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Optimal strategies in the average consensus problem

Jean-Charles Delvenne Ruggero Carli Sandro Zampieri

Abstract— We prove that for a set of communicating agents to transmission has been proposed in [7], [16]. In this paper we
compute the average of their initial positions (average casensus  consider the consensus problem from a different persggectiv
problem), the optimal topology of communication is given by \ye gre interested to characterize the relationship between

a de Bruijn’s graph. Consensus is then reached in a finitely . .
many steps. A more general family of strategies, constructs the amount of information exchanged by the agents and the

by block Kronecker products, is investigated and compareda  achievable control performance. More precisely we assume
Cayley strategies. that N agents are given initial positions in the euclidean

space, and move in discrete-time in order to reach the agerag
o ] ) _of their initial positions. This problem is also calleglerage
Coordination algorithms for multiple autonomous vehiclegoordinated consensus. Every agent asks several agents their
and decentralized estimation techniques for handling dagsition before taking a decision to modify its own position
coming from distributed sensor networks have attractegelar \yg impose that, in order to limit costs of communication
attention in recent years. This is mainly motivated by thaévery agent communicates with only agents (including
both coordinated control and distributed estimation havgse”) wherev < N. This means that in the graph describing
applications in many areas, such as coordinated flocking g§fe communications between agents, the max in-degree is
mobile vehicles [26], [27], cooperative control of unmadne ot mosty. In this paper, we exhibit a family of strategies
air and underwater vehicles [4], [3], multi-vehicle travli {5 solving this problem based on de Bruijn’s graphs and
with limited sensor information [19], monitoring very 1&g e prove that according to a suitable criteria this is the
scale areas with fine resolution and collaborative estonati pest that one can do. Precisely we compute its performances
over wireless sensor networks [24]. o according two criteria: rate of convergence to the average
Typically, both in coordinated control and in distributedyt theijr initial positions and an LQR criterion. We find
estimation the agents need to communicate data in ordgft 5 deadbeat strategy is optimal according to the rate
to execute a task. In particular they may need to agree @i convergence, and nearly optimal according to the LQR
the value of certain coordination state variables. One &8pe criterion. Finally, we compare it with an another strategy
that, in order to achieve coordination, the variables sh@% haying limited communication and exhibiting symmetries:
the agents, converge to a common value, asymptotically. TRgs cayley strategies [6], [5]. It should be noted however
problem of designing controllers that lead to such asymptotinat our strategy is limited to the case where the number of
coordination is calledoordinated consensus, see for exam-  ggents is an exact power of Whether it is possible to build
ple [12], [20], [15] and references therein. Generalisatd 4 inear time-invariant deadbeat strategy for any number of
high order consensus [22] and nonholonomic ageqts [18(igents (for a givem) remains an open problem.
[11], [28] have also been explored. One of the simplest The paper is organized as follows. In Section Il we provide
consensus problems that has been mostly studied consigtine pasic notions of graph theory and some notational
in starting from systems described by an integrator angynyentions. In Section 11l we formally define the average
in finding a feedback control yielding consensus, namelysnsensus problem. In Section IV we introduce the block
driving all the states to the same value [20]. The informag onecker strategy. In Section V we show that the block
tion exchange is modeled by a directed graph describingonecker strategy is the quickest possible strategy and
in which pair of agents the data transmission is allowedye compare it with the Cayley strategy. In section VI we
The situation mostly treated in the literature is when eachygjuate the performance of the block Kronecker strategy

agent has the possibility of communicate its state to the.cording to suitable quadratic criteria. Finally we gathe
other agents that are positioned inside a neighborhood [26},; conclusions in Section VII.

[15] and the communication network is time-varying [27],
[15]. Robustness to communication link failure [8] and the Il. PRELIMINARIES ON GRAPH THEORY

effects of time delays [20] has been considered recently. gefore defining the problem we want to solve, we sum-

Randomly time-varying networks have also been analyz§farize some notions on graph theory that will be useful
in [14]. Moreover, a first analysis involving quantized datathroughout the rest of the paper.
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defined by letting4,; = 1 if and only if (7,j) € £. Define Writing «(t) as a linear combination of the eigenvectors
the in-degree of a vertexj as) , A;; and theout-degree of  of I + K, it is almost immediate to see that the average
a vertexi asy . A;;. In our setup we admit the presenceconsensus problem is solved if and only if the following
of self-loops. A graph is calleth-regular (out-regular) of three conditions hold:

degreek if each vertex has in-degree (out-degree) equélto (A) Every row and every column of + K sums to one.

