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Abstract
This paper studies monotone tridiagonal systems with negative feedback. These systems possess
the Poincaré-Bendixson property, which implies that, if orbits are bounded, if there is a unique
steady state and this unique steady state is asymptotically stable, and if one can rule out periodic
orbits, then the steady state is globally asymptotically stable. Two different approaches are
discussed to rule out period orbits, one based on direct linearization and another one based on the
theory of second additive compound matrices. Among the examples that illustrate the theoretical
results is the classical Goldbeter model of the circadian rhythm.

1 Introduction
Tridiagonal systems are those in which each of the state variables x1,…,xn is only allowed to
interact with its “neighbors”, see Figure 1. Such systems arise in one-dimensional
formations of vehicles with local communication (xi denotes the position of the ith vehicle),
as well as in many models in biology. In the latter field, xi denotes the size of the population
of the ith species in ecology models, or the concentration of the ith chemical in cell biology
models. Ecological examples include those in which species are arranged in physical layers
(altitude in air, depth in water) and competition or cooperation occurs with individuals in
adjoining zones. Cell biology examples include those in which a set of genes gi control the
production of proteins Pi, each of which acts as a transcription factor for the next gene gi+1
(binding and unbinding to the promoter region of gi+1 affects the concentration of free
protein Pi as well as the transcription rate of gi+1). Somewhat different, though
mathematically similar, biological examples arise from sequences of protein post-
translational modifications such as phosphorylations and (providing the backward
interaction) dephosphorylations.
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Especially in biology, it is usual to find situations involving feedback from the last to the
first component, see Figure 2. A very common situation involves negative (repressive)
feedback, which allows set-point regulation of protein levels, or which enables the
generation of oscillations. A specific and classical instance of this is the Goldbeter model for
circadian oscillations in the Drosophila PER (“period”) protein [7]. In all such examples, it
is of interest to find conditions that characterize oscillatory versus non-oscillatory regimes.

In this paper, we provide sufficient conditions for global asymptotic stability of tridiagonal
systems with negative feedback. Of course, when negated, we also have then necessary
conditions on parameters that must hold in order for oscillations to exist.

1.1 Monotone Tridiagonal systems with negative feedback
A tridiagonal system with feedback has the form:

(1)

where x0 is identified with xn, and the C1 vector field F = (f1 ,…, fn) is defined on an open
set U. Often in applications, the variables xi evolve in a set C which is not open. For
example, C may be the non-negative orthant , as is the case when the variables xi
represent non-negative physical quantities such as concentrations of chemical species. If C is
the closure of its interior, then one may study the equations in the set U equal to the interior;
alternatively, often it is easy to extend the equations to a slightly larger open set U which
contains C, by an appropriate extension of the functions fi. Thus, for the purposes of the
results in the paper, the assumption that the set U is open is not very restrictive.

Definition 1 System (1) is called a tridiagonal feedback system if there exist scalars δi ∈
{+1, −1}, i = 1, … , n, such that for all 1 ≤ i ≤ n −1,

(2)

for all x ∈ U, and

(3)

Monotone tridiagonal feedback systems are known to have the Poincaré-Bendixson property
([14]), that is, any compact omega limit set that contains no equilibrium is a periodic orbit.
There are two types of monotone tridiagonal feedback systems depending on the sign of the
product δ1 … δn. If the sign is positive (negative), then system (1) is called a monotone
tridiagonal system with positive (negative) feedback.

Monotone tridiagonal systems with positive feedback (or systems that have no feedback at
all, i.e. the derivative in (3) is zero) are in particular monotone systems in the usual sense of
[22], and hence the results in this paper trivially apply to them (unique equilibria and
boundedness of solutions implies convergence, at least if the set U satisfies appropriate
geometric assumptions, see [22,5] for example). Thus, in this paper we focus exclusively on
the negative feedback case. (The terminology “monotone tridiagonal system with negative
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feedback” is standard but unfortunate, since such systems are not monotone in the usual
sense of [22]).

Without loss of generality, we will assume that

(4)

for i = 1, …, n−1 (Figure 3). This is justified because, for arbitrary δi with δ1 …δn = −1, we
can introduce new variables

where μ1 = 1, μi+1 = δiμi. Then

Thus, for i = 1,…, n −1,

Similarly, . To check (3):

The last equality uses the condition that δ1 … δn = −1. From now on, we assume that system
(1) satisfies conditions (2)–(4).

