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Abstract

In this paper, we study under which conditions the
trajectories of a mechanical control system can track
any curve on the configuration manifold. We fo-
cus on systems that can be represented as forced
affine connection control systems and we generalize
the sufficient conditions for tracking known in the
literature. The sufficient conditions are expressed
in terms of convex cones of vector fields defined
through particular brackets of the control vector
fields of the system. The tracking control laws ob-
tained by our constructions depend on several pa-
rameters. By imposing suitable asymptotic condi-
tions on such parameters, we construct algorithmi-
cally one-parameter tracking control laws. The the-
ory is supported by examples of control systems as-
sociated with elliptic hovercrafts and ellipsoidal sub-
marines.

1 Introduction

The tracking problem has gained an increasing in-
terest, mainly because of its applications to robot
manipulators as for instance to control the position
of underwater vehicles [6] and hovercrafts [15]. The
tracking problem appears when a particular trajec-
tory has to be followed by a control system, but
there is no control law for the control system that
makes this trajectory admissible. Then, the best
that can be expected is to find a control law, typi-
cally oscillatory, that defines a good enough approx-
imation of the target trajectory.

The mathematical background in the tracking
problem includes the averaging theory [16] as ex-
plained, for instance, in [5]. The averaging tech-
niques transform differential equations difficult to
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solve into other differential equations whose solu-
tions approximate fairly well the solutions to the
first set of equations. This is useful to approximate
solutions to differential equations that depend on
time or on parameters.

Differential geometry has provided a suitable
framework to study in an intrinsic way typical
mechanical control systems in engineering as, for
instance, underwater submarines, aircraft models,
hovercrafts and so on [5]. Here, we focus on forced
affine connection control systems and generalize
the sufficient conditions for tracking a trajectory
that exist in the literature from a geometric view-
point [5]. The existent results can be interpreted
as first–order sufficient conditions because only the
control vector fields and particular brackets, called
symmetric products, between them get involved in
the statement of the sufficient conditions. However,
our conditions need longer symmetric products and
so they are said to be of order higher than two.

In [6] it was observed that the tracking is pos-
sible for specific underwater vehicles, even though
they do not satisfy the geometric sufficient condi-
tions known in the literature. That motivates our
research in order to obtain more general geometric
sufficient conditions that ensure the tracking prop-
erty for a wider range of control systems.

The chances to be able to track a target trajec-
tory are related to some controllability requirement
and to the avoidance of “bad” directions. In an in-
formal way, these “bad” directions have to be inter-
preted as directions that will not make possible to
have the starting point in the interior of the reach-
able set. (We refer to [5] for an accurate description
of the obstructions to controllability in terms of the
symmetric products and of particular vector–valued
quadratic forms.) The sufficient conditions for being
able to track unfeasible trajectories are also related
to how nonholonomicity allows to enlarge the set
of admissible velocities for the control system. In
this regard, constructions of convex cones [4], the
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above–mentioned vector–valued quadratic forms [5]
and some techniques similar to the ones in [12] have
been useful for obtaining the constructions consid-
ered here.

The paper is organized as follows. Section 2 con-
tains the necessary background in forced affine con-
nection control systems and in chronological calcu-
lus [2]. Section 3 defines properly the notion of
trackability and reviews the geometric sufficient con-
ditions in the literature [5]. Sections 4 and 5 contain
the main contributions of the paper and some exam-
ples to justify the utility of these results.

2 Notation and preliminaries

Denote by N the set of positive natural numbers
and write N0 for N∪ {0}. Fix n ∈ N. From now on,
Q is a n–dimensional smooth manifold and X(Q)
denotes the set of smooth vector fields on Q. All the
vector fields are considered smooth, unless otherwise
stated. Let τQ : TQ → Q be the canonical tangent
projection, a vector field X on Q defined along τQ
is a mapping X : TQ→ TQ such that τQ ◦X = τQ.

2.1 Affine connection control systems

The trajectories γ : I → Q of a Lagrangian mechan-
ical systems on a manifold Q are minimizers of the
action functional

AL(γ) =

∫

I
L(t, γ̇(t))dt

associated with a Lagrangian function L : R×TQ→
R.

The solutions to this variational problem must
satisfy the well–known Euler–Lagrange equations,

d

dt

(
∂L

∂vi

)

− ∂L

∂qi
= 0, i = 1, . . . , n, (1)

where (qi, vi) are local coordinates for TQ. Here we
consider controlled Euler–Lagrange equations ob-
tained by modifying the right–hand side on the
above equation, as follows:

d

dt

(
∂L

∂vi

)

− ∂L

∂qi
=

k∑

a=1

uaY
i
a , i = 1, . . . , n,

with ua : I → R, Y i
a : Q→ R.

When the manifold Q is endowed with the Rie-
mannian structure given by a Riemannian metric g
and the Lagrangian function Lg(vq) = 1

2g(vq, vq) is

considered, the solutions to (1) turn out to be the
geodesics of the Levi–Civita affine connection ∇g

associated with the Riemannian metric. (See [5] for
more details and for many examples of mechanical
control systems that fit in this description.)

When control forces are added to the geodesic
equations we obtain an affine connection control sys-
tem

∇g
γ̇(t)γ̇(t) =

k∑

a=1

ua(t)Ya(γ(t)),

with Ya being vector fields on Q.

The notion of affine connection control system can
be extended without the need of the Levi–Civita
connection.

Definition 2.1. An affine connection is a map-
ping

∇ : X(Q) × X(Q) −→ X(Q)
(X,Y ) 7−→ ∇(X,Y ) = ∇XY,

satisfying the following properties:

1. ∇ is R–linear on X and on Y ;

2. ∇fXY = f∇XY for every f ∈ C∞(Q);

3. ∇XfY = f∇XY + (Xf)Y , for every f ∈
C∞(Q). (Here Xf denotes the derivative of f
in the direction X.)

The mapping ∇XY is called the covariant deriva-
tive of Y with respect to X. Given local coordinates
(qi) on Q, the Christoffel symbols for the affine con-
nection in these coordinates are given by

∇ ∂

∂qj

∂

∂qr
=

n∑

i=1

Γi
jr

∂

∂qi
.

From the properties of the affine connection, we
have

∇XY =
n∑

i,j,r=1

(

Xj ∂Y
i

∂qj
+ Γi

jrX
jY r

)
∂

∂qi
,

where X =
∑n

i=1X
i∂/∂qi and Y =

∑n
i=1 Y

i∂/∂qi.

Definition 2.2. A forced affine connection
control system (FACCS) is a control mechani-
cal system given by Σ = (Q,∇, Y,Y , U) where

• Q is a smooth n–dimensional manifold called
the configuration manifold,

• Y is a time-dependent vector field along the pro-
jection τQ : TQ → Q, measurable and bounded
with respect to the time and affine with respect
to the velocities,
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• Y is a set of k control vector fields on Q, and

• U ⊆ R
k.

A trajectory γ : I ⊂ R → Q is admissible for Σ if
γ̇ : I → TQ is absolutely continuous and there exists
a measurable and bounded control u : I → U such
that the dynamical equations of the control system Σ

∇γ̇(t)γ̇(t) = Y (t, γ̇(t)) +
k∑

a=1

ua(t)Ya(γ(t)), (2)

are fulfilled (almost everywhere).

The vector field Y includes all the non-
controlled external forces; e.g., the potential and
the non–potential forces. The assumption that Y
is affine with respect to the velocities means that,
in every local system of coordinates (qi, vi) on TQ,
Y can be written as

Y (t, vq) = Y0(t, q) +

n∑

i=1

viY i(t, q).

Equation (2) can be rewritten as a first–order con-
trol–affine system on TQ,

Υ̇(t) = Z(Υ(t)) + Y V (t,Υ(t)) +

k∑

a=1

ua(t)Y
V
a (Υ(t)),

(3)
where Υ: I → TQ is such that τQ ◦Υ = γ, Z is the
geodesic spray associated to the affine connection
on Q and Y V

a denotes the vertical lift of the vector
field Ya (see [1] for more details).

Apart from the usual Lie bracket that provides
X(Q) with a Lie algebra structure, the following
product of elements in X(Q) associated to ∇ can
be introduced.

Definition 2.3. The symmetric product is the
map

〈· : ·〉 : X(Q) × X(Q) −→ X(Q)

(X,Y ) 7−→ ∇XY + ∇YX.

It can be proved that

[Y V
a , [Z, Y V

b ]] = 〈Ya : Yb〉V (4)

(see [5]).

2.2 Chronological calculus

We recall in this section some notion of chronological
calculus, which is used later as a tool in the study
of the asymptotic behavior of endpoint mappings
depending on parameters. For a comprehensive dis-
cussion and for the proofs of all results stated in
this section see [2]. In the sequel all vector fields,
autonomous and non–autonomous, are assumed to
be complete. The behavior of non–complete vector
fields on compact sets can be studied by considering
suitable cut–off procedures.

Given a non–autonomous vector field Xτ on some
manifold M , where τ denotes the time variable and
the map (τ, q) 7→ Xτ (q) is assumed to be smooth
with respect to q and measurable bounded with re-
spect to τ , we denote by −→exp

∫ t
0 Xτdτ the diffeomor-

phism of M onto itself corresponding to the flow
from time 0 to time t of Xτ . Hence, −→exp

∫ t
0 Xτdτ(q̄)

is the evaluation at time t of the solution to the
non–autonomous Cauchy problem

q̇(τ) = Xτ (q(τ)), q(0) = q̄.

Any diffeomorphism P : M →M defines an isomor-
phism AdP of X(M) through the rule

AdP (Y )(q) = P∗(Y (P−1(q))),

where P∗ denotes the pushforward by P .

If P = −→exp
∫ t
0 Xτdτ , then we write

AdP = −→exp

∫ t

0
adXτdτ.

If ad(m)Xτ (Y ) = 0 for some m ∈ N and every τ ,
then

−→exp
∫ t

0
adXτdτ(Y ) = Y +

∫ t

0
[Xτ , Y ]dτ

+
∫ t

0

∫ τ1

0
[Xτ2

, [Xτ1
, Y ]dτ2dτ1 + · · ·+

∫ t

0

∫ τ1

0
· · ·
∫ τm−2

0
adXτm−1

◦ · · · ◦ adXτ1
Y dτm−1 · · · dτ1.

