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Abstract

In this paper, the problem of reducing a given LTI system into a left &t ifyertible one is addressed
and solved with the standard tools of the geometric control theory. First, itb@ikhown how
an LTI system can be turned into a left invertible system, thus preservingysem properties
like stabilizability, phase minimality, right invertibility, relative degree and infiniteozstructure.
Moreover, the additional invariant zeros introduced in the left invertijdtesn thus obtained can be
arbitrarily assigned in the complex plane. By duality, the scheme of a right@meill be derived
straightforwardly. Moreover, the squaring down problem will be aslslgd. In fact, when the left
and right reduction procedures are applied together, a system withegmalmumber of inputs and
outputs is turned into a square and invertible system. Furthermore, asraplexawill be shown
how these techniques may be employed to weaken the standard assumptioimeditebility of the

plant in many optimization problems.
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1 Introduction

In the last two decades, many contributions on the conversion of LTIregsteo left and right invertible
systems have been presented in the literature, motivated by the fact tat slasign and synthesis pro-
cedures require that the plant s left or right invertible or, in some cagaaye and invertible, [10, 12, 20].
It is an easily established fact that the introduction of a suitable static comtperas the input of a non
left invertible system yields a left invertible system, for example by reduciaghtimber of inputs of
the given system. This is the simplest structure of a left inverter, and veasmted in the first papers
that appeared in the literature on this issue, see [11] and referenceis thEhe main drawback of that
approach, however, was then shown to be the inevitable introductiomassignable additional invari-
ant zeros in the resulting system, [8]. Hence, in the case when any efriesinvariant zeros was non
minimum phase, the performances of the closed-loop behaviour weriyteféected.

It was then observed that in order to preserve phase minimality after thgidgft) reduction, the use
of dynamic pre (post) compensators was mandatory, [3, 18, 16, 10Jd @larticular, in [18, 16], the
design procedure of left and right inverters was carried out fortlstmd non strictly proper systems,
respectively, by the exploitation of the so-callggecial coordinate basifor the representation of the
plant (see also [17] for details). In this way, it was proven that thesgensators enabled the introduc-
tion of additional non minimum phase zeros to be avoided. Moreover, sometanpfeatures of the
given system, such as stabilizability and infinite zero structure, wererpessim the resulting system.
The procedure proposed in this paper provides a new solution to thadefigdnt reduction of a continu-
ous or discrete-time LTI system. In particular, the first is based on the irttioh of a static compensator
at the input of the given system, working jointly with an algebraic state-f@gldbnit, whose purpose is
that of arbitrarily assigning all the additional invariant zeros introduceterieft invertible system thus
obtained. This compensation scheme preserves the simplicity of the aforemeeirgtatic compensators,
but avoids the introduction of possibly non minimum phase zeros. Morgihveproposed left inverter
ensures that the additional invariant zeros are all assignable in the cophgohe, while the stabilizability
and the functional controllability of the original system are preservedaitiqular, if the given system
is right invertible, so is the resulting system, and the relative degree doekarge. Furthermore, the
infinite zero structure of the original system is also preserved.

A straightforward dualization of the aforementioned procedure solvgsrtidem of reducing a system
into a right invertible one, thus preserving key properties of the origiysiem, such as phase minimal-
ity, detectability, functional observability and infinite zero structure.

Differently from the other approaches presented in the literature, theegeo setting herein employed
is coordinate-free in nature, and leads to intuitive results without the neegbarting to changes of
basis like the SCB, which on the one hand clearly displays the inner strdttire underlying system,

but, on the other hand, is not computationally robust as recently showh iA farther contribution of



this work is that of generalizing the conceptsirgbut unobservability subspae@sdoutput reachability
subspacéntroduced in [4] to non purely dynamical systems.

An important field of application of the material herein developed conceengigsar quadratic optimiza-
tion. As is well-known, in many LQH, andH., problems the standard assumption of left invertibility of
the system is introduced, in order to ensure the uniqueness of the optlotadrsd9, 12, 20]. Moreover,

in the discrete-time case this assumption is necessary for the discrete-timmigldRibcati equation
DARE to admit a stabilizing solution. In Section 6 it will be shown how the left isi@r technique
herein described can be employed to derive a parametrization of all ti@aslof the infinite-horizon

LQ regulator when the underlying system is not left invertible.

Notation. Throughout this paper, we denote Bythe positive integers including zero. The symbgl 0
denotes the origin of the vector spdk& The image and the kernel of matixe R"*™ are denoted by
imAandker A respectively. Given a subspageof R", the symbolA~1 2% stands for the inverse image
of % with respect to the linear mafy, while #'* represents the orthogonal complementof Denote
by AT and byA* the transpose and the Moore-Penrose pseudo-inverserespectively. The symbol
o(A) denotes the spectrum Af

The restriction of a linear mag to the A-invariant subspacef is written A| ; the eigenvalues oA
restricted to_¢ are denoted by (A‘/). If 71 and_#> areA-invariant subspaces ang1 C _¢#>, the
mapping induced by on the quotient spacg?,/ 71 is denoted by(A’%)

In what follows, whether the underlying system evolves in continuoussorete time is irrelevant and,
accordingly, the time index set of any signal is denoted bgn the understanding that this represents ei-
therR™ in the continuous time d¥ in the discrete time. The symb@}; denotes either the open left-half

complex planéC~ in the continuous time or the open unit dise in the discrete time.

