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Abstract

This paper is dedicated to the stability analysis of a class of uncertain distributed
delay systems, the kernel of which can be modeled as a polynomial function of
the delay. The results are constructed by rewriting the system as an uncertain
interconnected model. Appropriate robust control tools, i.e. quadratic separation,
are then used to address the stability issue. To this end, some relations that highlight
relevant characteristics of the delayed term are added to the interconnected model
leading then to the conservatism reduction. Finally, numerical examples show the
effectiveness of the proposed method.
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1 Introduction

For several decades, the problem of time delay system stability has received a
lot of attention (see the monographs by [11,20] and references therein) since
many dynamical processes can be described by functional differential equa-
tions. Distributed delay systems constitute a particular case of such systems,
modelling cumulative effect of the past values of the dynamic. Practical issues
of such models are numerous in the literature. Indeed, distributed delay sys-
tems are often used to model the time lag phenomenon in thermodynamics
[5,24]), in ecology as well as epidemiology like predator-prey systems [8]. In
all these cases, contrary to a discrete delay system, the use of a distributed
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kernel allows a thinner modelling of the interactions between the different
system components. Nevertheless, establishing structural properties such as
stability, in the presence of a distributed kernel, are much more difficult than
the point wise delay case. A first possibility is to use frequency approaches
like [17] or [2], but these techniques are restricted to nominal systems without
uncertainties. A second popular way to establish robust stability remains the
Lyapunov-Krasovskii method. Pioneer works [15] have proposed appropriate
Lyapunov-Krasovskii functionals adding extra terms to the classical one to
cope with the distributed delay term. It leads generally to Ricatti equations
and the results reveal themselves very conservative due to the constrained
choice of the Lyapunov-Krasovskii functional. These techniques have been en-
hanced, firstly by [6,23], and its descriptor model, and then recently refined by
[12,3] using either different bounding techniques (Moon or Jensen inequalities)
or some slack variables [16]. Nevertheless, all these results entail an inherent
conservatism due to the conservative choice of the Lyapunov-Krasovskii func-
tional and are often restricted to a constant distributed kernel. An alternative
method proposed by Gu et al [10] and [11], is to combine a very general
class of Lyapunov Krasovskii functional and a discretization scheme to obtain
numerically tractable stability conditions. This technique dealing with piece-
wise constant delay kernel gives a drastic reduction of the conservatism at
the expense of the numerical burden. Another interesting approach proposed
by [19,18], dealing with a rational delay kernel, still relies on the use of a
Lyapunov-Krasovskii approach and is combined with a full block S procedure
to cope with the induced parametrized LMI. However, stability is still assessed
only for a prescribed delay which does not provide robust criteria with respect
to the delay.
In this paper, we adopt a different point of view to study the stability of such
systems. First of all, we suppose that the distributed kernel is a polynomial
function, a wider class of system compared to those generally studied in the
literature. Furthermore, we propose to use the quadratic separation approach.
Coming from robust control theory, such tools study the robust stability of a
linear transformation equation interconnected with an uncertain matrix. This
methodology has shown its efficiency in establishing some stability conditions
for linear time delay systems with a constant delay [21,9] or time varying one
[1]. Following the methodology proposed in [21], we model the distributed de-
lay system as a linear equation connected to a set of operators composed of the
integrator and extra operators related to the delayed dynamic. Then, in order
to reduce the conservatism, some relations between the uncertain operators
and higher successive derivatives of the state are exploited to derive new delay
interval stability conditions. This new interesting result allow us to consider
the stability of distributed delay system that may be unstable if the delay is
set to zero.
The paper is organized as follows. Next section is devoted to some preliminar-
ies about the distributed delay system and quadratic separation. Then section
2 formulates a first way to describe the distributed delay system as an inter-
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connected uncertain system. Section 4 gives the central results of the paper.
Section 5 presents some numerical simulations.
Notations : The set Ln

2e is the extended set of Ln
2 which consists of all

measurable functions f : R+ → Cn such that the following norm ‖f‖2 =(
∞∫
0

(f ∗(t)f(t))

)1/2

dt <∞. 1p represents the p×p identity matrix. 0p×q stands

for the p × q zero matrix. diag(A,B) stands for the block diagonal matrix

diag(A,B) =

A 0

0 B

 . C+ is the set of all points in the complex plane whose

real part is positive.

2 Problem statement

We consider a distributed delay system of the form:
ẋ(t) = Ax(t) +

0∫
−h

(Ad(θ) +R(θ))x(t+ θ)dθ,

x(t) = φ(t),∀t ∈ [−hmax, 0],

(1)

where x(t) ∈ Rn denotes the instantaneous state, the scalar h > 0 is unknown
and belongs to the interval [hmin, hmax], A ∈ Rn×n. The initial conditions φ for
system (1) is a continuously differentiable function on [−hmax, 0]. The function
Ad + R represents the distributed kernel of the delay system. The first part
Ad is supposed to be a polynomial function of θ and can thus be written as

Ad(θ) =
r∑
i=0

Adiθ
i, where r is a positive integer corresponding to the polynomial

order and Adi ∈ Rn×n,∀i ∈ {0, . . . , r} are real constant matrices. The second
part R represents a norm-bounded uncertainty structured as :

R(θ) = E∆(θ)F,

where E ∈ Rn×nu , F ∈ Rnu×n are constant known matrices and ∆ ∈ Rnu×nu

embeds the uncertain nature of R and satisfies the inequality

∆(θ)∗∆(θ) ≤ 1nu .

The distributed delay system (1) can be reformulated as:

ẋ(t) = Ax(t) +
r∑
i=0

Adi

0∫
−h

θix(t+ θ)dθ + E

0∫
−h

∆(θ)Fx(t+ θ)dθ. (2)

Remark 1 Taking the distributed kernel as a polynomial function is not so
restrictive since from the Weierstrass approximation theorem [14], every suf-
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ficiently smooth function on a closed and compact interval [−h, 0] can be ap-
proximated as closely as desired by a polynomial of a high enough order.

In this paper, we aim at finding LMI conditions which ensure the stability of
(2) for all delays in an interval [hmin, hmax] where hmin is possibly set to zero
if delay dependent stability tests are looked for. To this end, we propose to
use the quadratic separation framework developed by [13] and extended to the
singular case by [21]. Well-posedness of feedback systems and its corrolary the
quadratic separation is a fundamental concept for stability analysis of non-
linear and uncertain systems. It states that internal signals of a multivariable
feedback connection of two systems F and G are unique and bounded under
external disturbances if and only if the graph of F is topologically separated
from the inverse graph of G. Let consider the feedback connection depicted
in Figure 1, where E and A are two possibly non-square matrices and ∇ is
an uncertain constant complex valued matrix of appropriate dimensions, that
belongs to a given set ∇∇. The stability definition can be expressed as follows:

∃γ̄ > 0, ∀(w̄, z̄), ∀∇ ∈ ∇∇ ,

∥∥∥∥∥∥∥
w

z

∥∥∥∥∥∥∥ ