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Abstract

The problem addressed in this paper is to control a plant so as to have its output
tracking (a family of) reference commands generated at a remote location and trans-
mitted through a communication channel of finite capacity. The uncertainty due to
the presence of the communication channel is counteracted by a suitable choice of the
parameters of the regulator.
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1 Introduction

In distributed control systems, sensors, actuators and control unit may be placed at loca-
tions which are geographically separated. Information among these devices must then be
exchanged through a finite bandwidth channel.
The problem addressed in this paper is to control a plant so as to have its output tracking
(a family of) reference commands generated at a remote location and transmitted through
a communication channel of finite capacity. What renders the problem in question different
from a conventional tracking problem is that the tracking error, that is the difference be-
tween the command input and the controlled output, is not available as a physical entity, as
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it is defined as difference between two quantities residing at different (and possibly distant)
physical locations. Therefore the tracking error as such cannot be used to drive a feedback
controller, as it is the case in a standard tracking problem.
The actual tracking error not being available, it is natural to approach the problem by
reconstructing the tracking error starting from the information transmitted through the
communication channel. For the reconstruction to successfully take place, the information
must be suitably encoded. A possibility is to make use of a sufficiently large number of bits,
so as to render the magnitude of the difference between the true reference signal and the
reconstructed one negligible. However, in the framework of distributed control systems, the
constraint on the available bandwidth is usually tight and adopting encoding schemes which
require a large number of bits may not be practically feasible. The approach pursued in
this paper is rather to counteract the uncertainty due to the presence of the communication
channel by a suitable choice of the parameters of the regulator.
In Section 2, the formulation of the problem is made more precise, whereas the procedure for
encoding the reference command is described in Section 3. Section 4 introduces the regulator
which guarantees the achievement of the control goal using the reconstructed tracking error.
The main results of the paper are stated and proved in Section 5. The proof consists of two
steps. First, boundedness of the closed-loop trajectories are shown (Section 5.1), and then
asymptotic convergence to zero of the tracking error is concluded (Section 5.2). The results
are illustrated by an example in Section 6.

2 Problem statement

Generally speaking, the problem in question can be defined in the following terms. Consider
a single-input single-output nonlinear system modeled by equations of the form

ẋ = f(x) + g(x)u
y = h(x)

(1)

and suppose its output y is required to asymptotically track the output ydes of a remotely
located exosystem

ẇ = s(w) w ∈ R
r

ydes = yr(w) .
(2)

The problem is to design a control law of the form

ξ̇ = ϕ(ξ, y, wq)
u = θ(ξ, y, wq)

(3)

in which wq represents a sampled and quantized version of the remote exogenous input w, so
as to have the tracking error

e(t) = y(t)− yr(w(t)) (4)
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asymptotically converging to zero as time tends to ∞. Note that the controller in question
does not have access to e, which is not physically available, but only to the controlled output
and to a sampled and quantized version of the remotely generated command.

We will show in what follows how the theory of output tracking can be enhanced so as to
address this interesting design problem. In particular, we will show how, by incorporating
in the controller two (appropriate) internal models of the exogenous signals, the desired
control goal can be achieved. One internal model is meant to asymptotically reproduce, at
the location of the controlled plant, the behavior of the remote command input. The other
internal model, as in any tracking scheme, is meant to generate the “feed-forward” input
which keeps the tracking error identically at zero.

We begin by describing, in the following section, the role of the first internal model.

3 The encoder-decoder pair

In order to overcome the limitation due to the finite capacity of the communication channel,
the control structure proposed here has a decentralized structure consisting of two separate
units: one unit, co-located with the command generator, consists of an encoderwhich extracts
from the reference signal the data which are transmitted through the communication channel;
the other unit, co-located with the controlled plant, consists of a decoder which processes the
encoded received information and of a regulator which generates appropriate control input.

The problem at issue will be solved under a number of assumptions most of which are
inherited by the literature of output regulation and/or control under quantization. The
first assumption, which is a customary condition in the problem of output regulation, is
formulated as follows.

(A0) The vector field s(·) in (2) is locally Lipschitz and the initial conditions for (2) are
taken in a fixed compact invariant set W0. ⊳

The next assumption is, on the contrary, newer and motivated by the specific problem
addressed in this paper. In order to formulate rigorously the assumption in question, we
need to introduce some notation. In particular let |x|S denote the distance at a point x ∈ R

n

from a compact subset S ⊂ R
n, i.e. the number

|x|S := max
y∈S

|x− y|

and let
L0 = max

i∈[1,...,r]
(x,y)∈W0×W0

|xi − yi| . (5)

Furthermore, having denoted by Nb the number of bits characterizing the communication
channel constraint, let N be the largest positive integer such that

Nb ≥ r ⌈log2N⌉ (6)

where ⌈υ⌉, υ ∈ R, denotes the lowest integer such that ⌈υ⌉ ≥ υ.
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With this notation in mind, the second assumption can be precisely formulated as follows.

(A1) There exists a compact set W ⊃ W0 which is invariant for ẇ = s(w) and such that

w̄ 6∈ W ⇒ |w̄|W0>
√
r
L0

2N
. ⊳

W being compact and s(·) being locally Lipschitz, it is readily seen that there exists a
non decreasing and bounded function M(·) : R≥0 → R>0, with M(0) = 1, such that for all
w10 ∈ W and w20 ∈ W and for all t ≥ 0

|w1(t)− w2(t)| ≤ M(t)|w10 − w20| (7)

where w1(t) and w2(t) denote the solutions of (2) at time t passing through w10 and, respec-
tively, w20 at time t = 0.