A path in G consists of a sequence of verticgs, . .. ... ir Hence it has eigenvalug¢ with 1 as left and right
such that(ig,i¢11) € € foreveryl =1,...,r —1; i1 (resp. eigenvector.

i,) is said to be thenitial (resp.terminal) vertex of the path. (B) The eigenvaluel of I + K has algebraic multiplicity

A cycleis a path in which the initial and the terminal vertices one (namely it is a simple root of the characteristic

coincide. A vertex is said to beconnected to a vertex; if polynomial of I + K).
there exists a path with initial vertexand terminal verte¥.  (C) All the other eigenvalues are strictly inside the unit
A directed graph is said to bmnnected if, given any pair of circle.

verticesi and j, eitheri is connected tg or j is connected

) ° ) ) For nonnegative matrices, namely for matrices having all
to i. A directed graph is said to bgrongly connected if,

_ : A el _ the components nonnegative, condition (A) is called double

given any pair of vertices andyj, 7 is connected t9.  gigchasticity, condition (B) is ergodicity and conditio)(

Finally some Egtﬁt'on"_"l conventions. Let any matrix s 5 consequence of double stochasticity. We do not require

belonging toR™*™. With Tr A we denote the trace of 4+ matrices to be nonnegative, even though it will appear

A, i.e. the sum of the diagonal entries. We say tHats 5t the optimal matrices are.

nonnegative, denoted > 0, or positive, denotedi > 0, if Observe now that the fact that the element in positign

the entries ofA are respectively nonnegative or positive. o the matrix 7 + K is different from zero, means that the

systemi needs to know exactly the state of the systgin

N ) order to compute its feedback action. This implies that the

_ We suppose that the positions of &l agents are listed ;_th agent must communicate his statg to i-th agent. In

m;o one vector of dimensiofV. If the agents move, say, in this context a good description of the communication effort

R?, it seems that we would need3aV-dimensional vector. required by a specific feedbadk is given by the directed

However we will suppose that thg_ positions are scalar, &taphG. x with set of vertices{1, ..., N'} in which there

every linear strategy on scalar positions, if applied s#8 s an arc fromj to ¢ whenever in the feedback matri

on every component of the position, trivially extends tque element(] + K);; # 0. The graphGx is said to be

strategies for higher dimensions. the communication graph associated withk. Conversely,
More precisely the problem of our interest can be formalgi\,en any directed grapf with set of vertices{1,..., N},

ized in the following way. ConsideN > 1 identical systems 3 feedbacki is said to becompatible with G if G,k is a

whose dynamics are described by the following discrete ti”%bgraph oG (we will use the notatio§; x C G).

IIl. PROBLEM FORMULATION

state equations In the sequel, we will impose the following constraint
of =2 +u; i=1,....N on the communication graph: the max in-degree of the

nodes isv. This models the fact that communication lines
wherez; € R is the state of the-th system,z;" represents are costly to establish or operate, and every agent has the
the updated state and; € R is the control input. More right to talk to a limited number of other agents. Note
compactly we can write that for compatibility with usual conventions we consider
that v counts all arcs entering a node, including self-loops

+ _
=zt @) (which could be considered as ‘free communication’ in most
wherez, u € RY. The goal is to design a feedback controféchnological situations). N
law Without this constraint, the problem becomes trivial:
w= Kz K € RVxN choose the complete graph, and the consensus is reached

in one step. We therefore add the following constraint on
yielding the average consensus, namely a control such that- x:

all thez;'s become asymptotically equal to the average of thgy) Every row of 7 + K contains at most non-zero

initial condition. More precisely, our objective is to olta elements.
K such that, for any initial condition(0) € R, the closed From this point of view we would like to obtain a matrix
loop system . I + K satisfying (A),(B),(C),(D) and minimizing a suitable
vt =+ Kz, performance index. The simplest control performance in-
yields dex is the exponential rate of convergence to the average
lim 2(t) = al (2) consensus. When we are dealmg with average consensus
t—ro0 controllers it is meaningful to consider the displacemeuwrtf
wherel :=[1,...,1]7 and the average of the initial condition

1 — a(f) — 1 T,
o= L17a(0) @) At) = a(t) - (172(0)) 1.



