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a b s t r a c t

Differential linear repetitive processes evolve over a subset of the upper-right quadrant of the 2D plane
where the unique feature is a series of sweeps or passes through a set of dynamics governed by the
solution of a linear matrix differential equation over a finite duration t ∈ [0, α] where α is termed
the pass length or duration. On each pass an output, termed the pass profile, is produced, which acts
as a forcing function on, and hence contributes to, the dynamics of the next pass profile. The result can
be oscillations in the pass-to-pass direction that cannot be controlled by direct application of standard,
or 1D linear systems theory. The existing stability theory demands a bounded-input bounded-output
property uniformly, which in the case of the along-the-pass dynamics means for t ∈ [0, ∞] and for
(k, t) ∈ [0, ∞] × [0, ∞] ⊃ [0, ∞] × [0, α] where the integer k ≥ 0 denotes the pass number or index.
The pass length is always finite, however, and hence this stability theory could well be too strong inmany
cases and, in particular, impose very strong conditions in terms of control law design. This paper develops
an alternative in such cases by relaxing the requirement for the bounded-input bounded-output property
to hold when k → ∞ and t → ∞ simultaneously, provides an explanation of the implications of this in
the frequency domain, and then develops control law design algorithms.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The unique characteristic of a repetitive process [1] is a series
of sweeps, termed passes, through a set of dynamics defined over
a fixed finite duration known as the pass length. On each pass
an output, termed the pass profile, is produced which acts as a
forcing function on, and hence contributes to, the dynamics of
the next pass profile. This, in turn, leads to the unique control
problemwhere the output sequence of pass profiles generated can
contain oscillations that increase in amplitude in the pass-to-pass
direction.

To introduce a formal definition, let α < +∞ denote the pass
length. Then in a repetitive process the pass profile yk(t), 0 ≤ t ≤

α, generated on pass k acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile yk+1(t), 0 ≤

t ≤ α, k ≥ 0.
Physical examples of these processes include long-wall coal

cutting and metal rolling operations [1]. Also applications have
arisen where adopting a repetitive process setting for analysis
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has distinct advantages over alternatives. Examples of such
algorithmic applications include classes of iterative learning
control schemes, where one possible source for the literature in
this area is the survey papers [2,3], and iterative algorithms for
solving nonlinear dynamic optimal stabilization problems based
on the maximum principle [4]. In this latter case the use of the
repetitive process setting provides the basis for the development
of highly reliable and efficient iterative solution algorithms. More
recently, iterative learning control algorithms designed using
linear repetitive process stability theory have been experimentally
validated [5] on a gantry robot whose task is to place a sequence of
objects onto amoving conveyor under synchronization, confirming
that this approach can remove performance related problemswith
other designs.

Recognizing the unique control problem, the stability theory
for linear repetitive processes is of the bounded-input bounded-
output (BIBO) form, that is a bounded initial pass profile is
required to produce a bounded sequences of pass profiles, where
the bounded property is defined in terms of the norm on the
underlying Banach space. Asymptotic stability in the pass-to-pass
direction demands this BIBO stability property over the finite and
fixed pass length, that is, over (k, t) ∈ [0, ∞] × [0, α], and if
this property holds then the sequence of pass profiles generated
converges strongly to the limit profile that in some cases, including
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the processes considered here, is described by a standard, or 1D,
linear system. The finite pass length does, however, mean that
this limit profile can have unacceptable along-the-pass dynamics,
including the case when it is unstable.

The most obvious way to exclude this last possibility is to
demand the BIBO stability property uniformly with respect to the
pass length, that is, over (k, t) ∈ [0, ∞] × [0, ∞], and this is
termed stability along-the-pass. Moreover, for the processes
considered here, the abstract model based stability conditions can
be transformed into conditions that can be checked by 1D linear
systems stability tests. In the case of asymptotic stability in the
pass-to-pass direction, the condition reduces to computing the
eigenvalues of a matrix and for stability along-the-pass the extra
conditions are an eigenvalue computation for a matrix plus, in the
single-input single-output (SISO) case for simplicity, a condition
expressed in terms of the frequency content of the initial pass
profile. In control lawdesign terms this is a very stringent condition
to meet and in this paper strong practical stability is developed as
an alternative where in the SISO case the frequency attention is no
longer required over the complete frequency range. The approach
used is to relax the requirement for the BIBOproperty to holdwhen
k → ∞ and t → ∞ simultaneously, where this combination
of k and t cannot arise in a physical application. The analysis is
then extended to control law design where the calculations can be
undertaken using Linear Matrix Inequalities (LMIs).

