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Abstract

This paper investigates several aspects of linear-quadratic (LQ) optimal control
for Roesser models over a two-dimensional (2-D) signal-index set of finite extent.
First, we consider the characterisation and computation of open-loop control laws
when constraints on the system semi-states are imposed at both the south-west and
north-east boundaries of the frame (i.e. signal-index set) of interest; by virtue of the
quarter-plane causal structure of the Roesser model, the south-west and north-east
boundary conditions are analogous to initial conditions and terminal constraints,
respectively. A necessary and sufficient characterisation of optimality is obtained
and explicitly computable formulae are derived to characterise the corresponding
control inputs and performance index under reasonable assumptions on the problem
data. In the second part of the paper, the problem of optimal LQ control via semi-
state feedback is considered. A 2-D Riccati-like difference equation is introduced to
characterise, in a sufficient sense, a solution to this problem.

Key words: Roesser models, linear quadratic optimal control, semi-state feedback.

1 Introduction

Two-dimensional (2-D) systems arise naturally in the modelling of processes
where the signals of interest are defined over a purely spatial, or mixed spatio-
temporal, index set. Standard latent variable (semi-state) models for 2-D sys-
tems include the so-called Roesser and Fornasini-Marchesini models; see (Roesser,
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1975) and (Fornasini and Marchesini, 1978), respectively. A feature of these
models is a quarter-plane causal structure, given semi-state constraints on the
south-west boundary of the signal-index set, or frame, of interest; such con-
straints are analogous to initial conditions in a one-dimensional (1-D) setting.
These two models are also known to be equivalent in terms of the input-output
behaviours they can represent (Kaczorek, 1985).

Optimal control problems for linear Fornasini-Marchesini models are addressed
in (Bisiacco and Fornasini, 1990) and (Bisiacco, 1995) over an infinite frame
of interest. The optimal control of 2-D systems over a finite frame, on the
other hand, is studied for a non-linear form of the Roesser model in (Li and
Fadali, 1991), where a variational approach is used to obtain necessary con-
ditions for optimality. In this paper, we first consider a linear version of the
optimal control problem for Roesser models, with a quadratic measure of per-
formance and affine constraints on the north-east semi-states; these additional
constraints are analogous to terminal state constraints as studied in (Ferrante
and Ntogramatzidis, 2005) for 1-D systems. For this problem, the correspond-
ing conditions for optimality are shown to be both necessary and sufficient.
While this is not surprising in view of the convex nature of the problem, solving
the equations that characterise optimality is not straightforward in general.
Conditions under which the equations can be explicitly solved to yield the
optimal open-loop controls are explored and we provide an expression for the
optimal cost.

Unlike the corresponding 1-D problem, it is not always possible to express
the 2-D linear-quadratic (LQ) optimal control in terms of a state feedback;
see (Bisiacco and Fornasini, 1990) and (Bisiacco, 1995) for further discussion
of this point within the context of Fornasini-Marchesini models. Bearing this
in mind, the second part of the paper is concerned with the very difficult
problem of optimal LQ regulation via static semi-state feedback.We employ
a least-squares approach to derive a 2-D Riccati-like difference equation, and
corresponding boundary conditions, which together characterise an optimal
semi-state feedback gain in the absence of the north-east boundary conditions.
It is not known how to handle such condition when a static semi-state feedback
is required.

Notation. The symbol N denotes the natural numbers (including 0) and [X, Y ]
denotes the interval of N between X and Y , inclusive. The Moore-Penrose
pseudo-inverse of a matrix M is denoted M † and its transpose by M>.

2 Problem Statement

Consider the shift-invariant system of linear (partial) difference equations
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


hi+1,j

vi,j+1


 = A




hi,j

vi,j


 + B ui,j, (1)

where hi,j ∈Rnh is called the horizontal semi-state, vi,j ∈Rnv the vertical semi-
state and ui,j ∈Rm is the control input, all at the signal-index (i, j) in a 2-D
frame of interest. This is the so-called Roesser model (Roesser, 1975). In the
following, it becomes convenient to partition the matrices A ∈ R(nh+nv)×(nh+nv)

and B ∈ R(nh+nv)×m conformably with the semi-state vectors h and v; specif-
ically,

A =




A1,1 A1,2

A2,1 A2,2


 and B =




B1

B2


 . (2)

Given a frame of interest Q := [0, N ]× [0,M ], the control input u over Q, and
south-west boundary conditions

h0,j = aj ∈ Rnh for j ∈ [0, M ] and vi,0 = bi ∈ Rnv for i ∈ [0, N ], (3)

the system of equations (1) uniquely determines the horizontal semi-state h
over the finite frame H := [0, N + 1] × [0,M ] and the vertical semi-state v
over V := [0, N ] × [0,M + 1]. Moreover, the values of the semi-states bear
a quarter-plane causal relationship to the control input and one can think of
these as evolving towards the north-east boundary of Q; in particular, hi,j and
vi,j only depend on uk,l for (k, l) ∈ [0, i]× [0, j] \ {(i, j)}.

Given south-west boundary conditions (3), the finite-frame LQ optimal con-
trol problem is to construct an input u for (1), over Q, so as to minimise the
corresponding quadratic cost

J :=h>N+1H hN+1 + v>M+1V vM+1 +
∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]
Π




hi,j

vi,j

ui,j


 , (4)

where hN+1 := [ h>N+1,0 . . . h>N+1,M ]> and vM+1 := [ v>0,M+1 . . . v>N,M+1]
>,

and the symmetric and positive semidefinite matrices H ∈ R[nh (M+1)]×[nh (M+1)]

and V ∈ R[nv (N+1)]×[nv (N+1)] penalise the north-east boundary values of the
horizontal and vertical semi-states, respectively. It is standard for the so-called
Popov matrix in (4) to be chosen such that

Π =




Q S

S> R


 = Π> ≥ 0,
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where the matrices Q ∈ R(nh+nv)×(nh+nv) and S ∈ R(nh+nv)×m are structured
conformably with the semi-state vectors h and v; specifically,

Q =




Q1,1 Q1,2

Q>
1,2 Q2,2


 and S =




S1

S2


 ,

where Q1,1 ∈ Rnh×nh , Q1,2 ∈ Rnv×nv , Q2,2 ∈ Rnv×nv , S1 ∈ Rnh×m and S2 ∈
Rnv×m. Note that there is no need to assume at this stage that R = R> ≥ 0
is non-singular.

