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Abstract

In this paper, the problem of reducing a given LTI system into a left or right invertible one is addressed

and solved with the standard tools of the geometric control theory. First, it willbe shown how

an LTI system can be turned into a left invertible system, thus preserving key system properties

like stabilizability, phase minimality, right invertibility, relative degree and infinite zero structure.

Moreover, the additional invariant zeros introduced in the left invertible system thus obtained can be

arbitrarily assigned in the complex plane. By duality, the scheme of a right inverter will be derived

straightforwardly. Moreover, the squaring down problem will be addressed. In fact, when the left

and right reduction procedures are applied together, a system with an unequal number of inputs and

outputs is turned into a square and invertible system. Furthermore, as an example it will be shown

how these techniques may be employed to weaken the standard assumption of left invertibility of the

plant in many optimization problems.
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1 Introduction

In the last two decades, many contributions on the conversion of LTI systems into left and right invertible

systems have been presented in the literature, motivated by the fact that several design and synthesis pro-

cedures require that the plant is left or right invertible or, in some cases,square and invertible, [10, 12, 20].

It is an easily established fact that the introduction of a suitable static compensator at the input of a non

left invertible system yields a left invertible system, for example by reducing the number of inputs of

the given system. This is the simplest structure of a left inverter, and was presented in the first papers

that appeared in the literature on this issue, see [11] and references therein. The main drawback of that

approach, however, was then shown to be the inevitable introduction of non assignable additional invari-

ant zeros in the resulting system, [8]. Hence, in the case when any of these new invariant zeros was non

minimum phase, the performances of the closed-loop behaviour were heavily affected.

It was then observed that in order to preserve phase minimality after the left(right) reduction, the use

of dynamic pre (post) compensators was mandatory, [3, 18, 16, 10, 19]. In particular, in [18, 16], the

design procedure of left and right inverters was carried out for strictly and non strictly proper systems,

respectively, by the exploitation of the so-calledspecial coordinate basisfor the representation of the

plant (see also [17] for details). In this way, it was proven that these compensators enabled the introduc-

tion of additional non minimum phase zeros to be avoided. Moreover, some important features of the

given system, such as stabilizability and infinite zero structure, were preserved in the resulting system.

The procedure proposed in this paper provides a new solution to the left and right reduction of a continu-

ous or discrete-time LTI system. In particular, the first is based on the introduction of a static compensator

at the input of the given system, working jointly with an algebraic state-feedback unit, whose purpose is

that of arbitrarily assigning all the additional invariant zeros introduced inthe left invertible system thus

obtained. This compensation scheme preserves the simplicity of the aforementioned static compensators,

but avoids the introduction of possibly non minimum phase zeros. Moreover, the proposed left inverter

ensures that the additional invariant zeros are all assignable in the complex plane, while the stabilizability

and the functional controllability of the original system are preserved; in particular, if the given system

is right invertible, so is the resulting system, and the relative degree does not change. Furthermore, the

infinite zero structure of the original system is also preserved.

A straightforward dualization of the aforementioned procedure solves theproblem of reducing a system

into a right invertible one, thus preserving key properties of the original system, such as phase minimal-

ity, detectability, functional observability and infinite zero structure.

Differently from the other approaches presented in the literature, the geometric setting herein employed

is coordinate-free in nature, and leads to intuitive results without the need of resorting to changes of

basis like the SCB, which on the one hand clearly displays the inner structureof the underlying system,

but, on the other hand, is not computationally robust as recently shown in [6]. A further contribution of
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this work is that of generalizing the concepts ofinput unobservability subspaceandoutput reachability

subspaceintroduced in [4] to non purely dynamical systems.

An important field of application of the material herein developed concerns the linear quadratic optimiza-

tion. As is well-known, in many LQ,H2 andH∞ problems the standard assumption of left invertibility of

the system is introduced, in order to ensure the uniqueness of the optimal solution, [9, 12, 20]. Moreover,

in the discrete-time case this assumption is necessary for the discrete-time algebraic Riccati equation

DARE to admit a stabilizing solution. In Section 6 it will be shown how the left inversion technique

herein described can be employed to derive a parametrization of all the solutions of the infinite-horizon

LQ regulator when the underlying system is not left invertible.

Notation. Throughout this paper, we denote byN the positive integers including zero. The symbol 0n

denotes the origin of the vector spaceR
n. The image and the kernel of matrixA∈R

n×m are denoted by

imA andkerA, respectively. Given a subspaceY of R
n, the symbolA−1Y stands for the inverse image

of Y with respect to the linear mapA, while Y ⊥ represents the orthogonal complement ofY . Denote

by A> and byA‡ the transpose and the Moore-Penrose pseudo-inverse ofA, respectively. The symbol

σ(A) denotes the spectrum ofA.

The restriction of a linear mapA to theA-invariant subspaceJ is written A|J ; the eigenvalues ofA

restricted toJ are denoted byσ
(

A
∣∣∣J

)
. If J1 andJ2 areA-invariant subspaces andJ1⊆J2, the

mapping induced byA on the quotient spaceJ2/J1 is denoted by
(

A
∣∣∣J2
J1

)
.

In what follows, whether the underlying system evolves in continuous or discrete time is irrelevant and,

accordingly, the time index set of any signal is denoted byT, on the understanding that this represents ei-

therR+ in the continuous time orN in the discrete time. The symbolCg denotes either the open left-half

complex planeC− in the continuous time or the open unit discC
◦ in the discrete time.