Throughout this paper, the null and identity matrices with
the required dimensions are denoted by 0 and I , respectively.
Moreover, M > 0 (< 0) denotes a real symmetric positive
(negative) definite matrix.

2. Background

The state-space model of a differential linear repetitive process
[1] has the following form over 0 ≤ t ≤ α, k ≥ 0,

ẋk+1(t) = Axk+1(t) + Buk+1(t) + B0yk(t),
yk+1(t) = Cxk+1(t) + Duk+1(t) + D0yk(t).

(1)

Here on pass k, xk(t) is the n × 1 state vector, yk(t) is the m × 1
pass profile vector and uk(t) is the l × 1 vector of control inputs,
and α < ∞ is termed the pass length. To complete the process
description, it is necessary to specify the boundary conditions, that
is, the state initial vector on each pass and the initial pass profile.
For the purposes of this paper, no loss of generality occurs from
assuming state initial vectors of the form xk+1(0) = dk+1, k ≥ 0,
where the n×1 vector dk+1 has known constant entries, and initial
pass profile y0(t) = f (t), where f (t) is an m × 1 vector whose
entries are known functions of t over 0 ≤ t ≤ α.

The stability theory [1] for linear repetitive processes is based
on an abstract model in a Banach space setting which includes
a wide range of such processes as special cases, including those
described by (1). Let Eα be a Banach space,Wα a linear subspace of
Eα , and Lα a bounded linear operator mapping Eα into itself. Then
the dynamics of a linear repetitive process of constant pass length
α > 0 are described by linear recursion relations of the form

yk+1 = Lαyk + bk+1, k ≥ 0, (2)

where yk is the pass profile on pass k, Lα is a bounded linear
operator mapping Eα into itself, and bk+1 ∈ Wα, k ≥ 0. The
term Lαyk represents the contribution of pass k to pass k + 1 and
bk+1 represents initial conditions, disturbances and control input
effects.

In the case of processes described by (1)

yk+1(t) = C
∫ t

0
eA(t−τ)(B0yk(τ ) + Buk+1(τ ))dτ + CeAtdk+1

+D0yk(t) + Duk+1(t), 0 ≤ t ≤ α. (3)
Suppose also that Eα is the space of bounded continuous mappings
of the interval 0 ≤ t ≤ α into the vector space of complex
vectors Cm with norm ‖y‖ = sup0≤t≤α ‖y(t)‖′, where ‖ · ‖

′ is any
convenient norm in Cm. Then

(Lα)y(t) = C
∫ t

0
eA(t−τ)B0yk(τ )dτ + D0yk(t), 0 ≤ t ≤ α, (4)

and

bk+1 = CeAtdk+1 + C
∫ t

0
eA(t−τ)Buk+1(τ )dτ + Duk+1(t). (5)

Given the unique control problem, the natural approach to a
definition of stability for these processes is to ask that given any
initial profile y0 and any disturbance bk+1 that converges strongly
to b∞ as k → ∞, the sequence of pass profiles converges to y∞ as
k → ∞. This is termed asymptotic stability in the pass-to-pass
direction of (2) and it can be shown [1] to be equivalent to the
existence of real scalarsMα > 0 and λα ∈ (0, 1) such that

‖Lkα‖ ≤ Mαλk
α, k ≥ 0. (6)

Equivalently asymptotic stability in the pass-to-pass direction
holds for (2) if, and only if, the spectral radius of Lα, denoted by
r(Lα), satisfies r(Lα) < 1. Moreover, if this condition holds y∞,
termed the limit profile, is given by

y∞ = (I − Lα)−1b∞, (7)

where I denotes the identity operator in Eα and b∞ the strong limit
of {bk}k≥1 as k → ∞.

