G‖∞ = 3.5551 for any κ. In Fig. 2.3.2, values of
γ are plotted for κ = −10,−9, . . . , 10, where ‘�’ represents values derived by
minimizing γ with respect to (17) in Corollary 10, while ‘+’ represents values
derived with setting W = 0 in addition to (17). It is seen by the numerical
example that the proposed inequality provides the true value of H∞ norm for
every κ. Note that the LMI condition with W = 0, namely,

ETX = XTE ≥ 0,

⎡
⎢⎢⎢⎢⎢⎣

ATX + XTA ∗ ∗
BTX −γ2I ∗

C D −I

⎤
⎥⎥⎥⎥⎥⎦

< 0, (18)

has been proven to yield the correct H∞ norm if D = 0 [6]. Actually, the
optimal values of γ with LMI (18) are larger than ‖G‖∞ if |D| = |κ| > ‖G‖∞,
which violates the assumption of D = 0.

2.3.2 Extended strict positive realness with admissibility

The above descriptor systems is ESPR. In fact

ReG(jω) =
ω4 + 6ω2 + 15

(ω2 − 3)2 + 4ω2
= 1 +

4ω2 + 6

(ω2 − 1)2 + 8
≥ 1, ∀ω ∈ R ∪ {∞}.
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Fig. 1. Values of γ in H∞ norm test

Thus the LMI (15) must be solvable. To examine this numerically, we solved
the following minimization problem:

Minimize λ s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ETX = XTE ≥ 0, ETW = 0,⎡
⎢⎣ ATX + XTA ATW + XTB − CT

∗ WTB + BTW − D − DT

⎤
⎥⎦ < λI,

whose optimal value is less than 0 if the system is ESPR. The results with
setting κ = −10,−9, . . . , 10 are shown in Fig. 2.3.2, where again ‘�’ shows
values derived via the above optimization problem based on the proposed
LMI and ‘+’ indicates values derived with setting W = 0. These computational
results show that Corollary 9 proves that the system is ESPR for every D = κ,
while the LMI with W = 0, which corresponds to the existing criterion [14],
can conclude ESPR when D + DT = 2κ > 0, as assumed there.

2.4 A Pseudo-Dual Matrix Inequality

In this subsection, assuming that the matrix M has the form of (5), we consider
a certain ‘dual’ of the matrix inequality condition stated in Corollary 7. It will
play an important role in the following section. Let us denote S in the following
partitioned form
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Fig. 2. Values of λ in ESPR test

S =

⎡
⎢⎣ S11 S12

ST
12 S22

⎤
⎥⎦ , S11 ∈ Rm×m,

according to the sizes of w, z and assume S22 ≥ 0. Substituting (5) to (9) and
simple manipulations yield

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ETX = XTE ≥ 0, ETW = 0,

He

⎛
⎜⎝

⎡
⎢⎣ XT 0

WT I

⎤
⎥⎦

⎡
⎢⎣ A B

0 0

⎤
⎥⎦ +

⎡
⎢⎣ 0

S12

⎤
⎥⎦

[
C D

]⎞
⎟⎠

+

⎡
⎢⎣ 0 0

0 S11

⎤
⎥⎦ +

⎡
⎢⎣ CT

DT

⎤
⎥⎦ S22

[
C D

]
< 0.

(19)

Since S22 ≥ 0, this matrix inequality is equivalent to an LMI of decision
variables (X, W ), which is affine also with respect to coefficient matrices
(E; A, B, C, D). Furthermore, positive semidefiniteness of S22 implies that X is
regular, whereby we define Y = X−T, Z = −WTX−T. From the first and sec-
ond items of (19), we derive Y −1E = ETY −T, 0 = −ZY −1E and immediately
EY T = Y ET ≥ 0, ZET = 0. Multiplying

⎡
⎢⎣ XT 0

WT I

⎤
⎥⎦
−1

=

⎡
⎢⎣ Y 0

Z I

⎤
⎥⎦ (20)
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to (19) from the left and the transpose of (20) from the right, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EY T = Y ET ≥ 0, EZT = 0,

He

⎛
⎜⎝

⎡
⎢⎣ A B

S12C S12D

⎤
⎥⎦

⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦

⎞
⎟⎠

+

⎡
⎢⎣ 0 0

0 S11

⎤
⎥⎦ +

⎡
⎢⎣ Y 0

Z I

⎤
⎥⎦

⎡
⎢⎣ CT

DT

⎤
⎥⎦ S22

[
C D

] ⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦ < 0.