2 Problem statement

Consider an LTI systemΣ described by

ρ x(t) = Ax(t)+Bu(t),

y(t) = Cx(t)+Du(t),
(1)

where, for allt∈T, x(t)∈R
n is the state,u(t)∈R

m is the control input,y(t)∈R
p is the output,A, B, C

andD are real constant matrices of suitable sizes, i.e.,A∈ R
n×n, B∈ R

n×m, C ∈ R
p×n andD ∈ R

p×m.

The operatorρ denotes either the time derivative in the continuous time, i.e.,ρx(t) = ẋ(t), or the unit

time shift in the discrete time, i.e.,ρx(t) = x(t +1).

With no loss of generality it is assumed that
[

B> D>
]>

has linearly independent columns and
[

C D
]

has linearly independent rows. Indeed, if for example
[

B> D>
]>

has non-trivial kernel,

there exists a subspaceU0 of the input space that does not influence the state dynamics and the output

2



function. Then, by performing a suitable (orthogonal) change of basis inthe input space, we may

eliminateU0 and obtain an equivalent problem for which this condition is satisfied.

From now on we will concisely identifyΣ with the quadruple(A,B,C,D).

The aim of this paper is that of presenting a design procedure based on strict geometric techniques for the

conversion of the given systemΣ to a left (resp. right) invertible system, i.e., a transformation involving

Σ whose purpose is that of obtaining a new system which is left (resp. right)invertible, and preserving

some important properties characterizing the original systemΣ, such as phase minimality, stabilizability

(resp. detectability), functional controllability (resp. functional observability) and infinite zero structure.

When the geometric left and right reduction procedures are applied together over an arbitrary (possibly

degenerate) system, we obtain a new systemΣsq having the same number of inputs and outputs and such

that its transfer function matrix is invertible over the set of rational matrices.

3 Geometric preliminaries

For the readers’ convenience, in this section some fundamental definitionsand results of the geometric

approach which will be used in the sequel are recalled (for a detailed discussion on the topics herein

introduced we refer to [5, 21, 22]). First, we define anoutput-nulling subspaceVΣ of Σ as a subspace of

R
n satisfying



 A

C



 VΣ ⊆ (VΣ ×0p)+ im



 B

D



 . (2)

The set of output-nulling subspaces ofΣ is an upper semilattice with respect to subspace addition.

In other words, for any given pair of output-nulling subspacesV ′
Σ andV ′′

Σ , their sumV ′
Σ +V ′′

Σ is the

smallest output-nulling subspace ofΣ containing bothV ′
Σ andV ′′

Σ . Thus, the sum of all the output-

nulling subspaces ofΣ is the largest output-nulling subspace ofΣ, and will be herein denoted byV ∗
Σ . The

subspaceV ∗
Σ represents the set of all initial states of (1) for which an input function exists such that the

corresponding state-trajectory lies entirely onV ∗
Σ and the corresponding output function is identically

zero. In the case when the direct feedthrough matrixD is zero,V ∗
Σ reduces to the maximal(A,B)-

controlled invariant subspace contained in the null-space of matrixC, [5, 22]. In the following lemma,

the most important properties of the output-nulling subspaces are presented.

Lemma 1 The following results hold:

(i) The subspaceVΣ is output-nulling forΣ if and only if a matrix F∈R
m×n exists such that

(A+BF)VΣ ⊆ VΣ,

VΣ ⊆ ker(C+DF).
(3)

(ii) The subspaceV ∗
Σ is the largest subspace for which a matrix F∈R

m×n exists such that (3) holds;
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(iii) The sequence of subspaces(V i
Σ )i∈N described by the recurrence

V 0
Σ = R

n,

V i
Σ =



 A

C




−1(

(V i−1
Σ ×0p)+ im



 B

D




)
, i = N\0,

(4)

is monotonically non-increasing. Moreover, there exists k≤n−1 such thatV k+1
Σ =V k

Σ . For such

k there holdsV ∗
Σ =V k

Σ .

Any matrix F satisfying (3) will be referred to as afriend of the output-nulling subspaceVΣ. The dual

concept is the input-containing subspace: a subspaceSΣ is said to beinput-containingif it satisfies

[
A B

] (
(SΣ ×R

m)∩ker
[

C D
])

⊆ SΣ. (5)

The set of all input-containing subspaces ofΣ is a lower semi-lattice with respect to the subspace inter-

section. Hence, for any given pair of input-containing subspacesS ′
Σ andS ′′

Σ , their intersectionS ′
Σ∩S ′′

Σ

is the largest input-containing subspace ofΣ contained in bothS ′
Σ andS ′′

Σ . Thus, the intersection of all

input-containing subspaces ofΣ is the smallest input-containing subspace ofΣ, and will be denoted by

S ∗
Σ . The counterpart of Lemma 1 for input-containing subspaces is as follows.

Lemma 2 The following results hold:

(i) The subspaceSΣ is input-containing forΣ if and only if a matrix G∈R
n× p exists such that

(A+GC)SΣ ⊆ SΣ,

SΣ ⊇ im(B+GD).
(6)

(ii) The subspaceS ∗
Σ is the smallest subspace for which a matrix G∈R

n× p exists such that (6) holds;

(iii) The sequence of subspaces(S i
Σ)i∈N described by the recurrence

S 0
Σ = 0n,

S i
Σ =

[
A B

](
(S i−1

Σ ×R
m)∩ker

[
C D

])
, i ∈ N\0,

(7)

is monotonically non-decreasing. Moreover, there exists k≤n−1 such thatS k+1
Σ =S k

Σ . For such

k there holdsS ∗
Σ =S k

Σ .