For processes described by (1) it has been shown [1] that
asymptotic stability in the pass-to-pass direction holds if, and only
if, r(D0) < 1. Also if this condition holds and the input sequence
applied {uk+1}k converges strongly as k → ∞ to u∞, the resulting
limit profile is described by

ẋ∞(t) = (A + B0(I − D0)
−1C)x∞(t)

+ (B + B0(I − D0)
−1D)u∞(t), (8)

y∞(t) = (I − D0)
−1Cx∞(t) + (I − D0)

−1Du∞(t),
x∞(0) = d∞,

where (again a strong limit) d∞ := limk→∞ dk and thematrix I−D0
is invertible since r(D0) < 1 by asymptotic stability in the pass-
to-pass direction. In physical terms, this result states that under
asymptotic stability in the pass-to-pass direction the dynamics
can, after a sufficiently large number of passes have elapsed, be
replaced by those of a 1D differential linear system.

Asymptotic stability in the pass-to-pass direction does not
guarantee that the limit profile has acceptable along-the-pass
dynamics since it can be unstable in the 1D linear systems sense. A
simple example here is A = −1, B = 1, B0 = 1 + β, C = 1,D =

D0 = 0, where β is a real scalar. If β > 0 the limit profile for this
example is unstable.

To prevent cases such as the above example from arising, one
route is to demand the BIBO property for any possible value of the
pass length, where mathematically this can be analyzed by letting
α → ∞. This is the stability along-the-pass property that requires
the existence of finite real scalars M∞ > 0 and λ∞ ∈ (0, 1),
which are independent of α, such that ‖Lkα‖ ≤ M∞λk

∞
, k ≥

0. For the processes considered here this requires [1] that
(i) r(D0) < 1 (asymptotic stability in the pass-to-pass direction),
(ii) all eigenvalues of A have strictly negative real parts, and
(iii) all eigenvalues of the transfer-function matrix G(s) = C(sI −

A)−1B0 +D0 must lie inside the unit circle in the complex plane for
all s = ıω, ω ≥ 0. In the case of the example above it is this last
condition which fails when β > 0.
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Each of these conditions for stability along-the-pass of an
example described by (1) has a well defined interpretation, where
for (i) assume that xk+1(0) = 0, k ≥ 0, and then at t = 0 yk(0) =

Dk
0y0(0). This condition therefore requires that the initial pass

profile vector sequence {yk(0)}k≥0 does not become unbounded.
Condition (ii) is to be expected if the along-the-pass dynamics is
to be bounded. In the case of (iii), the transfer-function involved
describes the contribution of the previous pass profile to the
current one [1] and in the single-input single-output (SISO) case
reduces to |G(ıω)| < 1 for all ω ≥ 0. Hence this condition
is equivalent to requiring that each frequency component of the
initial pass profile is attenuated from pass-to-pass.

Stability along-the-pass demands that the signals involved are
uniformly bounded as both k → ∞ and t → ∞, where,
as discussed in more detail at the end of this section, condition
(iii) for processes described by (1), is a very strict condition.
Strong practical stability relaxes this by removing the uniform
boundedness requirement as both k → ∞ and α → ∞ but still
demands it when (i) both k and α are finite, (ii) the pass index
k → ∞ and the pass length α finite, and (iii) the pass index k is
finite and the pass lengthα → ∞. Also cases (ii) and (iii) here have
practical relevance as discussed next in terms of a robotic system.

Many industrial applications use a gantry robot whose task
is to collect an object from a location and place it, under
synchronization, on a moving conveyor belt after a finite time
has elapsed, then return to the original location to pick up the
next one and so on. This is an obvious application for iterative
learning control, and hence repetitive process theory, where the
time taken to return to the original location can be used to update
the control law using previous pass information to sequentially
improve performance from pass-to-pass. Case (ii) above, that is,
both k and α are finite, is a mathematical formulation of the desire
to execute this operation a very large number of times without the
need to stop and hence lose throughput. Case (iii) above, that is, k is
finite and thepass lengthα → ∞, is themathematical formulation
where the process completes a finite number of passes but the pass
length is very long and there is a requirement to control the along-
the-pass dynamics. Next these two cases are analyzed.

