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Optimal strategies in the average consensus problem

Jean-Charles Delvenne Ruggero Carli Sandro Zampieri

Abstract— We prove that for a set of communicating agents to
compute the average of their initial positions (average consensus
problem), the optimal topology of communication is given by
a de Bruijn’s graph. Consensus is then reached in a finitely
many steps. A more general family of strategies, constructed
by block Kronecker products, is investigated and compared to
Cayley strategies.

I. I NTRODUCTION

Coordination algorithms for multiple autonomous vehicles
and decentralized estimation techniques for handling data
coming from distributed sensor networks have attracted large
attention in recent years. This is mainly motivated by that
both coordinated control and distributed estimation have
applications in many areas, such as coordinated flocking of
mobile vehicles [26], [27], cooperative control of unmanned
air and underwater vehicles [4], [3], multi-vehicle tracking
with limited sensor information [19], monitoring very large
scale areas with fine resolution and collaborative estimation
over wireless sensor networks [24].
Typically, both in coordinated control and in distributed
estimation the agents need to communicate data in order
to execute a task. In particular they may need to agree on
the value of certain coordination state variables. One expects
that, in order to achieve coordination, the variables shared by
the agents, converge to a common value, asymptotically. The
problem of designing controllers that lead to such asymptotic
coordination is calledcoordinated consensus, see for exam-
ple [12], [20], [15] and references therein. Generalisation to
high order consensus [22] and nonholonomic agents [18],
[11], [28] have also been explored. One of the simplest
consensus problems that has been mostly studied consists
in starting from systems described by an integrator and
in finding a feedback control yielding consensus, namely
driving all the states to the same value [20]. The informa-
tion exchange is modeled by a directed graph describing
in which pair of agents the data transmission is allowed.
The situation mostly treated in the literature is when each
agent has the possibility of communicate its state to the
other agents that are positioned inside a neighborhood [26],
[15] and the communication network is time-varying [27],
[15]. Robustness to communication link failure [8] and the
effects of time delays [20] has been considered recently.
Randomly time-varying networks have also been analyzed
in [14]. Moreover, a first analysis involving quantized data
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Università di Padova, Via Gradenigo 6/a, 35131 Padova, Italy
{carlirug|zampi}@dei.unipd.it.

transmission has been proposed in [7], [16]. In this paper we
consider the consensus problem from a different perspective.
We are interested to characterize the relationship between
the amount of information exchanged by the agents and the
achievable control performance. More precisely we assume
that N agents are given initial positions in the euclidean
space, and move in discrete-time in order to reach the average
of their initial positions. This problem is also calledaverage
coordinated consensus. Every agent asks several agents their
position before taking a decision to modify its own position.
We impose that, in order to limit costs of communication,
every agent communicates with onlyν agents (including
itself), whereν < N . This means that in the graph describing
the communications between agents, the max in-degree is
at mostν. In this paper, we exhibit a family of strategies
for solving this problem based on de Bruijn’s graphs and
we prove that according to a suitable criteria this is the
best that one can do. Precisely we compute its performances
according two criteria: rate of convergence to the average
of their initial positions and an LQR criterion. We find
that a deadbeat strategy is optimal according to the rate
of convergence, and nearly optimal according to the LQR
criterion. Finally, we compare it with an another strategy
having limited communication and exhibiting symmetries:
the Cayley strategies [6], [5]. It should be noted however
that our strategy is limited to the case where the number of
agents is an exact power ofν. Whether it is possible to build
a linear time-invariant deadbeat strategy for any number of
agents (for a givenν) remains an open problem.

The paper is organized as follows. In Section II we provide
some basic notions of graph theory and some notational
conventions. In Section III we formally define the average
consensus problem. In Section IV we introduce the block
Kronecker strategy. In Section V we show that the block
Kronecker strategy is the quickest possible strategy and
we compare it with the Cayley strategy. In section VI we
evaluate the performance of the block Kronecker strategy
according to suitable quadratic criteria. Finally we gather
our conclusions in Section VII.

II. PRELIMINARIES ON GRAPH THEORY

Before defining the problem we want to solve, we sum-
marize some notions on graph theory that will be useful
throughout the rest of the paper.