This function, the sampling interval T , the number L0 defined in (5) and the number
N fulfilling (6), determine the parameters of the encoder-decoder pair, which are defined as
follows (see [10], [8], [5] for more details).

Encoder dynamics. The encoder dynamics consist of a copy of the exosystem dynamics,
whose state is updated at each sampling time kT , k ∈ N, and determines (depending on the
actual state of the exosystem) the centroid of the quantization region, and of an additional
discrete-time dynamics which determines the size of the quantization region. Specifically,
the encoder is characterized by

ẇe = s(we) we(kT ) = we(kT
−) + wq(k)

L(k)

N
we(0

−) ∈ W0

L(k + 1) =
√
r
M(T )

N
L(k) L(0) = L0

in which wq represents the encoded information given by, for i = 1, . . . , r,

wq,i(k) = sgn(wi(kT )− we,i(kT
−)) ·















⌈

N |wi(kT )− we,i(kT
−)|

L(k)

⌉

− 1

2
N even

⌈

N |wi(kT )− we,i(kT
−)|

L(k)
− 1

2

⌉

N odd .

At each sampling time kT , the vector wq(k) is transmitted to the controlled plant through the
communication channel and then used to update the state of the decoder unit as described in
the following. To this regard note that each component of the vector wq(k) can be described
by ⌈log2N⌉ bits and thus the communication channel constraint is fulfilled.

Decoder dynamics The decoder dynamics is a replica of the encoder dynamics and it is given
by

ẇd = s(wd) wd(kT ) = wd(kT
−) + wq(k)

L(k)

N
wd(0

−) = we(0
−)

L(k + 1) =
√
r
M(T )

N
L(k) L(0) = L0

(8)
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If, ideally, the communication channel does not introduce delays, it turns out that wd(t) ≡
we(t) for all t ≥ 0. Furthermore, it can be proved that the set W characterized in Assumption
(A1) is invariant for the encoder (decoder) dynamics and that the asymptotic behavior of
we(t) (wd(t)) converges uniformly to the true exosystem state w(t), provided that T is
properly chosen with respect to the number N and the function M(·). This is formalized in
the next proposition (see [8], [5] for details).

Proposition 1 Suppose Assumptions (A0)-(A1) hold and that the sampling time T and the
number N satisfy

N >
√
rM(T ) . (9)

Then:

(i) for any wd(0
−) ∈ W0 and w(0) ∈ W0, wd(t) ∈ W for all t ≥ 0;

(ii) for any wd(0
−) ∈ W0 and w(0) ∈ W0,

lim
t→∞

|w(t)− wd(t)| = 0

with uniform convergence rate, namely for every ǫ > 0 there exists T ∗ > 0 such that for all
initial states wd(0

−) ∈ W0, w(0) ∈ W0, and for all t ≥ T ∗, |w(t)− wd(t)| ≤ ǫ.

Proof. As W is an invariant set for ẇ = s(w), the proof of the first item reduces to show
that, for all k ≥ 0, if wd(kT

−) ∈ W then necessarily wd(kT ) ∈ W . For, note that this is
true for k = 0. As a matter of fact, since wd(0

−) ∈ W0 ⊂ W and by bearing in mind the
definition of wq, it turns out that |wd(0)−w(0)| ≤ √

rL0/2N which implies, by definition of
W in Assumption (A1), that wd(0) ∈ W . For a generic k > 0 note that, again by definition
of wq, it turns out that |wd(kT )− w(kT )| ≤ √

rL(k)/2N . But, by the second of (8) and by
condition (9), L(k) < L(k − 1) ≤ L0 yielding |wd(kT )− w(kT )| ≤ √

rL0/2N which implies
wd(kT ) ∈ W . This completes the proof of the first item. The second item has been proved
in [8], [5]. ⊳

Remark. By composing (6) with (9) it is easy to realize that the number of bits Nb and the
sampling interval T are required to satisfy the constraint

Nb ≥ r
⌈

log2
(√

rM(T )
)⌉

(10)

in order to have the encoder-decoder trajectories asymptotically converging to the exosystem
trajectories. Since the function M(·) depends on the exosystem dynamics and on the set
W0 of initial conditions for (2), equation (10) can be interpreted as a relation between the
bit-rate of the communication channel and the exosystem dynamics which must be satisfied
in order to remotely reconstruct the reference signal.
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4 The regulator

4.1 Basic hypotheses

As in most of the literature on regulation of nonlinear system, we assume in what follows that
the controlled plant has well defined relative degree and normal form. If this is the case and
if the initial conditions of the plant are allowed to vary on a fixed (though arbitrarily large)
compact set, there is no loss of generality in considering the case in which the controlled
plant has relative degree 1 (see for instance [1]). We henceforth suppose that system (1) is
expressed in the form

ż = f(z, y, µ) z ∈ R
n

ẏ = q(z, y, µ) + u y ∈ R
(11)

in which µ is a vector of uncertain parameters ranging in a known compact set P . Initial
conditions (z(0), y(0)) of (11) are allowed to range on a fixed (but otherwise arbitrary)
compact set Z × Y ⊂ R

n × R.
It is well known that, if the regulation goal is achieved, in steady-state (i.e when the

tracking error e(t) is identically zero) the controller must necessarily provide an input of the
form

uss = Lsyr(w)− q(z, yr(w), µ) (12)

(where Lsyr(·) stands for the derivative of yr(·) along the vector field s(·)) in which w and z
obey

µ̇ = 0
ẇ = s(w)
ż = f(z, yr(w), µ) .

(13)

As in [2], we assume in what follows that system (13) has a compact attractor, which
is also locally exponentially stable. To express this assumption in a concise form, it is
convenient to group the components µ, w, z of the state vector of (13) into a single vector
z = col(µ, w, z) and rewrite the latter as

ż = f0(z) .