Under asymptotic stability in the pass-to-pass direction, the
limit profile (8) as k → ∞ results and is stable in the 1D linear
systems senses when the eigenvalues of A + B0(I − D0)

−1C have
strictly negative real parts. These are necessary conditions for
strong practical stability.

For any finite k, it is required, from consideration of the case
when there is no previous pass profile contribution, that all
eigenvalues of the matrix A have strictly negative real parts and
hence it is nonsingular. Also as t → ∞

yk+1(∞) = (−CA−1B0 + D0)yk(∞), (9)
and hence r(−CA−1B0 + D0) < 1 is required.

In summary, strong practical stability requires the following
conditions to hold
[a] r(D0) < 1,
[b] all eigenvalues of the matrix A have strictly negative real parts,
[c] all eigenvalues of the matrix A + B0(I − D0)

−1C have strictly
negative real parts, and

[d] r(−CA−1B0 + D0) < 1.

Remark 1. To explain the term strong practical stability, first note
that for 2D discrete linear systems practical stability [6] was
introduced due to a recognition that the BIBO stability theory for
such systems was too strong for some applications, and practical
stability replaced this by the requirement the response in each
direction of information propagation is stable. Practical stability
can also be defined for differential linear repetitive processes
described by (1) and would require conditions [a] and [b] above
to hold which, as the simple example shows, is too weak in some
cases.
To explain the basic difference between asymptotic stability in
the pass-to-pass direction, strong practical stability and stability
along-the-pass, note that G(0) = −CA−1B0 +D0 and also lim|s|→∞

G(s) = D0. Consider also the case when there is zero control input,
the state initial vector on each pass is zero, and, for simplicity, the
SISO case. Then (as discussed prior to (9)) stability along-the-pass
requires that each frequency component of the initial pass profile
is attenuated from pass-to-pass, asymptotic stability in the pass-
to-pass direction only requires this at high frequencies, and strong
practical stability at both high and low frequencies together with
conditions [b] and [c] above.

It is also possible to characterize strong practical stability in
terms of the poles of the example considered where it is first
important to note that the concept of a pole for an nD linear
system is much more complex than in the 1D case [7]. For the
differential linear repetitive processes of the form considered here,
however, the situation is less complex and can be used to explain
the differences between strong practical stability and stability
along-the-pass. The starting point is the characteristic polynomial
for these processes defined as

ρ(s, z) = det
[

sI − A −B0
−C zI − D0

]
, (10)

and the poles are the component-wise non-zero points in 2D
complex space where the matrix whose determinant appears on
the right-hand side fails to have full rank, that is, they are given by

ρ(s, z) = 0, (11)

and the set {a1, a2} that satisfy this last equation is termed the pole
variety. Also stability along-the-pass holds if, and only if,

ρ(s, z) ≠ 0, Re(s) ≥ 0, |z| ≥ 1. (12)

The poles are given by the vanishing of a single 2D non-unit
polynomial and the pole variety is guaranteed to be a 1D geometric
set in 2D complex space. Note also that the pole variety must be
complex, even though the entries of the matrices A, B0, C and D0
are real. This is essential in order to capture the full exponential-
type dynamics of the process.

The poles of these processes can be interpreted in terms of
exponential trajectories, which in the case considered here have a
clear physical interpretation, and stability along-the-pass requires
no poles with Re s ≥ 0 and |z| ≥ 1, which is a direct generalization
of the 1D linear systems case. For strong practical stability, it is easy
to see that condition [c] is equivalent to ρ(s, 1) ≠ 0, Re s ≥ 0,
and condition [d] to ρ(0, z) ≠ 0, |z| ≥ 1. Hence for this stability
property the only exponential trajectories considered are identical
to those for 1Ddiscrete anddifferential linear systems respectively,
and these are clearly a subset of those given by (11).