It is immediate to check that\(t) = z(t) — (517 z(t)) 1 IV. BLOCK KRONECKER STRATEGIES
(since the average positiof1”x(t) is the same at all times |y this section, we define block Kronecker strategies. Let
t) and that it satisfies the closed loop equation A be an x n matrix satisfying (A),(B),(C),(D) and: be a
nonnegative integer. Note that if is full thenn < v (since
+_
AT={I+K)A. ) the number of non-zero elements cannot exacdedhen we

Notice moreover that the initial condition&(0) are such DPuild ann® xn* matrix A/ in the following way. Let

that ao
17A(0) = 0. (5) a“

Hence the asymptotic behavior of our consensus problem can
equivalently be studied by looking at the evolutibh (4) oa th
hyperplane characterized by the conditibh (5). The speed bé a row-partition of the matrid, wherea; € R'*". Then
convergence toward the average of the initial condition can/ is the matrix

be defined as follows. Le® any matrix satisfying conditions Ie1 ®ag
(A),(B),(C). Define L ®ar
M = 7
(H{l if dimker(P—1)>1 : 0
P maxyeo(py\ 1} [A| if dimker(P —1) =1, It @ an_1

which is called theessential spectral radius of P. As the For example, if

dominant eigenvalues @® is one and the others are smaller A= (a 5)

in magnitude tharp(P)?, the essential spectral radius says B«

how quickly P* converges to the rank-one matri¥N117, (with o 4+ 8 = 1) andk = 3, then

where N is the dimension ofP. In this context the index

p(I + K) seems quite appropriate for analyzing how per- a B

formance is related to the communication effort associated a B

with a graph. The smaller the essential spectral radius, the a B

quicker the system will converge to the average of the initia M = a B

condition. B
However in control theory, strategies that converge in

finite time or very quickly are sometimes dismissed on

the ground that they lead to large values of update values f o

u(t) = x(t + 1) — z(¢), that can be physically impossible This is a kind of block Kronecker product. A general

or very costly to implement. Hence a strategy is ofteitheory of block Kronecker product is built in [17]. We

required to optimize ahQR cost, taking into account both only need a more restricted definition, detailed below. The

the quickness convergence and the norm of updates valusgw matrix M is a matrix of larger dimension thaA and

Therefore another suitable measure of performance could batisfying conditions (A),(B),(C),(D): (A) and (D) follow

the following quantity: from the definition, while (B) and (C) are proved below.
Hence it can play the role of the matrix+ K in Section
J=E 5 — 2 HI2), 6 [Mwe start by some reminders on Kronecker product, define
(; [12(t) = (o) " +Alu(®)]I) © the block Kronecker product and explore the properties of
- the latter.

where z(t) is the vector of positions at time, x(co) = A. Kronecker product

lims, z(t) is the vector whose every entry is the average” _
of initial positions, u(t) = x(t + 1) — z(t) is the update ~ We recall that théronecker product A® B of the matrices

vector at timet, the initial positions are supposed to beA and B is the matrix[a;; B];,;, whose dimensions are the
uncorrelated random variables with unit varianegjenotes Product of dimensions ofl and B. Some useful properties
the expectation}|z||2 = 7« is the euclidean norm ang  ©Of the Kronecker product are the following:
iS a nonnegative real. e ABRCD =(A®C)(B® D),

We will prove that the optimal topology of communication ¢ Tr A® B =Tr ATr B;
(in the meaning of speed of convergence) is given by a de the eigenvalues oft ® B are all possible products of
Brujin’s graph. We will call the control strategies based on  an eigenvalue ofd with an eigenvalue of;
such graph block Kronecker strategies, as explained in thee the eigenvectors ofi @ B are all possible Kronecker
next section. For these strategies we will evaluaféd (6) and Products of an eigenvector of with an eigenvector of
we will compare them to another family of strategies based B.
on a regular communication graph having the same degreeThe Kronecker product is sometimes called tensor product.
v: the Cayley strategies [6], [5]. Let us see why. For instance consider the matrige§’, D



of sizesmp X ng, m¢ X ng, mp X np. The Kronecker above can be regrouped as

product has sizengmecmp X ngnenp, and an arbitrary _
element ofB® C® D can be denote@B ® C® D)qpe,def = (BD)us ur (CE)u o (AF Yy =