Consistently, the map (12) is rewritten as

uss = q0(z) ,

and it is set Z = P ×W × Z. The assumption in question is the following one 1

1Recall that, if the positive orbit of a compact set X of initial conditions of a system

ẋ = f(x) (14)

is bounded, the ω-limit set of X under the flow of (14) – denoted ω(X) – is a nonempty, compact invariant set
which attracts X uniformly. If ω(X) is in the interior of X , then X is also stable in the sense of Lyapunov.
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(A2) there exists a compact subset Z of P ×W × R
n which contains the positive orbit of

the set Z under the flow of (13) and ω(Z) is a differential submanifold (with boundary) of
P ×W × R

n. Moreover there exists a number d1 > 0 such that

z ∈ P ×W × R
n , |z|ω(Z) ≤ d1 ⇒ z ∈ Z .

Finally, there exist m ≥ 1, a > 0 and d2 ≤ d1 such that

z0 ∈ P ×W × R
n , |z0|ω(Z) ≤ d2 ⇒ |z(t)|ω(Z) ≤ me−at|z0|ω(Z) ,

in which z(t) denotes the solution of (13) passing through z0 at time t = 0. ⊳

In what follows, the set ω(Z) will be simply denoted as A0. The final assumption is an
assumption that allows us to construct an internal model of all inputs of the form uss(t) =
q0(z(t)), with z(t) solution of (13) with initial condition in A0. This assumption, which can
be referred to as assumption of immersion into a nonlinear uniformly observable system, is
the following one.

(A3) There exists an integer d > 0 and a locally Lipschitz map ϕ : Rd → R such that, for
all z ∈ A0, the solution z(t) of (13) passing through z0 at t = 0 is such that the function
u(t) = q0(z(t)) satisfies

u(d)(t) + ϕ(u(d−1)(t), . . . , u(1)(t), u(t)) = 0 . ⊳ (15)

4.2 The design of the regulator

Using the technique described in [2], the first step is the construction of an internal model for
(13), viewed as an autonomous system with output (12). To this end, consider the sequence
of functions recursively defined as

τ1(z) = q0(z) , . . . , τi+1(z) =
∂τi
∂z

f0(z)

for i = 1, . . . , d− 1, with d as introduced in assumption (A3), and consider the map

τ : P ×W × R
n → R

d

(µ, w, z) 7→ col(τ1(z), τ2(z), . . . , τd(z)) .

If k, the degree of continuous differentiability of the functions in (11), is large enough, the
map τ is well defined and C1. In particular τ(A0), the image of A0 under τ is a compact
subset of Rd, because A0 is a compact subset of P ×W × R

n.
Let ϕc : Rd → R be any locally Lipschitz function of compact support which agrees

on τ(A0) with the function ϕ defined in (A3), i.e. a function such that, for some compact
superset S of τ(A0) satisfies

ϕc(η) = 0 for all η 6∈ S
ϕc(η) = ϕ(η) for all η ∈ τ(A0).

7



With this in mind, consider the system

ξ̇ = Φc(ξ) +G(uss − Γξ) (16)

in which

Φc(ξ) =













ξ2
ξ3
· · ·
ξd

−ϕc(ξ1, ξ2, . . . , ξd)













, G =













κcd−1

κ2cd−2

· · ·
κd−1c1
κdco













, Γ = ( 1 0 · · · 0 ) ,

the ci’s are such that the polynomial λd+c0λ
d−1+· · ·+cd−1 = 0 is Hurwitz and κ is a positive

number. As shown in [2], if κ is large enough, the state ξ(t) of (16) asymptotically tracks
τ(z(t)), in which z(t) is the state of system (13). Therefore Γξ(t) asymptotically reproduces
its output (12), i.e. the steady state control uss(t). As a matter of fact, the following result
holds.

Lemma 1 Suppose assumptions (A1) and (A2) hold. Consider the triangular system

ż = f0(z)

ξ̇ = Φc(ξ) +G(q0(z)− Γξ) .
(17)

Let the initial conditions for z range in the set Z and let Ξ be an arbitrarily large compact
set of initial condition for ξ. There is a number κ∗ such that, if κ ≥ κ∗, the trajectories of
(17) are bounded and

graph(τ |A0) = ω(Z× Ξ) .

In particular graph(τ |A0) is a compact invariant set which uniformly attracts Z×Ξ. Moreover
graph(τ |A0) is also locally exponentially attractive.

Note that, as a consequence of assumption (A1), of the fact that τ(·) is a continuous
vector field and of the fact that the compact set Ξ can be taken arbitrarily large, it is
possible to assume, without loss of generality, the existence of a positive d2 such that

z ∈ P ×W × R
n , ξ ∈ R

d , |(z, ξ)|ω(Z×Ξ) ≤ d2 ⇒ (z, ξ) ∈ Z× Ξ .

In view of Lemma 1, it would be natural – if the true error variable e were available for
feedback purposes – to choose for (11) a control of the form

ξ̇ = Φc(ξ)−Gke
u = Γξ − ke ,

(18)

with k a large number. This control, in fact, would solve the problem of output regulation
(see [2]). The true error e not being available, we choose instead

ê = y − yr(wd) (19)
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and the controller accordingly as

ξ̇ = Φc(ξ)−Gkê
u = Γξ − kê .

(20)

The result which will be proven next is that there exists k∗ > 0 such that if k ≥ k∗ the
regulator designed above solves the problem in question (provided that N and T satisfy the
condition of Proposition 1).

5 Main results

5.1 Trajectories of the closed loop system are bounded

To prove that the proposed regulator solves the problem, we show first of all the trajectories
of the controlled system, namely those of the system

ẇd = s(wd) wd(kT ) = wd(kT
−) + wq(k)

L(k)

2N
ż = f(z, y, µ)

ẏ = q(z, y, µ) + Γξ − k(y − yr(wd))

ξ̇ = Φc(ξ)−Gk(y − yr(wd))

(21)

are bounded. To study trajectories of (21) it is convenient to replace the coordinate y by

ê = y − yr(wd)

to obtain the system

ẇd = s(wd)

ż = f(z, ê + yr(wd), µ)

ξ̇ = Φc(ξ)−Gkê

˙̂e = q(z, ê + yr(wd), µ)− Lsyr(wd) + Γξ − kê .

(22)

This system can be further simplified by changing the state variable ξ into ξ̃ = ξ −Gê and
setting p = col(µ, wd, z, ξ̃), so as to obtain a system of the form

ṗ = F0(p) + F1(p, ê)ê
˙̂e = H0(p) +H1(p, ê)ê− kê ,

(23)

in which

F0(p) =









0
s(wd)

f(z, yr(wd), µ)
Φc(ξ̃) +G(−q(z, yr(wd), µ) + Lsyr(wd)− Γξ̃)
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H0(p) = q(z, yr(wd), µ)− Lsyr(wd) + Γξ̃

and F1(p, ê), H1(p, ê) are suitable continuous functions.
With this notation in mind, we state the next proposition which claims that a large value

of k succeeds in rendering bounded the trajectories of the switched nonlinear system (23)
provided that the sampling interval T is sufficiently large.

Proposition 2 Consider system (21) with initial conditions in P×W ×Z×Y ×Ξ. Suppose
assumptions (A0)-(A3) hold. Let κ be chosen as indicated in Lemma 1. Then there exist
T ∗ > 0 and k∗ > 0 such that for all sampling intervals T > T ∗ and all k ≥ k∗ the trajectories
are bounded in positive time.

Proof. System (23) is apparently identical to the closed-loop system already studied in [2],
but with the exception that, every T units of time, wd is being “reset” as

wd(kT ) = wd(kT
−) + wq(k)

L(k)

2N

and ê is being “reset” as

ê(kT ) = ê(kT−)− yr(wd(kT
−) + wq(k)

L(k)

2N
) + yr(wd(kT

−)) .

With this in mind, we proceed to study the behavior of (23) on the time interval [0, T ).
Observe that system

ṗ = F0(p) (24)

coincides with system (17), the only difference being that the component w of z is now
written as wd and ξ is now written as ξ̃. Thus, from Lemma 1, it can be asserted that in
this system all trajectories with initial conditions in Z × Ξ are attracted by the compact
invariant set

A = {(z, ξ) ∈ A0 × R
d : ξ = τ(z)} . (25)

Moreover, by construction, the function H0(p) vanishes on this set.
Let D denote the domain of attraction of A. Then, as shown for instance in [4], for

any given arbitrarily small ǫ, it is possible to claim the existence of a continuous function
V : D → R having the following properties:

(a) V (p) = 0 if p ∈ A and V (p) > 0 everywhere else,

(b) V (·) is proper on D,

(c) for some positive b
V (p) ≤ b ⇒ |p|A ≤ ǫ ,

10



(d) for some positive g < b, V (·) is locally Lipschitz on the set Dg = {p ∈ D : V (p) > g},
(e) for any p ∈ Dg ,

lim sup
h→0+

1

h
[V (φ(h, p))− V (p)] ≤ −1

in which φ(t, p) denotes the flow of (24).

Let now ǫ < d2 (with d2 defined after Lemma 1), pick the function V accordingly and note
that by construction

V (p) ≤ b ⇒ |p|A ≤ ǫ ≤ d2 ⇒ p ∈ Z× Ξ . (26)

Moreover pick numbers a and b1, with a > b such that Z×Ξ ⊂ V −1([0, a]) (which is possible
as V is proper on D), and g < b1 < b, and set

S = {p ∈ D : b1 ≤ V (p) ≤ a + 1} .

Let c and ∆ be positive numbers such that

|y − yr(w)| ≤ c for all y ∈ Y and w ∈ W0

and
|yr(w)− yr(wd)| ≤ ∆ for all wd ∈ W and w ∈ W0

and note that

|ê(0)| = |y(0)− yr(wd(0))| = |y(0)− yr(w(0)) + yr(w(0))− yr(wd(0))|
≤ |y(0)− yr(w(0))|+ |yr(w(0))− yr(wd(0))| ≤ c+∆ .

Finally, let f̄ and h̄ be defined as

f̄ := max
p∈V −1([0,a+1])

|ê|≤c+∆+1

|F1(p, ê)| h̄ := max
p∈V −1([0,a+1])

|ê|≤c+∆+1

|H0(p) +H1(p, ê)ê| .

Claim 1: There exists T ∗ > 0 and k∗ > 0 such that for any T ≥ T ∗, any k ≥ k∗ and any
ℓ ≥ 0

|ê(ℓT )| ≤ c+∆

p(ℓT ) ∈ Z× Ξ
⇒ |ê((ℓ+ 1)T−)| ≤ c

p((ℓ+ 1)T−) ∈ Z× Ξ
. ⊳ (27)

To prove the claim, we derive two basic inequalities. The first one is about the dynamics
of ê. Looking at the bottom equation of (23) and bearing in mind the definition of h̄, standard
arguments can be used to claim that – if on some time interval [t0, (ℓ + 1)T ), t0 ≥ ℓT , the
state of (23) satisfies |ê(t)| ≤ c+∆+ 1 and p(t) ∈ V −1([0, a+ 1]) – then

|ê(t)| ≤ e−k(t−t0)|ê(t0)|+
h̄

k
∀t ∈ [t0, (ℓ+ 1)T ) . (28)
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The second inequality is about the dynamics of p. Looking at the top equation of (23)
and taking the Dini’s derivative of V (p(t)) we see that – if on some time interval [t0, (ℓ+1)T ),
with t0 ≥ ℓT , the state of (23) satisfies |ê(t)| ≤ c+∆+ 1 and p(t) ∈ S – then