(21)

Proposition 12 The descriptor system (1) satisfies dissipativity as well as
admissibility if and only if the matrix inequality condition (21) holds for some
Y ∈ Rn×n, Z ∈ Rm×n.

Remark 13 The matrix inequality (21) is utilized in the next section to obtain
LMIs to compute control gains. If E = I, the inequality (21) is simplified to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y = Y T > 0,⎡
⎢⎣ AY + Y AT ∗

BT + S12C S11 + S12D + DTST
12

⎤
⎥⎦ +

⎡
⎢⎣ Y CT

DT

⎤
⎥⎦ S22

[
CY T D

]
< 0.

(22)

If S12 = 0 ∈ Rm×p or S12 = ±I ∈ Rm×m with m = p for the latter, the
inequality condition (22) gives a necessary and sufficient condition for dis-
sipativity and internal stability of the dual state-space system, with GT(s)
= BT(sI − AT)−1CT + DT. In general, the inequality condition (21) does not
coincide with the dissipativity of GT(s).

3 Synthesis of control gains

3.1 LMI conditions

Based on the results on dissipativity analysis of descriptor systems in the
previous section, we consider synthesis of a control gain to attain dissipativity
and admissibility of the closed-loop descriptor system. Let us represent the
plant as follows:

⎧⎪⎨
⎪⎩

Eẋ = Ax + B1w + B2u,

z = C1x + D11w + D12u,
(23)

13



where x ∈ Rn is the descriptor variable, w ∈ Rm1 is the external input,
u ∈ Rm2 is the control input and z ∈ Rp1 is the controlled output. We treat
two different control laws: (i) constant-gain feedback of the dynamic part of the
descriptor variable and (ii) constant-gain feedback of the descriptor variable
and feedforward of the external input.

First, let K ∈ Rm2×n and consider the following control input:

u = KEx, (24)

by which all of the dynamic part of the descriptor variable is available to
compute u. Applying this input to the plant (23) yields the closed-loop system
as follows:

⎧⎪⎨
⎪⎩

Eẋ = (A + B2KE)x + B1w,

z = (C1 + D12KE)x + D11w.
(25)

Proposition 14 There exists a gain K for which the closed-loop system (25)
is admissible and dissipative if and only if the following LMI holds for Y ∈
Rn×n, Z ∈ Rm×n and K̃ ∈ Rm2×n:

EY T = Y ET ≥ 0, EZT = 0,

⎡
⎢⎣ R11 RT

21

R21 −I

⎤
⎥⎦ < 0, (26)

where

R11 = He

⎛
⎜⎝

⎡
⎢⎣ A B1

S12C1 S12D11

⎤
⎥⎦

⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦ +

⎡
⎢⎣ B2

S12D12

⎤
⎥⎦

[
K̃ET 0

]⎞
⎟⎠

+

⎡
⎢⎣ 0 0

0 S11

⎤
⎥⎦ ,

R21 = TT
22

⎛
⎜⎝

[
C1 D11

] ⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦ + D12

[
K̃ET 0

]⎞
⎟⎠

with T22 being any decomposition of S22 ≥ 0 as S22 = T22T
T
22. If the LMI

(26) has a solution, without loss of generality the matrix Y can be assumed to
be regular 2 . One of the gains satisfying admissibility and dissipativity of the
closed-loop system is given by K = K̃Y −T.

2 See e.g., [6].
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Proof. (Necessity) Substitute the expression of the closed-loop system (25) to
the matrix inequality (21). Then we see a bilinear terms of KEY T and KEZT.
The latter vanishes since EZT = 0 and by EY T = Y ET the former reduces to
K̃ET, where K̃ = KY T. Then performing Schur complement completes the
proof. (Sufficiency) The proof of the sufficiency follows easily.