1.2 Statements of main results
We now state our main results; their proofs are given in Sections 3.1 and 5.1 respectively.
The first of the results is based on a direct linearization argument, and is included here for
completeness and comparison with the second one, which is based on compound matrices
and tends to give better estimates.

We say that a square matrix is quasi-monotone (Metzler) if it has non-negative off-diagonal
entries. A real vector is called non-negative (positive) if all its components are non-negative
(positive). If A and B are n × n such that Aij ≤ Bij for all i, j, then we denote this by A ≤ B.
For an arbitrary real n × n matrix A we let |A| be the n × n matrix defined by

Note that A ≤ |A|.

Wang et al. Page 3

Syst Control Lett. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A set K is said to be absorbing in U, with respect to the system (1), if for each compact set
K1 ⊂ U there is a t0 = t0(K1) so that every solution y(t) that starts in K1 has the property that
y(t) ∈ K for all t ≥ t0.

Theorem 1 Let system (1) have a compact absorbing set K in U, and assume that there is a
unique equilibrium x*. Suppose that there exists a quasi-monotone and Hurwitz matrix B
such that

Then x* is globally asymptotically stable for (1) with respect to initial conditions in U.

Theorem 2 Let system (1) have a compact absorbing set K in U, and assume that there is a
unique equilibrium x*. Suppose that there exists a quasi-monotone and Hurwitz matrix M
such that

and that x* is locally asymptotically stable. Then x* is globally asymptotically stable for (1)
with respect to initial conditions in U.

The notation “[2]” in the above theorem refers to second compound matrices, which are
introduced in Section 4. By a “Hurwitz” matrix, we mean one with the property that the real
parts of all its eigenvalues are negative.

2 Preliminaries
We first make remarks that apply to any system of ordinary differential equations

(5)

where U is an open set in ℝn, and the vector field G is of class C1, with special structure.

Definition 2 Let p (t) be a periodic solution of system (5), and denote by Ω the
corresponding orbit, Ω = {x = p (t), t ≥ 0}. The solution p (t) is said to be

1. orbitally (Lyapunov) stable if for any neighborhood W of Ω, all forward trajectories
which start in a sufficiently small neighborhood of Ω do not emerge from W;

2. orbitally asymptotically stable (OAS) if it is orbitally Lyapunov stable and if all the
solutions with initial condition sufficiently close to Ω approach Ω asymptotically as
t → +∞.

Observe that OAS is the only reasonable notion of “symptotic stability” for periodic
solutions, since a (non-constant) periodic solution can never be asymptotically stable in the
usual sense, as solutions with initial conditions at different points of the cycle do not
approach one another as t → +∞.

The key idea for the proofs is as follows. For a system with the Poincaré-Bendixson
property, if the system has a compact absorbing set K and a unique equilibrium x*, which is
asymptotically stable, we can obtain global stability of x*, by ruling out the existence of
periodic orbits, as long as one knows that that every periodic orbit is OAS. The intuitive idea
([10,12]) is that the boundary of the region of attraction of x*, denoted by ∂U, is compact
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and invariant. Thus, ∂U must contain a periodic orbit since the equilibrium x* is unique and
x ∉ ∂U. But then there exist points in the region of attraction of x* whose orbit converges to
the periodic orbit, which is impossible. More precisely:

Theorem 3 (Theorem 2.2 in [12]) For a general ordinary differential equation system (5)
with the Poincaré-Bendixson property, if the following assumptions hold:

1. There exists a compact absorbing set K ⊂ U.

2. There is a unique equilibrium point x*, and it is locally asymptotically stable.

3. Each periodic orbit is orbitally asymptotically stable.

Then x* is globally asymptotically stable in U.

In this paper, we consider two different approaches to showing that all periodic orbits are
OAS. One is to consider directly the linearization of system (1) at a periodic orbit. The other
one relies upon the theory of second compound matrices. This latter approach was followed
by Sanchez in [20], for the special case of cyclic systems. Cyclic systems are those for
which

in (1).

3 Linearization Approach
We consider here an approach based on direct linearization.

3.1 Proof of Theorem 1
From Lemma 17 in the Appendix, it follows that for some positive vector d, the vector Bd
and hence also the vector |DF(x*)|d, are negative vectors. Then Lemma 16 with A(t) =
DF(x*) implies that DF(x*) must be Hurwitz, and thus x* is locally asymptotically stable.