BaaCreD.;, where the index written aabc denotes the =(BD O (CE® AF))uw,
numberc + bmp + amcmp and the indexdef is the \hich ends the proof. -
number f + enp + dncnp; we suppose that the indices|p particular, if B = D = 1 we have

start form zeroa =0,...,mp — 1, etc. If B, C, D happen

to be square matrices of size this notation coincides with (A0C)EOF)=(CE®AF). (10)

the usual notation in base of an index running from0 | we chooseC = E = 1 instead, we have

to n® — 1. This notation of the Kronecker product is very

close to the tensor product used in algebra and differential (A®B)(D© F)=BDo AF. (11)
geometry. The only difference is th&® C'® D, viewed as  The following proposition provides an interesting charac-
a tensor product, is considered ag-dimensional array with - terization of the powers of any order of the matfix.
a,b,c,d,e, f as separate indices, instead of a matrix (i.e., & Proposition 4.1: For A a square matrix)/ defined by
2-dimensional array). All this immediately extends to moreequation [[¥), and any integers> 0 and0 < s < k,

than three matrices.
M= (A"'®. AN A @ @A™,

B. Block Kronecker product k—s s

(where the exponents in the right-hand side sumiter s.
Proof: We prove the claim by induction ork + s. It is

true by definition forrk+s = 1. The induction step is easily

proved by applying Equatiofi](9). IndeddA™ ® (A" ®---®

ANOA™M - @A [((I®--)(I®---®1))0A)]

can be written agA”" @ - @ A") © (A" ® - @ AT ®

Let us now consider the following variant of Kronecke
product, that we calblock Kronecker product. Consider for
instance two matrice® (of size n® x n3) and C (of size
n?xn?). The block Kronecker product @ andC is defined
as follows: its element of indexbede, ghijk is the element
Bege,ghiCab,ji (notice the shift of the first indices by two ” . o
places). We will denote this matrix by © C. This definition (A74)). The argument is correct also for limit cases= 0
applies to any two square matrices whose dimensions af?QdS n k— L. . u
powers of n. In general, we can writd B © C), 4 n part||(|:ular W‘_e haveAthe following. . 4/ defined b
(B ® C)ot(p),q» Whereo operates a cyclic permutation by Cor(_) ary 4.1: For A a square matrix an efined by
one place to the left on the digits pfin basen, andC is Equation [F),
of sizen'.

The matrix M defined by Equatiori{7) can be expressedoreover, if A satisfies (A),(B),(C) the essential spectral
asM =(I®---®1I)® A (where then x n identity matrix radius of M is the kth root of the essential spectral radius
I is repeated; — 1 times). If we write the index of\/ in  of A.
basen, thenM;, 4, i1 = Lis.ji Lig.go - Lir_1 jr Aivjo- Proof: The first part is a particular case of Proposition

This form is particularly useful to compute the behavio.d. From the properties of Kronecker product, we know the
of M from the properties of the block Kronecker productspectrum ofM* is composed of all possible products lof
which we now explore. As a first property, we can easily seeigenvalues ofd. Hence the largest eigenvalue in absolute

Mfr=A®. .- A

that value, different fromi, of the matrixM/* results to ba*—1 ),
(BoCO)T =0T @ BT, 8) where A denotes the largest eigenvalue in absolute value,
different from1, of the matrix A. [ |
We can also prove the following lemma. This also proves also that conditions (B) and (C) are
Lemma 4.1: For any matrices\, B, C, D, E, F for which  Verified for M when they are ford. If we take
all the products below are meaningful, we have A=1/n117, (12)

(A®B)oC)(D® E)® F)=BD® (CE® AF). (9) of sizen, then M* is the matrix1/n*117 of sizen* with
Proof: We write, using Einstein’s convention (indicesall identical elements. Thus we have a strategy converging

repeated twice in an expression are implicitly summed gver§xactly ink steps. We comment further on this example in the
next section. Another property dff that will prove useful

(A®B)OC)(D®E)® F)lyw = is stated in the next proposition.