D+V (p(t)) ≤ −1 + LV f̄ |ê(t)| ≤ −1 + LV f̄(e
−k(t−t0)|ê(t0)|+

h̄

k
) ∀t ∈ [t0, (ℓ+ 1)T ) ,

(29)
in which LV is such that |V (p) − V (q)| ≤ LV |p − q| ∀ p, q ∈ S. From this, using the
appropriate comparison lemma, we obtain

V (p(t)) ≤ V (p(t0))− (1− LV f̄ h̄

k
)(t− t0) +

LV f̄ |ê(t0)|
k

∀t ∈ [t0, (ℓ+ 1)T ) . (30)

In order to be able to prove Claim 1, we need this auxiliary result.

Claim 2: there exists k∗∗ such that for any k ≥ k∗∗, T ≥ T ∗ and ℓ ≥ 0

|ê(ℓT )| ≤ c+∆

p(ℓT ) ∈ V −1([0, a])
⇒ |ê(t)| ≤ c+∆+ 1

p(t) ∈ V −1([0, a+ 1])
∀ t ∈ [ℓT, (ℓ+ 1)T ) . ⊳

(31)
This claim can be proved by contradiction. As a matter of fact suppose that (31) is not true,
namely that there exists a time T ′ ∈ [ℓT, (ℓ + 1)T ) such that either |ê(T ′)| > c + ∆ + 1 or
V (T ′) > a + 1 (with a mild abuse of notation we write V (·) for V (p(·))). By continuity of
the trajectories with respect to time, this means that there exists a time T ′′ ≥ ℓT , T ′′ ≤ T ′,
such that either

|ê(t)| < c+∆+ 1 t ∈ [ℓT, T ′′) |ê(T ′′)| = c+∆+ 1 and V (t) ≤ a+ 1 t ∈ [ℓT, T ′′]
(32)

or

V (t) < a + 1 t ∈ [ℓT, T ′′) V (T ′′) = a + 1 and |ê(t)| ≤ c+∆+ 1 t ∈ [ℓT, T ′′] .
(33)

But if (32) were true, by (28) taking t0 = ℓT and k ≥ 2h̄, we would have that

|ê(T ′′)| ≤ e−k(T ′′−ℓT )|ê(ℓT )|+ h̄

k
≤ c+∆+

h̄

k
≤ c+∆+

1

2

which contradicts |ê(T ′′)| = c + ∆ + 1. A similar contradiction would be obtained if (33)
were true. In fact, let t0, ℓT ≤ t0 < T ′′, be any time such that V (t0) = a and V (t) ≥ a for
all t ∈ [t0, T

′′]. Using (30) and taking k ≥ max{LV f̄ h̄, 2LV f̄(c+ 1)}, we have that

V (p(T ′′)) ≤ a− (1− LV f̄ h̄

k
)(T ′′ − t0) +

LV f̄(c+ 1)

k
≤ a+

1

2

which contradicts V (T ′′) = a+ 1. From this, Claim 2 follows by taking

k∗∗ = max{2h̄, LV f̄ h̄, 2LV f̄(c+∆+ 1)} .
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⋄(End proof Claim 2)

Having proven that |ê(t)| ≤ c +∆+ 1 and p(t) ∈ V −1([0, a + 1]) on the entire time interval
[ℓT, (ℓ + 1)T ), the desired Claim 1 follows again from arguments based on the bounds (28)
and (30). To show that a large value of k succeeds in recovering |ê((ℓ+ 1)T−)| ≤ c, just set

k ≥ max{2h̄
c
,
1

T
ln

2(c+∆)

c
}

in the estimate (28) evaluated with t0 = ℓT .
To show that a large value of k succeeds in recovering p((ℓ + 1)T−) ∈ Z × Ξ we prove

that if
T ≥ T ∗ = 2(a− b) + 1

then V (p((ℓ + 1)T−)) ≤ b which, by (26), implies p((ℓ + 1)T−) ∈ Z × Ξ. To this end, we
distinguish two cases. If p(t) ∈ S for all t ∈ [ℓT, (ℓ+ 1)T ), just set

k ≥ max{2LV f̄(c+∆+ 1) , 2LV f̄ h̄}

in the estimate (30) with t0 = ℓT to obtain V ((ℓ + 1)T−) ≤ b. The condition p(t) ∈ S
for all t ∈ [ℓT, (ℓ + 1)T ) can be violated if and only if there are times in [ℓT, (ℓ + 1)T )
at which V (t) < b1 (recall the definition of S and the fact that V (t) ≤ a + 1 for all
t ∈ [ℓT, (ℓ + 1)T )). Let this be the case. If V ((ℓ + 1)T−) < b1 < b, the claim is triv-
ially true. If not, let T ′ ∈ [ℓT, (ℓ + 1)T ) be such that V (T ′) = b1 and b1 ≤ V (t) ≤ a + 1 for
all t ∈ [T ′, (ℓ + 1)T ). On this time interval one can still use (30) with t0 = T ′ to conclude
that if k ≥ LV f̄(c+∆+ 1)/(b− b1) then V (t− T ′) ≤ b for all t ∈ [T ′, (ℓ+ 1)T ) from which
the Claim 1 follows. ⋄(End proof of Claim 1)