A matrix G satisfying (6) will be referred to as afriend of the input-containing subspaceSΣ. The

third fundamental subspace that we need to define is the output-nulling reachability subspace on the

output-nulling subspaceVΣ, denoted byRΣ: let F ∈R
m×n be a friend of the output-nulling subspaceVΣ.

The output-nulling reachability subspaceRΣ on VΣ is the smallest(A+BF)-invariant subspace ofRn
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containing the subspaceVΣ∩BkerD. We denote byR∗
Σ the output-nulling reachability subspace onV ∗

Σ .

The following relation holds:

R∗
Σ = V ∗

Σ ∩S ∗
Σ . (8)

This identity was first proved for strictly proper systems in [15]. A proof of this fact for systems with

direct feedthrough can be found in [21, Theorem 8.22]. The subspaceR∗
Σ can be thought as the locus of

all the initial states that are reachable in finite time from the origin while mantaining thecorresponding

output equal to zero.

It is a well-known fact that, for any friendF of V ∗
Σ , F is also a friend ofR∗

Σ. For any friendF of V ∗
Σ , the

eigenvalues of(A+BF) restricted toV ∗
Σ , i.e. σ

(
A+BF

∣∣∣V ∗
Σ

)
, are split into two sets: the eigenvalues

of
(

A+ BF
∣∣∣R∗

Σ

)
are all freely assignable by a suitable choice of the friendF of V ∗

Σ . The eigenvalues

of
(

A+ BF
∣∣∣V ∗

Σ
R∗

Σ

)
are fixed, i.e., they do not depend on the choice of the friendF of V ∗

Σ : they are the

invariant zerosof Σ, [1]. In symbols

Z (Σ) = σ
(

A+BF
∣∣∣
V ∗

Σ
R∗

Σ

)
.

Now, consider the subspaceQ∗
Σ :=V ∗

Σ +S ∗
Σ , which is dual toR∗

Σ. For any friendG of S ∗
Σ , G is also a

friend ofQ∗
Σ. Moreover, the eigenvalues of

(
A+GC

∣∣∣ R
n

Q∗
Σ

)
are all freely assignable by a suitable choice of

G, while the eigenvalues of
(

A+GC
∣∣∣ Q∗

Σ
S ∗

Σ

)
are fixed, and are the invariant zeros ofΣ. Hence, the identity

Z (Σ)=σ
(

A+ BF
∣∣∣V ∗

Σ
R∗

Σ

)
=σ

(
A+ GC

∣∣∣ Q∗
Σ

S ∗
Σ

)
holds. Now we briefly recall the geometric definition and

the basic properties of left and right invertible systems.

Definition 1 The systemΣ is said to be left invertible ifR∗
Σ = V ∗

Σ ∩S ∗
Σ =0n.

Stated differently, we may say thatΣ is left invertible if no pair of distinct input functions give rise to

the same output function with zero initial condition. For this reason, the left invertibility of a system

Σ is sometimes alternatively referred to asfunctional observability. The following theorem provides

necessary and sufficient conditions for left invertibility.

Lemma 3 SystemΣ is left invertible if and only if any of the following statements hold true:

1. the transfer function matrix GΣ(s) associated withΣ is a left invertible rational matrix;

2. V ∗
Σ ∩BkerD= 0n;

3. B−1V ∗
Σ ∩kerD= 0m.

By extending straightforwardly a result presented in [4, Theorem 3] to non strictly proper systems, we

can say that ifΣ is not left invertible, the input function corresponding to a given response (obtained with

zero initial condition) can only be determined moduloB−1V ∗
Σ ∩kerD. The subspaceB−1V ∗

Σ ∩kerD is

therefore calledinput unobservability subspace.
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Definition 2 The systemΣ is said to be right invertible ifQ∗
Σ = V ∗

Σ +S ∗
Σ =R

n.

Stated differently, we may say thatΣ is right invertible if for any arbitrarily assigned impulsive-smooth

output, there exists an impulsive-smooth input yielding that output with zero initial condition. For

this reason, the right invertibility of a systemΣ is sometimes alternatively referred to asfunctional

controllability of Σ.

Lemma 4 SystemΣ is right invertible if and only if any of the following statements hold true:

1. the transfer function matrix GΣ(s) associated withΣ is a right invertible rational matrix;

2. S ∗
Σ +C−1 imD = R

n;

3. CS ∗
Σ + imD = R

p.

If Σ is not right invertible, the output function can be imposed modulo any complement of the subspace

CS ∗
Σ + imD, [4, Theorem 4]. Thus, the subspaceCS ∗

Σ + imD is calledoutput reachability subspace.

Now, defineνi := dim(V ∗
Σ +S i

Σ)− dim(V ∗
Σ +S i−1

Σ ), for i ∈ N, and letρi := card{ j ∈ N |ν j ≥ i}.

The ρi are the orders of thezeros at infinityof Σ. The supremal value of the orders of the zeros at

infinity is called relative degreeof the systemΣ. It is an easily established fact that in the particular

case whenΣ is right invertible, the relative degree ofΣ corresponds to the least integerk ∈ N such that

V ∗
Σ +S k+1

Σ =R
n. Dually, if Σ is left invertible, the relative degree ofΣ equals the least integerk ∈ N

for which S ∗
Σ ∩V k+1

Σ =0n. The original geometric definition for the orders of the zeros at infinity for

strictly proper systems comes back to [7]; its extension to non strictly proper systems has been presented

in [1, Theorem 4].