2 Problem statement

Consider an LTI systerh described by

pXx(t) = Ax(t)+Bu(t),
y(t) = Cx(t) + Dut),

(1)

where, for allt € T, x(t) e R" is the stateu(t) € R™ is the control inputy(t) € RP is the outputA, B, C
andD are real constant matrices of suitable sizes, Aes,R™", B ¢ R™™M C ¢ RP*" andD € RP*™M,
The operatop denotes either the time derivative in the continuous time, @&t) = x(t), or the unit
time shift in the discrete time, i.gox(t) = x(t +1).

-
With no loss of generality it is assumed thEaltBT DT } has linearly independent columns and

.
[ C D ] has linearly independent rows. Indeed, if for examﬁalsT DT } has non-trivial kernel,

there exists a subspaé of the input space that does not influence the state dynamics and the output
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function. Then, by performing a suitable (orthogonal) change of basikerinput space, we may
eliminate?%p and obtain an equivalent problem for which this condition is satisfied.

From now on we will concisely identif with the quadrupl€A, B,C,D).

The aim of this paper is that of presenting a design procedure basé&itbgeometric techniques for the
conversion of the given systemto a left (resp. right) invertible system, i.e., a transformation involving
> whose purpose is that of obtaining a new system which is left (resp. fighgtitible, and preserving
some important properties characterizing the original sy&esuch as phase minimality, stabilizability
(resp. detectability), functional controllability (resp. functional obability) and infinite zero structure.
When the geometric left and right reduction procedures are applied trgmtbr an arbitrary (possibly
degenerate) system, we obtain a new sysienmaving the same number of inputs and outputs and such

that its transfer function matrix is invertible over the set of rational matrices.

3 Geometric preliminaries

For the readers’ convenience, in this section some fundamental defiramongsults of the geometric
approach which will be used in the sequel are recalled (for a detailedssisn on the topics herein
introduced we refer to [5, 21, 22]). First, we definearnput-nulling subspac#s of Z as a subspace of
R" satisfying

B
D

()
C

”f/zC(”f/szp)Jrim{

The set of output-nulling subspaces Dfis an upper semilattice with respect to subspace addition.
In other words, for any given pair of output-nulling subspa¢ésand ¥¢', their sum¥{ + ¥¢' is the
smallest output-nulling subspace bfcontaining both¥¢ and #’. Thus, the sum of all the output-
nulling subspaces & is the largest output-nulling subspacegfind will be herein denoted b§§". The
subspace/s* represents the set of all initial states of (1) for which an input functiest@such that the
corresponding state-trajectory lies entirely 6§ and the corresponding output function is identically
zero. In the case when the direct feedthrough mdriis zero, 75 reduces to the maximd, B)-
controlled invariant subspace contained in the null-space of matii%, 22]. In the following lemma,

the most important properties of the output-nulling subspaces are présente
Lemma 1 The following results hold:
(i) The subspacés is output-nulling forZ if and only if a matrix Fe R™*" exists such that

(A+BF) 75 C 75,

)
¥s C ker(C+DF).

(i) The subspaces” is the largest subspace for which a matrixxlR™* " exists such that (3) holds;
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(iii) The sequence of subspades')icy described by the recurrence

4/20 — ]Igl']7
-1

A (4)

C

¥ —

((”I/zi’lxop)—i-im { E ] ) i =N\0,

is monotonically non-increasing. Moreover, there existsrk- 1 such that7/zk+1:“//zk. For such
k there holds/y* = #X.

Any matrix F satisfying (3) will be referred to asfaend of the output-nulling subspacé. The dual

concept is the input-containing subspace: a subspgds said to baénput-containingf it satisfies
[A B}((ﬂszm)ﬂker[c D})gyz. (5)

The set of all input-containing subspace<dé a lower semi-lattice with respect to the subspace inter-
section. Hence, for any given pair of input-containing subspateand.y, their intersection/y N7

is the largest input-containing subspace&afontained in bothy and.#y'. Thus, the intersection of all
input-containing subspaces Bfis the smallest input-containing subspace&pfind will be denoted by

5. The counterpart of Lemma 1 for input-containing subspaces is as follows
Lemma 2 The following results hold:

(i) The subspace’s is input-containing foiz if and only if a matrix Ge R"* P exists such that

(A+GC) .75 C 5,

_ (6)
S Dim(B+GD).