By the Poincaré-Bendixson property, it is suffices to show that system (1) has no nontrivial
periodic solutions. To see this, assume that p(t) is a nontrivial periodic solution of (1). Then
F(p(t)) is a nontrivial and periodic solution of the first variational equation:

But by Lemma 16 and since |DF(p(t))|d ≤ Bd = −c for some positive vector c, it follows that
z = 0 is asymptotically stable for this equation, and thus we have a contradiction, because 1
is always a Floquet multiplier.

Remark 3 An alternative proof of Theorem 1 could be based on the notion of
“infinitesimally contracting” systems. These are systems for which some matrix measure of
the Jacobian is uniformly negative on the state space. Specifically, the property that, for
some positive d it holds that |DF (x*)|d is negative for all x, amounts to the requirement of
contractivity with respect to the matrix measure corresponding to the weighted L∞ norm |
x|d = max {d1|x1|,…, dn|xn|}. If such a property holds, then all solutions approach each
other, which, in particular, implies asymptotic stability if there is a unique equilibrium. See
for instance [13] and [18].
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3.2 When can one find a matrix B as required in the Theorem?
Because of the form of the Jacobian, it is reasonable to look for a bounding matrix B with a
special structure, namely the sum of a tridiagonal quasi-monotone matrix plus a matrix with
a single nonzero positive entry in the last position of the first row. When B has positive
entries on both sub-and super-diagonal entries, we next provide a simple necessary condition
and a simple sufficient condition for such a matrix B to be Hurwitz.

We start by writing B in the form B = T + N, where T is tridiagonal and quasi-monotone, and
Tii+1, Ti+1i > 0 for all i = 1 ,…, n − 1, and N1n = f > 0 while Nij = 0 when (i, j) ≠ (1, n). We
first make the matrix T symmetric, using a change of coordinates as also done for example
in [2]. Define a diagonal matrix D with positive diagonal entries such that:

Then by direct computation, D−1TD =: S is tridiagonal, quasi-monotone and symmetric (S =
ST), with

In other words, S is obtained from T by replacing the sub- and superdiagonal entries by the
geometric means of each pair of entries. Also, D−1 ND := Ñ is given by

where

Thus, since B is similar to S + Ñ, and since the dominant Perron-Frobenius eigenvalues ([3])
of the quasi-monotone matrices S and B are related as follows:

because Ñ has non-negative entries, it follows that B is Hurwitz only if S is Hurwitz, i.e.

(6)

Recall that (6) holds if and only if the leading principal minors of S,
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alternate in sign starting with m 1 < 0. In summary, we have the following necessary
condition:

Proposition 4 If the matrix B is Hurwitz, then (−1)imi > 0 for i = 1 ,…, n.

To obtain a sufficient condition that B is Hurwitz, we assume henceforth that S is negative
definite. Define a positive row vector c, and a nonzero, non-negative row vector d, as
follows:

Then by direct computation,

where

Observe that λ < 0. We claim that under the assumption that S is negative definite, the
matrix S + Ñ, and therefore also the matrix B are Hurwitz if and only if:

To see this, notice first that S + Ñ is irreducible and quasi-monotone, hence it has a unique
positive (right) eigenvector ζ associated to its real dominant Perron-Frobenius eigenvalue r
[3]. We need to show that r < 0 if and only if λ + αf < 0 holds. But this is immediate from

since cζ > 0 and dζ > 0.

In summary, using the definitions for α and λ in terms of the entries of T, we have the
following sufficient condition:

Proposition 5 Suppose that S = ST is negative definite. Then, the matrix B is Hurwitz if and
only if

(7)

Remark 6 Proposition 5 amounts to a small-gain theorem. Indeed, consider the following
system with scalar input u and scalar output y:
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(8)

(9)

with b = col (1, 0, 0 ,…, 0) and c = (0 ,…, 0, 1) and note that the system of interest, ẋ = Bx,
is obtained by substituting the feedback law u = fx into (8). Since T is stable (this is
equivalent to the assumption that S is negative definite), the linear system (8) has a well-
defined characteristic, in the sense of [1]. Thus, the small-gain theorem given in that paper
(or, equivalently, since the H∞ norm in this case coincides with the DC gain, the classical
small gain theorem for induced L2 norms) says that B will be Hurwitz provided that W(0)f <
1. Now, Lemma 6.1 of [2] establishes that the transfer function W(s) of this system is:

where q(s) is the characteristic polynomial of T. In particular, then,

4 Second Additive Compound Matrices
Recall the definition of the second additive compound matrix ([15]):

Definition 7 Let A be a matrix of order n. The second compound matrix A[2] is a matrix of

order  which is defined as follows:

Here, (i) = (i1, i2) is the ith member of the lexicographic order of integer pairs for which 1 ≤
i1 < i2 ≤ n.