Let G = (V, E) be a directedgraph whereV = (1, . . . , N)
is the set ofvertices and E ⊂ V × V is the set ofarcs or
edges. If (i, j) ∈ E we say that the arc(i, j) is outgoing
from i and incoming inj. The adjacency matrix A is a
{0, 1}-valued square matrix indexed by the elements inV
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defined by lettingAij = 1 if and only if (i, j) ∈ E . Define
the in-degree of a vertexj as

∑

iAij and theout-degree of
a vertexi as

∑

j Aij . In our setup we admit the presence
of self-loops. A graph is calledin-regular (out-regular) of
degreek if each vertex has in-degree (out-degree) equal tok.
A path in G consists of a sequence of verticesi1i2 . . . . . . ir
such that(iℓ, iℓ+1) ∈ E for everyℓ = 1, . . . , r − 1; i1 (resp.
ir) is said to be theinitial (resp.terminal) vertex of the path.
A cycle is a path in which the initial and the terminal vertices
coincide. A vertexi is said to beconnected to a vertexj if
there exists a path with initial vertexi and terminal vertexj.
A directed graph is said to beconnected if, given any pair of
verticesi andj, eitheri is connected toj or j is connected
to i. A directed graph is said to bestrongly connected if,
given any pair of verticesi andj, i is connected toj.
Finally some notational conventions. LetA any matrix
belonging toRN×N . With Tr A we denote the trace of
A, i.e. the sum of the diagonal entries. We say thatA is
nonnegative, denotedA ≥ 0, or positive, denotedA > 0, if
the entries ofA are respectively nonnegative or positive.

III. PROBLEM FORMULATION

We suppose that the positions of allN agents are listed
into one vector of dimensionN . If the agents move, say, in
R

3, it seems that we would need a3N -dimensional vector.
However we will suppose that the positions are scalar, as
every linear strategy on scalar positions, if applied separately
on every component of the position, trivially extends to
strategies for higher dimensions.

More precisely the problem of our interest can be formal-
ized in the following way. ConsiderN > 1 identical systems
whose dynamics are described by the following discrete time
state equations

x+
i = xi + ui i = 1, . . . , N

wherexi ∈ R is the state of thei-th system,x+
i represents

the updated state andui ∈ R is the control input. More
compactly we can write

x+ = x+ u (1)

wherex, u ∈ R
N . The goal is to design a feedback control

law
u = Kx, K ∈ R

N×N

yielding the average consensus, namely a control such that
all thexi’s become asymptotically equal to the average of the
initial condition. More precisely, our objective is to obtain
K such that, for any initial conditionx(0) ∈ R

N , the closed
loop system

x+ = (I +K)x,

yields
lim
t→∞

x(t) = α1 (2)

where1 := [1, . . . , 1]T and

α =
1

N
1
Tx(0). (3)

Writing x(t) as a linear combination of the eigenvectors
of I + K, it is almost immediate to see that the average
consensus problem is solved if and only if the following
three conditions hold:
(A) Every row and every column ofI + K sums to one.

Hence it has eigenvalue1 with 1 as left and right
eigenvector.

(B) The eigenvalue1 of I + K has algebraic multiplicity
one (namely it is a simple root of the characteristic
polynomial ofI +K).

(C) All the other eigenvalues are strictly inside the unit
circle.

For nonnegative matrices, namely for matrices having all
the components nonnegative, condition (A) is called double
stochasticity, condition (B) is ergodicity and condition (C)
is a consequence of double stochasticity. We do not require
our matrices to be nonnegative, even though it will appear
that the optimal matrices are.

Observe now that the fact that the element in positioni, j
of the matrixI +K is different from zero, means that the
systemi needs to know exactly the state of the systemj in
order to compute its feedback action. This implies that the
j-th agent must communicate his statexj to i-th agent. In
this context a good description of the communication effort
required by a specific feedbackK is given by the directed
graphGI+K with set of vertices{1, . . . , N} in which there
is an arc fromj to i whenever in the feedback matrixK
the element(I + K)ij 6= 0. The graphGK is said to be
the communication graph associated withK. Conversely,
given any directed graphG with set of vertices{1, . . . , N},
a feedbackK is said to becompatible with G if GI+K is a
subgraph ofG (we will use the notationGI+K ⊆ G).

In the sequel, we will impose the following constraint
on the communication graph: the max in-degree of the
nodes isν. This models the fact that communication lines
are costly to establish or operate, and every agent has the
right to talk to a limited number of other agents. Note
that for compatibility with usual conventions we consider
that ν counts all arcs entering a node, including self-loops
(which could be considered as ‘free communication’ in most
technological situations).

Without this constraint, the problem becomes trivial:
choose the complete graph, and the consensus is reached
in one step. We therefore add the following constraint on
I +K:
(D) Every row of I + K contains at mostν non-zero

elements.
From this point of view we would like to obtain a matrix

I +K satisfying (A),(B),(C),(D) and minimizing a suitable
performance index. The simplest control performance in-
dex is the exponential rate of convergence to the average
consensus. When we are dealing with average consensus
controllers it is meaningful to consider the displacement from
the average of the initial condition

∆(t) := x(t)−
(

1

N
1
Tx(0)

)

1 .