Rather than simply penalising the north-east boundary values of the semi-
states, it can be useful to require that these terminal values satisfy particular
constraints. To this end, let pj ∈ {0, . . . , nh} and Wj ∈ Rpj×nh be full row-rank
for j ∈ [0,M ]. Also let qi ∈ {0, . . . , nv} and Zi ∈ Rqi×nv be full row-rank for
i ∈ [0, N ]. Given wj ∈ Rpj and zi ∈ Rqi , consider the additional constraints

Wj hN+1,j = wj for j ∈ [0,M ] (5)

on the horizontal semi-state and

Zi vi,M+1 = zi for i ∈ [0, N ] (6)

on the vertical semi-state. Note that if pj = 0 for a given j ∈ [0,M ], the
matrix Wj has zero rows, and the vector wj has zero entries. In this situation,
the constraint (5) is vacuous; i.e., all the components of the vector hN+1,j are
unconstrained. Likewise, if qi = 0 for i ∈ [0, N ], then Zi has zero rows, and
zi has zero entries, so that all components of vi,M+1 are unconstrained. The
formulation also covers the double-ended boundary value problem, whereby
all components of the vectors hN+1,j and vi,M+1 are fixed for all j ∈ [0,M ] and
i ∈ [0, N ], by setting pj = nh for all j ∈ [0,M ] and qi = nv for all i ∈ [0, N ].
In this case, the matrices H and V in the performance index (4) can be set to
zero, since the quadratic penalty on each hN+1,j and vi,M+1 leads to a constant
offset in the cost. In any cases, the terminal semi-state subspaces defined
by the boundary conditions (5-6) must be reachable over the finite frame of
interest, otherwise the set of admissible controls is empty. See (Kaczorek, 1985)
for discussion of such issues. With these notions established it is possible to
formalise the problem considered in the first part of the paper.

Problem 2.1 Find a control input u, over the finite-frame Q, to minimise the
quadratic performance index (4), subject to (1) and the boundary conditions
(3), (5) and (6).
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3 Open-loop optimal control

In this section, three important issues related to the open-loop solution of
Problem 2.1 are addressed. First, we present a generalised version of the opti-
mality conditions established in (Li and Fadali, 1991) in order to accomodate
the north-east affine constraints (5-6). It is shown that the optimality condi-
tions are not only necessary, but also sufficient. Open-loop computation of the
optimal control is then discussed in detail and a compact expression is derived
for the optimal cost.

3.1 Characterising Optimality

In (Li and Fadali, 1991), necessary optimality conditions are obtained for
Problem 2.1 in the absence of the north-east boundary constraints (5-6), as
a special case of a result established therein for a non-linear version of the
constraint (1). The conditions were obtained via a variational analysis and
the question of sufficiency remained unanswered. A similar analysis yields the
following necessary conditions for Problem 2.1 as stated in terms of (5-6).

Proposition 3.1 Given a control input u, defined over the finite frame Q,
suppose that (5-6) are satisfied by the corresponding semi-state signals h and
v generated via (1) and (3), over the finite frames H and V, respectively. If u
minimises (4) then there exist λi,j ∈Rnh for (i, j)∈H, µi,j ∈ Rnv for (i, j) ∈ V,
ξj ∈ Rpj for j ∈ [0, M ] and ζi ∈ Rqi for i ∈ [0, N ] such that:

(i) for all (i, j) ∈ Q



λi,j

µi,j


 = Q




hi,j

vi,j


 + S ui,j + A>




λi+1,j

µi,j+1


 , (7)

0 = R ui,j + S>




hi,j

vi,j


 + B>




λi+1,j

µi,j+1


 , (8)




hi+1,j

vi,j+1


 = A




hi,j

vi,j


 + B ui,j; (9)

(ii) for all j ∈ [0,M ]

h0,j = aj and Wj hN+1,j = wj, (10)

λN+1,j =
M∑

k=0

Hj,k hN+1,j + W>
j ξj, (11)
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where Hi,j denotes the (i, j)-th nh × nh sub-block matrix of the penalty ma-
trix H for i, j ∈ [0,M ];

(iii) for all i ∈ [0, N ]

vi,0 = bi and Zi vi,M+1 = zi, (12)

µi,M+1 =
N∑

l=0

Vl,i vi,M+1 + Z>
i ζi; (13)

where Vi,j denotes the (i, j)-th nv×nv sub-block matrix of the penalty matrix
V for i, j ∈ [0,M ].

Proof: The extension of the proof in (Li and Fadali, 1991) to accommodate
the constraints (5–6) is straightforward.

It is now established that the conditions in Proposition 3.1 are not only neces-
sary, but also sufficient for optimality. The approach taken is similar in nature
to that of (Mangasarian, 1966), in that convexity is exploited.

Proposition 3.2 If the boundary value problem (7-13) admits a solution, the
corresponding control input u over the finite frame Q solves Problem 2.1 in
the sense that it minimises (4) subject to the constraints (1), (3) and (5-6).

Proof: Let hi,j, vi,j, ui,j, λi,j, µi,j, ξj and ζi be such that equations (11-12) hold

and let ĥi,j, v̂i,j, ûi,j be such that all of the constraints of the optimal control
problem are satisfied; i.e.