For future reference, we state the following well-known fact from the theory of second
compound matrices, see [4].

Lemma 8 Let the eigenvalues of a real n × n matrix A be denoted by λi, i = 1 ,…, n. Then
the eigenvalues of A[2] are given by λi + λj for i < j with i = 1 ,…, n − 1 and j = 2 ,…, n.

Lemma 9 A matrix A of order n is Hurwitz if and only if A[2] is Hurwitz and the sign of
det(A) is (−1)n.
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Let us denote by DF(x) the Jacobian of system (1). The following observation is crucial to
our proof.

Lemma 10 The second additive compound matrix DF[2](x) is quasi-monotone for any x ∈
U.

Proof. Recall that the only non-zero off-diagonal entries of DF(x) are

Thus the off-diagonal entries of DF[2](x) are non-zero only when one of the following five
cases happens:

1. The pairs i = (i1, i2), j = (i1, i2 −1) for some i2 > i1 + 1. In this case

.

2. The pairs i = (i1, i2), j = (i1, i2 + 1) for some i2 > i1. In this case

.

3. The pairs i = (i1, i2), j = (i1 −1, i2) for some i2 > i1. In this case

.

4. The pairs i = (i1, i2), j = (i1 + 1, i2) for some i2 > i1 + 1. In this case

.

5. The pairs i = (1, i2), j = (i2, n) for some 1 < i2 < n. In this case

.

Therefore, the second additive compound matrix DF[2](x) has only non-negative off-
diagonal entries.

See [6] for a full characterization of the class of matrices whose second additive compound
matrices are quasi-monotone.

5 Compound Matrices Approach
Second additive compound matrices can be used to study the stability of periodic orbits. The
following lemma states a result by Muldowney ([11,15]), also used in [12,19,20].

Lemma 11 A given nontrivial periodic solution p(t) of (5) is orbitally asymptotically stable
provided the linear system

is asymptotically stable.

By Lemma 10 we know that for system (1) the matrix DF[2](p(t)) is quasi-monotone for all
times. In this case, it turns out that to establish asymptotic stability for

(10)
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it is enough to check that for all t, the matrix DF[2](p(t)) is bounded above (in the same
sense as when talking about the Jacobian of F) by a quasi-monotone and Hurwitz matrix B.
This follows for instance from Proposition 3 in [19] or proofs based on quadratic Lyapunov
functions [23,21,16]. Here, we use Lemma 16 provided in the Appendix.

5.1 Proof of Theorem 2
Let us assume that p(t) is a nontrivial periodic solution and show that it must be OAS. Since
M is quasi-monotone and Hurwitz, it follows from Lemma 17 that there exist
componentwise positive vectors c and d such that Md = −c. Notice that for all t, we have M
− DF[2](p(t)) ≥ 0 and thus (M − DF[2](p(t))) d ≥ 0. Moreover, DF[2](p(t)) ≥ 0, for all t,
implies |DF[2](p(t))| = DF[2](p(t)). It thus follows that for all t,

which by Lemma 16 in the Appendix yields that (10) is asymptotically stable. Therefore,
p(t) is OAS for system (1). The conclusion now follows from an application of Theorem 3.

6 Applications
6.1 Linear Monotone Tridiagonal Systems with Nonlinear Negative Feed-back

We restrict our attention to systems of the form:

(11)

We denote by F = (f1 ,…, fn) the vector field of system (11). The following assumptions are
made about system (11).

A1 di, αj, and βk are positive numbers.

A2 The function g : ℝ≥0 → ℝ>0 is smooth and strictly decreasing.

A3 The matrix T is Hurwitz:

It is clear from assumptions A1 and A2 that system (11) is a monotone tridiagonal system
with negative feedback. Moreover, the non-negative orthant is forward invariant for system
(11).

Under assumptions A1 to A3, system (11) has a unique steady state .