=(A®B)® C)un(DRE)® F)yw Proposition 4.2: For A a square matrixM/ defined by

_a B o ' D B F, Equation [¥), and any integers> 0 and0 < s < k,

— ‘lug,vy Pug,va Yuy,v3H vz, wy Hug,we L v wg Jeds o o

MTHH— M7-k+s — AT AT ® - ® AT AT ®

whereu, v, andw, interpreted as sequences of digits in base
n, have been partitioned int@, usus, vivavs, andw;wows .l .l
in an appropriate way. This is possibleifand D have same AT A AT AT
size, as well ag’ and E, and A and F'. Then the expression s

k—s




where the sums of exponentsrik + s. D. Design decentralisation

Proof: From Propositiofi4]1, we know that ™+ — The process itself of convergence to consensus is de-
(A® @A) e (A ®. @ A™). Hence, by Equation centralised, in the sense that every agent acts on its own.
@, M7 = (AT @ @ AT o (A"®---® A7), However the communication strategy (who talks to whom?)
These two expressions are multiplied using Equation (10just be designed once for all beforehand. This can be done

B in centralised way, where a new external agent dispatch to
Now we would like to computélr MT ML, This will every other agent their own strategy. This can also be done in
be useful later when we will evaluate the performance of tha decentralised way, where every agent is attributed a numbe
block Kronecker strategy. We first need the following lemma; between) and NV — 1 and then finds the agents of number
vi, vi+1,...,vi+v—1. Achieving this in the most effective
Lemma 4.2: Let By, B1,...,Br_1 be k square matrices way is a problem of its own, and is not treated in this paper.

of same dimensions. If < k is relatively prime tok, then
V. THE QUICKEST POSSIBLE STRATEGY

Tr (Bp®B1® - ®B-1)®(B®: -+ ®Bg_1) = We have seen that starting framwith all identical entries,
Tr BoBiBuBsi -~ Bi1yi, we get arpitrarily large ma_triceM_ convergin_g in finite time
k. If we write N = n* the dimension of\/, this convergence
where the indices are understood modéilo time islog N/logn = log N/ log v, wherev is the maximal
Proof: If we use Einstein’s convention (repeated indicedn-degree of the graph of communication féf. We can
are summed over), we can write see that no strategy, whether linear or not, whether time-

invariant or not, can converge more rapidly. Indeed, tohleac
Tr (By®@B1®---®@Bi-1) 0 (B ®...8 Bi-1) the average of the initial conditions, every agent must have
= [(Bo®B1® - ®Bi_1)© (B, ®®Bg_1)lpp information about all other agents, but it can only know
— (Bo) (By) o (Biy) v other positions in one step of tl_mef,2 in _two steps of
0/Pk—1,P0 21 /Pre—t41,P1 1=1/pr-1,P1-1 time, etc. Hence the propagation of information needs atoun
(BU)powp: =+ (Bk)pr_ia log N/logv steps to connect all agents. This reasoning is
(Bo)pr_1.p0 (B)po,pi (B21)pypay made rigorous in the following proposition.
Proposition 5.1: Let M € RY*¥ such thatd > 0. Let
v be defined as above. Thed” > 0 impliesv* > N.
Proof: The factM* > 0 implies that for any pair of

(B3l)p21-,pl T (B(k—l)l)p(k—Z)pr(k—l)l
= Tr B()BIBQZ [P B(k—l)la

wherep = popi - - - P_1. - nodes(i,j) there exists in the grapfiy; a path connecting
Proposition 4.3: For A and M as defined above, ifl is to j of length’. Hence there are at least’ paths_ of Iength
normal (i.e.,A” A — AAT) then k. Let novaz- deno_te thg nur_’nber of paths having length
' The previous consideration implies th&; > N2. On the

T MT A+ — T AT A+ other hand it is easy to see th&f < vN and in general

Proof: We know that MT Mt — AT" A" ®.. ® that P, < v*N from which we get that?, < v*N. Hence

v*N > N2 from which it results that* > N. [}

The above proposition considers only the time-invariant

MT gttt — (AT"A’”@ . ~®AT"+1AT“)((I®~ @A), case. An identical result can be found for the time-varying

case, showing that there is no difference, in terms of speed
which by Equation [[T1) is equal tQATTAr ® --- @ of convergence toward the meeting point, between the time-
ATT+1A7-+1) ® AT A1, By Lemmal[Z.P, this matrix has invariant and the time-varying cases. This can be seen an
the same trace ad”" A" ..  AT" Tl Ar+1 AT gr+1_ ps AT @ posteriori justification of our interest in the class of the
and A commute, this is also the trace dff " A+, m time-invariant strategies.