(5)

In the framework of chronological calculus the flow
of the sum of two non–autonomous vector fields can
be conveniently represented by the following varia-
tion formula

−→exp
∫ t
0 (Xτ + Yτ )dτ =

−→exp
∫ t
0 Xτdτ ◦ −→exp

∫ t
0

(−→exp
∫ τ
0 adXsds

)
Yτdτ.

(6)

Let us recall a useful result for the convergence of
flows of non–autonomous vector fields. It states,
roughly speaking, that the flows converge if the vec-
tor fields converge in integral sense. For further re-
sults and a discussion on this kind of convergence
from the point of view of ordinary differential equa-
tions and control theory, see [3, 11].
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Lemma 2.4. [2, Lemma 8.10] Let Zj
τ , j ∈ N, and

Zτ , τ ∈ [0, t1], be non–autonomous vector fields on
M , bounded with respect to τ , and let these vector
fields have a compact support. If

∫ t

0
Zj

τdτ →
∫ t

0
Zτdτ, j → ∞,

then

−→exp

∫ t

0
Zj

τdτ → −→exp

∫ t

0
Zτdτ, j → ∞,

both convergences being uniform with respect to
(t, q) ∈ [0, t1] ×M and uniform with all derivatives
with respect to q ∈M .

Another, even more standard, result on the con-
vergence of flows is the following, that we find use-
ful to state as a separate lemma. Its difference from
the previous one can be described as follows: if the
dependence on time of the Zj

τ is prescribed indepen-
dently on j (it would be enough that they converge
uniformly), then the uniform convergence of flows is
guaranteed by the uniform convergence of the vec-
tor fields, even without any knowledge about the
convergence of their derivatives with respect to the
state variables. For completeness, we provide a brief
proof for it.

Lemma 2.5. Let λ1, . . . , λm ∈ L∞([0, t1],R). Let
Zj

τ , n ∈ N, and Zτ , τ ∈ [0, t1], be non–autonomous
vector fields on M of the form Zj

τ = λ1(τ)Z
j
1 + · · ·+

λm(τ)Zj
m and Zτ = λ1(τ)Z1 + · · · + λm(τ)Zm, with

Zj
i , Zi ∈ X(M) with compact support. If Zj

i → Zi,
j → ∞, then

−→exp

∫ t

0
Zj

τdτ → −→exp

∫ t

0
Zτdτ, j → ∞,

both convergences being uniform (the first with re-
spect to the state q and the second with respect to
(t, q)).

Proof. Using the variation formula (6) with Xτ =
Zτ and Yτ = Zj

τ − Zτ , we get

−→exp
∫ t
0 Z

j
τdτ = −→exp

∫ t
0 Zτdτ◦

−→exp
∫ t
0

(−→exp
∫ τ
0 adZsds

)
(Zj

τ − Zτ )dτ.
(7)

Since
(−→exp

∫ τ
0 Zsds

)

∗, τ ∈ [0, t1], is a compact family
of operators, then the last diffeomorphism in (7)
converges uniformly to the identity for t ∈ [0, t1] as
j goes to infinity.

3 Tracking problem

The need of trackability appears when one tries to
follow a particular trajectory on the configuration
manifold, called reference or target trajectory, which
is not a solution of the FACCS considered. A tra-
jectory is successfully tracked if there exist solutions
to the FACCS that approximate it arbitrarily well.

Consider any distance d: Q×Q→ R on Q whose
corresponding metric topology coincides with the
topology on Q. From now on I will denote the in-
terval [0, t1], with t1 > 0.

Definition 3.1. A control system Σ is trackable
if for every continuous curve γ : I → Q, for every
v ∈ Tγ(0)Q and for every strictly positive tolerance
ǫ, there exist a control uǫ ∈ L∞(I, U) such that the
solution ξǫ : I → Q to Σ corresponding to uǫ and
with initial condition ξ̇ǫ(0) = v verifies

d(γ(t), ξǫ(t)) < ǫ

for every time t ∈ I.

Remark 3.2. Since any continuous curve can be
uniformly approximated, with arbitrary precision,
by a smooth curve having a prescribed tangent vec-
tor at its initial point, then Σ is trackable if and
only if every curve γ : I → Q on Q of class C∞ is
trackable for Σ, i.e., for every ǫ > 0, there exist
uǫ ∈ L∞(I, U) such that the solution ξǫ : I → Q
to Σ corresponding to uǫ and with initial condi-
tion ξ̇ǫ(0) = γ̇(0) verifies d(γ(t), ξǫ(t)) < ǫ for every
t ∈ I.

In order to give some insights into particular suffi-
cient conditions for tracking, we are going to review
a result in the literature.

Theorem 3.3. [5, Theorem 12.26] Let Σ =
(Q,∇, Y,Y , U) be a FACCS such that

• the distribution generated by Y = {Y1, . . . , Yk}
is regular, that is, it is a subbundle of TQ;

• 〈Ya : Ya〉 ∈ spanC∞(Q)Y for every a ∈
{1, . . . , k}, i.e., 〈Ya : Ya〉 =

∑k
b=1 σabYb, where

σab ∈ C∞(Q);

• the distribution Sym(1)(Y ) de-
fined by Sym(1)(Y )q = spanRYq +
spanR{〈W : Z〉(q)|W,Z ∈ Y } is the entire
tangent bundle TQ.

Let γref : I → Q be a reference trajectory of class
C3. Define the functions uref,a, uref,bc : I → R,

4



a, b, c ∈ {1, . . . , k}, b < c, as solutions of class C1 to

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t))

=
k∑

a=1

uref,a(t)Ya(γref(t))

+

k∑

b,c=1,b<c

uref,bc(t)〈Yb : Yc〉(γref(t)).

Define uslow : I × TQ→ R
k, uosc : R × I × TQ→

R
k by

uslow,a(t, vq) = uref,a(t)+
k∑

b=1

(

b− 1 +

k∑

c=b+1

(uref,bc(t))
2

4

)

σab(q),

uosc,a(τ, t, vq) =

a−1∑

c=1

ϕlo(c,a)(τ)

− 1
2

k∑

c=a+1

uref,ac(t)ϕlo(a,c)(τ),

where lo(a, b) =
a−1∑

j=1

(k − j) + (b − a) for (a, b) ∈

{1, . . . , k}2, a < b, and for i ∈ N

ϕi : R → R, t 7→ 4πi

T
cos

(
2πi

T
t

)

. (8)

Then γref is trackable for Σ and moreover the so-
lutions ξǫ of Σ, ǫ > 0, corresponding to the controls

uǫ : R × TQ −→ U ⊂ R
k

(t, vq) 7−→ uslow(t, vq) + 1
ǫuosc

(
t
ǫ , t, vq

)

with initial condition ξ̇ǫ(0) = γ̇ref(0) are such that
d(γref(t), ξ

ǫ(t)) tends to zero as ǫ goes to zero uni-
formly with respect to t ∈ I.

Remark 3.4. Observe that under the hypotheses
of Theorem 3.3 not only the tracking is guaranteed,
but also the tracking control law is given explicitly.

4 A more general tracking result

The idea of the following construction is to iden-
tify, given the set Y , a larger set of control vector
fields K1 such that every trajectory solution of the
FACCS obtained by replacing spanC∞(Q)Y by K1

can be tracked by solutions of the original FACCS
Σ. Repeating the construction on K1 we obtain
an even larger family K2 and so on. If eventually
Kl(q) = TqQ for every q ∈ Q for some l ∈ N, then
we can show that the system is trackable.

In order to generalize the sufficient conditions for
tracking given in Theorem 3.3, we construct the fol-
lowing set of vector fields on Q:

K0 = spanC∞(Q)Y ,

Kl = Kl−1 − co {〈Z : Z〉 | Z ∈ L(Kl−1)},
(9)

for l ∈ N, where, for A ⊂ X(Q), L(A) = A ∩ (−A),
co(A) denotes the convex hull of A, and A is the
closure of A in X(Q) with respect to the topology
of the uniform convergence on compact sets. For
A ⊂ X(Q) we also write

A(q) = {Y (q) | Y ∈ A} ⊆ TqQ.

Proposition 4.1. For every l ∈ N0, Kl is a convex
cone of X (Q). In particular, for every q ∈ Q, Kl(q)
is a convex cone with vertex at 0 ∈ TqQ.

Proof. The proposition is proved by induction hav-
ing in mind that the set Kl is a convex cone if it
contains all conic combinations of elements of Kl.
Remember that a conic combination of elements of
Kl is of the form λ1W1 + · · ·+λrWr with λi ∈ R≥0,
Wi ∈ Kl for every i ∈ {1, . . . , r}.

First, K0 is subspace of X (Q) and thus it is a
convex cone.

The induction step consists of proving that if Ki

is a convex cone, so is Ki+1. First notice that, if
W ∈ L(Ki) and λ ∈ R, then, by the induction hy-
pothesis, λW ∈ L(Ki) and thus λ2〈W : W 〉 belongs
to {〈Z : Z〉 | Z ∈ L(Ki)}. Hence, Ki+1 is the closure
of the sum of two convex sets invariant by multipli-
cation by any non-negative scalar. Therefore, Ki+1

is itself a convex cone.

Given two functions α, β : [0, T ] → R, let

ΛT (α, β) =
1

2T

∫ T

0

(∫ τ

0
α(s)ds

)(∫ τ

0
β(s)ds

)

dτ.

We say that a sequence of smooth T -periodic func-
tions ψj : R → R, j ∈ N, is ΛT –orthonormal and

zero-mean if
∫ T
0 ψj(τ) = 0 for every j ∈ N and

ΛT (ψj , ψm) = δjm for j,m ∈ N, where δjm denotes
the Kronecker delta.

For instance, the sequence defined in (8), is ΛT -
orthonormal and zero-mean.