 ĥi+1,j

v̂i,j+1


 = A


 ĥi,j

v̂i,j


 + B ûi,j ∀ (i, j) ∈ Q, (14)

ĥ0,j = aj and Wj ĥN+1,j = wj, j ∈ [0,M ], (15)

v̂i,0 = bi and Zi v̂i,M+1 = zi, i ∈ [0, N ]. (16)

Let J denote the value of the quadratic costs (4) for the input u (and corre-
sponding h and v) and let Ĵ denote the value for the input û (and correspond-
ing ĥ and v̂). In what follows, it is shown that J ≤ Ĵ . By defining the vectors

pi,j :=
[
h>i,j v>i,j u>i,j

]>
, p̂i,j :=

[
ĥ>i,j v̂>i,j û>i,j

]>
, ĥN+1 :=

[
ĥ>N+1,0 . . . ĥ>N+1,M

]>

and v̂M+1 :=
[
v̂>0,M+1 . . . v̂>N,M+1

]>
, one obtains

Ĵ − J = ĥ>N+1H ĥN+1+v̂>M+1V v̂M+1v
>
M+1V vM+1+

∑

(i,j)∈Q

(
p̂>i,jΠp̂i,j−p>i,jΠpi,j

)
.
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Now, by the positive semi-definiteness of the quadratic forms (hN+1−ĥN+1)
>H(hN+1−

ĥN+1) and (vM+1 − v̂M+1)
>V (vM+1 − v̂M+1),

ĥ>N+1HĥN+1 − h>N+1HhN+1 ≥ 2h>N+1H(ĥN+1 − hN+1) and

v̂>M+1V v̂M+1 − v>M+1V vM+1 ≥ 2v>M+1V (v̂M+1 − vM+1).

Likewise p̂>i,jΠp̂i,j − p>i,jΠpi,j ≥ 2p>i,jΠ(p̂i,j − pi,j) for all (i, j) ∈ Q, so that

Ĵ − J ≥ 2h>N+1H(ĥN+1−hN+1)+2v>M+1V (v̂M+1−vM+1)+
∑

(i,j)∈Q
2p>i,jΠ(p̂i,j−pi,j).

By virtue of (7) it follows that for any (i, j) ∈ Q,

p>i,jΠ =

[ λ>i,j−λ>i+1,jA1,1−µ>i,j+1A2,1 µ>i,j−λ>i+1,jA1,2−µ>i,j+1A2,2 − λ>i+1,jB1−µ>i,j+1B2 ].

As such,

p>i,jΠ(p̂i,j − pi,j) = λ>i+1,jhi+1,j − λ>i+1,jĥi+1,j + µ>i,j+1vi,j+1 − µ>i,j+1v̂i,j+1

+λ>i,j(ĥi,j − hi,j) + µ>i,j(v̂i,j − vi,j),

where equation (9) has been used. By (11) it then follows that

∑

(i,j)∈Q
λ>i+1,j(hi+1,j−ĥi+1,j)−λ>i,j(hi,j−ĥi,j)

=
M∑

j=0

λ>N+1,j(hN+1,j−ĥN+1,j)−
M∑

j=0

λ>0,j(h0,j−ĥ0,j)

=
M∑

j=0

(
M∑

k=0

h>N+1,j H>
j,k + ξ>j Wj

)
(hN+1,j−ĥN+1,j)−

M∑

j=0

λ>0,j(h0,j−ĥ0,j)

= −h>N+1H(ĥN+1 − hN+1)−
M∑

j=0

λ>0,j(h0,j − ĥ0,j),

since both ξ>j Wj hN+1,j and ξ>j Wj ĥN+1,j equal wj for all j ∈ [0,M ]. In a
similar way, it is can be shown that

∑
(i,j)∈Q µ>i,j+1(vi,j+1 − v̂i,j+1)− µ>i,j(vi,j −

v̂i,j) = −v>M+1V (v̂M+1 − vM+1)−∑N
i=0 µ>i,0(vi,0 − v̂i,0), so that

Ĵ − J ≥ −
M∑

j=0

λ>0,j(h0,j − ĥ0,j)−
N∑

i=0

µ>i,0(vi,0 − v̂i,0),

the right hand-side of which is zero in view of (10-12) and (15).
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Remark 3.1 As in the 1-D case, any constraint on components of the semi-
state vector correspond to components of the semi-costate vector that are un-
constrained (and vice-versa). In fact, due to the constraint Wj hN+1,j = wj, the
components of the corresponding semi-costate vector λN+1,j are constrained on
the subspace ker Wj. The freedom of the remaining components is represented
by the components of the vector ξj. In particular:

• when all the components of the semi-state hN+1,j are unconstrained, i.e.,
when pj = 0, we can assume ker Wj = Rnh , which implies that all the com-
ponents of the semi-costate λN+1,j are constrained, and ξj disappears (or,
more precisely, it is a vector of pj = 0 entries);

• when all the components of the semi-state hN+1,j are constrained, i.e.,
when pj = nh, then ker Wj = {0} since Wj is invertible, and ξj is an
nh-dimensional vector. It follows that there are no constraints on λN+1,j,
since (11) gives rise to nh equations, but the number of free variables equals
the number of components of ξj, i.e., nh.

Analogous remarks apply to the constraints on the vertical semi-state.

Remark 3.2 Let us consider the case where pj = 0 for all j ∈ [0,M ] and
qi = 0 for all i ∈ [0, N ], i.e., where there are no constraints on the semi-states
hN+1,j and vi,M+1 for j ∈ [0,M ] and i ∈ [0, N ]. Since in this case any control
input to (1) is admissible for the specified boundary conditions (3), in the
sense that a corresponding semi-state trajectory always exists, Problem 2.1
can be re-expressed as a feasible static quadratic optimisation problem in the
l = m [(N +1)·(M +1)] unconstrained variables representing the control input
on Q. In particular, Problem 2.1 always admits solutions in this case. Thus,
by virtue of Theorem 3.2, the boundary value problem in the semi-state and
semi-costate vectors (7-13) always admits solutions. In the next section, the
computation of such solutions is discussed in more detail. When the constraints
(5-6) are imposed, on the other hand, Problem 2.1 admits solutions if and only
if there exists a trajectory of (1) that satisfies (3) and (5-6).

3.2 Computing optimal open-loop controls

In general, the boundary value problem (7-13) is difficult to solve. In this
section it is shown that, under some assumptions on the problem matrices –
specifically R > 0 and A−B R−1S> non-singular – equations (7), (8) and (9)
can be re-expressed in the form of a standard Roesser model. The set of solu-
tions can then be written in a parameterised form, using the transition matrix
recursion given in (Roesser, 1975). It is shown how to impose the boundary
conditions (11) and (13) to determine the parameters involved. This leads to
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a simple linear equation for the parameters, which must admit solutions in
order for the optimal control problem to be feasible. When a solution for the
parameters exists, the corresponding input and semi-state functions are opti-
mal by construction, as they satisfy the sufficient (and necessary) conditions
in Proposition 3.2.