In terms of design to track a given reference vector, imposing
the requirement for stability along-the-pass requires the control
law to achieve the required level of attenuation over the complete
frequency range and this, by comparison with the 1D linear
systems case, is most likely to result in a very difficult design
problem. In such cases, strong practical stability may lead to
acceptable design, especially for applications where an unstable
limit profile is not acceptable and/or some control is required over
the along-the-pass dynamics.

3. LMI based stability tests

The conditions for strong practical stability can, assuming
no numerical problems with computing the eigenvalues of the
matrices involved, be easily checked for a given example. Suppose,
however, that the task is to ensure this property by application of
a control law, see also the next section, of the form

uk+1(t) = K1xk+1(t) + K2yk(t), (13)
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which is a combination of current pass state feedback plus a
feedforward term from the previous pass profile, in keeping with
the fact that the use of only current pass state or pass profile vector
activated control laws cannot stabilize the process dynamics in
all but a few restrictive special cases. On applying this control
law to (1), the process state-space model matrices A, B0, C,D0 are
mapped to A+BK1, B0 +BK2, C +DK1, and D0 +DK2, respectively.
Hence design to satisfy conditions [a] and [b] for the controlled
process is simply the 1D pole placement problem for discrete and
differential linear systems respectively. The case for conditions [c]
and [d] is far from clear and hence as a preliminary step to overall
control law design novel use is made of results from 1D descriptor
differential and discrete linear systems theory for the state-space
models

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t), (14)

and

Ex(h + 1) = Ax(h) +Bu(h),
y(h) = Cx(h) +Du(h), (15)

respectively, where E is a squarematrix that could be singular. This
will lead to stability tests in terms of LMIs which (see the next
section) lead to control law design algorithms.

Condition [c] is equivalent to the stability of the 1D descriptor
singular differential linear system with state-space model

E1ż(t) = A1z(t) + Πu(t), (16)

where

A1 =

[
A B0
C D0 − I

]
, E1 =

[
I 0
0 0

]
,

Π =

[
B
D

]
, z(t) =

[
x∞(t)
y∞(t)

]
, (17)

which follows immediately on applying appropriate elementary
operations to the characteristic matrix sI − (A + B0(I − D0)

−1C).
Also (9) can be rewritten as

0 = Axk+1(∞) + B0yk(∞),

yk+1(∞) = Cxk+1(∞) + D0yk(∞). (18)

Hence condition [d] is equivalent to the stability requirement for
the following 1D descriptor discrete linear system

E2z(h + 1) = A2z(h) + Πu(h), (19)

where

A2 =

[
0 B0
0 D0

]
, E2 =

[
−A 0
−C I

]
,

z(h) =

[
xh(∞)
yh(∞)

]
, (20)

and the descriptor matrix E2 is nonsingular when condition [b]
holds. The following definitions are also required.

Definition 1. A 1D differential descriptor linear system of the
form (14) is termed regular [8] if the state-space equation (14) has
one single solution, that is, if det(sE −A) is not identically zero.

Definition 2. A 1D regular differential descriptor linear sys-
tem (14) is termed admissible [8] if it is asymptotically stable (the
finite roots of det(sE − A) lie inside the open left-half complex
plane) and impulse-free (the possible infinite roots do not generate
impulses in the response, that is deg(det(sE −A)) = rank E).

Either asymptotic stability or impulse freeness implies regular-
ity and hence admissibility implies regularity. Also if E is nonsin-
gular the 1D linear descriptor system Ez(p + 1) = Âz(p) can be
easily rewritten in the conventional state-space form as z(p+1) =

E−1Âz(p) and the following result is useful in obtaining necessary
and sufficient conditions for strong practical stability.

Lemma 1 ([9,10]). Consider a 1D linear descriptor system Ez(p +

1) = Âz(p)with E nonsingular. Then the system z(p+1) = E−1Âz(p)
is stable if, and only if there exists a matrix Q̂ > 0 and a nonsingular
matrix Ĝ such that[

−Q̂ ÂTE−T ĜT

ĜE−1Â Q̂ − Ĝ − ĜT

]
< 0 ⇔ −Q̂ + ÂTE−T Q̂ E−1Â < 0. (21)

The right-hand side LMI in the above result is due to [9] and the
equivalence with the one on the left-hand side is proved in [10].
Also admissibility can be determined by the following alternative
to (16) and (17), see, for example, [11].