Proposition 4.2. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS and fix vq ∈ TQ, T > 0, n1, . . . , nk ∈ N,
and w = (w1, . . . , wk) ∈ L∞(I,Rk). For every ǫ > 0
denote by ξǫ : I → Q the solution of

∇ξ̇ǫ(t)ξ̇
ǫ(t) = Y (t, ξ̇ǫ(t))

+
k∑

a=1

1

ǫ
ψna

(
t

ǫ

)

wa(t)Ya(ξ
ǫ(t)),
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with initial condition ξ̇ǫ(0) = vq, where (ψj)j∈N is a
ΛT -orthonormal and zero-mean sequence. Let also
γ : I → Q be the solution of

∇γ̇(t)γ̇(t) = Y (t, γ̇(t))

−
k∑

a,b=1

δnanb
wa(t)wb(t)〈Ya : Yb〉(γ(t)), (10)

with initial condition γ̇(0) = vq. Then there exist
C, ǫ0 > 0 such that d(γ(t), ξǫ(t)) < Cǫ for every
t ∈ I and every ǫ ∈ (0, ǫ0).

Proof. The proof of this proposition follows from
Theorem 9.32 in [5] by considering the function
ua(t/ǫ, t) that appears there as ψna(t/ǫ)wa(t).

Remark 4.3. Theorem 3.3 follows directly from
Proposition 4.2 (and is obtained as such in [5]).
Therefore, some of the hypotheses of Theorem 3.3
can easily be relaxed: first of all the distribution
generated by Y need not be a subbundle of TQ.
Moreover, the hypothesis that Sym(1)(Y ) = TQ can
be replaced by the requirement that

∇γ̇ref (t)γ̇ref(t) − Y (t, γ̇ref(t)) ∈ Sym(1)(Y )γref (t)

for every t ∈ I.

Theorem 4.4. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Fix a reference trajectory γref : I → Q
of class C∞. If for every t ∈ I there exists l ∈ N

such that Kl(γref(t)) = Tγref (t)Q, then γref is track-
able. Therefore, if for every q ∈ Q there exists l ∈ N

such that Kl(q) = TqQ, then the control system Σ
is trackable.

Proof. First of all, notice that the last part of the
statement (the trackability of Σ) directly follows
from the first one (the trackability of γref), which
is proved below.

As the reference trajectory γref is defined on a
compact set and γref is continuous, then Imγref is a
closed compact set. By hypothesis, for every t ∈ I
there exists l ∈ N such that Kl(γref(t)) = Tγref (t)Q.
So there exist n+ 1 vector fields in Kl whose conic
combinations at γref(t) give the whole tangent space
Tγref (t)Q. The smoothness of these vector fields
guarantees that this is still true in an open neighbor-
hood Ut of γref(t). In this way we construct an open
cover of Imγref . As Imγref is compact, there exists a
finite open subcover of {Ut}t∈I given by Ut1 , . . . , Utr .
For each ti there exists a different li ∈ N such that
Kli(γref(t)) = Tγref (t)Q for every t ∈ γ−1

ref (Uti). Then
l = max{l1, . . . , lr} satisfies Kl(γref(t)) = Tγref (t)Q
for every t ∈ I.

Moreover, there exists a partition of unity subor-
dinated to the finite open subcover {Uti}i=1,...,r (see
[10]) that allows us to define a finite set of smooth
global vector fields Za in Kl such that

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t)) =

Nl∑

a=1

λa(t)Za(γref(t))

(11)
for t ∈ I, Nl ∈ N, where λa : I → [0,+∞) is of class
C∞.

We introduce for a curve on Q the notion of
having a regular parameterization on Ki. A curve
γ : I → Q admits a regular parameterization on
Ki if there exist Ni ∈ N, λ1, . . . , λNi

∈ C(I) and
Z1, . . . , ZNi

∈ Ki such that λa(t) ≥ 0 for every t ∈ I
and a ∈ {1, . . . , Ni} and

∇γ̇(t)γ̇(t) − Y (t, γ̇(t)) =

Ni∑

a=1

λa(t)Za(γ(t)).

Fix ǫ > 0 and let ξl = γref . Then ξl admits a
regular parameterization on Kl. We are going to
prove by induction that there exists a finite sequence
{ξ0, ξ1, . . . , ξl} of curves on Q such that each ξi sat-
isfies ξ̇i(0) = γ̇ref(0), admits a regular parameter-
ization on Ki and d(ξi(t), ξi+1(t)) < ǫ/l for every
i = 0, . . . , l − 1 and every t ∈ I. The induction
step claims that: for i = 0, . . . , l − 1 if there ex-
ists ξi+1 : I → Q admitting a regular parameteri-
zation on Ki+1, then there exists ξi : I → Q with
ξ̇i+1(0) = ξ̇i(0) admitting a regular parameteriza-
tion on Ki and satisfying d(ξi(t), ξi+1(t)) < ǫ/l for
every t ∈ I.

Let us prove the induction step for i. Let
Z1, . . . , ZNi+1 ∈ Ki+1 be the vector fields that de-
termine the regular parameterization of ξi+1. Here
we split the proof in two steps, considering first the
special case:

1. Za = Fa − Ga with Fa ∈ Ki and
Ga ∈ co {〈Z : Z〉 | Z ∈ L(Ki)} for every a =
1, . . . , Ni+1,

and then the general case

2. Za ∈ Ki − co {〈Z : Z〉 | Z ∈ L(Ki)}.

Let us study case 1: ξi+1 admits the parameteriza-
tion

∇ξ̇i+1(t)
ξ̇i+1(t) − Y (t, ξ̇i+1(t)) =

Ni+1∑

a=1

λa(t)(Fa −Ga)(ξi+1(t)). (12)
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Each Ga is given by

Na∑

b=1

αa,b〈Ga,b : Ga,b〉 where

Ga,b ∈ L(Ki) and αa,b ≥ 0. Then (12) becomes

∇ξ̇i+1(t)ξ̇i+1(t) − Y (t, ξ̇i+1(t)) =

Ni+1∑

a=1

(

λa(t)

Fa(ξi+1(t)) −
Na∑

b=1

λa(t)αa,b〈Ga,b : Ga,b〉(ξi+1(t))
)

.

(13)
The dynamics described in (13) are of the same
form as in (10) as long as we take Y =
{Ga,b}a=1,...,Ni+1;b=1,...,Na

, and δnabna′b′
= δaa′δbb′ ,

wa,b =
√
λaαa,b.

Then by Proposition 4.2 the solutions to (13) can
be approximated by solutions to

∇ξ̇
ǫi
i (t)ξ̇

ǫi

i (t) − Y (t, ξ̇ǫi

i (t)) =

Ni+1∑

a=1

(

λa(t)Fa(ξ
ǫi

i (t))

+

Na∑

b=1

1

ǫi
ψnab

(
t

ǫi

)

wa,b(t)Ga,b(ξ
ǫi

i (t))
)

(14)
being (a, b) 7→ nab any injective map from N × N

to N and (ψj)j∈N a ΛT -orthonormal and zero-mean
sequence. More precisely, there exist Ci, ǫi,0 > 0
such that d(ξǫi

i (t), ξi+1(t)) < Ciǫi for every t ∈ I,
ǫi ∈ (0, ǫi,0). In particular, we can choose ǫi such
that Ciǫi < ǫ/l.

The finite linear combination of elements in
Ki(ξ

ǫi

i (t)) for every t ∈ I on the right–hand
side of (14) does not necessarily satisfy the non-
negativeness of the coefficients. However, Ga,b ∈
L(Ki), so −Ga,b ∈ L(Ki). Then we can rewrite the
coefficients of Ga,b as follows:

ψnab

(
t
ǫi

)

wa,b(t)Ga,b = max
{

0, ψnab

(
t
ǫi

)}

wa,b(t)Ga,b + max
{

0,−ψnab

(
t
ǫi

)}

wa,b(t)(−Ga,b).

Thus all the coefficients are continuous and non-
negative. We can conclude that ξǫi

i admits a regular
parameterization on Ki. We define then ξi = ξǫi

i

and the induction step has been proved for i in the
case 1.

Let us turn to case 2. We recall that the clo-
sure appearing in (9) is considered with respect to
the topology of the uniform convergence on compact
sets. Then there exist two sequences F j

a ∈ Ki and
Gj

a ∈ co {〈Z : Z〉 | Z ∈ L(Ki)} such that F j
a − Gj

a

converges uniformly to Za on a neighborhood of the
curve ξi+1. For every j ∈ N let ξj

i+1 : I → Q be the

solution to

∇
ξ̇j
i+1(t)

ξ̇j
i+1(t) − Y (t, ξ̇j

i+1(t))

=

Ni+1∑

a=1

λa(t)(F
j
a −Gj

a)(ξ
j
i+1(t))

(15)

satisfying ξ̇j
i+1(0) = ξ̇i+1(0). Then, thanks to

Lemma 2.5, ξj
i+1 converges to ξi+1 uniformly on I

as j tends to infinity. Take ̄ large enough such that

d(ξ ̄
i+1(t), ξi+1(t)) <

ǫ

2l

for every t ∈ I. We can apply to ξ ̄
i+1 the same

reasoning as in the first case. Then solutions to (15)
are approximated by solutions to (14) replacing ξǫi

i

by ξ ̄,ǫi

i , Fa by F ̄
a and Ga,b by G̄

a,b. In other words,

there exist Ci, ǫi,0 > 0 such that d(ξ ̄,ǫi

i (t), ξ ̄
i+1(t)) <

Ciǫi for every t ∈ I, ǫi ∈ (0, ǫi,0). Again, ǫi can be
chosen in such a way that Ciǫi <

ǫ
2l and we define

ξi = ξ ̄,ǫi

i . Thus,

d(ξi(t), ξi+1(t)) ≤ d(ξ ̄,ǫi

i (t), ξ ̄
i+1(t))

+ d(ξ ̄
i+1(t), ξi+1(t)) <

ǫ
l

and ξi admits a regular parameterization on Ki.
Hence, the induction step has been proved for i.

After the induction, we end up with a curve ξ0 on
Q admitting a regular parameterization on K0 and
such that

d(ξ0(t), γref(t)) ≤
l−1∑

i=0

d(ξi(t), ξi+1(t)) < l
ǫ

l
= ǫ

for every t ∈ I. (Recall that ξl = γref .) Moreover,
by compactness of I,

ǭ = ǫ− max
t∈I

d(ξ0(t), γref(t)) > 0.