It is immediate to check that,∆(t) = x(t) −
(

1
N 1

Tx(t)
)
1

(since the average position1N 1
Tx(t) is the same at all times

t) and that it satisfies the closed loop equation

∆+ = (I +K)∆ . (4)

Notice moreover that the initial conditions∆(0) are such
that

1
T∆(0) = 0 . (5)

Hence the asymptotic behavior of our consensus problem can
equivalently be studied by looking at the evolution (4) on the
hyperplane characterized by the condition (5). The speed of
convergence toward the average of the initial condition can
be defined as follows. LetP any matrix satisfying conditions
(A),(B),(C). Define

ρ(P ) =

{
1 if dimker(P − I) > 1
maxλ∈σ(P )\{1} |λ| if dimker(P − I) = 1 ,

which is called theessential spectral radius of P . As the
dominant eigenvalues ofP t is one and the others are smaller
in magnitude thanρ(P )t, the essential spectral radius says
how quicklyP t converges to the rank-one matrix1/N11

T ,
whereN is the dimension ofP . In this context the index
ρ(I + K) seems quite appropriate for analyzing how per-
formance is related to the communication effort associated
with a graph. The smaller the essential spectral radius, the
quicker the system will converge to the average of the initial
condition.

However in control theory, strategies that converge in
finite time or very quickly are sometimes dismissed on
the ground that they lead to large values of update values
u(t) = x(t + 1) − x(t), that can be physically impossible
or very costly to implement. Hence a strategy is often
required to optimize anLQR cost, taking into account both
the quickness convergence and the norm of updates values.
Therefore another suitable measure of performance could be
the following quantity:

J = E(
∑

t≥0

||x(t) − x(∞)||2 + γ||u(t)||2), (6)

where x(t) is the vector of positions at timet, x(∞) =
lim∞ x(t) is the vector whose every entry is the average
of initial positions,u(t) = x(t + 1) − x(t) is the update
vector at timet, the initial positions are supposed to be
uncorrelated random variables with unit variance,E denotes
the expectation,||x||2 = xTx is the euclidean norm andγ
is a nonnegative real.

We will prove that the optimal topology of communication
(in the meaning of speed of convergence) is given by a de
Brujin’s graph. We will call the control strategies based on
such graph block Kronecker strategies, as explained in the
next section. For these strategies we will evaluated (6) and
we will compare them to another family of strategies based
on a regular communication graph having the same degree
ν: the Cayley strategies [6], [5].

IV. B LOCK KRONECKER STRATEGIES

In this section, we define block Kronecker strategies. Let
A be an × n matrix satisfying (A),(B),(C),(D) andk be a
nonnegative integer. Note that ifA is full thenn ≤ ν (since
the number of non-zero elements cannot exceedν). Then we
build annk × nk matrix M in the following way. Let

A =








a0
a1
...

an−1








be a row-partition of the matrixA, whereai ∈ R
1×n. Then

M is the matrix

M =








Ink−1 ⊗ a0
Ink−1 ⊗ a1

...
Ink−1 ⊗ an−1







. (7)

For example, if

A =

(
α β
β α

)

(with α+ β = 1) andk = 3, then

M =















α β
α β

α β
α β

β α
β α

β α
β α















This is a kind of block Kronecker product. A general
theory of block Kronecker product is built in [17]. We
only need a more restricted definition, detailed below. The
new matrixM is a matrix of larger dimension thanA and
satisfying conditions (A),(B),(C),(D): (A) and (D) follow
from the definition, while (B) and (C) are proved below.
Hence it can play the role of the matrixI + K in Section
III.We start by some reminders on Kronecker product, define
the block Kronecker product and explore the properties of
the latter.

A. Kronecker product

We recall that theKronecker product A⊗B of the matrices
A andB is the matrix[aijB]i,j , whose dimensions are the
product of dimensions ofA andB. Some useful properties
of the Kronecker product are the following:

• AB ⊗ CD = (A⊗ C)(B ⊗D);
• Tr A⊗B = Tr ATr B;
• the eigenvalues ofA ⊗ B are all possible products of

an eigenvalue ofA with an eigenvalue ofB;
• the eigenvectors ofA ⊗ B are all possible Kronecker

products of an eigenvector ofA with an eigenvector of
B.

The Kronecker product is sometimes called tensor product.
Let us see why. For instance consider the matricesB,C,D



of sizesmB × nB, mC × nC , mD × nD. The Kronecker
product has sizemBmCmD × nBnCnD, and an arbitrary
element ofB⊗C⊗D can be denoted(B⊗C⊗D)abc,def =
BadCbeDcf , where the index written asabc denotes the
number c + bmD + amCmD and the indexdef is the
numberf + enD + dnCnD; we suppose that the indices
start form zero:a = 0, . . . ,mB − 1, etc. If B,C,D happen
to be square matrices of sizen, this notation coincides with
the usual notation in basen of an index running from0
to n3 − 1. This notation of the Kronecker product is very
close to the tensor product used in algebra and differential
geometry. The only difference is thatB⊗C⊗D, viewed as
a tensor product, is considered as a6-dimensional array with
a, b, c, d, e, f as separate indices, instead of a matrix (i.e., a
2-dimensional array). All this immediately extends to more
than three matrices.