Lemma 2. The system described by (16) and (17) is admissible if, and
only if, there exists a nonsingular matrix G such that

ET
1G = GTE1 ≥ 0,

GTA1 + AT
1G < 0. (22)

The following result gives computable necessary and sufficient
conditions for strong practical stability.

Theorem 1. A differential linear repetitive process described by (1) is
strongly practically stable if, and only if, there exist matrices W1 > 0,
W2 > 0, Q2 > 0, and a nonsingular matrix

G =

[
G11 0
G21 G22

]
,

with G11 > 0 such that the following LMIs are feasible[
−W1 W T

1 D
T
0

D0W1 −W1

]
< 0, (23)

ATW2 + W2A < 0, (24)

GTA1 + AT
1G < 0, (25)

−Q2 + AT
2E

−T
2 Q2E−1

2 A2 < 0. (26)

Proof. The LMIs (23) and (24) are well known conditions (see, for
example, [12,13]) for the stability of 1D discrete and differential
linear systems and correspond to [a] and [b] for strong practical
stability.

The equivalence between the LMI (25) and condition [c] follows
immediately on applying Lemma 2 to (16) and (17). In particular,
(22) requires that G is nonsingular with G11 > 0 and G12 = 0.
Therefore (16) is admissible and hence stable. Finally, the
equivalence of the LMI (26) and condition [d] follows immediately
on applying the right-hand side LMI of Lemma 1 to (19) and (20)
with Q̂ = Q2, and E = E2, where condition [b] ensures that E2 is
nonsingular. �

4. Control law design

Applying the control law (13) to (1) gives the controlled process
state-space model
ẋk+1(t) = (A + BK1)xk+1(t) + (B0 + BK2)yk(t),

yk+1(t) = (C + DK1)xk+1(t) + (D0 + DK2)yk(t), (27)
and the following result gives the necessary and sufficient
conditions for strong practical stability.

Theorem 2. A differential linear repetitive process described by (27)
is strongly practically stable if, and only if,
[e] r(D0 + DK2) < 1,
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[f] all eigenvalues of A + BK1 have strictly negative real parts,
[g] all eigenvalues of A+BK1+(B0+BK2)(I−D0−DK2)

−1(C+DK1)
have strictly negative real parts, and

[h] r(D0 + DK2 − (C + DK1)(A + BK1)
−1(B0 + BK2)) < 1.

Control law design based on Theorem 2 is somewhat complex
since only the two control law matrices K1 and K2 are available for
design to simultaneously satisfy the four conditions [e]–[h]. This
difficulty is removed by the following result.

Theorem 3. Suppose that a control law of the form (13) is applied
to a differential linear repetitive process described by (1). Then the
following hold.
(a) The controlled process with state-space model (13) is strongly
practically stable if there exist matrices Q1 > 0, Q2 > 0, S1 > 0, a
nonsingularmatrix S2, and rectangularmatricesN1 =


N1 0


,N2 =

0 N2

and N =


N1 N2


such that the following LMIs are feasible

STAT
1 + NTΠ T

+ A1S + ΠN < 0, (28)
−Q2 STAT

2 + NT
2 Π T

A2S + ΠN2 Q2 − (E2S − ΠN1) − (E2S − ΠN1)
T


< 0, (29)

where S =


S1 0
0 S2


and Π is defined in (17).

(b) Suppose that the LMIs of (28) and (29) hold. Then stabilizing
control law matrices can be computed using

K1 = N1S−1
1 , K2 = N2S−1

2 . (30)

Proof. First it is shown that (28) and (29) respectively guarantee
that [g] and [h] of Theorem 2 hold.

Condition [g] is equivalent to the stability of the closed-loop 1D
singular differential linear system with state-space model

E1ż(t) = (A1 + Π[ K1 K2 ])z(t). (31)

The result now follows on applying the dual form of (25) in
Theorem 1 to this last state-space model.