As K0 = spanC∞(Q)Y , we conclude from Lemma 2.5
that there exist θa,j ∈ C∞(Q), a ∈ {1, . . . , N0}, j ∈
{1, . . . , k}, such that the solution to

∇ξ̇(t)ξ̇(t) − Y (t, ξ̇(t))

=

N0∑

a=1

k∑

j=1

λa(t)θa,j(ξ(t))Yj(ξ(t))

with initial condition ξ̇(0) = ξ̇0(0) = γ̇ref(0) sat-
isfies d(ξ(t), ξ0(t)) < ǭ for every t ∈ I. Thus,
d(ξ(t), γref(t)) < ǫ for every t ∈ I.

Since ξ is an admissible trajectory for Σ, we con-
clude that γref is trackable for Σ with the tracking
control law given by uj(t) =

∑N0
a=1 λa(t)θa,j(ξ(t)),

j = 1, . . . , k.
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Corollary 4.5. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Define the following set of vector fields on
Q for l ∈ N:

H0 = spanC∞(Q)Y ,

Hl = Hl−1 − co {〈Z : Z〉 | Z ∈ L(Hl−1)} .
(16)

Fix a smooth reference trajectory γref : I → Q. If for
every t ∈ I there exists l ∈ N such that Hl(γref(t)) =
Tγref (t)Q, then γref is trackable. Therefore, if for
every q ∈ Q there exists l ∈ N such that Hl(q) =
TqQ, then the control system Σ is trackable.

Proof. Let us prove by induction that

Hi ⊆ Ki i ∈ N0.

It is trivial that H0 ⊆ K0 (see (9) and (16)).

The claim now is that if Hi ⊆ Ki, then
Hi+1 ⊆ Ki+1. By definition, an element in
Hi+1 is of the form F − G with F ∈ Hi and
G ∈ co {〈Z : Z〉 | Z ∈ L(Hi)}. Since Hi ⊆ Ki,
then F ∈ Ki and L(Hi) ⊆ L(Ki). So G ∈
co {〈Z : Z〉 | Z ∈ L(Ki)}. We can conclude that
Hi+1 ⊆ Ki+1.

By hypotheses, for every t ∈ I there exists l ∈
N such that Hl(γref(t)) = Tγref (t)Q. As Hl ⊆ Kl,
we have Kl(γref(t)) = Tγref (t)Q. The hypotheses of
Theorem 4.4 are satisfied, so the result holds.

Remark 4.6. If one follows the proof of Theo-
rem 4.4 under the stronger hypotheses of Corol-
lary 4.5, then each step of the induction procedure
is of the type considered in case 1. This will be im-
portant in the next section, where we will turn such
procedure in an algorithmic construction.

Corollary 4.7. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Define the following sets of vector fields for
l ∈ N,

Z0 =Y ,

Zl =Zl−1 ∪ {〈Za : Zb〉 | Za, Zb ∈ Zl−1}. (17)

If there exists l ∈ N such that spanRZl(q) = TqQ for
all q ∈ Q and for each i ∈ {0, . . . , l − 1}, for each
Z ∈ Zi, 〈Z : Z〉 ∈ spanC∞(Q)Zi, then the system Σ
is trackable.

Proof. Let us prove by induction that

spanC∞(Q)Zi ⊆ Ki, i ∈ N0.

Once this inclusion is proved Theorem 4.4 guaran-
tees the trackability of the system.

It is trivial by definition that spanC∞(Q)Z0 ⊆ K0.

Assume that spanC∞(Q)Zi ⊆ Ki and let us prove
the inclusion for i. Since Ki+1 is a convex cone
by Proposition 4.1 and spanC∞(Q)Zi ⊂ Ki+1, it is
enough to prove that α〈Za : Zb〉 belongs to Ki+1

for Za, Zb ∈ Zi and α ∈ C∞(Q). Thanks to (4)
and to the hypotheses on the symmetric products
of elements of Zi,

〈αZa : Zb〉 ∈ α〈Za : Zb〉 + spanC∞(Q)Zi,

〈αZa : αZa〉, 〈Zb : Zb〉 ∈ spanC∞(Q)Zi.

Hence the symmetric product

〈αZa − Zb : αZa − Zb〉

belongs to −2α〈Za : Zb〉 + spanC∞(Q)Zi. Thus,

α〈Za : Zb〉 belongs to spanC∞(Q)Zi − 1
2 〈αZa −

Zb : αZa − Zb〉, which is contained in Ki+1.

Remark 4.8. The proof above actually shows
that, under the assumptions of Corollary 4.7,
spanC∞(Q)Zi ⊆ Hi. It is easy to check that, in
addition, Hi = spanC∞(Q)Zi.

Remark 4.9. The main interest of Corollary 4.7
is that its hypotheses are formulated in terms of a
finite set of vector fields, in contrast with the infinite
family of vector fields considered in Theorem 4.4 and
Corollary 4.5.

4.1 Examples

Let us consider some examples of mechanical sys-
tems for which the above results guarantee the
trackability, but Theorem 3.3 could not guarantee
it.

4.1.1 Hovercraft

Consider an elliptic hovercraft moving on the sur-
face of a fluid, identified with R

2. The configura-
tion manifold is Q = S1 ×R

2 with local coordinates
(θ, x1, x2) where θ is the attitude and (x1, x2) is the
position of the center of symmetry of the hovercraft.
Let ω and (v1, v2) be the standard angular and lin-
ear velocity, respectively, of the hovercraft with re-
spect to a body–fixed coordinate frame attached at
the center of symmetry of the body and whose axes
coincide with those of the ellipse. Assume that the
center of mass according to that body–fixed coordi-
nate frame is on the horizontal axis and is different
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from the center of symmetry. Then the added iner-
tia matrix is the following 3 × 3 symmetric matrix:

M =





a 0 c

0 e 0
c 0 e



 ,

with a, c, e > 0 (see [9, 13] for more details). Denote
the corresponding impulse vector by (Π, P1, P2) that
is related to the velocities through the inertia matrix
M as follows





Π
P1

P2



 = M





ω
v1
v2



 .

The dynamics of the systems governed by the Kirch-
hoff equations in dimension 2 with two controls are





θ̇
ẋ
ẏ



 =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ









ω
x
y



 ,





ω̇
v̇1
v̇2



 = M−1

(
P · v⊥
ωP⊥

)

+





u1

0
u2





where w⊥ = (−w2, w1) denotes the rotation by π/2
of a vector w = (w1, w2) in R

2. The control vector
fields are Y1 = (1, 0, 0) and Y2 = (0, 0, 1). They cor-
respond to the external torque, usually called yaw,
and the external force, usually called surge, applied
to the body. Let Y = {Y1, Y2}.

The drift term Z appearing in (3) is, for the
mechaincal system considered here, the vector field
corresponding to the uncontrolled Kirchhoff’s equa-
tions (notice that Y = 0). Using (4) we can compute
〈Y1 : Y1〉 = (0, 2c/e, 0). The sufficient conditions for
tracking given by Theorem 3.3 are not satisfied be-
cause 〈Y1 : Y1〉 /∈ spanC∞(Q){Y1, Y2}.

However, due to Corollary 4.5 tracking is possible
because

H1(q) = TqQ ∀ q ∈ Q.

Indeed, for w1, w2 ∈ C∞(Q),

〈w1Y1 + w2Y2 : w1Y1 + w2Y2〉 =

1

e
(0, 2cw2

1 + 2ew1w2, 0)+

∈ spanC∞(Q)Y

︷ ︸︸ ︷

2

2∑

i,j=1

wiYi(wj)Yj ,

where Yi(wj) denotes the Lie derivative of wj with
respect to Yi. In particular, taking as w1 any
nonzero constant function, we get

spanC∞(Q)(0, 1, 0) ⊂ H0−co {〈Z : Z〉 | Z ∈ L(H0)} .

So we conclude that H1(q) = TqQ for all q ∈ Q.

4.1.2 Submarine

Let us apply Corollary 4.7 to determine the track-
ability of a particular control system describing the
motion of a submarine. The system corresponds
to the case γ = 0 considered in [6]. It models a
neutrally buoyant ellipsoid vehicle immersed in a
infinite volume fluid that is inviscid, incompressible
and whose motion is irrotational. The dynamics are
obtained through Kirchhoff equations [9] and have
a particularly simple form due to some symmetry
assumption on the distribution of mass (see [6] for
details and also [14] for general overview of control
motion in a potential fluid).

Consider the coordinates (ω, v) for the angular
and linear velocity of the ellipsoid with respect to
a body–fixed coordinate frame. Then the impulse
(Π, P ) of the system is given by

(
Π
P

)

= M
(
ω
v

)

where, under the symmetry assumptions mentioned
above,

M = diag(J1, J1, J3,M1,M2,M3)

with M1 6= M2, where diag(J1, J1, J3) is the usual
inertia matrix andM1,M2,M3 take into account the
mass of the submarine and the added masses due to
the action of the fluid.

The configuration manifold Q for this problem
is the Special Euclidean group or the group of
rigid motions SE(3), which is homeomorphic to
R

3 × SO(3). Let (r,A) ∈ SE(3) be the posi-
tion and the attitude of the ellipsoid. Denote by
S : R

3 → so(3) the linear bijection between R
3 and

the linear algebra so(3) of SO(3) such that

S(x1, x2, x3) =





0 −x3 x2

x3 0 −x1

−x2 x1 0





The dynamics of the controlled system are given by

dr

dt
= Av,

dA

dt
= AS(ω), (18)

and

dΠ

dt
= Π×ω+P×v+





u1

u2

0



 ,
dP

dt
= P×ω+





0
0
u3



 .

(19)
The control vector fields are Y1 = ∂/∂Π1, Y2 =
∂/∂Π2 and Y3 = ∂/∂P3. They correspond to a lin-
ear acceleration along one of the three axes of the
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submarine and to two angular accelerations around
the other two axes.

Due to Theorem 1.2 in [6], we know that system
(18)–(19) is trackable.

This case cannot be recovered from Theorem 3.3
because

Sym(1)(Y ) 6= TQ.

Indeed, it can be computed that

〈Y1 : Y2〉 = 0, 〈Y2 : Y3〉 =
M3

M1

∂

∂P1
,

〈Y1 : Y3〉 = −M3

M2

∂

∂P2
.

However, this case is covered by Corollary 4.7
with l = 2, because

0 = 〈Y1 : Y1〉 = 〈Y2 : Y2〉 = 〈Y3 : Y3〉 =

= 〈〈Y2 : Y3〉 : 〈Y2 : Y3〉〉 = 〈〈Y1 : Y3〉 : 〈Y1 : Y3〉〉,

〈〈Y2 : Y3〉 : 〈Y1 : Y3〉〉 = −M
2
3

J3

(
1

M1
− 1

M2

)
∂

∂Π3
.