When R is positive definite (and hence invertible), equation (8) can be solved
for ui,j, so that (7) and (9) can be written together as




I BR−1B>

0 A> − SR−1B>







hi+1,j

vi,j+1

λi+1,j

µi,j+1




=




A−B R−1S> 0

SR−1S> −Q I







hi,j

vi,j

λi,j

µi,j




. (17)

The matrices appearing above are invertible iff A−B R−1 S> is invertible. In
this case, (17) can be rewritten as




ri+1,j

si,j+1


 =




P1 P2

P3 P4







ri,j

si,j


, (18)

where ri,j :=
[

hi,j

λi,j

]
, si,j :=

[ vi,j

µi,j

]
and

[
P1 P2

P3 P4

]
:=

[
G′1,1 G′′1,2

G′′2,1 G′2,2

]−1[ T ′1,1 T ′′1,2

T ′′2,1 T ′2,2

]
, with

G′
k,l :=




I Bk R−1B>
l

0 A>
k,l − Sk R−1B>

l


 , G′′

k,l :=




0 Bk R−1B>
l

0 A>
k,l − Sk R−1B>

l


 ,

T ′
k,l :=




Ak,l −Bk R−1S>l 0

Sk R−1S>l −Qk,l I


 , T ′′

k,l :=




Ak,l −Bk R−1S>l 0

Sk R−1S>l −Qk,l 0


 .

Model (18) is in Roesser form. As such, the semi-state transition matrix as-
sociated with (18) can be computed by using the general response formula
(Roesser, 1975):

Φ0,0 = I

Φi,j = 0 if i < 0 or j < 0;

Φi,j = Φ1,0 Φi−1,j + Φ0,1 Φi,j−1 ∀ (i, j) ∈ N \ {(0, 0)},

where Φ1,0 :=
[

P1 P2

0 0

]
and Φ0,1 :=

[
0 0
P3 P4

]
. Now, partitioning Φi,j as Φi,j =[

Φ1
i,j Φ2

i,j

Φ3
i,j Φ4

i,j

]
, conformably with

[
ri,j
si,j

]
, where each Φk

i,j, for k ∈ {1, 2, 3, 4}, is in
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turn partitioned as Φk
i,j =

[
Φk,1

i,j Φk,2
i,j

Φk,3
i,j Φk,4

i,j

]
, conformably with

[
hi,j

λi,j

]
and

[ vi,j

µi,j

]
, we

can write the solution of (18) explicitly as

hi,j =
j∑

k=0

(Φ1,1
i,j−k ak + Φ1,2

i,j−k λ0,k) +
i∑

h=0

(Φ2,1
i−h,j bh + Φ2,2

i−h,j µh,0), (19)

λi,j =
j∑

k=0

(Φ1,3
i,j−kak + Φ1,4

i,j−kλ0,k) +
i∑

h=0

(Φ2,3
i−h,j bh + Φ2,4

i−h,j µh,0), (20)

vi,j =
j∑

k=0

(Φ3,1
i,j−k ak + Φ3,2

i,j−k λ0,k) +
i∑

h=0

(Φ4,1
i−h,j bh + Φ4,2

i−h,j µh,0), (21)

µi,j =
j∑

k=0

(Φ3,3
i,j−k ak + Φ3,4

i,j−k λ0,k) +
i∑

h=0

(Φ4,3
i−h,j bh + Φ4,4

i−h,j µh,0), (22)

where the boundary conditions (3) have been used. From these semi-state
trajectories, which satisfy (3), we need to select those that also satisfy the
remaining equations in Theorem 3.2.

Suppose for the moment that the penalty matrices H and V are diagonal;
i.e., H = diag{H0, H1, . . . , HM}, where Hj ∈ Rnh for all j ∈ {0, . . . , M},
and V = diag{V0, V1, . . . , VN}, where Vi ∈ Rnv for all i ∈ {0, . . . , N}. Then,
imposing (11) on (19) and (20) gives

λN+1,j =
j∑

k=0

(Φ1,3
N+1,j−kak + Φ1,4

N+1,j−kλ0,k) +
N∑

h=0

(Φ2,3
N+1−h,j bh + Φ2,4

N+1−h,j µh,0)

= Hj

( j∑

k=0

(Φ1,1
N+1,j−kak+Φ1,2

N+1,j−kλ0,k) +
N∑

h=0

(Φ2,1
N+1−h,jbh+Φ2,2

N+1−h,jµh,0)
)

+ W>
j ξj. (23)

Let j ∈ [0,M ] be such that the full row-rank matrix Wj is not square, i.e.,
ker Wj 6= {0}, and let W̃j be a basis matrix for the null-space of Wj, so that
W̃>

j W>
j = 0. The by premultiplying (23) by W̃>

j we obtain

W̃>
j




j∑

k=0

(Φ1,4
N+1,j−k−Hj,j Φ1,2

N+1,j−k) λ0,k+
N∑

h=0

(Φ2,4
N+1−h,j−Hj,j Φ2,2

N+1−h,j) µh,0


 =

(24)

−W̃>
j




j∑

k=0

(Φ1,3
N+1,j−k−Hj,j Φ1,1

N+1,j−k) ak+
N∑

h=0

(Φ2,3
N+1−h,j−Hj,j Φ2,1

N+1−h,j) bh


 .

Equation (24) represents nh − pj equations in the [(M + 1) nh]× [(N + 1) nv]
unknowns λ0,0, . . . , λ0,M , µ0,0, . . . , µN,0. Imposing Wj hN+1,j = wj on (19) gives
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Wj

[ j∑

k=0

(
Φ2,1

N+1,j−kak+Φ1,2
N+1,j−kλ0,k

)
+

N+1∑

h=0

(
Φ2,1

N+1−h,jbh+Φ2,2
N+1−h,jµh,0

)]
=wj (25)

which represents pj equations in the [(M + 1) nh] × [(N + 1) nv] unknowns
λ0,0, . . . , λ0,M , µ0,0, . . . , µN,0. Similarly, (13) and (21-22) yield

µi,M+1 =
M∑

k=0

(Φ3,3
i,M+1−kak + Φ3,4

i,M+1−k λ0,k)+
i∑

h=0

(Φ4,3
i−h,M+1bh+Φ4,4

i−h,M+1µh,0)

= Vi

( M∑

k=0

(Φ3,1
i,M+1−kak+Φ3,2

i,M+1−kλ0,k)+
i∑

h=0

(Φ4,1
i−h,M+1bh+Φ4,2

i−h,M+1µh,0)
)

+Z>
i ζi.

Let i ∈ [0, N ] be such that Zi is not square, i.e., ker Zi 6= {0}, and let Z̃i be,
for all i ∈ [0, N ], a basis matrix for the null-space of Zi, so that Z̃>

i Z>
i = 0.

Now by premultiplying by Z̃>
i , we get

Z̃>
i

[
M∑

k=0

(
Φ3,4

i,M+1−k−ViΦ
3,2
i,M+1−k

)
λ0,k+

i∑

h=0

(Φ4,4
i,M+1−k−ViΦ

4,2
i,M+1−k)µh,0

]
=

(26)

−Z̃>
i

[
M∑

k=0

(Φ3,3
i,M+1−k− ViΦ

3,1
i,M+1−k)ak+

i∑

h=0

(Φ4,3
i,M+1−k−ViΦ

4,1
i,M+1−k)bh

]
.

Imposing Zi vi,M+1 = zi on (21) gives

Zi

[ M∑

k=0

(
Φ3,2

i,M+1−kλ0,k+Φ3,1
i,M+1−kak

)
+

i∑

h=0

(
Φ4,2

i−h,M+1µh,0+Φ4,1
i−h,M+1bh

) ]
=zi.(27)

Equations (24), (25), (26) and (27) can be expressed in the following compact
linear form



Ψλ Ψµ

Ξλ Ξµ







λ0,0
...

λ0,M

µ0,0
...

µN,0




= −


Θa Θb

Γa Γb







a0
...

aM

b0
...

bN




+




ŵ0
...

ŵM

ẑ0
...

ẑN




, (28)

where

ŵj :=



0nh−pj

wj


 for j ∈ [0,M ], ẑi :=



0nv−qi

zi


 for i ∈ [0, N ],
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the matrices Ωi,j, for i, j ∈ {1, 2}, are given by

Ψλ :=




Ψ1
N+1,0,0 0 . . . 0

Ψ1
N+1,1,1 Ψ1

N+1,0,1 . . . 0
...

...
. . .

...

Ψ1
N+1,M,MΨ1

N+1,M−1,M . . . Ψ1
N+1,0,M




, Ψµ :=




Ψ2
N+1,0,0 Ψ2

N,0,0 . . . Ψ2
1,0,0

Ψ2
N+1,1,1 Ψ2

N,1,1 . . . Ψ2
1,1,1

...
...

. . .
...

Ψ2
N+1,M,MΨ2

N,M,M . . . Ψ2
1,M,M




,

Ξλ :=




Ξ3
0,M+1,0 Ξ3

0,M,0 . . . Ξ3
0,1,0

Ξ3
1,M+1,1 Ξ3

1,M,1 . . . Ξ3
1,1,1

...
...

. . .
...

Ξ3
N,M+1,MΞ3

N,M,N . . . Ξ3
N,1,N




, Ξµ :=




Ξ4
0,M+1,0 0 . . . 0

Ξ4
1,M+1,1 Ξ4

0,M+1,1 . . . 0
...

...
. . .

...

Ξ4
N,M+1,NΞ4

N−1,M+1,N . . . Ξ4
0,M+1,N




,

and the matrices Υi,j, for i, j ∈ {1, 2}, are given by

Θa :=




Θ1
N+1,0,0 0 . . . 0

Θ1
N+1,0,1 Θ1

N+1,1,1 . . . 0
...

...
. . .

...

Θ1
N+1,M,MΘ1

N+1,M−1,M . . . Θ1
N+1,0,M




, Θb :=




Θ2
N+1,0,0 Θ2

N,0,0 . . . Θ2
1,0,0

Θ2
N+1,1,1 Θ2

N,1,1 . . . Θ2
1,1,1

...
...

. . .
...

Θ2
N+1,M,MΘ2

N,M,M . . . Θ2
1,M,M




,

Γa :=




Γ3
0,M+1,0 Γ3

0,M,0 . . . Γ3
0,1,0

Γ3
1,M+1,1 Γ3

1,M,1 . . . Γ3
1,1,1

...
...

. . .
...

Γ3
N,M+1,NΓ3

N,M,N . . . Γ3
N,1,N




, Γb :=




Γ4
0,M+1,0 0 . . . 0

Γ4
1,M+1,1 Γ4

0,M+1,1 . . . 0
...

...
. . .

...

Γ4
N,M+1,NΓ4

N−1,M+1,N . . . Γ4
0,M+1,N




,

with

ΨX
h,l,k :=




W̃>
k (ΦX,4

h,l −Hk,k ΦX,2
h,l )

Wk ΦX,2
h,l


 , ΘX

h,l,k :=




W̃>
k (ΦX,3

h,l −Hk,k ΦX,1
h,l )

Wk ΦX,1
h,l


 ,

ΞX
h,l,k :=




Z̃>
k (ΦX,4

h,l −Vk,k ΦX,2
h,l )

Zk ΦX,2
h,l


 , ΓX

h,l,k :=




Z̃>
k (ΦX,3

h,l −Vk,k ΦX,1
h,l )

Zk ΦX,1
h,l


 ,

for X ∈ {1, 2, 3, 4}. All matrices Ψh,l,k
i,j and Θh,l,k

i,j have nh rows, while all

matrices Ξh,l,k
i,j and Γh,l,k

i,j have nv rows. In fact, Wj has pj rows and matrix

W̃>
j has nh − pj rows, while Zi has qi rows and matrix Z̃>

i has nv − qi rows.
It follows that Ω1,1 and Υ1,1 are [(M + 1) nh] × [(M + 1) nh], Ω1,2 and Υ1,2

are [(M + 1) nh]× [(N + 1) nh], Ω2,1 and Υ2,1 are [(N + 1) nv]× [(M + 1) nv],
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Ω2,2 and Υ2,2 are [(N + 1) nv]× [(N + 1) nv]. As such, (28) consists of [(M +
1) nh] × [(N + 1) nv] equations in the [(M + 1) nh] × [(N + 1) nv] unknowns
λ0,0, . . . , λ0,M , µ0,0, . . . , µN,0.