With this result at hand, Proposition 2 can be easily proved by subsequent applications of
Claim 2. To this end note that p(0) ∈ Z×Ξ and, by definition of c and ∆, |ê(0)| ≤ c ≤ c+∆,
from which Claim 1 evaluated for ℓ = 0 yields |ê(T−)| ≤ c and p(T−) ∈ Z×Ξ. Suppose now
that, for some ℓ > 0, |ê(ℓT−)| ≤ c and p(ℓT−) ∈ Z× Ξ. Then, after the switch,

|ê(ℓT )| = |y(ℓT )− yr(wd(ℓT ))| = |y(ℓT−)− yr(wd(ℓT ))|
= |y(ℓT−)− yr(wd(ℓT

−)) + yr(wd(ℓT
−))− yr(wd(ℓT )|

≤ |ê(ℓT−)|+ |yr(wd(ℓT
−))− yr(wd(ℓT ))| ≤ |ê(ℓT−)|+∆ ≤ c +∆

and, by item (i) of Proposition 1, wd(ℓT ) ∈ W . The latter, by bearing in mind the definition
of the set Z and the definition of p, yields p(ℓT ) ∈ Z×Ξ from which the result of Proposition
2 follows. ⊳

Proposition 2 shows that trajectories of the controlled system remain bounded if the
time interval T exceeds a minimum number T ∗ (minimal “dwell-time”) which depends on
the parameters of the controlled system and on the sets of initial conditions. This, however,
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may be in contrast with relation (10) which, bearing in mind that M(·) is an increasing
function, requires that the sampling interval T is small enough. In the case the dwell-time
T ∗ is not compatible with (10), a simple modification of the decoder structure helps solving
the problem. Let Nb be given, let T̄ denote the minimal value of T compatible with (10)
and let ℓ be any positive integer such that

ℓT̄ ≥ T ∗ .

Consider now a “second level” decoder dynamics defined as

ẇ′
d = s(w′

d) w′
d(0) = wd(0) (34)

whose state w′
d is periodically reset, every ℓT̄ units of time, to the value of the “first level”

decoder dynamics (8), that is as

w′
d(kℓT̄ ) = wd(kℓT̄ ) for all k ≥ 0 .

In other words w′
d provides an under-sampled version of the first-level decoder dynamics (8)

with the under-sampling period ℓT̄ such that the constraint on the minimal dwell-time is
respected.

The same arguments used to prove Proposition 1 show that w′
d(t) ∈ W for all t ≥ 0 and

furthermore
lim
t→∞

|w′
d(t)− w(t)| = 0

with uniform convergence rate.
Consider now the regulator (20) in which ê is defined as in (19) but with wd replaced by

w′
d. It is easy to realize that all the analysis carried out in this section can now be repeated

by replacing the decoder dynamics (8) by (34), the decoder variable wd by w′
d, and the time

interval T by ℓT̄ . In particular by Proposition 2 and by the fact that ℓT̄ ≥ T ∗ we conclude
that the trajectories of the controlled system are bounded if k is chosen sufficiently large.
This and the fact that w′

d(t) converges asymptotically to w(t) with uniform convergence rate
are the crucial properties needed to conclude that the proposed regulator solves the problem
in question as precisely stated and proved in the next subsection.

5.2 The tracking error converges to zero

To prove that the tracking error converges to zero, it is useful to observe that, if the coordinate
y of (21) is replaced by

e = y − yr(w)

the system in question can be also rewritten as

ẇ = s(w)

ż = f(z, e+ yr(w), µ)

ξ̇ = Φc(ξ) +G(−ke) +G(−kẽ)

ė = q(z, e+ yr(w), µ)− Lsyr(w) + Γξ − ke− kẽ

(35)

14



having set
ẽ = ê− e .

The same change of variables used to put (22) in the form (23) yields now a system of
the form

ṗ = F0(p) + F1(p, e)e
ė = H0(p) +H1(p, e)e− ke− kẽ ,

(36)

in which p = col(µ, w, z, ξ̃) and F0(p), F1(p, e), H0(p), H1(p, e) are the same as in (23). This
system can be viewed as a “perturbed” version of system

ṗ = F0(p) + F1(p, e)e
ė = H0(p) +H1(p, e)e− ke

(37)

whose asymptotic properties have been investigated in [4].
The following result is a minor enhancement of the main result of [4]. Let V (·) be the

positive definite function introduced in the proof of Lemma 1, set P = {p : V (p) ≤ a} with
a chosen so that P ×W ×Z × Ξ ⊂ P, and set E = {e : |e| ≤ c}. Moreover, let A be the set
defined by (25).

Lemma 2 Consider system (37) in which F0(p), F1(p, e), H0(p), H1(p, e) are defined as be-
fore and initial conditions are taken in P × E. Suppose assumptions (A0)-(A3) hold. Let
κ be chosen as indicated in Lemma 1. Then there is k∗ such that, if k > k∗, the following
holds:

(i) the positive orbit of P ×E under the flow of (37) is bounded and

lim
t→∞

|p(t)|A = 0, lim
t→∞

e(t) = 0 .

(ii) for any ε > 0, there exist numbers δ1 > 0 and δ2 > 0 such that, if |p0|A ≤ δ1 and
|e0| ≤ δ1, for any continuous function u(t) satisfying |u(t)| ≤ δ2 for all t ≥ 0, the solution
p(t), e(t) of the perturbed system

ṗ = F0(p) + F1(p, e)e
ė = H0(p) +H1(p, e)e− ke + u(t)

(38)

with initial conditions p(0) = p0 and e(0) = e0 satisfies

|p(t)|A ≤ ε, |e(t)| ≤ ε, ∀t ≥ 0 .