Thus, 〈Z : Z〉 = 0 for every Z ∈
Z2 and TqQ = spanRZ2(q) =
spanR{Y1(q), Y2(q), Y3(q), 〈Y2 : Y3〉(q), 〈Y1 : Y3〉(q),
〈〈Y2 : Y3〉 : 〈Y1 : Y3〉〉(q)} for all q ∈ Q.

The model studied in [6] can therefore be handled
with the techniques proposed here. In particular,
we can obtain for it one–parameter tracking control
laws, as explained in the next section.

5 One–parameter tracking con-

trol laws

The aim of this section is to provide an algorith-
mic implementation of the results obtained in the
previous one about the existence of controls yield-
ing tracking. This will be done separately under the
hypotheses of Corollaries 4.5 and 4.7, using two dif-
ferent algorithms. The first one is based on the pro-
cedure proposed in the proof of Theorem 4.4, while
the second one exploits the construction proposed
in [5] and recalled in Theorem 3.3.

In both cases we will consider a reference trajec-
tory γref : I → Q, which is assumed to be of class
C∞.

A simple, albeit crucial, fact that will be used
several times in the following sections is stated in
the lemma below.

Lemma 5.1. If f : R × I → R, (τ, s) 7→ f(τ, s), is
smooth on R × I and T -periodic with respect to τ ,

then

∫ t

0
f(s/ǫ̂, s)ds =

∫ t

0
f̄(s)ds +O(ǫ̂‖f‖∞)

+ O(ǫ̂‖∂2f‖∞)

for ǫ̂ close to zero, where f̄(s) = (1/T )
∫ T
0 f(τ, s)dτ

and ∂2 denotes the partial derivative with respect to
the second variable.

5.1 Case H

As noticed in Remark 4.6, the hypotheses of Corol-
lary 4.5 guarantee that every step of the induction
argument proposed in the proof of Theorem 4.4 falls
in the framework of case 1 (see page 6). Hence,
starting from a parameterization

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t)) =

Nl∑

a=1

λa(t)Z
l
a(γref(t))

of γref : I → Q, with Z l
a ∈ Hl and λa smooth and

non-negative on I for every a = 1, . . . , Nl, we can
construct algorithmically a l-parameter family of
admissible trajectories ξǫ1,...,ǫl of Σ with ǫ1, . . . , ǫl >
0 such that ξl = γref , the uniform limit

ξ
ǫ1,...,ǫl−i

i = lim
ǫl→0

lim
ǫl−1→0

· · · lim
ǫl−i+1→0

ξǫ1,...,ǫl (20)

exists for every i = 1, . . . , l and every ǫ1, . . . , ǫl−i > 0
and satisfies

∇
ξ̇

ǫ1,...,ǫl−i
i (t)

ξ̇
ǫ1,...,ǫl−i

i (t) − Y (t, ξ̇
ǫ1,...,ǫl−i

i (t))

∈ Hi(ξ
ǫ1,...,ǫl−i

i (t)). (21)

We also write ξǫ1,...,ǫl

0 for ξǫ1,...,ǫl. It is important to
notice that the order of the limits in (20) cannot in
general be reversed.

Let us recall to which extent the construction is
algorithmic. Fix any injective map j : N × N → N.
By backward recursion on i, if ξ

ǫ1,...,ǫl−i

i satisfies

∇
ξ̇

ǫ1,...,ǫl−i
i (t)

ξ̇
ǫ1,...,ǫl−i

i (t) − Y (t, ξ̇
ǫ1,...,ǫl−i

i (t))

=

Ni∑

a=1

λ
ǫ1,...,ǫl−i
a (t)Zi

a(ξ
ǫ1,...,ǫl−i

i (t)) (22)

with λ
ǫ1,...,ǫl−i
a ∈ C(I, [0,+∞)) and Zi

a ∈ Hi, then
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ξ
ǫ1,...,ǫl−i+1

i−1 is defined as the solution to

∇
ξ̇

ǫ1,...,ǫl−i+1
i−1 (t)

ξ̇
ǫ1,...,ǫl−i+1

i−1 (t)

− Y (t, ξ̇
ǫ1,...,ǫl−i+1

i−1 (t))

=

Ni∑

a=1

(

λ
ǫ1,...,ǫl−i
a (t)F i−1

a (ξ
ǫ1,...,ǫl−i+1

i−1 (t))+

1

ǫl−i+1

N̂ i
a∑

b=1

ψj(a,b)

(
t

ǫl−i+1

)√

λ
ǫ1,...,ǫl−i
a (t)αi−1

a,b

Gi−1
a,b (ξ

ǫ1,...,ǫl−i+1

i−1 (t))
)

(23)

with ξ̇
ǫ1,...,ǫl−i+1

i−1 (0) = γ̇ref(0), where

Zi
a = F i−1

a −
N̂ i

a∑

b=1

αi−1
a,b 〈Gi−1

a,b : Gi−1
a,b 〉

and F i−1
a ∈ Hi−1, G

i−1
a,b ∈ L(Hi−1), α

i−1
a,b ≥ 0.

Recall that (ψj)j∈N is a ΛT -orthonormal and zero-
mean sequence, for some T > 0. Each λ

ǫ1,...,ǫl−i+1
a (·)

is either equal to some λ
ǫ1,...,ǫl−i

ã (·) or is of the form

√

λ
ǫ1,...,ǫl−i

ã (·)αi−1
ã,b

ǫl−i+1
max

{

υψj(ã,b)

( ·
ǫl−i+1

)

, 0

}

with υ equal to 1 or −1.

We choose (ψj)j∈N as follows: we require ψ1 to be
positive in (0, T/2) and to annihilate, together with
all its derivatives, at 0 and T/2. We also require it
to satisfy

ψ1

(
T

2
− t

)

= ψ1(t), t ∈
[

0,
T

2

]

,

and we extend it by

ψ1(t) = −ψ1

(

t− T

2

)

, t ∈
[
T

2
, T

]

,

and by T -periodicity over R. Finally we normalize
ψ1 in such a way that ΛT (ψ1, ψ1) = 1. Then we
define ψj by

ψj(t) = 2jψ1(2
jt).

Such choice of (ψj)j∈N is motivated by the prop-
erty that, for every choice of j ∈ N, l ∈ N0 and
υ ∈ {−1, 1}, the function t 7→ 2l

√

max {υψj (t) , 0} is
smooth. In particular, by backward recursion, each
λǫ1,...,ǫi

a is smooth and is the product of functions of

the type 2l

√

1
ǫh

max
{

υψj

(
·

ǫh

)

, 0
}

and of 2m√
λb for

some m ∈ N0 and some b ∈ {1, . . . , Nl}.

An important consequence of this factorization,
which will be exploited in the proof of Theorem 5.2,
is that the derivatives of

√

λǫ1,...,ǫi
a with respect to

time can be bounded by a finite constant depending
explicitly on ǫ1, . . . , ǫl−1.

The smoothness of λǫ1,...,ǫi
a , moreover, allows us

to consider λǫ1,...,ǫi
a Z l−i

a as a smooth vector field
on the extended manifold R × Q and, similarly,
λ

ǫ1,...,ǫl−i
a (Zi

a)
V as a smooth vector field on the ex-

tended manifold R × TQ.

Summing up, the trajectories of the l-parameter
family ξǫ1,...,ǫl

0 = ξǫ1,...,ǫl are driven by a l-parameter
family of control laws uǫ1,...,ǫl ∈ C∞(I,Rk) depend-
ing smoothly on ǫ1, . . . , ǫl. The construction of The-
orem 4.4 can be summarized as follows: given ǫ > 0,
if

0 < ǫl ≪ ǫl−1 ≪ · · · ≪ ǫ1 ≪ 1 (24)

then d(ξǫ1,...,ǫl(t), γref(t)) < ǫ for every t ∈ I. Our
aim is here to quantify the relations in (24). More
precisely, we introduce l − 1 functions η2, . . . , ηl :
(0,+∞) → (0,+∞) and we look for asymptotic con-
ditions on their convergence to zero at zero such that

lim
ǫ→0

d(ξǫ,η2(ǫ),η3◦η2(ǫ),...,ηl◦···◦η2(ǫ)(t), γref(t)) = 0

(25)
uniformly with respect to t ∈ I. Let η̂i = ηi ◦
· · · ◦ η2 for i = 2, . . . , l and define η̂1 as the iden-
tity on (0,+∞). We say that ǫ 7→ uη̂1(ǫ),...,η̂l(ǫ) is a
one–parameter tracking control law for γref if (25)
holds true.

Theorem 5.2. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Let Hi, i ∈ N0, be defined as in (16). Fix
a reference trajectory γref ∈ C∞(I,Q) and assume
that there exists l ∈ N such that

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t)) ∈ Hl(γref(t))

for every t ∈ I. Construct ξǫ1,...,ǫl, uǫ1,...,ǫl and
η̂i as above. If ηi : (0,+∞) → (0,+∞) satisfies
lim supǫ→0 ηi(ǫ)/ǫ

3 < ∞ for every i = 2, . . . , l, then
ǫ 7→ uη̂1(ǫ),...,η̂l(ǫ) is a one–parameter tracking control
law for γref .

Proof. The first step of the proof consists in esti-
mating the order with respect to ǫ of the L∞-norm
of the time-dependent parameters appearing in the
parameterization (22). We write ǫi for η̂i(ǫ). Denot-
ing by C any constant not depending on the ǫj, it is
easy to check by backward induction on i = 0, . . . , l
that

‖λǫ1,...,ǫi
a ‖∞ ≤ C

2i−1√ǫ1 2i−2√ǫ2 · · ·
√
ǫi−1ǫi

.
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Exploiting the factorization of λǫ1,...,ǫi
a described

above we get, in addition,
∥
∥
∥
∥

dm

dtm

√

λǫ1,...,ǫi
a

∥
∥
∥
∥
∞

≤ C

2i√ǫ1 2i−1√ǫ2 · · · 4
√
ǫi−1ǫi

m+ 1
2

for m ∈ N0.