4 Reduction to a left invertible system

Consider a non left invertible systemΣ. The main result of this section consists of a transformation ofΣ,

involving an algebraic state-feedback and an input static unit, so that the system thus obtained, saŷΣ, is

left invertible, see Figure 1. By performing a state-feedback with a friendF of V ∗
Σ assigning arbitrarily
















 








Σ

Σ̂
x(t)

y(t)u(t)

F

Us
++

Fig. 1: Block diagram of a left inverter

all the eigenvalues of
(

A+ BF
∣∣∣R∗

Σ

)
, and by eliminating all the input functions yielding motions on
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R∗
Σ, we obtain a new system̂Σ whose output-nulling reachable subspaceR∗

Σ̂
is the sole origin, and its

invariant zeros are those of the original system, plus those assigned throughF . It follows in particular

that if Σ is minimum phase, the modified system̂Σ remains such with a suitable choice ofF .

These results are presented and proved in the following theorem.

Theorem 1 Let F be a friend ofV ∗
Σ . Let Us be a basis matrix of the subspaceUs:=(B−1V ∗

Σ ∩kerD)⊥,

whose dimension is denoted by s. Consider the quadrupleΣ̂ :=(A+ BF,BUs,C + DF,DUs). The

following results hold:

1. V ∗
Σ =V ∗

Σ̂
;

2. Σ̂ is left invertible;

3. Z (Σ̂)=Z (Σ)]σ
(

A+BF
∣∣∣R∗

Σ

)
.

Proof: First, we denote byΣF the quadruple (A+BF,B,C+DF,D). A straightforward computation

shows that an output-nulling subspace ofΣ is also output-nulling forΣF (andviceversa), i.e.,V ∗
Σ =V ∗

ΣF
,

[21, p.169]. Now, we prove thatV ∗
ΣF

=V ∗
Σ̂

. Notice that by definition ofΣF andΣ̂ the set of output nulling

subspaces of̂Σ is contained in that ofΣF : in fact in Σ̂ the set of control functions is restricted with respect

to those ofΣF . Hence, we need to show thatV ∗
ΣF

is output nulling for̂Σ, i.e.,



 A+BF

C+DF



 V ∗
ΣF

⊆ (V ∗
ΣF

×0p)+ im



 BUs

DUs



 . (9)

To this aim, apply the linear map



 B

D



 to both sides of the trivial identityRm=(B−1V ∗
Σ ∩kerD)⊕Us

to obtain

im



 B

D



 =
(
(V ∗

ΣF
∩BkerD)×0p

)
+ im



 B

D



 Us.

Now, by adding the subspaceV ∗
ΣF

×0p to both sides of the former we get

(V ∗
ΣF

×0p)+ im



 B

D



 = (V ∗
ΣF

×0p)+ im



 BUs

DUs



 ,

which leads to (9). Now, by taking Lemma 3 into account, we show thatΣ̂ is left invertible by proving

that(BUs)
−1V ∗

Σ̂
∩ker(DUs)=0s. Let ω ∈(BUs)

−1V ∗
Σ̂
∩ker(DUs). Thus,BUsω ∈V ∗

Σ̂
andDUsω =0p.

Defineω̃ :=Usω . The former yieldsω̃ ∈B−1V ∗
Σ̂
∩kerD=U ⊥

s , sinceV ∗
Σ =V ∗

Σ̂
. However, by definition

ω̃ lies in the range ofUs, hence it belongs to(B−1V ∗
Σ ∩kerD)⊥. It follows that ω̃ =0m. From the

injectivity of Us, we may conclude thatω =0s. As a result,̂Σ is left invertible.
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Finally, by definition of invariant zerosZ (Σ̂)=σ
(

A+BF
∣∣∣
V ∗

Σ̂
R∗

Σ̂

)
, which equalsσ

(
A+BF

∣∣∣V ∗
Σ̂

)
sinceΣ̂

is left invertible. However, sinceV ∗
Σ =V ∗

Σ̂
, we get

Z (Σ̂) = σ
(

A+BF
∣∣∣
V ∗

Σ
R∗

Σ

)
]σ

(
A+BF

∣∣∣R∗
Σ

)

= Z (Σ)]σ
(

A+BF
∣∣∣R∗

Σ

)
.

So far, we have shown that the procedure described in Theorem 1 turns the given system into a left

invertible system, whose invariant zeros are those of the original system, plus those given byσ
(

A+

BF
∣∣∣R∗

Σ

)
, which as already observed are all freely assignable with a suitable choice of the friendF of

V ∗
Σ . On the other hand, this procedure for the left inversion enjoys furtherimportant properties: it does

not reduce the functional controllability properties of the original system, i.e., if Σ is right invertible, so is

the resulting system̂Σ (andviceversa). Even more is true: the subspaceQ∗
Σ = V ∗

Σ +S ∗
Σ is invariant under

the transformation presented in Theorem 1. As already noted, this subspace is dual toR∗
Σ =V ∗

Σ ∩S ∗
Σ .

This result is presented and proved in the following proposition.

Proposition 1 Let F be a friend ofV ∗
Σ . Let Us be a basis matrix of the subspaceUs:=(B−1V ∗

Σ ∩kerD)⊥,

whose dimension is denoted by s. LetΣ̂ :=(A+ BF,BUs,C+ DF,DUs). Consider the sequences of

subspaces(S i
Σ)i∈N and(S i

Σ̂
)i∈N. The following equality holds

V ∗
Σ +S i

Σ =V ∗
Σ̂ +S i

Σ̂, i ∈ N.

Hence,Σ is right invertible if and only if̂Σ is such. Moreover,̂Σ andΣ have the same zero structure at

infinity and the same relative degree.