Condition [h] is equivalent to the stability of the 1D descriptor
discrete linear system (19) with the control law

u(h) = [ K1 0 ]z(h + 1) + [ 0 K2 ]z(h), (32)

applied. Given (30), introduce the additionalmatrix variablesN1 =

K1S1 and N2 = K2S2 into the LMI (29) to obtain[
−Q2 ST2A

T
2new

A2newS2 Q2 − E2newS2 − ST2 E
T
2new

]
< 0, (33)

with A2new = A2 +Π[ 0 K2 ] and E2new = E2 −Π[ K1 0 ]. By
congruence, this is equivalent to[

−Q2 ST2A
T
2newE

−T
2new

E−1
2newA2newS2 Q2 − S2 − ST2

]
< 0, (34)

which is the dual form of the first LMI in (21). Hence, on making
use of the result in Lemma 1,

− Q2 + E−1
2newA2newQ2AT

2newE
−T
2new < 0, (35)

and this is the dual version of (26) of Theorem 1when appliedwith
A2new and E2new . Hence condition [h] holds by Theorem 1 applied
to (27).

Next, it is required to show that the LMIs (28) and (29)
guarantee that [e] and [f] hold, where, using (30) and Theorem 1
applied to (27), these are equivalent to[

−W1 ST2D
T
0 + NT

2D
T

D0S2 + DN2 W1 − S2 − ST2

]
< 0, (36)
and

ST1A
T

+ NT
1 B

T
+ AS1 + BN1 < 0, (37)

respectively, where the second is stated in its dual form.
The LMI of (29) can be written as

−Q211 −Q212 0 0
−Q T

212 −Q222 ST2 B
T
0 + NT

2 B
T ST2D

T
0 + NT

2 D
T

0 B0S2 + BN2 Υ Q212 + ST1 C
T

+ NT
1 D

T

0 D0S2 + DN2 Q T
212 + CS1 + DN1 Q222 − S2 − ST2


< 0, (38)

where

Υ = Q211 − S1 − ST1 + AS1 + BN1 + ST1A
T

+ BTNT
1 .

Since a real symmetric matrix is negative definite if, and only if,
all of its principal minors are negative definite, (38) can only hold
when −Q222 ST2 B

T
0 + NT

2 B
T ST2D

T
0 + NT

2D
T

B0S2 + BN2 Υ Q212 + ST1 C
T

+ NT
1D

T

D0S2 + DN2 Q T
212 + CS1 + DN1 Q222 − S2 − ST2

 < 0. (39)

Equivalently, by obvious row and column permutations in (39), it
is required that Q222 − S2 − ST2 D0S2 + DN2 Q T

212 + CS1 + DN1

(D0S2 + DN2)
T

−Q222 ST2 B
T
0 + NT

2 B
T

(Q T
212 + CS1 + DN1)

T B0S2 + DN2 Υ

 < 0. (40)

For (40) to hold it is necessary that
Q222 − S2 − ST2 D0S2 + DN2

(D0S2 + DN2)
T

−Q222


< 0. (41)

Left- and right-multiplying this last inequality by

0 I
I 0


gives (36)

with W2 = Q222.
Finally, rewrite the LMI (28) as

S1AT
+ NT

1 B
T

+ AS1 + BN1 B0S2 + BN2 + S1CT
+ NT

1 D
T

CS1 + DN1 + ST2 B
T
0 + NT

2 B
T D0S2 + DN2 + ST2D0 + NT

2 D
T

− 2I


< 0, (42)

and if this last LMI is feasible (37) holds. �

This result is much simpler than that of [14] and hence more
computationally tractable and less conservative. Also, the LMIs are
not parameterized and there is no parameterwhich has to be tuned
to achieve appropriate controlled process dynamics.

5. Conclusions

The existing stability theory for differential linear repetitive
processes leads to conditions that can be expressed in terms of
well known 1D discrete and differential linear systems tests. The
strongest form is stability along-the-pass, which is very stringent
in terms of control law design. This paper has developed strong
practical stability as an alternative, where the conditions for this
property are in terms of LMIs that extend to allow the design of
control laws.
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