Consider the extended system on R × TQ asso-
ciated with (3) where the time is the new variable.
In the following computations we write, using the
notation introduced in (23),

Xe = (1, Z + Y V ),

Φi
a = (0, (F i

a)
V ),

Γi
a,b = (0, (Gi

a,b)
V ),

all seen as vector fields on R × TQ. We also define
γe
ref(0) = (0, γ̇ref(0)) and, given a smooth function
λ : I → R, we write λV to denote a smooth function
on R× TQ such that λV (t, v) = λ(t) for every t ∈ I
and every v ∈ TQ. In particular, we define

θi
a,b =

(√

λǫ1,...,ǫi
a αl−i−1

a,b

)V

,

θ̇i
a,b =

(
d

dt

√

λǫ1,...,ǫi
a αl−i−1

a,b

)V

.

Then, applying (5) and (6),

(t, ξ̇ǫ1,...,ǫl

0 (t)) =
−→exp

∫ t
0 (Xe +

∑N0
a=1 λ

ǫ1,...,ǫl
a (s)(0, (Z0

a)V ))ds γe
ref(0)

= −→exp
∫ t
0

(

Xe +
∑N1

a=1 λ
ǫ1,...,ǫl−1
a (s)Φ0

a

+ 1
ǫl

∑N1
a=1

∑N̂1
a

b=1 ψj(a,b)(
s
ǫl

)
√

λ
ǫ1,...,ǫl−1
a (s)α0

a,b

Γ0
a,b

)

ds γe
ref(0)

= −→exp
∫ t
0

1
ǫl

∑N1
a=1

∑N̂1
a

b=1 ψj(a,b)(
s
ǫl

)θl−1
a,b Γ0

a,bds ◦
−→exp

∫ t
0

(

Xe +
∑N1

a=1 λ
ǫ1,...,ǫl−1
a (s)Φ0

a

+
∑N1

a=1

∑N̂1
a

b=1

∫ s
0

1
ǫl
ψj(a,b)(

s0
ǫl

)ds0(θ
l−1
a,b [Γ0

a,b,X
e]

−θ̇l−1
a,b Γ0

a,b) −
∑N1

a,a′=1

∑N̂1
a

b=1

∑N̂1
a′

b′=1

∫ s
0

1
ǫl
ψj(a,b)(

s1
ǫl

)
∫ s1

0
1
ǫl
ψj(a′,b′)(

s0
ǫl

)ds0ds1θ
l−1
a,b θ

l−1
a′,b′

(0, 〈G0
a,b : G0

a′,b′〉V )
)

dsγe
ref(0).

From now on, let us denote by V any vertical flow,
i.e., any flow on R × TQ preserving the base point
on Q.

Notice that, by construction,

∑N1
a=1 λ

ǫ1,...,ǫl−1
a (s)Φ0

a+

−∑N1
a,a′=1

∑N̂1
a

b=1

∑N̂1
a′

b′=1 ΛT (ψj(a,b), ψj(a′,b′))
√

λ
ǫ1,...,ǫl−1
a (s)λ

ǫ1,...,ǫl−1
a (s)α0

a,bα
0
a′,b′

(0, 〈G0
a,b : G0

a′,b′〉V ) =
∑N1

a=1 λ
ǫ1,...,ǫl
a (s)(0, (Z1

a)V ).

Then,

(t, ξ̇ǫ1,...,ǫl

0 (t)) =

V ◦ −→exp
∫ t
0

(

Xe +
∑N1

a=1 λ
ǫ1,...,ǫl−1
a (s)(0, (Z1

a)V )

+
∑N1

a=1

∑N̂1
a

b=1

∫ s
0

1
ǫl
ψj(a,b)(

s0
ǫl

)ds0(θ
l−1
a,b [Γ0

a,b,X
e]

−θ̇l−1
a,b Γ0

a,b)

+
∑N1

a,a′=1

∑N̂1
a

b=1

∑N̂1
a′

b′=1(ΛT (ψj(a,b), ψj(a′,b′))

−
∫ s
0

1
ǫl
ψj(a,b)(

s1
ǫl

)
∫ s1

0
1
ǫl
ψj(a′,b′)(

s0
ǫl

)ds0ds1)

(0, 〈G0
a,b : G0

a′,b′〉V )θl−1
a,b θ

l−1
a′,b′

)

dsγe
ref(0).

Applying iteratively the same computation as
above, one ends up with

(t, ξ̇ǫ1,...,ǫl

0 (t)) =

V ◦ −→exp
∫ t
0

(
Xe + λa(s)(0, (Z

l
a)

V ) + T (s)
)
ds γe

ref(0),

where T (s) is a sum of terms of the form ζ(s)V
where V is a vector field on R× TQ independent of
the ǫj , while ζ : I → R is smooth, depends on the
ǫj and is of one of the following four types:

ζ1(s) =
∫ s
0

1
ǫi
ψj(a,b)(

s0
ǫi

)ds0

√

λ
ǫ1,...,ǫi−1
a (s)αl−i

a,b ,

ζ2(s) = −
∫ s
0

1
ǫi
ψj(a,b)(

s0
ǫi

)ds0
d
ds

√

λ
ǫ1,...,ǫi−1
a (s)αl−i

a,b ,

ζ3(s) = 1
1+δbc

[

2(ΛT (ψj(a,b), ψj(a′,b′)))

−
(∫ s

0
1
ǫi
ψj(a,b)(

s0
ǫi

)ds0

)(∫ s
0

1
ǫi
ψj(a′,b′)(

s0
ǫi

)ds0

) ]

√

λ
ǫ1,...,ǫi−1
a (s)λ

ǫ1,...,ǫi−1

a′ (s)αl−i
a,b α

l−i
a′,b′

for i = 1, . . . , l, or

ζ4(s) = −
(∫ s

0
1
ǫj
ψj(a,b)(

s0
ǫj

)ds0

)

(∫ s
0

1
ǫi
ψj(a′,b′)(

s0
ǫi

)ds0

)

√

λ
ǫ1,...,ǫj−1
a (s)λ

ǫ1,...,ǫi−1

a′ (s)αl−j
a,b α

l−i
a′,b′

for i > j, i, j ∈ {1, . . . , l}.
According to Lemma 2.4, the theorem is proved

if we show that, for every ζ of one of the four types
introduced above,

∫ t
0 ζ(s)ds converges to zero uni-

formly with respect to t ∈ I as ǫ goes to zero.

This can be done by applying Lemma 5.1. Taking
for instance

f(τ, s) =

∫ τ

0
ψj(a,b)(s0)ds0

√

λ
ǫ1,...,ǫi−1
a (s)αl−i

a,b ,

and ǫ̂ = ǫi leads to
∫ t

0
ζ1(s)ds ≤ C

ǫi

2i−1√ǫ1 2i−2√ǫ2 · · · 4
√
ǫi−2ǫ

3
2
i−1

.

Similarly,
∫ t

0
ζ2(s)ds ≤ C

ǫi

2i−1√ǫ1 2i−2√ǫ2 · · · 4
√
ǫi−2ǫ

5
2
i−1

.
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Taking

f(τ, s) =
(∫ τ

0 ψj(a,b)(s0)ds0
) (∫ τ

0 ψj(a′,b′)(s0)ds0
)

√

λ
ǫ1,...,ǫi−1
a (s)λ

ǫ1,...,ǫi−1

a′ (s)αl−i
a,b α

l−i
a′,b′

we obtain
∫ t

0
ζ3(s)ds ≤ C

ǫi
2i−2√ǫ1 2i−3√ǫ2 · · ·

√
ǫi−2ǫ2i−1

.

Finally, with

f(τ, s) =
(∫ s/ǫj

0 ψj(a,b)(s0)ds0

) (∫ τ
0 ψj(a′,b′)(s0)ds0

)

√

λ
ǫ1,...,ǫj−1
a (s)λ

ǫ1,...,ǫi−1

a′ (s)αl−j
a,b α

l−i
a′,b′

we get

∫ t
0 ζ4(s)ds ≤ C ǫi

2j−1√
ǫ1 2j−2√

ǫ2··· 4
√

ǫj−1
√

ǫj−1
1

2i−1√
ǫ1 2i−2√

ǫ2··· 4
√

ǫi−2ǫ
3
2
i−1

.

Notice that the upper bound for
∫ t
0 ζ2(s)ds is the one

growing faster as ǫ goes to zero. Indeed, in order to
compare it with the one for

∫ t
0 ζ3(s)ds it suffices to

notice that

2i−1√
ǫ1 2i−2√

ǫ2··· 4
√

ǫi−2ǫ
5
2
i−1

2i−2√
ǫ1 2i−3√

ǫ2···
√

ǫi−2ǫ2i−1

=

√
ǫi−1

ǫi−2

4

√
ǫi−2

ǫi−3
· · · 2i−2

√
ǫ2
ǫ1

2i−1√ǫ1

converges to zero as ǫ goes to zero.

Hence, for each ζ as above, there exists i = 1, . . . , l
such that

∫ t

0
ζ(s)ds ≤ C

ǫi

2i−1√ǫ1 2i−2√ǫ2 · · · 4
√
ǫi−2ǫ

5
2
i−1

and we are left to notice that

ǫi

2i−1√
ǫ1 2i−2√

ǫ2··· 4
√

ǫi−2ǫ
5
2
i−1

=

ǫi

ǫ3i−1

√
ǫi−1

ǫi−2

4

√
ǫi−2

ǫi−3
· · · 2i−2

√
ǫ2
ǫ1

2i−1√ǫ1

tends to zero as ǫ goes to zero.

Remark 5.3. The hypothesis
lim supǫ→0 ηi(ǫ)/ǫ

3 < ∞ has been chosen, in
the statement of Theorem 5.2, because of its sim-
plicity. However, we can weaken it by requiring that

lim supǫ→0 ηi(ǫ)/ǫ
5
2
+a <∞ with a =

√
5

2 − 1 ≃ 0.12.
Indeed, with this choice of a,

ǫa
j

2j√
ǫ1 2j−1√

ǫ2··· 4
√

ǫj−1

=

(

ǫj

ǫ
5
2+a

j−1

)a

(
ǫa
j−1

2j−1√
ǫ1 2j−2√

ǫ2··· 4
√

ǫj−2

) 1
2

,

so that

ǫi

2i−1√
ǫ1 2i−2√

ǫ2··· 4
√

ǫi−2ǫ
5
2
i−1

=

ǫi

ǫ
5
2 +a

i−1

(

ǫi−1

ǫ
5
2+a

i−2

)a(

ǫi−2

ǫ
5
2+a

i−3

)a
2

· · ·
(

ǫ2

ǫ
5
2+a

1

) a

2i−3

ǫ
a

2i−2

1 .