B. Block Kronecker product

Let us now consider the following variant of Kronecker
product, that we callblock Kronecker product. Consider for
instance two matricesB (of size n3 × n3) andC (of size
n2×n2). The block Kronecker product ofB andC is defined
as follows: its element of indexabcde, ghijk is the element
Bcde,ghiCab,jk (notice the shift of the first indices by two
places). We will denote this matrix byB⊙C. This definition
applies to any two square matrices whose dimensions are
powers of n. In general, we can write(B ⊙ C)p,q =
(B ⊗ C)σt(p),q, whereσ operates a cyclic permutation by
one place to the left on the digits ofp in basen, andC is
of sizent.

The matrixM defined by Equation (7) can be expressed
asM = (I ⊗ · · · ⊗ I)⊙A (where then× n identity matrix
I is repeatedk − 1 times). If we write the index ofM in
basen, thenMi1...ik,j1...jk = Ii2,j1Ii3,j2 . . . Iik−1,jkAi1,j0 .

This form is particularly useful to compute the behavior
of M from the properties of the block Kronecker product,
which we now explore. As a first property, we can easily see
that

(B ⊙ C)T = CT ⊙BT . (8)

We can also prove the following lemma.
Lemma 4.1: For any matricesA,B,C,D,E, F for which

all the products below are meaningful, we have

((A⊗B)⊙ C)((D ⊗ E)⊙ F ) = BD ⊙ (CE ⊗ AF ). (9)
Proof: We write, using Einstein’s convention (indices

repeated twice in an expression are implicitly summed over),

[((A⊗B)⊙ C)((D ⊗ E)⊙ F )]u,w =

= ((A ⊗B)⊙ C)u,v((D ⊗ E)⊙ F )v,w

= Au2,v1Bu3,v2Cu1,v3Dv2,w1Ev3,w2Fv1,w3 ,

whereu, v, andw, interpreted as sequences of digits in base
n, have been partitioned intou1u2u3, v1v2v3, andw1w2w3

in an appropriate way. This is possible ifB andD have same
size, as well asC andE, andA andF . Then the expression

above can be regrouped as

(BD)u3,w1(CE)u1,w2(AF )u2,w3 =

= (BD ⊙ (CE ⊗AF ))u,w ,

which ends the proof.
In particular, ifB = D = 1 we have

(A⊙ C)(E ⊙ F ) = (CE ⊗AF ). (10)

If we chooseC = E = 1 instead, we have

(A⊗B)(D ⊙ F ) = BD ⊙AF. (11)

The following proposition provides an interesting charac-
terization of the powers of any order of the matrixM .

Proposition 4.1: For A a square matrix,M defined by
Equation (7), and any integersr ≥ 0 and0 ≤ s < k,

M rk+s = (Ar ⊗ · · · ⊗Ar)
︸ ︷︷ ︸

k−s

⊙ (Ar+1 ⊗ · · · ⊗Ar+1)
︸ ︷︷ ︸

s

,

where the exponents in the right-hand side sum tork + s.
Proof: We prove the claim by induction onrk+s. It is

true by definition forrk+s = 1. The induction step is easily
proved by applying Equation (9). Indeed,[(Ar⊗ (Ar⊗· · ·⊗
Ar))⊙(Ar+1⊗· · ·⊗Ar+1)][((I⊗· · ·⊗I)⊗(I⊗· · ·⊗I))⊙A)]
can be written as(Ar ⊗ · · · ⊗Ar)⊙ (Ar+1 ⊗ · · · ⊗Ar+1 ⊗
(ArA)). The argument is correct also for limit casess = 0
ands = k − 1.
In particular we have the following.

Corollary 4.1: For A a square matrix andM defined by
Equation (7),

Mk = A⊗ · · · ⊗A.

Moreover, if A satisfies (A),(B),(C) the essential spectral
radius ofM is the kth root of the essential spectral radius
of A.

Proof: The first part is a particular case of Proposition
4.1. From the properties of Kronecker product, we know the
spectrum ofMk is composed of all possible products ofk
eigenvalues ofA. Hence the largest eigenvalue in absolute
value, different from1, of the matrixMk results to be1k−1λ,
where λ denotes the largest eigenvalue in absolute value,
different from1, of the matrixA.

This also proves also that conditions (B) and (C) are
verified forM when they are forA. If we take

A = 1/n11T , (12)

of sizen, thenMk is the matrix1/nk
11

T of sizenk with
all identical elements. Thus we have a strategy converging
exactly ink steps. We comment further on this example in the
next section. Another property ofM that will prove useful
is stated in the next proposition.