(i) The subspace”s is the smallest subspace for which a matrie " P exists such that (6) holds;
(iii)y The sequence of subspade#, )icy described by the recurrence

5 = 0n,

A=[a 8] ((# xmMnker[ c D]). iem\0 )

is monotonically non-decreasing. Moreover, there existsik- 1 such thai;sﬂ)t'“rl :5@". For such
k there holds#y = 7.

A matrix G satisfying (6) will be referred to asfdend of the input-containing subspac&. The
third fundamental subspace that we need to define is the output-nullingatsbty subspace on the
output-nulling subspacks, denoted by%s: let F € R™*" be a friend of the output-nulling subspatge

The output-nulling reachability subspac#s on 75 is the smallestA+ BF)-invariant subspace @&"



containing the subspac NBker D. We denote byZ5 the output-nulling reachability subspace 6.

The following relation holds:
Ky =5 NI5. (8)

This identity was first proved for strictly proper systems in [15]. A probfhis fact for systems with
direct feedthrough can be found in [21, Theorem 8.22]. The swesga can be thought as the locus of
all the initial states that are reachable in finite time from the origin while mantainingattiesponding
output equal to zero.

Itis a well-known fact that, for any frien8 of 75", F is also a friend ofZ5. For any friendF of 75", the
eigenvalues ofA+ BF) restricted to75", i.e. 0<A+ BF ‘V{) are split into two sets: the eigenvalues
of <A+ BF ‘%’;) are all freely assignable by a suitable choice of the frienaf #5*. The eigenvalues
of (A+ BF

invariant zerosof Z, [1]. In symbols

%) are fixed, i.e., they do not depend on the choice of the frierad 75*: they are the

&W(Z):G<A+BF‘

)

Now, consider the subspac® := 75" + .5, which is dual toZs. For any friendG of .75, G is also a

friend of 25. Moreover, the eigenvalues éA+GC

ﬂ}%) are all freely assignable by a suitable choice of

G, while the eigenvalues c<fA+GC‘f7;E are fixed, and are the invariant zeroofHence, the identity

Z (%) :0(A+ BF Z—i) :0<A+ GC‘ %) holds. Now we briefly recall the geometric definition and
the basic properties of left and right invertible systems.

Definition 1 The systenk is said to be left invertible i#Z5 = 75 N5 =0p.

Stated differently, we may say thatis left invertible if no pair of distinct input functions give rise to
the same output function with zero initial condition. For this reason, the ledtriifility of a system
> is sometimes alternatively referred to fasictional observability The following theorem provides

necessary and sufficient conditions for left invertibility.

Lemma 3 Systent is left invertible if and only if any of the following statements hold true:
1. the transfer function matrix £&s) associated witfz is a left invertible rational matrix;
2. 75 NBkerD=0p;
3. B17¢ nkerD= Op,.

By extending straightforwardly a result presented in [4, Theorem 3ptostrictly proper systems, we
can say that ik is not left invertible, the input function corresponding to a given respdobtained with
zero initial condition) can only be determined mod&o* ¥5* NkerD. The subspacB~! 75 NkerDis

therefore callednput unobservability subspace



Definition 2 The systena is said to be right invertible i25y = 75" + .5 =R".

Stated differently, we may say thatis right invertible if for any arbitrarily assigned impulsive-smooth
output, there exists an impulsive-smooth input yielding that output with zerolicibiadition. For
this reason, the right invertibility of a systebhis sometimes alternatively referred to fasctional

controllability of .

Lemma 4 Systenk is right invertible if and only if any of the following statements hold true:
1. the transfer function matrix £s) associated witlx is a right invertible rational matrix;
2. S3+ClimD=R",
3. C¥5+imD=RP.

If Z is not right invertible, the output function can be imposed modulo any compleohéme subspace
C.s +imD, [4, Theorem 4]. Thus, the subspaCe”sy +imD is calledoutput reachability subspace
Now, definev; := dim(%*+.74) —dim(%+.7 1), fori € N, and letp; := card{j € N|vj > i}.
The p; are the orders of theeros at infinityof Z. The supremal value of the orders of the zeros at
infinity is calledrelative degreeof the systenk. It is an easily established fact that in the particular
case wherk is right invertible, the relative degree &fcorresponds to the least intedee N such that
7/2*+sz+1:1[§”. Dually, if X is left invertible, the relative degree &f equals the least integére N

for which .5 m”f/zk*lzon. The original geometric definition for the orders of the zeros at infinity for
strictly proper systems comes back to [7]; its extension to non strictly prgptams has been presented
in [1, Theorem 4].

4 Reduction to a left invertible system

Consider a non left invertible syste¥n The main result of this section consists of a transformatian, of
involving an algebraic state-feedback and an input static unit, so thatstensyhus obtained, siy is

left invertible, see Figure 1. By performing a state-feedback with a friend ¥5 assigning arbitrarily

y(t)

Fig. 1: Block diagram of a left inverter

all the eigenvalues 0<A+ BF ‘%’;) and by eliminating all the input functions yielding motions on



Fs, we obtain a new systeﬁ whose output-nulling reachable subsp@?is the sole origin, and its
invariant zeros are those of the original system, plus those assignegitio It follows in particular

that if = is minimum phase, the modified systémemains such with a suitable choicefof

These results are presented and proved in the following theorem.