Hence, each
∫ t
0 ζ(s)ds goes to zero uniformly with

respect to t ∈ I as ǫ tends to zero.

5.2 Case Z

Analogously to Section 5.1, the aim is to provide an
algorithmic implementation of the results obtained
in Section 4 about the existence of controls yield-
ing tracking but this time under the hypotheses of
Corollary 4.7. Instead of adopting the algorithmic
scheme on which the proof of Theorem 4.4 is based,
as done in Section 5.1, we rely here on the itera-
tion of the scheme proposed in [5] and recalled in
Theorem 3.3 (see also Remark 4.3). The advan-
tage is that, under the more restrictive hypotheses
of Corollary 4.7, we can base the iteration scheme
on the ΛT -orthonormal and zero-mean sequence de-
fined in (8) using trigonometric functions, which is
more convenient for numerical implementation than
the sequence (ψj)j∈N constructed in the previous
section.

We start from a parameterization

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t)) =

Nl∑

a=1

λa(t)Z
l
a(γref(t))

(26)
of γref : I → Q, with Z l

a ∈ Zl and λa smooth on
I for every a = 1, . . . , Nl. (For the definition of
Zl, see (17).) As in Section 5.1, we can construct
algorithmically a l-parameter family of admissible
trajectories ξǫ1,...,ǫl of Σ with ǫ1, . . . , ǫl > 0 such that
ξl = γref , the uniform limit in (20) exists for every
i = 1, . . . , l and every ǫ1, . . . , ǫl−i > 0, and, instead
of (21), it satisfies

∇
ξ̇

ǫ1,...,ǫl−i
i (t)

ξ̇
ǫ1,...,ǫl−i

i (t) − Y (t, ξ̇
ǫ1,...,ǫl−i

i (t))

∈ spanR(Zi(ξ
ǫ1,...,ǫl−i

i (t))).

The algorithm works by applying, at each step,
the construction of Theorem 3.3 with Zi as Y (see
Remark 4.3). Then by backward recursion on i, the
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solutions to

∇
ξ̇

ǫ1,...,ǫl−i
i (t)

ξ̇
ǫ1,...,ǫl−i

i (t) − Y (t, ξ̇
ǫ1,...,ǫl−i

i (t))

=

Ni∑

a=1

λ
ǫ1,...,ǫl−i
a (t)Zi−1

a (ξ
ǫ1,...,ǫl−i

i (t))

+

Ni∑

b,c=1,b<c

λ
ǫ1,...,ǫl−i

b,c (t)〈Zi−1
b : Zi−1

c 〉(ξǫ1,...,ǫl−i

i (t))

for Zi−1
a , Zi−1

b , Zi−1
c ∈ Zi−1 are trackable by solu-

tions to

∇
ξ̇

ǫ1,...,ǫl−i+1
i−1 (t)

ξ̇
ǫ1,...,ǫl−i+1

i−1 (t) − Y (t, ξ̇
ǫ1,...,ǫl−i+1

i (t))

=

Ni−1∑

a=1

(

u
ǫ1,...,ǫl−i

slow,a (t)

+ 1
ǫl−i+1

u
ǫ1,...,ǫl−i
osc,a (t/ǫl−i+1, t)

)

Zi−1
a (ξ

ǫ1,...,ǫl−i+1

i−1 (t))

(27)
where u

ǫ1,...,ǫl−i

slow,a and u
ǫ1,...,ǫl−i
osc,a are constructed as in

Theorem 3.3. Notice that

u
ǫ1,...,ǫl−i

slow,a (t) +
1

ǫl−i+1
u

ǫ1,...,ǫl−i
osc,a (t/ǫl−i+1, t)

plays the role of a λ
ǫ1,...,ǫl−i+1

â (t) or a λ
ǫ1,...,ǫl−i+1

b̂,ĉ
(t)

at the next step.

We have

‖uǫ1,...,ǫl−i

slow,a ‖∞ ≤ Cmax
b,c

(‖λǫ1,...,ǫl−i

b ‖∞, ‖λǫ1,...,ǫl−i

b,c ‖2
∞

),

‖uǫ1,...,ǫl−i

osc,a ‖∞ ≤ Cmax
b,c

(‖λǫ1,...,ǫl−i

b,c ‖∞).

Given α, β : [0, T ] × I → R, define ΛT as

ΛT (t, α, β) =
1

2T

∫ T
0

(∫ τ
0 α(s, t)ds

) (∫ τ
0 β(s, t)ds

)
dτ.

The construction of uslow and uosc is such that

Ni−1∑

a=1

u
ǫ1,...,ǫl−i

slow,a (t)Zi−1
a

−∑Ni−1

b,c=1 ΛT (t, u
ǫ1,...,ǫl−i

osc,b , u
ǫ1,...,ǫl−i
osc,c )〈Zi−1

b : Zi−1
c 〉

=

Ni−1∑

a=1

λ
ǫ1,...,ǫl−i
a (t)Zi−1

a

+

Ni−1∑

b,c=1,b<c

λ
ǫ1,...,ǫl−i

b,c (t)〈Zi−1
b : Zi−1

c 〉

(see [5]). As in Section 5.1, our aim is here to quan-
tify the relations in (24). We will use the same no-
tations for ηi and η̂i as in Section 5.1. The notion of
being a one–parameter tracking control law for γref

is again defined through (25).

Theorem 5.4. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Let Zi, i ∈ N0, be defined as in (17) satis-
fying the same hypotheses as in Corollary 4.7. Fix
a reference trajectory γref ∈ C∞(I,Q) and assume
that there exists l ∈ N such that

∇γ̇ref(t)γ̇ref(t) − Y (t, γ̇ref(t)) ∈ Zl(γref(t))

for every t ∈ I. Construct ξǫ1,...,ǫl, uǫ1,...,ǫl and
η̂i as above. If ηi : (0,+∞) → (0,+∞) satisfies
lim supǫ→0 ηi(ǫ)/ǫ

4 < ∞ for every i = 2, . . . , l, then
ǫ 7→ uη̂1(ǫ),...,η̂l(ǫ) is a one–parameter tracking control
law for γref .

Proof. The first step of the proof consists in esti-
mating the order with respect to ǫ of the L∞–norm
of the time–dependent parameters appearing in the
parameterization (27). Once more we write ǫi for
η̂i(ǫ). By induction it can be proved that

‖∂m
2 u

ǫ1,...,ǫi
osc,a ‖∞ ≤ C(ǫ1 · · · ǫi−1ǫ

m+1
i )−1

for every m ∈ N0.

Consider, as in the proof of Theorem 5.2, the ex-
tended system on R × TQ associated with (3). In
the following computations we write

V i
a = (0, (Zi

a)V ),

W i
b,c = (0, 〈Zi

b : Zi
c〉V ).

We also write uǫ1,...,ǫi
osc,a (σ) to denote (uǫ1,...,ǫi

osc,a (σ, ·))V ,
i.e., uǫ1,...,ǫi

osc,a (σ) is the smooth function on R × TQ
such that

uǫ1,...,ǫi
osc,a (σ)(t, v) = uǫ1,...,ǫi

osc,a (σ, t).

Then, applying (5) and (6),

(t, ξ̇ǫ1,...,ǫl

0 (t)) = −→exp
∫ t
0

(

Xe

+
∑N0

a=1 u
ǫ1,...,ǫl−1

slow,a (s)V 0
a

+ 1
ǫl

∑N0
a=1 u

ǫ1,...,ǫl−1
osc,a (s/ǫl, s)V

0
a

)

ds γe
ref(0)

= −→exp
∫ t
0

1
ǫl

∑N0
a=1 u

ǫ1,...,ǫl−1
osc,a (s/ǫl)V

0
a ds ◦

−→exp
∫ t
0

(

Xe +
∑N0

a=1 u
ǫ1,...,ǫl−1

slow,a (s)V 0
a

+
∑N0

a=1

∫ s
0

1
ǫl
u

ǫ1,...,ǫl−1
osc,a (s0/ǫl)ds0[V

0
a ,X

e]

−∑N0
a=1

∫ s
0

1
ǫl
∂2u

ǫ1,...,ǫl−1
osc,a (s0/ǫl)ds0V

0
a

−∑N0
b,c=1

∫ s
0

1
ǫl
u

ǫ1,...,ǫl−1

osc,b (s1/ǫl)
∫ s1

0
1
ǫl
u

ǫ1,...,ǫl−1
osc,c (s0/ǫl)ds0ds1W

0
b,c

)

ds γe
ref(0)
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Denoting by V any vertical flow, we have

(t, ξ̇ǫ1,...,ǫl

0 (t)) = V ◦ −→exp
∫ t
0

(

Xe

+
∑N0

a=1 λ
ǫ1,...,ǫl−1
a (s)V 0

a

+
∑N0

b,c=1, b<c λ
ǫ1,...,ǫl−1

b,c (s)W 0
b,c

+
∫ s
0

1
ǫl

∑N0
a=1 u

ǫ1,...,ǫl−1
osc,a (s0/ǫl, s)ds0[V

0
a ,X

e]

−∑N0
a=1

∫ s
0

1
ǫl
∂2u

ǫ1,...,ǫl−1
osc,a (s0/ǫl, s)ds0V

0
a

+
∑N0

b,c=1(ΛT (s, u
ǫ1,...,ǫl−1

osc,b , u
ǫ1,...,ǫl−1
osc,c )−

∫ s
0

1
ǫl
u

ǫ1,...,ǫl−1

osc,b (s1/ǫl, s)
∫ s1

0
1
ǫl
u

ǫ1,...,ǫl−1
osc,c (s0/ǫl, s)

ds0ds1)W
0
b,c

)

ds γe
ref(0).