A linear time-invariant strategy converges in finite time if
its essential spectral radius(s For a strategy converging in
infinite time, the essential spectral radius is a good measur

The communication graph o¥/ is (a subgraph of) a de of the convergence to the average of the initial conditions,
Bruijn graph, which has:* vertices and arcs from anyto  ag already mentioned.
ni,ni + 1,ni +2,... andni + k — 1 (all modulo n¥). In .
particular, if A is given by Equation[{12), thed/ is the A Comparison between block Kronecker strategy and Cay-
adjacency matrix of a de Bruijn graph, normalized so as fd#Y Strategy
every row to sum to one. This graph was introduced by de In this subsection we propose a comparison of the block
Bruijn [10] in 1946 and has been considered for efficienKronecker strategy with another strategy whose underlying
distribution of information in different context such as incommunication graph has limited max in-degree and exhibits
parallel computing [23] and peer-to-peer networks [13]isTh strong symmetries: the Cayley strategy.
paper can be seen as an extension of this idea to consenBirst we recall the concept of Cayley graph defined on
problems. Abelian groups [2], [1]. LetG be any finite Abelian group

AT L Ar+1 i ¢ — pk + 5 for some0 < s < k. Hence

C. De Bruijn’s graph



(internal operation will always be denoteg of order|G| = The corresponding Cayley stochastic matrix is2 giv2en by the
N, and letS be a subset of; containing zero. The Cayley following block circulant matrix belonging t& ¥ >
graphG(G, S) is the directed graph with vertex sét and

O AP0 00
Py
E={(g;h):h—geS}. p_l0 0 P P -~ 00 0 (14)
Notice that a Cayley graph is always in-regular, namely the : : R
in-degree of each vertex is equal [§|. Notice also that ]52 0 0 0 -~ 00 ];1
strong connectivity can be checked algebraically. Indeed,
it can be seen that a Cayley graghG,S) is strongly whereP;, P, € RV*YN are such that
connected if and only if the sef generates the grou@,
\ /3 1/3 0 --- 0 0
which means that any element @# can be expressed as a 0 1/3 1/3 - 0 0
finite sum of (not necessarily distinct) elementsSinif S is P = . _ _ .= 1[. (15)
such that—S = S we say thatS is inverse-closed. In this : : : : : 3
case the graph obtained is undirected. 1/3 0 0 0 1/3

A notion of Cayley structure can also be introduced fo
matrices. LetG be any finite Abelian group of ordéé| =
N. A matrix P € R“*¢ s said to be a Cayley matrix over

This example can be generalized to the more general case
of the discretel-dimensional toriZ$,, extensively studied in

the groupG if

Pi,j :Pi+h,j+h V’La.77heG

Itis clear that for a Cayley matri® there existsar : G — R
such thatP;, ; = =w(i — j). The functionr is called the
generator of the Cayley matri®. Notice how, if P is a

Cayley matrix generated by, thenGp is a Cayley graph

with S = {h € G : n(h) # 0}. Moreover, it is easy to see

that for any Cayley matrix° we have thatP1 = 1 if and

the literature regarding the peer-to-peer networks [223].[
Now we recall an interesting result regarding the essential
spectral radius of the Cayley stochastic matrices. Assume
that P € RV*N is a Cayley stochastic matrix generated
by a suitabler and assume thatS| = v, where S is as
previously defined. Moreover assume titate S. Notice
that this last fact implies thaP; > 0,Vi: 1 < i < N.
Then it follows thatp > 1 — C/N?/*=1 whereC > 0 is
a constant independent ¢f and N the number of agents.
This result was proved in [6].

only if 17P = 17. This implies that a Cayley stochastic o the other side, the block Kronecker strategy con-
matrix is automatically doubly stochastic. In this case thgi . cted from any matrixd has essential spectral radius

function = associated with the matri®’ is a probability

IN'/*, where |\| is the essential spectral radius df as

distribution on the grougz. Among the multiple possible ¢iataq in Corollary 4]1.

choices of the probability distribution, one is particularly
simple, namelyr(g) = 1/|S| for everyg € S.

Example 1. Let us consider the groufdy of integers
modulo N and the Cayley graply(Zy,S) where S =

{-1,0,1}. Notice that in this caseS is inverse-closed.