Proposition 4.2: For A a square matrix,M defined by
Equation (7), and any integersr ≥ 0 and0 ≤ s < k,

MT rk+s
M rk+s = AT r

Ar ⊗ · · · ⊗AT r
Ar

︸ ︷︷ ︸

k−s

⊗

⊗ AT r+1
Ar+1 ⊗ · · · ⊗AT r+1

Ar+1

︸ ︷︷ ︸

s

,



where the sums of exponents isrk + s.
Proof: From Proposition 4.1, we know thatM rk+s =

(Ar ⊗· · ·⊗Ar)⊙ (Ar+1⊗· · ·⊗Ar+1). Hence, by Equation
(8), MT rk+s

= (AT r+1 ⊗ · · · ⊗AT r+1
)⊙ (Ar ⊗ · · · ⊗Ar).

These two expressions are multiplied using Equation (10).

Now we would like to computeTr MT t
M t+1. This will

be useful later when we will evaluate the performance of the
block Kronecker strategy. We first need the following lemma.

Lemma 4.2: Let B0, B1, . . . , Bk−1 be k square matrices
of same dimensions. Ifl ≤ k is relatively prime tok, then

Tr (B0 ⊗B1 ⊗ · · · ⊗Bl−1)⊙ (Bl ⊗ · · · ⊗Bk−1) =

Tr B0BlB2lB3l · · ·B(k−1)l,

where the indices are understood modulok.
Proof: If we use Einstein’s convention (repeated indices

are summed over), we can write

Tr (B0 ⊗B1 ⊗ · · · ⊗Bl−1)⊙ (Bl ⊗ . . .⊗Bk−1)

= [(B0 ⊗B1 ⊗ · · · ⊗Bl−1)⊙ (Bl ⊗ · · · ⊗Bk−1)]p,p

= (B0)pk−l,p0(B1)pk−l+1,p1 · · · (Bl−1)pk−1,pl−1

(Bl)p0,pl
· · · (Bk)pk−l−1,k

= (B0)pk−l,p0(Bl)p0,pl
(B2l)pl,p2l

(B3l)p2l,pl
· · · (B(k−1)l)p(k−2)l ,p(k−1)l

= Tr B0BlB2l . . . B(k−1)l,

wherep = p0p1 . . . pk−1.
Proposition 4.3: For A andM as defined above, ifA is

normal (i.e.,ATA = AAT ) then

Tr MT t
M t+1 = Tr AT t

At+1.

Proof: We know thatMT t
M t = AT r

Ar ⊗ . . . ⊗
AT r+1

Ar+1, if t = rk + s for some0 ≤ s < k. Hence

MT t
M t+1 = (AT r

Ar⊗· · ·⊗AT r+1
Ar+1)((I⊗· · ·⊗I)⊙A),

which by Equation (11) is equal to(AT r
Ar ⊗ · · · ⊗

AT r+1
Ar+1) ⊙ AT r

Ar+1. By Lemma 4.2, this matrix has
the same trace asAT r

Ar . . . AT r+1
Ar+1AT r

Ar+1. As AT

andA commute, this is also the trace ofAT t
At+1.

C. De Bruijn’s graph

The communication graph ofM is (a subgraph of) a de
Bruijn graph, which hasnk vertices and arcs from anyi to
ni, ni + 1, ni + 2, . . . and ni + k − 1 (all modulonk). In
particular, if A is given by Equation (12), thenM is the
adjacency matrix of a de Bruijn graph, normalized so as for
every row to sum to one. This graph was introduced by de
Bruijn [10] in 1946 and has been considered for efficient
distribution of information in different context such as in
parallel computing [23] and peer-to-peer networks [13]. This
paper can be seen as an extension of this idea to consensus
problems.

D. Design decentralisation

The process itself of convergence to consensus is de-
centralised, in the sense that every agent acts on its own.
However the communication strategy (who talks to whom?)
must be designed once for all beforehand. This can be done
in centralised way, where a new external agent dispatch to
every other agent their own strategy. This can also be done in
a decentralised way, where every agent is attributed a number
i between0 andN − 1 and then finds the agents of number
νi, νi+1,. . . ,νi+ν−1. Achieving this in the most effective
way is a problem of its own, and is not treated in this paper.

V. THE QUICKEST POSSIBLE STRATEGY

We have seen that starting fromA with all identical entries,
we get arbitrarily large matricesM converging in finite time
k. If we writeN = nk the dimension ofM , this convergence
time is logN/ logn = logN/ log ν, whereν is the maximal
in-degree of the graph of communication forM . We can
see that no strategy, whether linear or not, whether time-
invariant or not, can converge more rapidly. Indeed, to reach
the average of the initial conditions, every agent must have
information about all other agents, but it can only know
ν other positions in one step of time,ν2 in two steps of
time, etc. Hence the propagation of information needs around
logN/ log ν steps to connect all agents. This reasoning is
made rigorous in the following proposition.