Proof. Every steady state x* satisfies , with G(xn) = (g(xn), 0 ,…, 0)T. Let us
start from solving the nth equation of , i.e., , which yields

. Substituting  into the (n −1)th equation, we obtain
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Here Ti1 ,…, ik;i1 ,…, ik denote the k × k submatrix of T consisting of rows and columns from
i1 to ik. Repeating this procedure for other equations of  in backward order,
we have

(12)

for all j = 1 ,…, n − 1. We claim that all  are positive.

To see this we recall from Theorem 15.5.1 in [9] that a quasi-monotone matrix is Hurwitz if
and only if its leading principal minors alternate in sign, and the first one (the diagonal entry
in the upper left corner) is negative. We can apply this result to the matrix obtained from T
by performing the permutation which reverses the order of the state components by
transforming (x1, x2, ,…, xn) into (xn, xn−1 ,…, x1). This matrix is Hurwitz since it is similar
to T, and it is also quasi-monotone, and thus by the result from [9] we just mentioned, its
leading principal minors alternate in sign. But these are precisely the determinants appearing
in (12), implying that each  is positive.

By substituting (12) into the equation , we obtain

(13)

Under assumption A3, the left-hand side of (13) is a linear increasing function in . The
right hand side of (13) is a decreasing function with g(0) > 0. So there is a unique root  on
(0,∞). The other coordinates at the steady state are also positive and unique because of (12).

Lemma 13 Under assumptions A1 to A3, system (11) has a compact absorbing set ,
defined as

for some positive vectors x̱ and x̄.

Proof. Fix any compact subset K1 of . Denote the solution to system (11) with arbitrary
initial condition x0 by x(t, x0).

We will first show that there is some t0 ≥ 0 and  such that

(14)

By A2 it follows that
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and then the comparison principle for monotone systems [22] implies that

(15)

where u(t, x0) solves the linear system u̇ = Tu + G(0). The latter system has a globally
asymptotically stable equilibrium ū := −T−1G(0) (  since T is Hurwitz and irreducible
and G(0) is a nonzero, non-negative vector), and therefore:

(16)

for some a0, M0 > 0. Using (15) and (16) we can find some t0 > 0 and some  such
that (14) holds.

With similar arguments we can establish the existence of a lower bound x̱ for solutions
starting in K1. Specifically, we can find T0 ≥ t0 and  such that

(17)

Using (14), we have, in particular, that xn ≤ x̄n. As G is a decreasing function, G(xn) ≥ G(x̄n)
for all t ≥ t0 and all x0 ∈ K1. Thus,

and then the comparison principle for monotone systems [22] implies that

(18)

where v(t, x(t0)) denotes the solution starting in x(t0) at time t0 of the linear system v̇ =
Tv+G(x̄n). The latter system has a globally asymptotically stable equilibrium v̱ := −T−1G(x̄n)
(  since T is Hurwitz and irreducible and G(x̄n) is a nonzero, non-negative vector), and
therefore:

(19)

for some a1, M1 > 0. Using (18) and (19) we can find some T0 ≥ t0 and some  such
that (17) holds.

To summarize, we have established that for any initial condition x0 ∈ K1, the following in-
equality
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holds for all t ≥ T0, where T0 is uniform for all x0 ∈ K1. Therefore K is an absorbing set in
.

Remark 14 Using this result, the existence of the steady states of system (11) can be derived
directly from the fact that K is homeomorphic to a ball. However, the algebraic approach
given in the proof of Lemma 12 guarantees both existence and uniqueness.

The Jacobian matrix of system (11)

Using the approach based on direct linearization we define the matrix B := T + N, where N1n
= maxx∈K |g′(xn)| while Nij = 0 when (i, j) ≠ (1, n). Then Theorem 1 yields:

Theorem 4 Under assumptions A1 to A3, x* is globally asymptotically stable for system
(11) provided B is Hurwitz.

Recall from the discussion following Theorem 1 that under the assumption that (6) holds,
the matrix B is Hurwitz if and only if (7) holds. Condition (6) holds because matrices T and
S are similar, and T is Hurwitz. Thus, B is Hurwitz if and only if:

(20)

Let us also consider the approach based on the second compound matrix. The existence of a
compact absorbing set is proved in Lemma 13. The existence and uniqueness of the
equilibrium is shown in Lemma 12. It remains to show that x* is locally asymptotically
stable and to find a quasi-monotone Hurwitz matrix M such that M ≥ DF[2](x) for all x ∈ K.