Theorem 1 Let F be a friend off5*. Let U be a basis matrix of the subspa@g:= (B~ 75" nkerD)*,
whose dimension is denoted by s. Consider the quadrﬁp:I:e(AJr BF,BUs,C +DF,DUs). The

following results hold:
2. S is left invertible;
3. #(5)=%(2)wo(A+BF ),@z) .

Proof: First, we denote by the quadrupleA+BF,B,C+DF,D). A straightforward computation
shows that an output-nulling subspacezaf also output-nulling fokr (andviceversy, i.e., 75" =75,
[21, p.169]. Now, we prove thats, :"1/5. Notice that by definition ok and= the set of output nulling
subspaces d is contained in that afr: in fact inZ the set of control functions is restricted with respect

to those ofzr. Hence, we need to show thg§; is output nulling for, i.e.,

A+BF
C+DF

* * ; BUs
¥ C (5, % Op)+im | ©)
DUs

B
To this aim, apply the linear ma% to both sides of the trivial identitR™ = (B‘l“//z* NkerD) ® %s
D

_ B
im
D

Now, by adding the subspadg’. x O, to both sides of the former we get

_ | BU
— (#5. x 0p) +im e
DUs

which leads to (9). Now, by taking Lemma 3 into account, we showZHatleft invertible by proving
that (BUs) 7" Nker(DUs) = 0s. Letwe (BUs)~* 72 Nker(DUs). Thus,BUswe 7 andDUsw=0Op.

Define@:=Usw. The former yieldgoe B*lyi*ﬂkerD: U, sinceVz*:”//g. However, by definition

to obtain

B

B

@ lies in the range ofJs, hence it belongs t9B~1¥5* nkerD)*. It follows that @=0m,. From the

injectivity of Us, we may conclude thab=0s. As a results is left invertible.



~

Finally, by definition of invariant zerog () = U(A—l— BF

%) , Which equalsy (A+ BF

7/§*> sinceX
is left invertible. However, sincés” =72, we get

/yz*
s
= 7(5)wo(A+BF ‘%z)

Z(3) = 0<A+BF’ )L+Ja<A+BF’%§>

|
So far, we have shown that the procedure described in Theoremslthamiven system into a left
invertible system, whose invariant zeros are those of the original systamihmse given by <A+
BF ‘%’;) which as already observed are all freely assignable with a suitableecbbibe friendF of
#5*. On the other hand, this procedure for the left inversion enjoys fumimgortant properties: it does
not reduce the functional controllability properties of the original systemjfiEis right invertible, so is
the resulting systerh (andviceversa. Even more is true: the subspagk = 75" 4.5 is invariant under
the transformation presented in Theorem 1. As already noted, this sebispdual toZs =75 N.%5 .

This result is presented and proved in the following proposition.

Proposition 1 Let F be a friend of/5*. Let Us be a basis matrix of the subspagg:= (B~1 75* nker D),
whose dimension is denoted by s. Bet (A+BF,BUs,C+ DF,DUs). Consider the sequences of
subspace$.#; )ien and (] )ien. The following equality holds

7/2*4—172':”1/3*4—{75', ieN.
Hence,Z is right invertible if and only ift is such. Moreovelz and £ have the same zero structure at

infinity and the same relative degree.

Proof: Denote by the quadruple4, BUs,C,DUs). We first prove that/s' + .73 =72 + .71, To this
aim, consider the two sequences of subspﬁiﬁgﬁigN and(”f/gi)ieN described in (4), which respectively
converge to¥s" and 75" in at mostn—1 steps. We first verify by induction that for ang N we have
Y/Zi :“I/fi. This fact is clearly true when=0. Let us now suppose that it holds for a givienl, i.e.,
7/5‘1:7/5“1, and let us prove the same fact foii.e., % = 74. The following inclusion, that will be

useful in the sequel, holds:

B

Us- C (¥5 NBkerD) x 0p C %41 x 0p. (10)
D

In fact, since sequence (4) is monotonically non-increasf't@ig,1 275 D ¥ NBkerD. Now, from (4)

we find
- - 71 - -
) A : B
15 = (5% 0+ | | (% o%))
C
~ o -
A i1 B
- c ((7/5 XOD)+ D %s>




where the last equality is a consequence of (10). Hence, m)érzéezd“//f' Now, we prove by induction
that for anyieN, % D.7. Clearly, .#?=.#9. Let us suppose tha¥y 2.7 for a giveni,
and let us prove thatj D.7 . Let E .74 By (7), it follows thaté& €. 70 1 C.#~* and & €RS
exist such tha€ &, +DUs&>=0p andAé1 +BUsé,=¢&. Defineé):=Usé&». It follows thatfleyzifl,
Cé&1+DE&,=0, andA& +B&,=&. The latter three relations clearly imply théae 5@. Hence, we
have shown that for anke N we have.#{ ©.#F and 7' =7¢. A direct consequence of this result is
that for anyi €N, 7/zi+yg;7/§+yz-i. In order to show that the converse inclusion is true, i.e., that
“//zi +§’z‘ g”f/gi +Y§‘, we proceed by induction again. The inclusion holdsife0. Let us suppose that
¥+ AL Cydt 4 71 for some defined and let us prove that +.3 € 74 4 .71 Consider an
arbitrary& € 74 +.73. Itfollows thaté; €. 71, &, € R™ and&s € %4 exist such tha€ & + D & =0, and
A& +B&+&=&. Two vectorsé) e % and &) € ;- exist such tha€, =&+ &J. Hence,BEY € ¥4
andD &) =0p. By linearity

Ez[A B] St +53=[A B} S Erg,
&+ & &}

2

On

holds, wheref := [ A B} { o | On the other hand, as already obseried, =0,. It follows
2

thatC&;+D & =Cé&1+D&;=0,. Moreover, sinc€; € %, a vectoré, € R® exists such thaf; = Usf_z-
HenceC & +DUs&=0p and, since?; =711, we find

5_1
&

Finally, £*:=& + &=B&} + &€ ¥5 + ¥ =75. We have shown thailefz—i‘l, & ERS and&ze %4
exist such thaAE1+BUS§_2+53:€ andCEl+DUSE_2:Op. This implies thatf 6”//§i+<72i. Hence,
we have indeeds" + .75 =75 + .75, Since”s" and.#¥ are invariant under state feedback, [21, p.169,

€ (Yfi‘lst)mker[ C DUs } .

p.183], it follows that/s" + .5 = ¥5 + .75, whereZg is defined as in the proof of Theorem 1. Hence,
the procedure outlined above can be applieBgpyielding 75" + .5 = 75 + .75 :"f/i* +5ﬂ§*. |
The last property that we want to investigate is the preservation of the sadilitiz of the original

system after reduction to a left invertible system.

Proposition 2 Let ~ be a stabilizable system. Letslbe a basis matrix of the subspace
%= (8775 NkerD)*. Any friend F of#5* for which o(A+BF |#;)  Cg is such that the left
invertible systeni:: (A+BF,BUs,C+ DF,DUgy) is stabilizable.

Proof: First, let us denote by? the reachable subspace from the origin, i.e., the smalld@stariant
subspace containing the rangeBf We want to prove that the subspa@¥ is externally stabilizable.

Let F be a friend of%s. From the trivial inclusionZs C Z# it follows that O'(A—|— BF %) =

9



a(A+BF

stabilizable. We perform a preliminary change of coordinates in the statmpntspaces through the

%) C Cg, the last inclusion due to the stabilizability &f It follows thatZ%s is externally

non-singular matrice® = [ T T, T3 } e R™MandU = [ Ui U } € R™M such thatm T, = %5,
im [ T T } =75, imU; = B 1% nkerD andimU, = (B~1#5* nkerD)*. If we take a friendF of
¥5* assigning the eigenvalues<A+ BF ’%’;) in Cg, the pair(A+ BF,B) can be written with respect to

this basis as
AL AL AL Bii Bi
0 0 A§3 0 Bs

where the zeros iA+ BF are due to thé A+ BF)-invariance of /5" and %5. The zeros in positions
21 and 31 inB are due to the inclusionts" "BkerDC Z5. SinceX is stabilizable, such is the pair
(A+BF,B), so that the pair

A5y Abs B2z

; ; (11)
0 AL, Ba2

is stabilizable, as well; Ieﬁ F F } be a feedback stabilizing the pair (11); it follows that the feedback

F .= { 0 F F } stabilizes the paifA+ BF,B;), whereB; is the second block-column &, asAEl

is already stable. Now, sindamU, = imUs, we find that the systerﬁ is stabilizable. [ |

Remark 1 Asis well-known, if the state of the given system is not accessible for dabfeck, the block
diagram of Figure 1 can be replaced by the series connection of a s¥stem(A+ BF,BUs, F,Us) at
the input of the given systei, , in whichF is a friend of 75" andUs is a basis matrix of the subspace
Us= (B 15 nkerD)*, see [5].

4.1 A numerical example

The proposed approach turns out to be easily implementable as a softwtne for the squaring down

of a general LTI system. Consider the example described by the followitrices

3 5 7 0 1 0 0]
05 —-15 05 -75 0 -1 0
A: 5 B: )
5 0 -3 0 2 0 O
| 05 -5 0 -7 | 0 1 2]
1 0 00 100
C= , D= .
0 -1 0 0 2 00

10



System>=(A,B,C,D) is non left invertible and right invertible. In fact

1

-2

Y5 =im and Zs=im

o » O O
R O O O
o O ~» O
~ O O O
R O O O

In the present case the difference between the dimensigg* @ind that of%s is 2, systen® has two
invariant zeros, which aré—15.6589 —1.3411}, so that ifZ is continuous-time, it is minimum phase.
The first step consists of finding a friefids R3*4 of /5" assigning the eigenvalue oA+ BF) restricted

to Zs. The matrix

-3 -1 0 0
F=| -35 105 -135 -75
12 -24 54 625

assigns the eigenval + ando| A+ F —4;, wher IS the reach-
igns the eigenvale{ A+ BF |#; ) = {~2}, anda (A+BF | 75 ) = {—4}, whereZ is the reach

able subspace from the origin. The matrix

USZ

o O -
o +—» O

is a basis matrix of (B~17*nkerD)*. The new systemZ; described by the matrices
Ai=A+BF, Bi=BU;, C;=C+DF, D;=DUs=0 is left invertible, since”f/ﬂ:"f/z* but Sy =
im0 -1 0 1 T; moreover, the right invertibility is preserved. The set of its invarianbzes
exactly{—15.6589 —1.3411 —2}. Hence 23 is minimum phase.

5 Conversion to a right invertible system and squaring down

All the results presented so far can be easily dualized, so as to turnitnargrbystem> into a right
invertible systenf, without affecting its functional observability properties. Clearly, thisgfarmation
involves an output injection via a matri® such that (6) hold, and assigning all the eigenvalues of
<A+ GC‘ “V*+Y*> and an output algebraic uM{ , which is a basis matrix of the subsp&e’s +imD,
see Figure 2.

The following Corollary is the counterpart of Theorem 1, and Proposticg in the dual setting.

Corollary 1 Let G be a friend of#y. Let ¥ be a basis matrix of the subspacesG +imD. The
quadruples = (A+GC,B+GD,Y, C,Y.' D) is such that

1 =
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Fig. 2: Block diagram of a right inverter

2. S is right invertible;
S _ R .
3. g(Z)_g(Z)wa(A+Gc‘W),

4. V/Ziﬂyz*:%ziﬁyg, i € N. Hence, in particular,Z is left invertible if and only ifS is such.

Moreover,S and < have the same zero structure at infinity and the same relative degree.

Moreover, ifZ is detectable, for any friend G ofs such thato (A+ GC

f%) C Cq the systent is

detectable, as well.

Hence, the set of invariant zeros of the resulting sys%m enlarged, so as to include the set of

eigenvalues oA+ GCthat are freely assignable through a suitable choidg. of

Furthermore, since the left reduction procedure preserves the riggttibility of the original system,
while the right reduction procedure preserves the left invertibility, thesepwcedures can be applied
together to an arbitrary system, possibly degenerate, so as to obtainra sgdainvertible system,
described by the quadruplq:= <A+ BF + GC+ GDF, (B+ GD)US,YST(CDF),YSTDUS). Its set of
invariant zeros includes the invariant zeros of the original sySenThe matrices= and G can be
chosen so as to place the additional invariant zeros introduced in thengygtthus obtained at arbitrary

locations ofCy, as pointed out in Theorem 1 and Proposition 1.

Remark 2 In the case when the input &f is not accessible for the output injection, the procedure
outlined in Remark 1 can be dualized, so that a Bajtwhose structure is dual to that bf, has to be

connected at the output &fin order to obtain an overall right invertible system.
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5.1 A numerical example

The proposed approach turns out to be easily implementable as a softwtine for the squaring down

of a general LTI system. Consider the example described by the followitices

2 0 6 O 1
0O -5 0 12 2
A= , B= ,
-2 0 -8 0 0
1 3 0 4| 0 -2
1 020 0
C: s D:
-3 0 00

System>=(A,B,C,D) is non left invertible and non right invertible, since

Y5 =1im and 5 =im

o O ~» O
~ O O O
o O o -
o O ~» O
~ O O O

In the present cas#s = 75", so that> has no invariant zeros. The first step consists of finding a friend

F € R2*4 of 75* assigning the eigenvalues @+ BF) restricted toZ;. The matrix

0O 0 70

F=

0 -05 0 O

assigns the eigenvalues<A+ BF ’%;) ={-1,-2}, and0<A+ BF ‘,@ng]) ={-3+1i,—3—i}. The
T

matrix US:\/LT0 [ -1 3 } is a basis matrix ofB~1#5*NkerD)*. The new systeri; described by
the matrices\; =A+BF, Bi=BU;, C; =C, D; =DUs=0 s left invertible, but not right invertible, since
V5 =95 butsy = [ -1 -2 0 o}. The set of its invariant zeros is exactly-1, —2}. Now, we
derive a friendG e R*2 of .#§ such thato (A1+GC1 ‘Ln) = {—4,-5}. In this case there are no

5+
internal eigenvalueg (Al +GCG

5 .
W) to assign:

[ 20148 16617 |
1.0574 —0.9809
2 0

0.0652 —0.9783 |

13
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The matrist:\/%) —1 3| isa basis matrix o€;.%5, +imD. The systen®; described by the

matricesA; ;= A1 +GC, B, :=B1+GD1, G, I:YSTC]_, D, .= YS—r Di:

[ 5 0 89704 O -1
4 -7 161148 15 —2
AZ - ) BZZ )
0 0 -4 0
| 4 -2 01304 4 | 0 |

C = | -31623 0 —0.6325 o}, D, =0,

is therefore left and right invertible, sincé;, =0, and 75, + .5, =R", and is minimum phase, since its

invariant zeros ar¢—1, —2, —4}.

6 The LQ optimal control problem

As an example of application of the results presented so far, we pregardgraetrization of the solutions
of the LQ problem for non left invertible systems. Consider for example therete-time non left
invertible systenkt with assigned initial condition described by
x(k+1) = Ax(k) + Bu(k), X(0) =xp € R, 12)
y(K) =Cx(k) +Du(k).
The problem is that of finding a stabilizing state feedba@d¥ = — K x(k) minimizing the performance

index .
J(xo,u) = kz y' (K)y(k),
=0

under the constraint (12). In this case, the optimal solution is not uniguiact, since in this cas&s
differs from zero, dinstinct control functions exist yielding state trajeesocorresponding to identically
zero output functions. In other words, given an optimal control l8¢k), the set of optimal control
functions is parametrized modulo the controls driving the stafé @f %;. LetQ:=C'C, S:=C'D
andR:= D'D. SinceX is not left invertible, the extended symplectic pencil associated with the LQ

problem is singular, so that the discrete-time algebraic Riccati equationEDAR
P=A"PA-(ATPB+9S)(R+B'PB)}B"PA+S")+Q, (13)

does not admit a stabilizing solution. Now, consider the sysfeatA,B,C,D):=(A+ BF,BUs,C+
DF,DUs), whereF is a friend of /5" andUs is a basis matrix of the subspad@ ! 75 nkerD)+. System
% is now left invertible by virtue of Theorem 1. Hence, the infinite-horizon u@blem can be solved
with respect to the auxiliary systel in particular, the stabilizing solutio®, of the DARE (13) referred
to = yields the optimal gairK, := (R+BTP.B)"X(B"P,A+S"), whereQ :=C'C,S:=C'D and

R:=D'D. Then, the matri, =UsK, —F is a gain leading to an optimal control function. Different

14



choices of the matri¥ yield different solutions of the LQ problem, corresponding to the possibifity o
assigning arbitrarily the eigenvalues @+ BF) on %5, so that the state evolutions are different, but
they all correspond to the same output function, and the value of therpenfice index does not change
and is equal to its optimal valu¥. Hence, all optimal solutions of the LQ problem herein considered
can be parametrized in terms of all possible frierdsf 75 such thato <A+ BF ‘%’;) C Cy, without

the need of resorting to the stabilizing solution of the generalized discreteraig®iccati equation. It

is worth observing that the same technique can be employed for a paratiwiriziathe solutions of

continuous-time singular LQ problems, in which the assumption of left invertibilisgaadard, [9].

6.1 Anillustrative example
Consider a discrete-time systehwith assigned initial condition described by the matrices

11 2 0 1
A= , B= , X(0)= ,
01 11

c=]o 1], p=[o o]

-
This system is non left invertible, sincgs = im [ 1 0} , but it is right invertible since’s = R". Let
Q:=C'C,S:=C'"DandR:=D'D. SinceZ is not left invertible, the DARE does not admit a stabilizing

solution. Consider the matrices

Blw

F=

9

ENTEENT
c
n
|

3
1 1

whereF is a friend of %5, assigningT(A+ BF ‘%;) ={-1} ando(A+ BF ‘%) ={3}, wherez
is the reachable subspace from the origin, whilés a basis matrix fo(B~175*)+. The new system

described by

. 2
B:BUSZ 5
2

1
A=A+BF=| 2

)

NI NI

6:C+DF:[0 ﬂ, ﬁszz[o}

admits a stabilizing solution and an optimal infinite-horizon gain, which are cégply

. 00 -
P, = . Re=]o
0 1

The optimal gain referred to the original system is

NI
[I—

EN[)

K, =UsK, —F =

Hlw
Nl NI
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The overall optimal cost i3* = x] P, xo = 1. As we could expect, if we changein order to choose for
example—% as internal andr% as external assignable eigenvalueggf respectively, we find the same
solutionP, of (13) applied t&, hence leading to the same cost, with a different solutipnHence, the

optimal gain referred to the original syste€h is, in this case,

_ 1
K, =UK; —-F=| °
1

7 Concluding remarks

A geometric setting has been established for the solution of the left and rigdrsion of non strictly
proper LTI systems, leading to a simple and computationally attractive prozémhihe squaring down
problem. It has been proved that the squared-down system is minimumipbass the original system,
and the invariant zeros induced by the pre and post-compensatotisfegelaassignable in the complex
plane. The approach developed for the left and right reduction miexsén Sections 4 and 5 has been
implemented as an algorithm in the MATLABroutinesleftinv.m andrightinv.m, availablé at
http://www.dii.unisi.it/prattichizzo/research/geometric/leftrightinv.html.