Given λ0,k and µl,0, for k ∈ {0, . . . , M} and l ∈ {0, . . . , N}, that satisfy (28),
the semi-state and corresponding semi-costate trajectories hi,j, vi,j, λi,j and
µi,j can be determined for (i, j) ∈ Q via (19-22). These trajectories satisfy
the Roesser model (18), which is equivalent to (7–9) under the assumptions
considered, and the boundary conditions (10–13). Finally, by using (8), a cor-
responding control input ui,j can be computed, for all (i, j) ∈ Q, since R is
invertible by hypothesis here. The semi-state trajectories and the control ob-
tained are optimal since, by construction, they satisfy all the sufficient (and
necessary) conditions for optimality.

Remark 3.3 If pj = nh for some j ∈ [0,M ], or qi = nv for some i ∈ [0, N ],
the corresponding equations (24) or (26) can be neglected. In this case, the
first block-row of matrices ΨX

h,l,k, Θ
X
h,l,k, Ξ

X
h,l,k and ΓX

h,l,k disappear.

Remark 3.4 In view of Remark 3.2, when pj = 0 for some j ∈ [0,M ], we
can take W̃j = Inh

. In this case, equation (25) disappears, and the vector
wj has zero entries. Similarly, when qi = 0 for some i ∈ [0, N ], we can take
Z̃i = Inv , so that (27) disappears, and zj has zero entries. In this case, the
boundary value problem always admits solutions, and as such, given arbitrary
choice of the boundary condition parameters ai and bj, the linear equation

(28) admits solutions; i.e., im
[

Υ1,1 Υ1,2

Υ2,1 Υ2,2

]
⊆ im

[
Ω1,1 Ω1,2

Ω2,1 Ω2,2

]
, since ŵj and ẑi are

all vectors with zero entries. Also note that in this case the solutions of (28)

are parameterised in the kernel of
[

Ω1,1 Ω1,2

Ω2,1 Ω2,2

]
.

Remark 3.5 When the matrices H and V are not diagonal, the procedure
outlined above still applies with little modifications. In this case, we find that
equations (24) and (26) become respectively

λN+1,j =
j∑

k=0

(Φ1,3
N+1,j−kak+Φ1,4

N+1,j−kλ0,k)+
N∑

h=0

(Φ2,3
N+1−h,jbh+Φ2,4

N+1−h,jµh,0)

=
M∑

k=0

Hj,k

( j∑

k=0

(Φ1,1
N+1,j−kak+Φ1,2

N+1,j−kλ0,k)+
N∑

h=0

(Φ2,1
N+1−h,jbh+Φ2,2

N+1−h,jµh,0)
)

+W>
j ξj

and
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µi,M+1 =
M∑

k=0

(Φ3,3
i,M+1−k ak + Φ3,4

i,M+1−k λ0,k) +
i∑

h=0

(Φ4,3
i−h,M+1 bh + Φ4,4

i−h,M+1 µh,0)

=
N∑

k=0

Vk,i

( M+1∑

k=0

(Φ3,1
i,M+1−kak+Φ3,2

i,M+1−kλ0,k)+
i∑

h=0

(Φ4,1
i−h,M+1bh+Φ4,2

i−h,M+1µh,0)
)

+Z>
i ζi.

These expressions still lead to a linear relation between λ0,0, λ0,0, λ0,1, . . . , λ0,M ,
µ0,0, µ1,0, . . . , µN,0 and a0, a1, . . . , aM , b0, b1, . . . , bN , so that equation (28) still
holds, but the expression of the matrices Ωi,j and Υi,j become more complex.

Remark 3.6 Clearly, the assumption that A−B R−1 S> be invertible causes
some loss of generality. On the other hand, both R and S are weighting matri-
ces that are usually chosen by the designer to obtain a satisfactory behaviour
of the semi-states and of the control input. Hence, in most cases – with possible
problems arising when the pair (A,B) has uncontrollable eigenvalues at zero –
matrices R and S can be chosen so as to meet the condition on A−B R−1 S>.

Remark 3.7 When Q = S R−1 S>, or in the even more particular case of
minimum energy control, as considered in (Li and Fadali, 1991, Section IV),
where Q and S are both zero, equation (7) and the corresponding boundary
condition can be solved ‘backwards’ as described in (Li and Fadali, 1991);
this yields the solution presented in (Kaczorek and Klamka, 1986), which was
established via quite different techniques.

3.3 Optimal cost

For the 1-D LQ optimal control problem, it is well-known that the optimal
value of the performance index can be expressed in terms of the boundary
values of the state and costate. This is particularly important when dealing
with complex optimisation problems, for example more general (possibly para-
metric) optimisation problems having the LQ as a subproblem. For example,
consider the case of two (or more) optimal control problems that are coupled
by constraints or by a weight on the respective boundary conditions. With the
following theorem it is established that a similar result holds for 2-D Roesser
models.

Theorem 3.1 Let h, v, u, λ and µ satisfy equations (7-13). The optimal cost
J? is given by

J? = h>N+1H hN+1+v>M+1V vM+1+
M∑

j=0

(
h>0,jλ0,j − h>N+1,jλN+1,j

)

+
N∑

i=0

(
v>i,0µi,0 − v>i,M+1µi,M+1

)
.

14



Proof: Let xi,j :=
[

hi,j

vi,j

]
and c :=

∑
(i,j)∈Q[ x>i,j u>i,j ]Π

[ xi,j

ui,j

]
. By (8), (7) and

(9) we get

c =
∑

(i,j)∈Q
x>i,jQxi,j + x>i,j S ui,j − u>i,j B>


 λi+1,j

µi,j+1




=
∑

(i,j)∈Q
x>i,j





 λi,j

µi,j


− A>


 λi+1,j

µi,j+1





− u>i,j B>


 λi+1,j

µi,j+1




=
∑

(i,j)∈Q

[
h>i,j v>i,j

] 
 λi,j

µi,j


−

[
h>i+1,j v>i,j+1

] 
 λi+1,j

µi,j+1




Since we have
∑

(i,j)∈Q
(
h>i,jλi,j − h>i+1,jλi+1,j

)
=

∑M
j=0 h>0,jλ0,j − h>N+1,jλN+1,j

and
∑

(i,j)∈Q
(
v>i,jµi,j − v>i+1,jµi+1,j

)
=

∑N
i=0 v>i,0µi,0 − v>i,M+1µi,M+1, the expres-

sion of the optimal cost follows as claimed.

4 Optimal semi-state feedback control

In this section we turn our attention to characterising the existence of a semi-
state feedback realisation of the LQ optimal control. That is,

ui,j =
[
Kh

i,j Kv
i,j

] 
 hi,j

vi,j


 . (29)

It is assumed that H := diag{H0, H1, . . . , HM} and V := diag{V0, V1, . . . , VN},
so that the cost criterion (4) can be written as

J =
M∑

j=0

h>N+1,jHjhN+1,j+
N∑

i=0

v>i,M+1Vivi,M+1+
∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]
Π



hi,j

vi,j

ui,j


(30)

where Π =
[

Q S

S> R

]
= Π> ≥ 0. Moreover, the north-east boundary constraints

are discarded in this section, since it is not known how to handle such con-
straints in the presence of the structural constraint (29). Bearing this in mind,
the semi-state feedback LQ optimal control problem can be stated as follows.

Problem 4.1 Find matrices Kh
i,j ∈ Rm×nh and Kv

i,j ∈ Rm×nv , for (i, j) ∈
Q, so that the semi-state feedback controller defined in (29) minimises the
performance index (30), subject to the constraints (1) and (3).
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A condition for the solvability of Problem 4.1 is provided in the statement
of the following theorem, where a 2-D Riccati-like equation is introduced.
When iteration of the Riccati-like equation is possible, the semi-state feedback
matrices can be computed explicitly.

Theorem 4.1 Define XN+1,j = Hj for all j ∈ [0, M ] and Yi,M+1 = Vi for all
i ∈ [0, N ]. If the Riccati difference equation



Xi,j 0

0 Yi,j


 = Q+A>



Xi+1,j 0

0 Yi,j+1


A−


S+A>



Xi+1,j 0

0 Yi,j+1


B




(31)

·

R+B>



Xi+1,j 0

0 Yi,j+1


B




†
S>+B>



Xi+1,j 0

0 Yi,j+1


A




admits a corresponding solution for all (i, j) ∈ Q, then:

(i) for all (i, j) ∈ Q, the matrices Xi,j and Yi,j satisfying (31) are symmetric
and positive semi-definite;

(ii) the semi-state feedback controller

ui,j = −

R+B>


Xi+1,j 0

0 Yi,j+1


 B



†
S>+B>


Xi+1,j 0

0 Yi,j+1


A





 hi,j

vi,j




+


Im−(R+B>



Xi+1,j 0

0 Yi,j+1


B)†(R+B>



Xi+1,j 0

0 Yi,j+1


B)


 ξi,j, (32)

solves Problem 4.1, where for all (i, j) ∈ Q the vector ξi,j ∈ Rm is arbitrary;
(iii) the optimal value of the performance index is

J? =
M∑

j=0

h>0,jX0,jh0,j +
N∑

i=0

v>i,0Yi,0vi,0.

Proof: The proof below follows a line similar to the proof of the corresponding
1-D result in (Ferrante and Zampieri, 2003). First consider (i). We proceed
by induction, by first noticing that XN+1,j = Hj = H>

j = X>
N+1,j ≥ 0, for

all j ∈ [0,M ], and Yi,M+1 = Vi = V >
i = Y >

i,M+1 ≥ 0, for all i ∈ [0, N ]. Now
consider an (i, j) ∈ Q and suppose that Xi+1,j and Yi,j+1 are both symmetric
and positive semi-definite. Then the right-hand side of (31) is a symmetric
matrix, so that Xi,j and Yi,j are also symmetric. It therefore remains to show
positive semi-definiteness. To this end, note that the matrix on the left-hand
side of (31) coincides with the Schur pseudo-complement of the Popov matrix
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Π +




A>

B>






Xi+1,j 0

0 Yi,j+1




[
A B

]
,

which is clearly symmetric and positive semi-definite. In particular, with Θi,j :=[
Xi+1,j 0

0 Yi,j+1

]
, for (i, j) ∈ Q, it follows that




Q+A>Θi,jA S+A>Θi,jB

S>+B>Θi,jA R+B>Θi,jB


 = Π +




A>

B>


 Θi,j

[
A B

]
≥ 0.

and



Xi,j 0

0 Yi,j


 =

[
I −(S+A>Θi,jB)(R+B>Θi,jB)†

]



Q+A>Θi,jA S+A>Θi,jB

S>+B>Θi,jA R+B>Θi,jB




·



I

−(R+B>Θi,jB)†(S>+B>Θi,jA)


 ≥ 0,

since

(R+B>Θi,jB)(R+B>Θi,jB)†(S+A>Θi,jB)> = (S+A>Θi,jB)>. (33)

This last identity follows from the inclusion

ker(S+A>Θi,jB) ⊇ ker(R+B>Θi,jB) ∀ (i, j) ∈ Q, (34)

by which there exists a matrix Ξ such that (S+A>Θi,jB)> = (R+B>Θi,jB) Ξ,
and the inclusion itself holds because, by the positive semi-definiteness of the
Popov matrix Π, there exists matrices Ci,j and Di,j, for (i, j) ∈ Q, such that
S +A>Θi,jB = C>

i,jDi,j and R+B>Θi,jB = D>
i,jDi,j, so that v ∈ ker(R+

B>Θi,jB) implies v ∈ ker Di,j, and hence, v ∈ ker C>
i,j Di,j = ker(S+A>Θi,jB).