Proposition 5.1: Let M ∈ R
N×N such thatM ≥ 0. Let

ν be defined as above. ThenMk > 0 implies νk ≥ N.
Proof: The factMk > 0 implies that for any pair of

nodes(i, j) there exists in the graphGM a path connectingi
to j of lengthk. Hence there are at leastN2 paths of length
k. Let nowPi denote the number of paths having lengthi.
The previous consideration implies thatPk ≥ N2. On the
other hand it is easy to see thatP1 ≤ νN and in general
that Pi ≤ νiN from which we get thatPk ≤ νkN . Hence
νkN ≥ N2 from which it results thatνk ≥ N .

The above proposition considers only the time-invariant
case. An identical result can be found for the time-varying
case, showing that there is no difference, in terms of speed
of convergence toward the meeting point, between the time-
invariant and the time-varying cases. This can be seen an
a posteriori justification of our interest in the class of the
time-invariant strategies.

A linear time-invariant strategy converges in finite time iff
its essential spectral radius is0. For a strategy converging in
infinite time, the essential spectral radius is a good measure
of the convergence to the average of the initial conditions,
as already mentioned.

A. Comparison between block Kronecker strategy and Cay-
ley strategy

In this subsection we propose a comparison of the block
Kronecker strategy with another strategy whose underlying
communication graph has limited max in-degree and exhibits
strong symmetries: the Cayley strategy.
First we recall the concept of Cayley graph defined on
Abelian groups [2], [1]. LetG be any finite Abelian group



(internal operation will always be denoted+) of order|G| =
N , and letS be a subset ofG containing zero. The Cayley
graphG(G,S) is the directed graph with vertex setG and
arc set

E = {(g, h) : h− g ∈ S} .

Notice that a Cayley graph is always in-regular, namely the
in-degree of each vertex is equal to|S|. Notice also that
strong connectivity can be checked algebraically. Indeed,
it can be seen that a Cayley graphG(G,S) is strongly
connected if and only if the setS generates the groupG,
which means that any element inG can be expressed as a
finite sum of (not necessarily distinct) elements inS. If S is
such that−S = S we say thatS is inverse-closed. In this
case the graph obtained is undirected.

A notion of Cayley structure can also be introduced for
matrices. LetG be any finite Abelian group of order|G| =
N . A matrix P ∈ R

G×G is said to be a Cayley matrix over
the groupG if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .

It is clear that for a Cayley matrixP there exists aπ : G → R

such thatPi,j = π(i − j). The functionπ is called the
generator of the Cayley matrixP . Notice how, if P is a
Cayley matrix generated byπ, thenGP is a Cayley graph
with S = {h ∈ G : π(h) 6= 0}. Moreover, it is easy to see
that for any Cayley matrixP we have thatP1 = 1 if and
only if 1

TP = 1
T . This implies that a Cayley stochastic

matrix is automatically doubly stochastic. In this case the
function π associated with the matrixP is a probability
distribution on the groupG. Among the multiple possible
choices of the probability distributionπ, one is particularly
simple, namelyπ(g) = 1/|S| for everyg ∈ S.

Example 1: Let us consider the groupZN of integers
modulo N and the Cayley graphG(ZN , S) where S =
{−1, 0, 1}. Notice that in this caseS is inverse-closed.
Consider the uniform probability distribution

π(0) = π(1) = π(−1) = 1/3

The corresponding Cayley stochastic matrix is given by

P =










1/3 1/3 0 0 · · · 0 1/3
1/3 1/3 1/3 0 · · · 0 0
0 1/3 1/3 1/3 · · · 0 0
...

...
...

... · · ·
...

...
1/3 0 0 0 · · · 1/3 1/3










. (13)

Notice that in this case we have two symmetries. The first
is that the graph is undirected and the second that the graph
is circulant. These symmetries can be seen in the structure
of the transition matrixP that, indeed, turns out to be both
symmetric and circulant [9].

Example 2: Let us now consider the groupZN × ZN

and the Cayley graphG(ZN × ZN , S) where S =
{(1, 0); (0, 0); (0, 1)}. Again consider the uniform probabil-
ity distribution

π((0, 0)) = π((1, 0)) = π((0, 1)) = 1/3

The corresponding Cayley stochastic matrix is given by the
following block circulant matrix belonging toRN2×N2

P =










P1 P2 0 0 · · · 0 0 0
0 P1 P2 0 · · · 0 0 0
0 0 P1 P2 · · · 0 0 0
...

...
...

... · · ·
...

...
...