Proof. Item (i) has already been proven in [4]. The proof of item (ii) consists in a minor
modification of the arguments used in [4] to prove item (i). Consider the Locally Lipschitz
Lyapunov function U(p) defined in [4], which – for some a1 < 1, λ > 0 and L̄ > 0 – satisfies

a1|p|A ≤ U(p) ≤ |p|A ,
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and
D+U(p(t)) ≤ −λU(p(t)) + L̄f̄ |e(t)|

along the integral curve p(t), so long as p(t) remains sufficiently close to A (see (24) in [4]).
Consider now, for (38), the candidate Lyapunov function

W (p, e) =
1

2
(U2(p) + e2)

which trivially satisfies

a1
2
(|p|2A + e2) ≤ W (p, e) ≤ 1

2
(|p|2A + e2) .

Taking its Dini derivative along the trajectories of (38), we can obtain an estimate of the
form (we omit the argument t for convenience)

D+W (p, e) ≤ −λU2(p) + L̄f̄U(p)|e|+ β|p|A|e| − (k − k̄)|e|2 + |u||e|

so long as p(t) remains sufficiently close to A, in which β and k̄ are fixed positive numbers.
Using the above estimates for U(p), it is easy to deduce that

D+W (p, e) ≤ (U(p) |e| )
( −λ 1

2
(L̄f̄ + β

a1
)

1
2
(L̄f̄ + β

a1
) −(k − k̄ − 1

2
)

)(

U(p)
|e|

)

+
1

2
|u|2 .

Clearly, there is a value k∗ > 0 and a number a > 0 such that, if k ≥ k∗

(U(p) |e| )
( −λ 1

2
(L̄f̄ + β

a1
)

1
2
(L̄f̄ + β

a1
) −(k − k̄ − 1

2
)

)(

U(p)
|e|

)

≤ −a

2
(U2(p) + e2) ≤ −aW (p, e) ,

and this yields, using the appropriate comparison lemma,

W (p(t), e(t)) ≤ −e−atW (p0, e0) +
1

2a
max
τ∈[0,t]

|u2(t)| ,

for all t ≥ 0. From this, the result follows by standard arguments. ⊳

We are now ready to prove the main result of the paper.

Proposition 3 Consider system (21) with initial conditions in P×W ×Z×Ξ×Y . Suppose
assumptions (A0)-(A3) hold. Let κ be chosen as indicated in Lemma 1 and k as indicated
in Proposition 2 and in Lemma 2. Then

lim
t→∞

e(t) = 0 .
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Proof. As already mentioned, system (21) can be written in the form (36). Moreover, if
the initial condition of (21) is taken in the set P ×W ×Z ×Ξ×Y , the corresponding initial
condition of (36) is in P×E. In view of the result of Lemma 2, item (ii), the result is proven
if we are able to show that, given any pair of numbers δ1 and δ2, there is a time t̄ such that

|p(t̄)|A ≤ δ1, |e(t̄)| ≤ δ1 (39)

and
|kẽ(t)| ≤ δ2, ∀t ≥ t̄ . (40)

To this end, recall that by definition

ẽ = ê− e = −yr(wd) + yr(w) .

Hence, since yr(·) is continuous, in view of Proposition 1 we have that limt→∞ ẽ(t) = 0. As
a consequence, there is a time t∗, dependent on δ2, such that (40) is fulfilled for all t̄ ≥ t∗

(note that the coefficient k - which is possibly a large number - is now fixed). Thus the only
critical issue is to make sure that (39) holds for some t̄ ≥ t∗. To this end, one can use the
following argument, suggested in [6].

Consider a system
ẋ = f(x) + u(t) (41)

in which f(·) is locally Lipschitz and u(t) is a piecewise-continuous function. Let x(t, t0, x0, u)
denote the integral curve passing through x0 at time t = t0. Suppose u(t) satisfies

lim
t→∞

u(t) = 0 ,

and that, for a given x0 and a given T > 0, there is a compact set X such that

x(t, 0, x0, u) ∈ X ∀t ≥ 0 , (42)

x(t, ℓT, x(ℓT, 0, x0, u), 0) ∈ X ∀t ≥ ℓT, ∀ ℓ ∈ N . (43)

Claim 3: for any t2 > 0 and any δ > 0, there is a ℓ∗ such that, for all ℓ ≥ ℓ∗,

|x(t2 + ℓT, 0, x0, u)− x(t2 + ℓT, ℓT, x(ℓT, 0, x0, u), 0)| ≤ δ . ⊳ (44)

To prove this claim, set x(t) = x(t, 0, x0, u) and x̂(t) = x(t, ℓT, x(ℓT, 0, x0, u), 0). For all
t ≥ ℓT , we have

x(t) = x(ℓT ) +

∫ t

ℓT

f(x(s))ds+

∫ t

ℓT

u(s)ds

and

x̂(t) = x(ℓT ) +

∫ t

ℓT

f(x̂(s))ds
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Since f(·) is locally Lipschitz and X is compact, there is L such that |f(x)−f(y)| ≤ L|x−y|
for all x and y in X . Then

|x(t)− x̂(t)| ≤ L

∫ t

ℓT

|x(s)− x̂(s)|ds+
∫ t

ℓT

|u(s)|ds .

Since u(t) converges to 0 as t → ∞, given any ε there exists Tε such that |u(t)| ≤ ε for all
t ≥ Tε. For any ℓT ≥ Tε we have

|x(t)− x̂(t)| ≤ L

∫ t

ℓT

|x(s)− x̂(s)|ds+ ε(t− ℓT ) ,

from which Gronwall-Bellman’s lemma yields

|x(t)− x̂(t)| ≤ ε

L
(eL(t−ℓT ) − 1)

with t ≥ ℓT , hence

|x(ℓT + t2)− x̂(ℓT + t2)| ≤
ε

L
(eLt2 − 1) .