Now consider (ii). In view of (1), the identity

∑

(i,j)∈Q
h>i+1,jXi+1,jhi+1,j − h>i,jXi,jhi,j =

M∑

j=0

h>N+1,jXN+1,jhN+1,j − h>0,jX0,jh0,j

can be re-written as
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∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]



A>
1,1Xi+1,jA1,1 −Xi,j A>

1,1Xi,jA1,2 A>
1,1Xi+1,jB1

A>
1,2Xi+1,jA1,1 A>

1,2Xi+1,jA1,2 A>
1,2Xi+1,jB1

B>
1 Xi+1,jA1,1 B>

1 Xi+1,jA1,2 B>
1 Xi+1,jB1







hi,j

vi,j

ui,j




−
M∑

j=0

h>N+1,jXN+1,jhN+1,j + h>0,jX0,jh0,j = 0

and similarly for the vertical semi-state,

∑

(i,j)∈Q
v>i,j+1Yi,j+1vi,j+1 − v>i,jYi,jvi,j =

N∑

i=0

v>i,M+1Yi,M+1vi,M+1 − v>i,0Yi,0vi,0

leads to

∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]



A>
2,1Yi,j+1A2,1 A>

2,1Yi,j+1A2,2 A>
2,1Yi,j+1B2

A>
2,2Yi,j+1A2,1 A>

2,2Yi,j+1A2,2 − Yi,j A>
2,2Yi,j+1B2

B>
2 Yi,j+1A2,1 B>

2 Yi,j+1A2,2 B>
2 Yi,j+1B2







hi,j

vi,j

ui,j




−
N∑

i=0

v>i,M+1Yi,M+1vi,M+1 + h>i,0Yi,0vi,0 = 0.

Adding these zero-valued terms to the performance index we get

J =
M∑

j=0

h>0,jX0,jh0,j +
N∑

i=0

v>i,0Yi,0vi,0 +
∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]
Π̄i,j




hi,j

vi,j

ui,j


 (35)

where

Π̄i,j :=




Q +


 A>

1,1

A>
1,2


 Xi+1,j

[
A1,1 A1,2

]
+


 A>

2,1

A>
2,2


 Yi,j+1

[
A2,1 A2,2

]

S> + B>
1 Xi+1,j

[
A1,1 A1,2

]
+ B>

2 Yi,j+1

[
A2,1 A2,2

]

S +


 A>

1,1

A>
1,2


 Xi+1,jB1 +


 A>

2,1

A>
2,2


 Yi,j+1B2

R + B>
1 Xi+1,jB1 + B>

2 Yi,j+1B2



−





 Xi,j 0

0 Yi,j


 0

0 0




= Π +


 A>

B>





 Xi+1,j 0

0 Yi,j+1




[
A B

]
−





 Xi,j 0

0 Yi,j


 0

0 0


 .
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By using (31) we find

Π̄i,j =




(S+A>Θi,jB)(R+B>Θi,jB)†(S>+B>Θi,jA) S+A>Θi,jB

S>+B>Θi,jA R+B>Θi,jB


 .

By using (33), it is found that Π̄i,j can be written as

Π̄i,j =




S+A>Θi,jB

R+B>Θi,jB


 (R+B>Θi,jB)†

[
S>+B>Θi,jA R+B>Θi,jB

]
.

As a result, we get

J =
M∑

j=0

h>0,jX0,jh0,j +
N∑

i=0

v>i,0Yi,0vi,0 +
∑

(i,j)∈Q

[
h>i,j v>i,j u>i,j

]

·



S+A>Θi,jB

R+B>Θi,jB


(R+B>Θi,jB)†

[
S>+B>Θi,jA R+B>Θi,jB

]



hi,j

vi,j

ui,j


.

Therefore, if a control input ui,j exists such that, for all (i, j) ∈ Q,

Ni,j


(S>+B>Θi,jA)




hi,j

vi,j


 + (R+B>Θi,jB)ui,j


 = 0, (36)

where N>
i,j Ni,j = (R+B>Θi,jB)†, then the performance index (4) is minimised,

and its optimal value is

J? =
M∑

j=0

h>0,jX0,jh0,j +
N∑

i=0

v>i,0Yi,0vi,0.

We now show that condition (36) is equivalent to

(S>+B>Θi,jA)




hi,j

vi,j


 + (R+B>Θi,jB)ui,j = 0. (37)

The fact that (37) implies (36) is trivial. Concerning the opposite implication,
we premultiply (36) by (R+B>Θi,jB)N>

i,j, so that the quantity
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(R+B>Θi,jB)(R+B>Θi,jB)†

(S>+B>Θi,jA)


 hi,j

vi,j


 + (R+B>Θi,jB)ui,j




is zero. By using (33) the former can be simplified to

(S>+B>Θi,jA)




hi,j

vi,j


 + (R+B>Θi,jB)ui,j = 0. (38)

In view of (34), the solutions of (38) are parameterised as

ui,j = −(R+B>Θi,jB)†(S>+B>Θi,jA)




hi,j

vi,j


 + ūi,j, (39)

where for all (i, j) ∈ Q the vector ūi,j lies in the null-space of R+B>Θi,jB.
However, since

ker(R+B>Θi,jB) = im
(
Im − (R+B>Θi,jB)(R+B>Θi,jB)†

)
,

it follows that the set of solutions of (38) can be alternatively parametrised as
shown in (32).

Remark 4.1 Theorem 4.1 provides a sufficient condition for the existence
of a semi-state feedback regulator that minimises the performance index (30).
For (31) and the boundary condition to admit a solution for all (i, j) ∈ Q, it is
necessary for the right-hand side to preserve the block diagonal structure; i.e.
to be consistent with the left-hand side. Notice that (31) can be either iterated
by row or by column in this case. The first step consists in using (31) with
i = N and j = M , so as to assign XN,M and YN,M . Then, one may proceed
by rows, computing Xk,M and Yk,M for all k backwards from N − 1 to 0. In
this way, all the matrices Xi,j and Yi,j are assigned in the M -th row. Then,
starting from XN−1,M−1 and YN−1,M−1, all the matrices in the (M − 1)-th
row can be computed. Alternatively, one may proceed by columns, computing
XN,h and YN,h for all h from M − 1 to 0, and so on. Similarly, the matrices
can be computed in a zig-zag fashion.

5 Concluding remarks

In this paper we study finite-extent open-loop LQ optimal control, and a
similar problem subject to the structural constraint of a semi-state feedback,
for 2-D Roesser models. We provide necessary and sufficient conditions for
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optimality and explore situations in which it is possible to explitly compute
optimal open-loop control laws. In the second part of the paper, a 2-D Riccati-
like recursion is introduced to characterise, in a sufficient sense, a solution in
the form of a semi-state feedback. This recursion is required to preserve a
particular structure. Characterising when this is the case, directly in terms of
the problem data, appears to be difficult and clearly constitutes an important
direction for further investigation.
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