P2 0 0 0 · · · 0 0 P1










(14)

whereP1, P2 ∈ R
N×N are such that

P1 =








1/3 1/3 0 · · · 0 0
0 1/3 1/3 · · · 0 0
...

...
... · · ·

...
...

1/3 0 0 · · · 0 1/3







, P2 =

1

3
I. (15)

This example can be generalized to the more general case
of the discreted-dimensional toriZd

N , extensively studied in
the literature regarding the peer-to-peer networks [21], [25].

Now we recall an interesting result regarding the essential
spectral radius of the Cayley stochastic matrices. Assume
that P ∈ R

N×N is a Cayley stochastic matrix generated
by a suitableπ and assume that|S| = ν, whereS is as
previously defined. Moreover assume that0 ∈ S. Notice
that this last fact implies thatPii > 0, ∀ i : 1 ≤ i ≤ N.
Then it follows thatρ ≥ 1 − C/N2/(ν−1), whereC > 0 is
a constant independent ofS andN the number of agents.
This result was proved in [6].

On the other side, the block Kronecker strategy con-
structed from any matrixA has essential spectral radius
|λ|1/k, where |λ| is the essential spectral radius ofA, as
stated in Corollary 4.1.

If 0 < |λ| < 1, then|λ|1/k behaves like1−µ/k for large
k and someµ. Recall thatk is logN/ logn. Hence this is
better than abelian Cayley strategies.

In conclusion, block Kronecker strategies have a better
essential spectral radius, hence a quicker convergence speed,
than Cayley strategies. For the particular choice given by
Equation (12), we converge in finite time, and this time is
the smallest possible over all linear strategies with the same
constrained degree.

B. Simulation result

As an illustration, we present a simulative comparison
between the Cayley strategy and the block Kronecker strat-
egy. The network considered consists ofN = 81 agents.
The matrix P for the Cayley strategy is the matrix (13),
whereas the matrixM for the block Kronecker strategy is
built starting from

A =





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3





with n = 3 and k = 4. The initial conditions has been
chosen randomly inside the interval[−50, 50]. In both cases
the in-degree is3. Notice that, as depicted in Figure 1, the
block Kronecker strategy reaches the average of the initial
conditions in a finite number of steps whereas, the Cayley



strategy, after the same numbers of steps, is still far from
converging toward the meeting point.
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Fig. 1. The block Kronecker strategy (left) converges in finite time, while
the Cayley strategy (right) has a relatively slow convergence

VI. LQR COST

In this section we want to evaluate the performance of
the block Kronecker strategy according to the quadratic cost
J = J1 + γJ2, whereJ1 = E

∑

t≥0(x(t) − x(∞))T (x(t)−
x(∞)) accounts for the quickness of convergence,J2 =
E
∑

t≥0(x(t+1)−x(t))T (x(t+1)−x(t)) limits the norm of
the updates, andγ weights the respective importance of those
two factors. Precisely we evaluateJ for any block Kronecker
strategy derived from a normal matrixA. Remember that the
initial statex(0) is supposed to be characterized by a identity
covariance matrix. We start with a lemma which provides an
upper and a lower bound forJ1.

Lemma 6.1: If A is a normaln × n matrix satisfying
conditions (A),(B),(C), andρ is the essential spectral radius
of A, then theJ1 cost of the corresponding block Kronecker
strategy of sizenk satisfies:

JL ≤ J ≤ JU ,

where JL = N 1−(Tr (ATA)/n)k

1−Tr (ATA)/n − k and JU = JL +
k

1−ρ2 (Tr A
TA− 1).

Proof: Classical arguments lead to write:

J1 = E

∑

t≥0

(x(t) − x(∞))T (x(t)− x(∞))

=
∑

t≥0

E (x(t)− x(∞))T (x(t) − x(∞))

=
∑

t≥0

E Tr (x(t) − x(∞))T (x(t)− x(∞))

=
∑

t≥0

E Tr (x(t) − x(∞))(x(t) − x(∞))T

=
∑

t≥0

Tr (M t − E)E(x(0)x(0)T )(M t − E)T

=
∑

t≥0

Tr (M t − E)(M t − E)T

with E = 1/nk
11

T .
Now, Tr (M t − E)(M t − E)T = Tr M tM tT −

Tr E = Tr M tM tT − 1. When M is derived by block
Kronecker product from a normal matrixA, this is equal to
(Tr (ATA)r)k−s(Tr (ATA)r+1)s if t = rk + s, according
to Proposition 4.2.