Consider the matrix A := T − N, and let M = A[2]. Based on the proof of Lemma 10, it is easy
to see that M is quasi-monotone and M ≥ DF[2](x) for all x ∈ K. If we further assume that A
is Hurwitz, then so is M (Lemma 9). On the other hand, if M is Hurwitz, then DF[2](x*) is
Hurwitz because λPF (DF[2](x*)) ≤ λPF (M) ([3]). In order to get local asymptotical stability
of x*, DF(x*) needs to be Hurwitz, which is true by Lemma 9 provided that the determinant
of DF(x*) has the sign of (−1)n. The determinant of DF(x*) equals

Since T is Hurwitz and g is strictly decreasing, the sign of det(DF(x*)) is (−1)n. In summary,
we have established the following:

Theorem 5 Under assumptions A1 to A3, x* is globally asymptotically stable for system
(11) provided A is Hurwitz.

Let us now compare the conditions for global stability based on the linearization approach
(Theorem 4) to those based on the second compound matrices approach (Theorem 5). We
claim that the condition “B is Hurwitz” from the former implies the condition “A is Hurwitz”
from the latter (By means of a numerical example below we will see that the converse is not
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necessarily true). In other words, the condition based on the linearization approach is at least
as strong as the condition based on the second compound matrices approach. On the other
hand, verifying that B is Hurwitz amounts to checking the single inequality (20) which
might be easier to do in practice than verifying that the matrix A (which is not quasi-
monotone) is Hurwitz.

To prove the claim, we note that if B, a quasi-monotone matrix, is Hurwitz, then by Lemma
17 in the Appendix, there exist positive vectors c and d, such that Bd = −c. But B = |A|,
hence it follows from Lemma 16 in the Appendix that A is Hurwitz as well.

To illustrate the results in Theorem 5, consider the following example of a system of type
(11):

(21)

Here, γ > 0 and g(x4) = 10e−γ (x4−1) is a strictly decreasing function with g(0) = 10eγ and g′
(x4) = −10γe−γ(x4−1). The matrix

is Hurwitz. The matrix N by definition has N1n = 10γeγ and Nij = 0 when (i, j) ≠ (1, n).
Therefore,

When γ = 1, A is Hurwitz, and thus all conditions in Theorem 5 are satisfied. We expect that
all solutions converge to the unique steady state, see Figure 4. When γ = 10, A is not
Hurwitz.

The simulation result shows oscillations, see Figure 5. In fact, in the case γ = 10, the unique
equilibrium is unstable, and the existence of limit cycles follows from the Poincaré-
Bendixson property.

Theorem 4 requires the matrix

to be Hurwitz, which by condition (20) is equivalent to:
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Using the Routh-Hurwitz criterion, the condition that A is Hurwitz in Theorem (5) is
equivalent to

which is a more relaxed condition that that in Theorem 4, the inequality γeγ < 0.725.

6.2 The Goldbeter Model
In this section, we consider one of the simplest and classical models of circadian rhythms,
the one proposed by Goldbeter ([7,8]), and present conditions under which the rhythm is
disrupted, more precisely, there is a globally asymptotically stable steady state. The model is
given as follows:

(22)

Here, all the parameters are positive, and all variables are non-negative. The variable M
represents the mRNA concentration of PER; P0, P1, and P2 represent the concentrations of
PER in the cytoplasm with no phosphate group, one phosphate group, and two phosphate
groups, respectively; PN denotes the concentration of PER in the nucleus.

System (22) considered on a slightly larger open set U containing  is a tridiagonal system
with a negative feedback from PN to M. It clearly satisfies conditions (2) and (3) with values
of the δi as in (4). We next state a result from [2] for this system.

Lemma 15 Assume the following conditions hold:

•
;

• vd + V2 < V1;

• V1 + V4 < V2 + V3;

• V4 + vd < V3.

Then there exists positive numbers M̄, P̄0, P̄1, P̄2, P̄N such that system (22) has a compact
absorbing set C in U, where

Moreover, there is a unique steady state x* inside C.
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Observe that the nonlinear terms in vector field of (22) are all functions of Michaelis-
Menten form, that is, of the type:

For such a function, . As a result, the maximum and minimum of h′(x) on
[0, ȳ] are h′(0) and h′(ȳ), respectively. Based on this observation, it is easy to see that the
second additive compound matrix DF[2](x) is bounded by the matrix A[2]. Here,

where  is the minimum of  on [0,∞).

Theorem 6 Suppose that the assumptions in Lemma 15 hold and that the matrix A is
Hurwitz. If the sign of det(DF(x*)) is −1, then x* is globally asymptotically stable.