Noticing that

∑N0
a=1 λ

ǫ1,...,ǫl−1
a (s)V 0

a +
∑N0

b,c=1(λ
ǫ1,...,ǫl−1

b,c (s)W 0
b,c

=
∑N1

â=1

(

u
ǫ1,...,ǫl−2

slow,â (s) + 1
ǫl−1

u
ǫ1,...,ǫl−2

osc,â (s/ǫl−1, s)
)

V 1
â

and applying iteratively the same computation as
above, one ends up with

(t, ξ̇ǫ1,...,ǫl

0 (t)) =

V ◦ −→exp
∫ t
0

(
Xe + λa(s)V

l
a + T (s)

)
ds γe

ref(0),

where T (s) is a sum of terms of the form ζ(s)V
where V ∈ X (R × TQ) is independent of the ǫj,
while ζ ∈ C∞(I,R) is of one of the following four
types:

ζ1 =
∫ s
0

1
ǫi
u

ǫ1,...,ǫi−1
osc,a (s0/ǫi, s)ds0,

ζ2 = −
∫ s
0

1
ǫi
∂2u

ǫ1,...,ǫi−1
osc,a (s0/ǫi, s)ds0,

ζ3 = 1
1+δbc

[

2ΛT (s, u
ǫ1,...,ǫi−1

osc,b , u
ǫ1,...,ǫi−1
osc,c )

−
(∫ s

0
1
ǫi
u

ǫ1,...,ǫi−1

osc,b (s0/ǫi, s)ds0

)

(∫ s
0

1
ǫi
u

ǫ1,...,ǫi−1
osc,c (s0/ǫi, s)ds0

) ]

,

for i = 1, . . . , l, and

ζ4 = −
(∫ s

0
1
ǫj
u

ǫ1,...,ǫj−1

osc,b (s0/ǫj , s)ds0

)

(∫ s
0

1
ǫi
u

ǫ1,...,ǫi−1
osc,c (s0/ǫi, s)ds0

)

,

for i > j, i, j ∈ {1, . . . , l}.
We are left to prove that every

∫ t
0 ζ(s)ds converges

to zero uniformly with respect to t as ǫ goes to zero
(Lemma 2.4).

Applying Lemma 5.1 with

f(τ, s) =

∫ τ

0
u

ǫ1,...,ǫi−1
osc,a (s0, s)ds0

and ǫ̂ = ǫi leads to
∫ t

0
ζ1(s)ds ≤ Cǫi(ǫ1 · · · ǫi−2ǫ

2
i−1)

−1.

Similarly,
∫ t

0
ζ2(s)ds ≤ C(ǫ1 · · · ǫi−2ǫ

3
i−1)

−1ǫi.

Taking

f(τ, s) =
(∫ τ

0 u
ǫ1,...,ǫi−1

osc,b (s0, s)ds0

)

(∫ τ
0 u

ǫ1,...,ǫi−1
osc,c (s0, s)ds0

)
,

we obtain
∫ t

0
ζ3(s)ds ≤ C(ǫ1 · · · ǫi−2)

−2ǫ−3
i−1ǫi.

Finally, with

f(τ, s) =
(∫ s/ǫj

0 u
ǫ1,...,ǫj−1

osc,b (s0, s)ds0

)

(∫ τ
0 u

ǫ1,...,ǫi−1
osc,c (s0, s)ds0

)
,

we have
∫ t

0
ζ4(s)ds ≤ C(ǫ1 · · · ǫj−2ǫj−1)

−1(ǫ1 · · · ǫi−2ǫ
2
i−1)

−1ǫi.

Hence, each ζ satisfies

∫ t

0
ζ(s)ds ≤ Cǫi

(ǫ1 · · · ǫi−2)2ǫ3i−1

=
Cǫi
ǫ4i−1

ǫi−1

(ǫ1 · · · ǫi−2)2

and it is easy to prove by recurrence that
ǫi−1(ǫ1 · · · ǫi−2)

−2 tends to zero as ǫ goes to zero.

Remark 5.5. As in Remark 5.3, the hypothe-
sis lim supǫ→0 ηi(ǫ)/ǫ

4 < ∞ in the statement of
Theorem 5.4 can be weakened by requiring that
lim supǫ→0 ηi(ǫ)/ǫ

3+a < ∞ with a =
√

3 − 1 ≃ 0.73.
Indeed, with this choice of a,

ǫai
ǫ21ǫ

2
2 · · · ǫ2i−1

=

(

ǫi

ǫ3+a
i−1

)a(
ǫai−1

ǫ21 · · · ǫ2i−2

)

,

so that

ǫi

ǫ21···ǫ2i−2ǫ3i−1
=

ǫi

ǫ3+a
i−1

(

ǫi−1

ǫ3+a
i−2

)a(
ǫi−2

ǫ3+a
i−3

)a

· · ·
(

ǫ2
ǫ3+a
1

)a
ǫa1.

Hence, each
∫ t
0 ζ(s)ds goes to zero uniformly with

respect to t ∈ I as ǫ tends to zero.

Under special assumptions the relations in (24)
that have been quantified in Theorem 5.4 can be
reduced up to limǫ→0 ηi(ǫ)/ǫ

2 = 0 as stated in the
following corollary and illustrated in the numerical
simulation included in Section 5.2.1. The required
assumptions are stated in terms of the number of
steps in the algorithm and of the coefficients provid-
ing the parametrization of the reference trajectory.

Corollary 5.6. Let Σ = (Q,∇, Y,Y ,Rk) be a
FACCS. Let Zi, i ∈ N0, be defined as in (17)
and assume that spanRZ2(q) = TqQ for all q ∈ Q
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and that for each i ∈ {0, 1} and each Z ∈ Zi,
〈Z : Z〉(q) ∈ spanR(Zi(q)). Fix a reference trajec-
tory γref ∈ C∞(I,Q) such that the coefficients λa

associated with γref as in (26) are constant func-
tions. Construct ξǫ1,ǫ2, uǫ1,ǫ2 and η̂i as above. If
η2 : (0,+∞) → (0,+∞) satisfies limǫ→0 η2(ǫ)/ǫ

2 =
0, then ǫ 7→ uǫ,η2(ǫ) is a one–parameter tracking con-
trol law for γref .

Proof. The hypotheses of the corollary and the ex-
pressions of the controls appearing in Theorem 3.3
guarantee that the oscillatory controls are as follows:

uosc,a(τ, t) ∈ spanR{ϕj0(τ)},

uǫ1
osc,a(τ, t) ∈ spanR{ϕj0(τ),

1

ǫ1
ϕj1(t/ǫ1)ϕj2(τ)},

where j0, j1, j2 vary in N.

Thus the integrals of all the terms T that appear
in the proof of Theorem 5.4 only contain product
of trigonometric functions, more specifically cosines
and sines and converge to zero uniformly with re-
spect to t as ǫ goes to zero if η2 is such that
limǫ→0 η2(ǫ)/ǫ

2 = 0.

5.2.1 Numerical simulation: submarine

In this section, we illustrate the method to obtain
a one–parameter control law in a concrete situation
that fulfills the assumptions in Corollary 5.6. The
algorithm described in Section 5.2 has been imple-
mented with Scilab.

For our example, we have the submarine pre-
sented in Section 4.1.2 whose dynamics are given
by (18) and (19). We consider the same kind of
inertia matrix as in Section 4.1.2, taking

J1 = 1, J3 = 3, M1 = 1, M2 = 2, M3 = 3.

We recall that in the case under consideration The-
orem 3.3 cannot be applied. However, our method
provides a one–parameter control law that solves the
tracking problem. The trajectory to be tracked is
given by

r(t) = (−t,−t,−t), A33(t) = 1, t ∈ [0, 1]

with initial condition r(0) = (0, 0, 0), A(0) = Id,
being Id the identity 3 × 3 matrix, Π(0) = (0, 0, 0),
P (0) = (−1,−2,−3). Thus there are degrees of
freedom in the attitude of the submarine, but the
target position of the center of the submarine is fully
determined.

Figure 1: The control law u
ǫ,η2(ǫ)
1 .

Figure 2: The control law u
ǫ,η2(ǫ)
2 .

Figure 3: The control law u
ǫ,η2(ǫ)
3 .
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In this implementation we take η2(ǫ) = ǫ2.5 be-
cause the considered reference trajectory satisfies
the hypotheses of Corollary 5.6.

First, we compute the one–parameter control laws
uǫ1,ǫ2

1 , uǫ1,ǫ2
2 and uǫ1,ǫ2

3 as described in the proof of
Theorem 5.4. Then we fix ǫ = 1/39 ≈ 0.0256, so
that η2(ǫ) ≈ 0.0001. The corresponding control laws
are represented in Figures 1, 2 and 3. By construc-
tion, the controls are highly oscillatory.

Figure 4: Evolution of the position of the center
of the submarine with respect to time. The target
trajectory is the non–oscillating curve.

Figure 5: Evolution of A33 entry of the attitude
matrix with respect to time. The target trajectory
is the non–oscillating curve.

Then we integrate the dynamics of the system us-
ing the numerical integrator stiff included in Scilab.
As a result, Figures 4 and 5 show that the target
trajectory, corresponding with the non–oscillating
line, is tracked by the oscillating curve. The error
of the approximation, computed by the supremum
distance, is d((rref(t), A33,ref(t)), (r(t), A33(t))) ≈

0.1903.

6 Conclusions

The previously known sufficient conditions for
tracking were given in terms of finite sets of vector
fields, as reviewed in Section 3. Here we have con-
structed a sequence of infinite family of vector fields
that defines a sequence of convex cones suitable for
characterizing trackability (Theorem 4.4 and Corol-
lary 4.5). Different convex cones, (9) and (16), have
been considered. Under additional assumptions, us-
ing the cones in (16) and a particular sequence of
finite families of vector fields, it is possible to recover
the sufficient conditions for tracking already known
in the literature [5], see Corollary 4.7. However, our
constructions not only recover the previously known
results, but they also extend them, as shown in Sec-
tion 4.1.

The sequence of families of vector fields in Corol-
laries 4.5 and 4.7 are also suitable for constructing a
one–parameter tracking control law (Theorems 5.2
and 5.4). It remains as future work to generalize
the construction of one–parameter tracking control
laws when the sets (9), that include the closure, are
considered.

Another future research line is the study of the
complexity for the control–affine systems considered
in this work. Apart from tracking non–admissible
trajectories, one could impose more requirements on
the solution to the tracking problem, as for instance,
to save energy. The complexity provides a good tool
to formulate this kind of problems and, so far, has
been only studied for control–linear systems [7, 8].
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