Consider the uniform probability distribution
7(0)=n(1) ==n(-1)=1/3

The corresponding Cayley stochastic matrix is given by

/3 1/3 0 0 --- 0 1/3
1/3 1/3 1/3 0 -~ 0 0

p_ |0 1/3 13 1/3 .- 0 0 (13)
13 0 0 0 1/3 1/3

Notice that in this case we have two symmetries. The fird

If 0 < |\ <1, then|\|*/* behaves likel — p/k for large
k and someu. Recall thatk is log N/logn. Hence this is
better than abelian Cayley strategies.

In conclusion, block Kronecker strategies have a better
essential spectral radius, hence a quicker convergened spe
than Cayley strategies. For the particular choice given by
Equation [(IR), we converge in finite time, and this time is
the smallest possible over all linear strategies with thmesa
constrained degree.

B. Simulation result

As an illustration, we present a simulative comparison
between the Cayley strategy and the block Kronecker strat-
egy. The network considered consists 8f = 81 agents.
The matrix P for the Cayley strategy is the matrik {13),
hereas the matriX/ for the block Kronecker strategy is

is that the graph is undirected and the second that the graB'ﬁ”t starting from

is circulant. These symmetries can be seen in the structure
of the transition matrixP that, indeed, turns out to be both

symmetric and circulant [9].

Example 2: Let us now consider the grouiy x Zy
and the Cayley graphG(Zy x Zy,S) where S =
{(1,0);(0,0); (0,1)}. Again consider the uniform probabi
ity distribution

7((0,0)) = m((1,0)) = =((0,1)) = 1/3

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

with n = 3 and k£ = 4. The initial conditions has been

A:

. chosen randomly inside the interviat50, 50]. In both cases

the in-degree is}. Notice that, as depicted in Figuré 1, the
block Kronecker strategy reaches the average of the initial
conditions in a finite humber of steps whereas, the Cayley



strategy, after the same numbers of steps, is still far from We get a lower bound od; by summing only the firsk
converging toward the meeting point. terms:

Cayley Strategy

k—

—

Jio= D3 (Tr (ATA)")R5(Tr (AT A)H)* — 1)

r>0s=0
k—1

> ) (Tr (ATA))F (T (ATA)Y) — &k (16)
s=0
k—1

= an_s(Tr AT A —k,

Fig. 1. The block Kronecker strategy (left) converges intéiriime, while s=0

the Cayley strategy (right) has a relatively slow conveogen . ) . )
The last summation is a geometric series that can be evalu-

ated, leading to the bound

VI. LQR cosT
In this section we want to evaluate the performance of I > Nl — (Tr ATA/n)* k
the block Kronecker strategy according to the quadratit cos b= 1—Tr ATA/n

J=J1 +7J2, whereJ; =E >, (2(t) — z(c0))T (x(t) — _ _ o _

2(c0)) accounts for the quickness of convergendg, = 1S proves the left inequality in the claim.
EY,oq((t+1)—z(t) T (x(t+1) —2(t)) limits the norm of For the right mquallty, we find an upper bound on
the updates, ang weights the respective importance of thosdh€ terms neglected in the lower bourid](16). As normal
two factors. Precisely we evaluafefor any block Kronecker Mmatrices can be diagonalized by a unitary transformatre, t
strategy derived from a normal matrik Remember that the €igenvalues ofA” A, which we denotel, A1, Aa, ..., An—1,
initial statez(0) is supposed to be characterized by a identitfr® Precisely the squared module of the eigenvalues. ¢
covariance matrix. We start with a lemma which provides aRarticular,p® = A1, and the trace of A" A)" is 1 + 37 AL
upper and a lower bound fof; . The terms neglected in the lower bouhdl(16) are