Proof: Denote byΣ̄ the quadruple (A,BUs,C,DUs). We first prove thatV ∗
Σ +S i

Σ =V ∗
Σ̄ +S i

Σ̄ . To this

aim, consider the two sequences of subspaces(V i
Σ )i∈N and(V i

Σ̄ )i∈N described in (4), which respectively

converge toV ∗
Σ andV ∗

Σ̄ in at mostn−1 steps. We first verify by induction that for anyi∈N we have

V i
Σ =V i

Σ̄ . This fact is clearly true wheni =0. Let us now suppose that it holds for a giveni −1, i.e.,

V i−1
Σ =V i−1

Σ̄ , and let us prove the same fact fori, i.e., V i
Σ =V i

Σ̄ . The following inclusion, that will be

useful in the sequel, holds:


 B

D



 U ⊥
s ⊆ (V ∗

Σ ∩BkerD)×0p ⊆ V i−1
Σ ×0p. (10)

In fact, since sequence (4) is monotonically non-increasing,V i−1
Σ ⊇V ∗

Σ ⊇V ∗
Σ ∩BkerD. Now, from (4)

we find

V i
Σ =



 A

C




−1(

(V i−1
Σ ×0p)+



 B

D



(U ⊥
s ⊕Us)

)

=



 A

C




−1(

(V i−1
Σ̄ ×0p)+



 B

D



 Us

)
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where the last equality is a consequence of (10). Hence, indeedV i
Σ =V i

Σ̄ . Now, we prove by induction

that for any i∈N, S i
Σ ⊇S i

Σ̄ . Clearly, S 0
Σ =S 0

Σ̄ . Let us suppose thatS i−1
Σ ⊇S i−1

Σ̄ for a given i,

and let us prove thatS i
Σ ⊇S i

Σ̄ . Let ξ ∈S i
Σ̄ . By (7), it follows thatξ1∈S i−1

Σ̄ ⊆S i−1
Σ and ξ2∈R

s

exist such thatCξ1+DUsξ2=0p andAξ1+BUsξ2=ξ . Defineξ ′
2 :=Usξ2. It follows thatξ1∈S i−1

Σ ,

Cξ1+Dξ ′
2=0, andAξ1 + Bξ ′

2=ξ . The latter three relations clearly imply thatξ ∈S i
Σ . Hence, we

have shown that for anyi∈N we haveS i
Σ ⊇S i

Σ̄ andV i
Σ =V i

Σ̄ . A direct consequence of this result is

that for anyi∈N, V i
Σ +S i

Σ ⊇V i
Σ̄ +S i

Σ̄ . In order to show that the converse inclusion is true, i.e., that

V i
Σ +S i

Σ ⊆V i
Σ̄ +S i

Σ̄ , we proceed by induction again. The inclusion holds fori =0. Let us suppose that

V i−1
Σ +S i−1

Σ ⊆V i−1
Σ̄ +S i−1

Σ̄ for some definedi, and let us prove thatV i
Σ +S i

Σ ⊆V i
Σ̄ +S i

Σ̄ . Consider an

arbitraryξ ∈V i
Σ +S i

Σ . It follows thatξ1∈S i−1
Σ , ξ2∈R

m andξ3∈V i
Σ exist such thatCξ1+Dξ2=0p and

Aξ1+Bξ2+ξ3=ξ . Two vectorsξ ′
2∈Us andξ ′′

2 ∈U ⊥
s exist such thatξ2=ξ ′

2+ξ ′′
2 . Hence,Bξ ′′

2 ∈V ∗
Σ

andDξ ′′
2 =0p. By linearity

ξ =
[

A B
]


 ξ1

ξ ′
2 +ξ ′′

2



+ξ3 =
[

A B
]


 ξ1

ξ ′
2



+ ξ̃ +ξ3,

holds, whereξ̃ :=
[

A B
]


 0n

ξ ′′
2



. On the other hand, as already observed,Dξ ′′
2 =0p. It follows

thatCξ1+Dξ2=Cξ1+Dξ ′
2=0p. Moreover, sinceξ ′

2∈Us, a vectorξ̄2∈R
s exists such thatξ ′

2=Us ξ̄2.

HenceCξ1+DUs ξ̄2=0p and, sinceS i−1
Σ =S i−1

Σ̄ , we find



 ξ1

ξ̄2



 ∈ (S i−1
Σ̄ ×R

s)∩ker
[

C DUs

]
.

Finally, ξ ∗ := ξ̃ +ξ3=Bξ ′′
2 +ξ3∈V ∗

Σ +V i
Σ =V i

Σ . We have shown thatξ1∈S i−1
Σ̄ , ξ̄2∈R

s andξ3∈V i
Σ̄

exist such thatAξ1+BUs ξ̄2+ξ3=ξ andCξ1+DUs ξ̄2=0p. This implies thatξ ∈V i
Σ̄ +S i

Σ̄ . Hence,

we have indeedV ∗
Σ +S ∗

Σ =V ∗
Σ̄ +S ∗

Σ̄ . SinceV ∗
Σ andS ∗

Σ are invariant under state feedback, [21, p.169,

p.183], it follows thatV ∗
Σ +S ∗

Σ =V ∗
ΣF

+S ∗
ΣF

, whereΣF is defined as in the proof of Theorem 1. Hence,

the procedure outlined above can be applied toΣF , yieldingV ∗
Σ +S ∗

Σ =V ∗
ΣF

+S ∗
ΣF

=V ∗
Σ̂

+S ∗
Σ̂

.

The last property that we want to investigate is the preservation of the stabilizability of the original

system after reduction to a left invertible system.