Proof. Lemma 15 guarantees the existence of an absorbing set C and the uniqueness of the
steady state x*. We pick the quasi-monotone matrix M (in Theorem 2) as A[2]. It thus
follows from our previous observations (derivatives of the Michaelis-Menten functions are
positive) that A[2] ≥ DF[2](x) for all x ∈ C. It remains to show that x* is asymptotically
stable, which is equivalent to DF(x*) being Hurwitz. The condition, A is Hurwitz, implies
that A[2] is Hurwitz, and so does DF(x*)[2]. Since the sign of det(DF(x*)) is negative, by
Lemma 9, DF(x*) is Hurwitz.

This result provides conditions under which oscillations will be blocked. On the other hand,
when there are oscillations, the conditions in Theorem 6 fail to hold for that set of kinetic
parameters. To simulate system (22), we take the set of parameters used by Goldbeter in [7]
(see Table 1) and vary vs to switch between global convergence and oscillations. When vs =
0.4, all conditions in Lemma 15 hold and the matrix A is Hurwitz. Applying Theorem 6, all
solutions converge to a unique steady state (Figure 6). On the other hand, when vs = 0.76,
oscillation appears (Figure 7). Checking conditions in Theorem 6, we see that the condition

 is violated, and in addition, the Jacobian matrix at the unique steady state is
unstable.
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Appendix
We will state a stability result for general time-varying systems which may be of interest in
itself. This result may be proved by means of the theory of contractive systems, using a
weighted L∞ norm as described in Remark 3. We choose to give instead an alternative proof
based on the use of Dini derivatives.

For Dini derivatives used for Lyapunov functions, see [17]. Recall that if f is a scalar real-
valued function, then we denote the (right upper) Dini derivative at x as:

whenever it exists.

Lemma 16 Let ẋ = A(t)x be a linear time-varying system where A(t) is a continuous matrix
function. If there are (componentwise) positive vectors c, d > 0 such that |A(t)| d ≤ −c for all
t, then x = 0 is asymptotically stable.

Proof. We will prove that V (x) = maxi |xi| /di is a Lyapunov function for the system ẋ =
A(t)x, by showing that D+V (x(t)) is negative for every nontrivial solution x(t). There holds
that

Now for every i and all h > 0 small enough, there holds

Taking the maximum over all i we get

(23)

Plugging (23) into the expression for D+V (x(t)) above, we obtain that,
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since x(t) ≠ 0. This concludes the proof.

For convenience we state part of Theorem 15.1.1 in [9]:

Lemma 17 Let A be quasi-monotone. Then A is Hurwitz if and only if there exist componen-
twise positive vectors c and d such that Ad = −c.

Notice in particular that the sufficiency part of Lemma 17 can be proved by applying
Lemma 16 with A(t) = A since in this case |A(t)| = A.
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Figure 1.
The schematic diagram of a tridiagonal system of size n.
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Figure 2.
The schematic diagram of a tridiagonal system of size n with feedback.
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Figure 3.
The schematic diagram of a monotone tridiagonal system of size n with negative feedback.
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Figure 4.
The time evolution of the x1-coordinate of two solutions of system (21) when γ = 1. The red
dashed curve corresponds to the one with initial condition (10, 0, 0, 0), and the black solid
curve represents the solution with initial condition (0, 0, 3, 0).
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Figure 5.
Oscillation appears in system (21) when γ = 10. A the x1-coordinate of the solution with
initial condition (0, 0, 3, 0). B the projection of the same solution to the x1, x2-plane starting
at t = 10.
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Figure 6.
The PN-coordinate of two solutions of system (21) when vs = 0.4. The red dashed curve
corresponds to the one with initial condition (10, 0, 0, 0, 10), and the black solid curve
represents the solution with initial condition (10, 10, 0, 0, 0).

Wang et al. Page 25

Syst Control Lett. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Oscillation appears when vs = 0.76 in system (21). A the PN-coordinate of the solution with
initial condition (10, 1, 0, 0, 0). B the projection of the same solution to the M, PN-plane.
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Table 1

Parameter values used in simulations of system (22).

Parameter Value Parameter Value

k2 1.3 k1 1.9

V1 3.2 V2 1.58

V3 5 V4 2.5

vm 0.65 km 0.5

ks 0.38 vd 0.95

kd 0.2 n 4

K1 2 K2 2

K3 2 K4 2

KI 1
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