Given any t2 > 0 and δ > 0, set ε = δL/(eLt2 − 1) and choose ℓ∗ so that ℓ∗T ≥ Tε. This
proves Claim 3.

With this result at hand, it is easy to complete the proof of the Proposition. To this end,
we set x = col(p, e), and identify system (37) with a system of the form

ẋ = f(x) (45)

and system (36) with a system of the form (41). The assumptions under which the previous
claim holds are satisfied, with X taken as the set of all (p, e) such that p ∈ V −1([0, a+1]) and
|e| ≤ c+ 1. In fact, the proof of Proposition 2 shows that trajectories of (36) are contained
in this set X , i.e. that condition (42) holds. The same proof also shows that at each time
ℓT , where T is the sampling interval (of the over-sampling period according to the discussion
at the end of the previous subsection), trajectories of (36) are such that p ∈ V −1([0, a]) and
|e| ≤ c. This and the fact that system (37) coincides with (36) with u = 0 in turn guarantees,
by Proposition 2, that also condition (43) holds. Since x(t, 0, x(ℓT, 0, x0, u), 0) is a solution
of (37) with initial condition in P × E, we know from Lemma 2, item (i), that – given any
δ1 > 0 - there exists t2 such that the p and e components of x(t2, 0, x(ℓT, 0, x0, u), 0) satisfy

|p(t2)|A ≤ δ1
2
, |e(t2)| ≤

δ1
2
.

Using now the Claim 3 with δ = δ1/2 and the fact that

x(t2 + ℓT, ℓT, x(ℓT, 0, x0, u), 0) = x(t2, 0, x(ℓT, 0, x0, u), 0) ,

we deduce that the p and e components of x(t2 + ℓT, 0, x0, u) satisfy, for all ℓ ≥ ℓ∗

|p(t2 + ℓT )|A ≤ δ1, |e(t2 + ℓT )| ≤ δ1 .

This is what was needed to complete the proof of the Proposition. ⊳
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6 Simulation Results

We consider the problem of synchronizing two oscillators located at remote places through
a constrained communication channel. The master oscillator (playing the role of exosystem)
is a Van der Pol oscillator described by

ẇ1 = w2 + ǫ(w1 + aw3
1)

ẇ2 = −w1
(46)

whose output yref = w2 must be replied by the output y of a remote system of the form

ẏ = u . (47)

Simple computations show that, in this specific case, the steady state control input uss

coincides with uss = −w1 and the assumption (A3) is satisfied by

ξ̇1 = ξ2
ξ̇2 = f(ξ1, ξ2)

uss = ξ1

where f(ξ1, ξ2) = −ξ1 − ǫ(ξ2 − 3aξ21ξ2) through the map

τ(w) =
(

−w1 −w2 + ǫ (w1 − aw3
1)

)T

We consider a Van der Pol oscillator with ǫ = 1.5 and a = 1. The regulator (20) is tuned
choosing κ = 3, G = (12 36)T and k = 8. We consider two different simulative scenarios
which differ for the severity of the communication channel constraint. In the first case we
suppose that the number of available bits is Nb = 2 yielding, according to (6) and to the fact
that r = 2, N = 2. In this case, for a certain set of initial conditions, condition (9) is fulfilled
with T = 0.15 s. In the second case the available number of bits is assumed Nb = 4 from
which (6) and (9) yield a bigger N and T respectively equal to N = 4 and T = 0.5 s. The
simulation results, obtained assuming the exosystem (46) and the system (47) respectively
at the initial conditions w(0) = (1, 0) and y(0) = 5, are shown in the figures 1-5 for the
first scenario and figures 2-6 for the second one. In particular figure 1 (respectively 2) shows
the quantized variable wq transmitted from the encoder to the decoder and used to reset
the respective dynamics according to the rule described in Section 3. Note that in the first
scenario represented in figure 1 each of the two components of the vector wq, taking value
in the set {−1/2, 1/2}, can be transmitted using 1 bit. On the other hand in the second
scenario, represented in figure 2, the transmission of each component of wq, whose value
are in the set {−3/2, −1/2, 1/2, 3/2} requires 2 bits. Figure 3 (respectively 4) shows in
the left-half side the error, as a function of time, between the exosystem and the encoder
(decoder) state and in the right-half side the phase portrait of the Van der Pol oscillator with
overlapped the actual state trajectory of the encoder (decoder). Finally figure 5 (respectively
6) plots the the tracking error e(t) = y(t)− yr(t) on the left-half side and the control input
u(t) on the right-half side from which it is possible to see that in both the control scenarios
the synchronization between (46) and (47) is achieved.
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Figure 1: First control scenario (N = 2, T = 0.15 s): behavior of the encoded variables
wq1(t) (left) and wq2(t) (right).

7 Conclusions

We have discussed the problem of asymptotically tracking a reference signal which is gen-
erated by a remote exosystem, and transmitted through a finite bandwidth communication
channel. Although only an estimate of the actual tracking error is available to the regulator,
a suitable choice of the controller parameters allows us to achieve the control goal while
fulfilling the constraint on the bandwidth of the channel.
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Figure 5: First control scenario (N = 2, T = 0.15 s). Left: time behavior of the reference
trajectory yr(t) (dotted line) and of the controlled output y(t) (solid line). Right: time
behavior of the control input u(t).

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

Time (s)

y(t), y
 r
(t)

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

Time (s)

u(t)

Figure 6: Second control scenario (N = 4, T = 0.5 s). Left: time behavior of the reference
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