Proposition 2 Let Σ be a stabilizable system. Let Us be a basis matrix of the subspace

Us:=(B−1V ∗
Σ ∩kerD)⊥. Any friend F ofV ∗

Σ for which σ
(

A+ BF
∣∣∣R∗

Σ

)
⊂ Cg is such that the left

invertible system̂Σ :=(A+BF,BUs,C+DF,DUs) is stabilizable.

Proof: First, let us denote byR the reachable subspace from the origin, i.e., the smallestA-invariant

subspace containing the range ofB. We want to prove that the subspaceR∗
Σ is externally stabilizable.

Let F be a friend ofR∗
Σ. From the trivial inclusionR∗

Σ ⊆ R it follows that σ
(

A+ BF
∣∣∣ R

n

R+R∗
Σ

)
=

9



σ
(

A+ BF
∣∣∣R

n

R

)
⊂ Cg, the last inclusion due to the stabilizability ofΣ. It follows thatR∗

Σ is externally

stabilizable. We perform a preliminary change of coordinates in the state andinput spaces through the

non-singular matricesT =
[

T1 T2 T3

]
∈ R

n×n andU =
[

U1 U2

]
∈ R

m×m, such thatimT1 = R∗
Σ,

im
[

T1 T2

]
= V ∗

Σ , imU1 = B−1V ∗
Σ ∩ kerD andimU2 = (B−1V ∗

Σ ∩ kerD)⊥. If we take a friendF of

V ∗
Σ assigning the eigenvaluesσ

(
A+BF

∣∣∣R∗
Σ

)
in Cg, the pair(A+BF,B) can be written with respect to

this basis as

A+BF =





AF
11 AF

12 AF
13

0 AF
22 AF

23

0 0 AF
33



 , B =





B11 B12

0 B22

0 B32



 ,

where the zeros inA+ BF are due to the(A+ BF)-invariance ofV ∗
Σ andR∗

Σ. The zeros in positions

21 and 31 inB are due to the inclusionV ∗
Σ ∩BkerD⊆ R∗

Σ. SinceΣ is stabilizable, such is the pair

(A+BF,B), so that the pair


 AF
22 AF

23

0 AF
33



 ,



 B22

B32



 , (11)

is stabilizable, as well; let
[

F ′
1 F ′

2

]
be a feedback stabilizing the pair (11); it follows that the feedback

F̃ :=
[

0 F ′
1 F ′

2

]
stabilizes the pair(A+BF,B2), whereB2 is the second block-column ofB, asAF

11

is already stable. Now, sinceimU2 = imUs, we find that the system̂Σ is stabilizable.

Remark 1 As is well-known, if the state of the given system is not accessible for the feedback, the block

diagram of Figure 1 can be replaced by the series connection of a systemΣL := (A+BF,BUs,F,Us) at

the input of the given systemΣ, , in whichF is a friend ofV ∗
Σ andUs is a basis matrix of the subspace

Us=(B−1V ∗
Σ ∩kerD)⊥, see [5].

4.1 A numerical example

The proposed approach turns out to be easily implementable as a software routine for the squaring down

of a general LTI system. Consider the example described by the following matrices,

A =





−3 5 −7 0

0.5 −1.5 0.5 −7.5

−5 0 −3 0

−0.5 −5 0 −7




, B =





1 0 0

0 −1 0

−2 0 0

0 1 2




,

C =



 1 0 0 0

0 −1 0 0



 , D =



 1 0 0

2 0 0



 .
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SystemΣ=(A,B,C,D) is non left invertible and right invertible. In fact

V ∗
Σ = im





1 0 0

−2 0 0

0 1 0

0 0 1




, S ∗

Σ = im





0 0

1 0

0 0

0 1




and R∗

Σ = im





0

0

0

1




.

In the present case the difference between the dimension ofV ∗
Σ and that ofR∗

Σ is 2, systemΣ has two

invariant zeros, which are{−15.6589,−1.3411}, so that ifΣ is continuous-time, it is minimum phase.

The first step consists of finding a friendF ∈R
3×4 of V ∗

Σ assigning the eigenvalue of(A+BF) restricted

to R∗
Σ. The matrix

F =





−3 −1 0 0

−3.5 10.5 −13.5 −7.5

1.2 −2.4 5.4 6.25





assigns the eigenvalueσ
(

A+BF
∣∣∣R∗

Σ

)
= {−2}, andσ

(
A+BF

∣∣∣ R
n

V ∗
Σ +R

)
={−4}, whereR is the reach-

able subspace from the origin. The matrix

Us =





1 0

0 1

0 0





is a basis matrix of (B−1V ∗
Σ ∩kerD)⊥. The new systemΣ1 described by the matrices

A1=A+BF, B1=BUs, C1=C + DF , D1=DUs=0 is left invertible, sinceV ∗
Σ1

=V ∗
Σ but S ∗

Σ1
=

im
[

0 −1 0 1
]>

; moreover, the right invertibility is preserved. The set of its invariant zeros is

exactly{−15.6589,−1.3411,−2}. Hence,Σ1 is minimum phase.

5 Conversion to a right invertible system and squaring down

All the results presented so far can be easily dualized, so as to turn an arbitrary systemΣ into a right

invertible system̂Σ, without affecting its functional observability properties. Clearly, this transformation

involves an output injection via a matrixG such that (6) hold, and assigning all the eigenvalues of(
A+GC

∣∣∣ R
n

V ∗
Σ +S ∗

Σ

)
, and an output algebraic unitY>

s , which is a basis matrix of the subspaceCS ∗
Σ + imD,

see Figure 2.

The following Corollary is the counterpart of Theorem 1, and Propositions 1-2 in the dual setting.

Corollary 1 Let G be a friend ofS ∗
Σ . Let Ys be a basis matrix of the subspace CS ∗

Σ + imD. The

quadrupleΣ̂ :=(A+GC,B+GD,Y>
s C,Y>

s D) is such that

1. S ∗
Σ =S ∗

Σ̂
;
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Σ

Σ̂

Y>
s

y(t)

G

y(t)u(t)

Fig. 2: Block diagram of a right inverter

2. Σ̂ is right invertible;

3. Z (Σ̂) = Z (Σ)]σ
(

A+GC
∣∣∣ R

n

V ∗
Σ +S ∗

Σ

)
;

4. V i
Σ ∩S ∗

Σ =V i
Σ̂
∩S ∗

Σ̂
, i ∈ N. Hence, in particular,Σ̂ is left invertible if and only ifΣ is such.

Moreover,Σ̂ andΣ have the same zero structure at infinity and the same relative degree.

Moreover, ifΣ is detectable, for any friend G ofS ∗
Σ such thatσ

(
A+ GC

∣∣∣ R
n

Q∗
Σ

)
⊂ Cg the system̂Σ is

detectable, as well.

Hence, the set of invariant zeros of the resulting systemΣ̂ is enlarged, so as to include the set of

eigenvalues ofA+GC that are freely assignable through a suitable choice ofG.

Furthermore, since the left reduction procedure preserves the right invertibility of the original system,

while the right reduction procedure preserves the left invertibility, these two procedures can be applied

together to an arbitrary system, possibly degenerate, so as to obtain a square and invertible system,

described by the quadrupleΣsq :=
(

A+ BF + GC+ GDF,(B+ GD)Us,Y>
s (CDF),Y>

s DUs

)
. Its set of

invariant zeros includes the invariant zeros of the original systemΣ. The matricesF and G can be

chosen so as to place the additional invariant zeros introduced in the system Σsq thus obtained at arbitrary

locations ofCg, as pointed out in Theorem 1 and Proposition 1.

Remark 2 In the case when the input ofΣ is not accessible for the output injection, the procedure

outlined in Remark 1 can be dualized, so that a unitΣR, whose structure is dual to that ofΣL, has to be

connected at the output ofΣ in order to obtain an overall right invertible system.
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5.1 A numerical example

The proposed approach turns out to be easily implementable as a software routine for the squaring down

of a general LTI system. Consider the example described by the following matrices,

A =





2 0 6 0

0 −5 0 12

−2 0 −8 0

1 −3 0 4




, B =





1 0

2 4

0 0

0 −2




,

C =



 1 0 2 0

−3 0 0 0



 , D =



 0 0

0 0



 .

SystemΣ=(A,B,C,D) is non left invertible and non right invertible, since

V ∗
Σ = im





0 0

1 0

0 0

0 1




and S ∗

Σ = im





1 0 0

0 1 0

0 0 0

0 0 1




.

In the present caseR∗
Σ =V ∗

Σ , so thatΣ has no invariant zeros. The first step consists of finding a friend

F ∈R
2×4 of V ∗

Σ assigning the eigenvalues of(A+BF) restricted toR∗
Σ. The matrix

F =



 0 0 7 0

0 −0.5 0 0





assigns the eigenvaluesσ
(

A+BF
∣∣∣R∗

Σ

)
= {−1,−2}, andσ

(
A+BF

∣∣∣ R
n

V ∗
Σ +R

)
={−3+ i,−3− i}. The

matrixUs=
1√
10

[
−1 3

]>
is a basis matrix of(B−1V ∗

Σ ∩kerD)⊥. The new systemΣ1 described by

the matricesA1=A+BF, B1=BUs, C1=C, D1=DUs=0 is left invertible, but not right invertible, since

V ∗
Σ1

=V ∗
Σ but S ∗

Σ1
=

[
−1 −2 0 0

]
. The set of its invariant zeros is exactly{−1,−2}. Now, we

derive a friendG∈R
4×2 of S ∗

Σ such thatσ
(

A1+GC1

∣∣∣ R
n

V ∗
Σ +S ∗

Σ

)
= {−4,−5}. In this case there are no

internal eigenvaluesσ
(

A1+GC1

∣∣∣ S ∗
Σ

S ∗
Σ ∩Q∗

Σ

)
to assign:

G =





−2.0148 1.6617

1.0574 −0.9809

2 0

0.0652 −0.9783




.
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The matrixYs=
1√
10

[
−1 3

]>
is a basis matrix ofC1S ∗

Σ1
+ imD. The systemΣ2 described by the

matricesA2 := A1 +GC1, B2 := B1 +GD1, C2 := Y>
s C1, D2 := Y>

s D1:

A2 =





−5 0 8.9704 0

4 −7 16.1148 15

0 0 −4 0

4 −2 0.1304 4




, B2 =





−1

−2

0

0




,

C2 =
[
−3.1623 0 −0.6325 0

]
, D2 = 0,

is therefore left and right invertible, sinceR∗
Σ2

=0n andV ∗
Σ2

+S ∗
Σ2

=R
n, and is minimum phase, since its

invariant zeros are{−1,−2,−4}.