By virtue of the structure of the matrix inequality (21), the standard technique
of linearizing change-of-variables for state-feedback synthesis is applicable to
remove bilinear terms. This is not obvious with the original dissipativity in-
equality stated in Theorem 3.

Next, consider the following control input

u = Fx + Gw (27)

with F ∈ Rm2×n and G ∈ Rm2×m1 . The closed-loop system is given by

⎧⎪⎨
⎪⎩

Eẋ = (A + B2F )x + (B1 + B2G)w,

z = (C1 + D12F )x + (D11 + D12G)w.
(28)

Proposition 15 There exists a pair of gains (F, G) satisfying the admissibil-
ity and dissipativity of the closed-loop system if and only if there exist matrices
Y ∈ Rn×n, Z ∈ Rm×n, F̃ ∈ Rm2×n and G̃ ∈ Rm2×m1 such that the following
LMI holds:

EY T = Y ET ≥ 0, EZT = 0,

⎡
⎢⎣ R′

11 (R′
21)

T

R′
21 −I

⎤
⎥⎦ < 0, (29)

where

R′
11 = He

⎛
⎜⎝

⎡
⎢⎣ A B1

S12C1 S12D11

⎤
⎥⎦

⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦ +

⎡
⎢⎣ B2

S12D12

⎤
⎥⎦

[
F̃ G̃

]⎞
⎟⎠

+

⎡
⎢⎣ 0 0

0 S11

⎤
⎥⎦ ,

R′
21 = TT

22

⎛
⎜⎝

[
C1 D11

] ⎡
⎢⎣ Y T ZT

0 I

⎤
⎥⎦ + D12

[
F̃ G̃

]⎞
⎟⎠ .

If the LMI (29) is solvable, the matrix Y can be assumed to be regular without
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loss of generality and one of the gains satisfying the admissibility and dissipa-
tivity of the closed-loop system is given by F = K̃Y −T, G = G̃ − F̃ Y −TZT.

Proof. Straightforward.

3.2 Numerical examples for synthesis of control gains

Consider the following coefficient matrices for the descriptor system (1):

E =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

−3 −2 1

0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

, B1 =

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎢⎢⎣

0

1

0

⎤
⎥⎥⎥⎥⎥⎦

,

C1 =

⎡
⎢⎣ 1 3 1 − κ

0 0 0

⎤
⎥⎦ , D11 =

⎡
⎢⎣ κ

0

⎤
⎥⎦ , D12 =

⎡
⎢⎣ 0

3

⎤
⎥⎦ .

Note that this descriptor representation gives the same system for any κ.

First, we solved the LMI (26) resulting optimal γ = 2.247 for every κ. The
solution (Y, Z, K̃) to (26) for, e.g., κ = −10 is

Y =

⎡
⎢⎢⎢⎢⎢⎣

0.0456 −0.001127 −0.003379

−0.001127 0.1079 −0.03235

0 0 0.00727

⎤
⎥⎥⎥⎥⎥⎦

,

Z =
[
0 0 0.9178

]
, K̃ =

[
0 −0.111 0

]

and the control input is given by u =
[
−0.0253 −1.0307 0

]
x.

The second LMI (29) also yielded the same optimal value γ = 2.247, for
every κ. The resulted γ coincides with the value attained by the dynamic-part
feedback in this case. For κ = −10, the solution (Y, Z, F̃ , G̃) to (29) is derived
as

Y =

⎡
⎢⎢⎢⎢⎢⎣

0.0456 −0.001127 −0.00423

−0.001127 0.1079 −0.04325

0 0 0.00882

⎤
⎥⎥⎥⎥⎥⎦

,
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Z =
[
0 0 0.9127

]
, F̃ =

[
0.001641 0.0887 −0.00286

]
, G̃ = 0.00260.

The corresponding control law is u =
[
−0.0175 −0.9524 −0.3244

]
x+0.2987w.

4 Conclusions

In this paper, we have shown new matrix inequalities that provide necessary
and sufficient conditions for dissipativity of descriptor systems. Based on this
result, we have proposed an LMI condition to synthesize a control gain for
two types of control input to satisfy dissipativity of the closed-loop system.
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