Lemma 6.1: If A is a normaln x n matrix satisfying

conditions (A),(B),(C), ang is the essential spectral radius k-1 ks e
of A, then theJ; cost of the corresponding block Kronecker DSOS A+ A AT
strategy of sizex* satisfies: r=15=0 i i
Jr < J < Jy, For everyr, we bound every of thé terms by the highest
1—(Tx (AT A)/n)* (for which s = 0). Hence the neglected terms are bounded
where J;, = NV i AT A k and Jy = Jp + from above by:
T2 (Tr ATA - 1).
Proof: Classical arguments lead to write: Z((l + Z)\;)’*’ -1) = kZP( T AT ),
o= EY (a(t) - (o)) (x(t) - 2(o0)) e =
t>0 where P is a polynomial in the variables,...,, \,_1
= ZE (z(t) —x(oo))T(x(t) — 2(c0)) with no independent term: all monomials have degree at
>0 least one. Now we can sum all corresponding monomials
for r = 1,2,...: this is a geometric series of progres-
= E Tr - r - ; ' :
; (2(#) = 2(00))" (w(t) = 2(o0)) sion at mostA;. Hence)_ o, P(A],...,A;) is at most
-~ . =P, k) = 2 (Tr ATA - 1),
- Z]E Tr ((t) — 2(00))(2(t) — x(0)) Hence J; differs from our lower bound by at most
=0 kit (Tr ATA-1). m
_ t T t T
= Y Tr (M~ E)E(e(0)2(0)")(M" ~ E) Thus J; = NG 4 O(log N). Now we
120 t t . estimate.;.
= Y Tr (M'—E)(M'-E) Lemma 6.2: Under the assumptions of Lemrhal6.1 pif
t20 denote the eigenvalues df different from one,
with £ = 1/nF117. 1
2J; — N — —— < Jy<2J;— N.
Now, Tr (M! — EY(M! — BYT = Tr M‘MtT — ! ;1*|Pi|2 ==
Tt E = Tr M*M*" — 1. When M is derived by block Proof: First we notice, adapting the first steps of the

Kronecker product from a normal matri4, this is equal to proof of the preceding proposition, thdt = > Tr (M —
(Tr (ATA)")F=s(Tr (ATA)"1)s if t = rk + s, according I)T(MT)M!(M — I), with I the identity. This involves
to Propositiori 412. terms of the form(A/ 7)1 M*. More precisely,



« finding strategies that minimize the LQR cost for any

Tt+1Mt_

Jp=3 T (M7 M - M
t>0
o MTtMt+1 + MTtMt)
=23 (e M7 M 1) - N
t>0
— 237 (Tr MT Mt - 1)
t>0
The first term of the last member is precisely, the last M
term is, thanks to Propositién 4.3y, ,(Tr AT At+1 1). 2]
From Cauchy-Schwartz inequality applied to Frobenius[3]
norm, Tr AT AL < /Tr AT Ati1Ty AT AL <

Tr AT' At
Hence Y, (Tr ATP AL — 1) < im0 S AL

Zu—;&' where, as argued in the proof of Lemrhal6.1,

- M

Ai = |pil®. m B
Hence,
_ T A /n)* [6]
J= N((l +2y)2 : fTTYr (&Ti))//n) — 7+ O(log N/N)).

. . [71
Since the trace ofdA”A is the sum of squares of ele-

ments of A, we see that the coefficient af (neglecting
the O(log N/N)) term) is optimized by the matrid =
1/n117, whatever the value of is. In this case, the lower
bound obtained ow; is exact, since only; terms are non-
zero. The optimal cost is then

1—1/N
1-1/n

(8]
El

J = N((l +29) — v+ O(log N/N)), [10]

. [11]
with v = n.

Hence there is here no trade-off betwekrand.J; among
the family of block Kronecker strategies, in contrast wiiet [12]
general LQR theory.

Note that the optimal control strategy for unconstrainefi3]
degree (every agent knows every position) is easily solv?&]
by a scalar algebraic Riccati equation, leading to the ogdtim
costJ = N(1++/T+47)/2.If vis small andr is large, then [15]
the optimal finite-time block Kronecker approaches the un-
bounded degree optimal solution with a cost approximatelyg
equal to(1 4+ v)N.

VII. CONCLUSIONS [17]

We have introduced a family of strategies for a consensus
problem, whose graph of communication is de Bruijn’418]
graph. We have shown that they can converge in finite
logarithmic time, which is optimal. We have evaluated thgg
LQR cost of these strategies, proving their quasi-optityali
if the cost of update is small and the degree of the graph not
too low. [20]

This work can be extended in several directions, including:

« designing strategies valid for an¥, not only exact

powers ofn;

« tackling the continuous-time case, where no deadbe[%tz]

strategy can exist;

« estimating the LQR cost for Cayley strategies;

[21]

cost~ of the update;
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