These new techniques are not merely oriented to the solution of the afdrensehproblems, but
highlight important geometric properties of LTI systems that can be explaitetid solution of different
control problems; as an example we have considered the infinite-horlRqurdblem for discrete-time
non left invertible systems: the left inversion procedure yields a paramagtrizof all the optimal
solutions in terms of motions on a subspace corresponding to modes thabtgperalized in the

performance index.

Ackowledgements

The authors wish to thank Prof. Giovanni Marro for his precious atgfilecomments.

References

[1] H. Aling and J.M. Schumacher. A nine-fold canonical decompositigrifi@ar systemsinterna-
tional Journal of Control 39(4):779—-805, 1984.

[2] B.D.O. Anderson. Output nulling invariant and controllability subsga¢eProceedings of the 6th
IFAC Congressvolume 43.6, August 1975.

1The MATLAB® routinesleftinv.m and rightinv.m require the geometric approach toolbga, which is freely

downloadable at wwwa3.deis.unibo.it/Staff/FullProf/GiovanniMarro/getio.htm.

16



[3] J.D. Aplevich. On the squaring problem in feedback desigrRrbteedings of the Joint Automatic
Control Conferencevolume 43.6, pages WP-4P, Charlottesville 1981.

[4] G. Basile and G. Marro. A new characterization of some structugguties of linear systems:
unknown-input observability, invertibility and functional controllabilitinternational Journal of
Control, 17(5):931-943, May 1973.

[5] G. Basile and G. MarroControlled and Conditioned Invariants in Linear System The&mnentice

Hall, Englewood Cliffs, New Jersey, 1992.

[6] D. Chu and Y.S. Hung. A numerically reliable solution for the squariogxal problem in system
design.Applied Numerical Mathematic§1:221-241, 2004.

[7] C. Commault and J.M. Dion. Structure at infinity of linear multivariable syste a geometric
approachlEEE Transactions on Automatic ContréiC-27(3):693-696, 1982.

[8] E.J. Davison. Some properties of minimum phase systems and 'sqdewned-systems. IEEE
Transactions on Automatic ContyghC-28, 1983.

[9] M.L.J. Hautus and L.M. Silverman. System structure and singular doritimear Algebra and Its
Applications 50:369-402, 1983.

[10] V.X. Le and M.G. Safonov. Rational matrix GCD’ s and the design absipg-down compensators
- a state space theorfeEE Transactions on Automatic Contyé{C-37(3):384-392, 1992.

[11] A.G.J. MacFarlane and N. Karcanias. Poles and zeros of linearvamidible systems: a survey
of the algebraic, geometric and complex variable thedmyernational Journal of Contrglpages
33-74, 1976.

[12] G. Marro, D. Prattichizzo, and E. Zattoni. A geometric insight into theréi® time cheap and
singular LQR problemslEEE Transactions on Automatic Contrdi7(1):102-107, 2002.

[13] J.B. Molinari. Extended controllability and observability for linear systel EEE Transactions on
Automatic ContrglAC-21(5):136-137, 1976.

[14] J.B. Molinari. A strong controllability and observability in linear multivarialdentrol. IEEE
Transactions on Automatic Contt@hC-21:761-763, 1976.

[15] A.S. Morse. Structural invariants of linear multivariable systen&AM Journal of Contral
11(3):446-465, August 1973.

[16] A. Saberi and P. Sannuti. Squaring down of non-strictly propstesns.International Journal of
Control, 51(3):621-629, 1990.

17



[17] P. Sannuti and A. Saberi. Special coordinate basis for multiMeriadear systems — finite and infi-
nite zero structure, squaring down and decouplimgernational Journal of Contrgl45(5):1655—
1704, 1987.

[18] P. Sannuti and A. Saberi. Squaring down by static and dynamic awaf@s.|EEE Transactions
on Automatic ContrglAC-33(4):358-365, 1988.

[19] A.A. Stoorvogel and J.H.A. Ludlage. Squaring down and the problefnalmost zeros for
continuous-time systems&ystems & Control Letter23(5):381-388, 1994.

[20] G. Tadmor and L. MirkinH. control and estimation with preview-part II: fixed-size ARE solutions
in discrete timelEEE Transactions on Automatic Conty@ddC-50(1):29-40, 2005.

[21] H.L. Trentelman, A.A. Stoorvogel, and M. HautuSontrol theory for linear systemsCommuni-

cations and Control Engineering. Springer, Great Britain, 2001.

[22] W.M. Wonham. Linear Multivariable Control: A Geometric ApproachSpringer-Verlag, New
York, 3 edition, 1985.

18