6 The LQ optimal control problem

As an example of application of the results presented so far, we present aparametrization of the solutions

of the LQ problem for non left invertible systems. Consider for example the discrete-time non left

invertible systemΣ with assigned initial condition described by

x(k+1) = Ax(k)+Bu(k), x(0) = x0 ∈ R
n,

y(k) = Cx(k)+Du(k).
(12)

The problem is that of finding a stabilizing state feedbacku(k)= −K+x(k) minimizing the performance

index

J(x0,u) =
∞

∑
k=0

y>(k)y(k),

under the constraint (12). In this case, the optimal solution is not unique. In fact, since in this caseR∗
Σ

differs from zero, dinstinct control functions exist yielding state trajectories corresponding to identically

zero output functions. In other words, given an optimal control lawuo(k), the set of optimal control

functions is parametrized modulo the controls driving the state ofΣ on R∗
Σ. Let Q := C>C, S := C>D

andR := D>D. SinceΣ is not left invertible, the extended symplectic pencil associated with the LQ

problem is singular, so that the discrete-time algebraic Riccati equation (DARE)

P = A>PA− (A>PB+S)(R+B>PB)−1(B>PA+S>)+Q, (13)

does not admit a stabilizing solution. Now, consider the systemΣ̂=(Â, B̂,Ĉ, D̂) :=(A+ BF,BUs,C+

DF,DUs), whereF is a friend ofV ∗
Σ andUs is a basis matrix of the subspace(B−1V ∗

Σ ∩kerD)⊥. System

Σ̂ is now left invertible by virtue of Theorem 1. Hence, the infinite-horizon LQproblem can be solved

with respect to the auxiliary system̂Σ: in particular, the stabilizing solution̂P+ of the DARE (13) referred

to Σ̂ yields the optimal gain̂K+ := (R̂+ B̂> P̂+ B̂)−1(B̂> P̂+ Â+ Ŝ>), whereQ̂ := Ĉ>Ĉ, Ŝ := Ĉ>D̂ and

R̂ := D̂>D̂. Then, the matrixK+ =UsK̂+−F is a gain leading to an optimal control function. Different
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choices of the matrixF yield different solutions of the LQ problem, corresponding to the possibility of

assigning arbitrarily the eigenvalues of(A+ BF) on R∗
Σ, so that the state evolutions are different, but

they all correspond to the same output function, and the value of the performance index does not change

and is equal to its optimal valueJ∗. Hence, all optimal solutions of the LQ problem herein considered

can be parametrized in terms of all possible friendsF of V ∗
Σ such thatσ

(
A+ BF

∣∣∣R∗
Σ

)
⊂ Cg, without

the need of resorting to the stabilizing solution of the generalized discrete algebraic Riccati equation. It

is worth observing that the same technique can be employed for a parametrization of the solutions of

continuous-time singular LQ problems, in which the assumption of left invertibility isstandard, [9].

6.1 An illustrative example

Consider a discrete-time systemΣ with assigned initial condition described by the matrices

A =



 1 1

0 1



 , B =



 2 0

1 1



 , x(0) =



 1

−1



 ,

C =
[

0 1
]
, D =

[
0 0

]
.

This system is non left invertible, sinceR∗
Σ = im

[
1 0

]>
, but it is right invertible sinceS ∗

Σ = R
n. Let

Q :=C>C, S:=C>D andR:= D>D. SinceΣ is not left invertible, the DARE does not admit a stabilizing

solution. Consider the matrices

F =



 −3
4 −1

4
3
4 −1

4



 , Us =



 1

1



 ,

whereF is a friend ofV ∗
Σ , assigningσ

(
A+BF

∣∣∣R∗
Σ

)
= {−1

2} andσ
(

A+BF
∣∣∣ R

n

V ∗
Σ +R

)
={1

2}, whereR

is the reachable subspace from the origin, whileUs is a basis matrix for(B−1V ∗
Σ )⊥. The new system

described by

Â = A+BF =



 −1
2

1
2

0 1
2



 , B̂ = BUs =



 2

2



 ,

Ĉ = C+DF =
[

0 1
]
, D̂ = DUs =

[
0

]

is now left invertible. The DARE written with respect tôA, B̂, Q̂ := Ĉ>Ĉ, Ŝ := Ĉ>D̂ andR̂ := D̂>D̂,

admits a stabilizing solution and an optimal infinite-horizon gain, which are respectively

P̂+ =



 0 0

0 1



 , K̂+ =
[

0 1
4

]
.

The optimal gain referred to the original system is

K+ = UsK̂+−F =




3
4

1
2

−3
4

1
2



 .
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The overall optimal cost isJ∗ = x>0 P̂+ x0 = 1. As we could expect, if we changeF in order to choose for

example−1
5 as internal and−1

2 as external assignable eigenvalues ofV ∗
Σ , respectively, we find the same

solutionP̂+ of (13) applied tôΣ, hence leading to the same cost, with a different solutionK̂+. Hence, the

optimal gain referred to the original systemK′
+ is, in this case,

K′
+ = UsK̂+−F =




3
5 1

−3
5 1



 .

7 Concluding remarks

A geometric setting has been established for the solution of the left and right inversion of non strictly

proper LTI systems, leading to a simple and computationally attractive procedure for the squaring down

problem. It has been proved that the squared-down system is minimum phase if so is the original system,

and the invariant zeros induced by the pre and post-compensators are all freely assignable in the complex

plane. The approach developed for the left and right reduction presented in Sections 4 and 5 has been

implemented as an algorithm in the MATLABR© routinesleftinv.m andrightinv.m, available1 at

http://www.dii.unisi.it/prattichizzo/research/geometric/leftrightinv.html.

These new techniques are not merely oriented to the solution of the aforementioned problems, but

highlight important geometric properties of LTI systems that can be exploited for the solution of different

control problems; as an example we have considered the infinite-horizon LQ problem for discrete-time

non left invertible systems: the left inversion procedure yields a parametrization of all the optimal

solutions in terms of motions on a subspace corresponding to modes that are not penalized in the

performance index.
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