We get a lower bound onJ1 by summing only the firstk
terms:

J1 =
∑

r≥0

k−1∑

s=0

((Tr (ATA)r)k−s(Tr (ATA)r+1)s − 1)

≥
k−1∑

s=0

(Tr (ATA)0)k−s(Tr (ATA)1)s − k (16)

=
k−1∑

s=0

nk−s(Tr ATA)s − k,

The last summation is a geometric series that can be evalu-
ated, leading to the bound

J1 ≥ N
1− (Tr ATA/n)k

1− Tr ATA/n
− k

This proves the left inequality in the claim.
For the right inequality, we find an upper bound on

the terms neglected in the lower bound (16). As normal
matrices can be diagonalized by a unitary transformation, the
eigenvalues ofATA, which we denote1, λ1, λ2, . . . , λn−1,
are precisely the squared module of the eigenvalues ofA. In
particular,ρ2 = λ1, and the trace of(ATA)t is 1 +

∑
λt
i.

The terms neglected in the lower bound (16) are

∑

r≥1

k−1∑

s=0

((1 +
∑

i

λr
i )

k−s(1 +
∑

i

λr+1
i )s.

For everyr, we bound every of thek terms by the highest
(for which s = 0). Hence the neglected terms are bounded
from above by:

∑

r≥1

((1 +
∑

i

λr
i )

k − 1) = k
∑

r≥1

P (λr
1, . . . , λ

r
n−1),

where P is a polynomial in the variablesλ1, . . . , , λn−1

with no independent term: all monomials have degree at
least one. Now we can sum all corresponding monomials
for r = 1, 2, . . .: this is a geometric series of progres-
sion at mostλ1. Hence

∑

r≥1 P (λr
1, . . . , λ

r
k) is at most

1
1−λ1

P (λ1, . . . , λk) =
1

1−λ1
(Tr ATA− 1).

Hence J1 differs from our lower bound by at most
k 1
1−λ1

(Tr ATA− 1).

Thus J1 = N 1−(Tr (ATA)/n)k

1−Tr (ATA)/n + O(logN). Now we
estimateJ2.

Lemma 6.2: Under the assumptions of Lemma 6.1, ifρi
denote the eigenvalues ofA different from one,

2J1 −N −
∑

i

1

1− |ρi|2
≤ J2 ≤ 2J1 −N.

Proof: First we notice, adapting the first steps of the
proof of the preceding proposition, thatJ2 =

∑
Tr (M −

I)T (MT )tM t(M − I), with I the identity. This involves
terms of the form(MT )t+1M t. More precisely,



J2 =
∑

t≥0

Tr (MT t+1
M t+1 −MT t+1

M t−

−MT t
M t+1 +MT t

M t)

= 2
∑

t≥0

(Tr MT t
M t − 1)−N−

− 2
∑

t≥0

(Tr MT t
M t+1 − 1)

The first term of the last member is precisely2J1, the last
term is, thanks to Proposition 4.3,2

∑

t≥0(Tr A
T t
At+1−1).

From Cauchy-Schwartz inequality applied to Frobenius
norm, Tr AT t

At+1 ≤
√

Tr AT t+1
At+1Tr AT t

At ≤
Tr AT t

At.
Hence

∑

t≥0(Tr AT t
At+1 − 1) ≤ ∑

t≥0

∑

i λ
t
i =

∑

i
1

1−λi

, where, as argued in the proof of Lemma 6.1,
λi = |ρi|2.

Hence,

J = N
(

(1 + 2γ)
1− (Tr (ATA)/n)k

1− Tr (ATA)/n
− γ+O(logN/N)

)

.

Since the trace ofATA is the sum of squares of ele-
ments ofA, we see that the coefficient ofN (neglecting
the O(logN/N)) term) is optimized by the matrixA =
1/n11T , whatever the value ofγ is. In this case, the lower
bound obtained onJ1 is exact, since onlyk terms are non-
zero. The optimal cost is then

J = N
(

(1 + 2γ)
1− 1/N

1− 1/n
− γ +O(logN/N)

)

,

with ν = n.
Hence there is here no trade-off betweenJ1 andJ2 among

the family of block Kronecker strategies, in contrast with the
general LQR theory.

Note that the optimal control strategy for unconstrained
degree (every agent knows every position) is easily solved
by a scalar algebraic Riccati equation, leading to the optimal
costJ = N(1+

√
1 + 4γ)/2. If γ is small andn is large, then

the optimal finite-time block Kronecker approaches the un-
bounded degree optimal solution with a cost approximately
equal to(1 + γ)N .

VII. C ONCLUSIONS

We have introduced a family of strategies for a consensus
problem, whose graph of communication is de Bruijn’s
graph. We have shown that they can converge in finite
logarithmic time, which is optimal. We have evaluated the
LQR cost of these strategies, proving their quasi-optimality
if the cost of update is small and the degree of the graph not
too low.

This work can be extended in several directions, including:
• designing strategies valid for anyN , not only exact

powers ofn;
• tackling the continuous-time case, where no deadbeat

strategy can exist;
• estimating the LQR cost for Cayley strategies;

• finding strategies that minimize the LQR cost for any
costγ of the update;
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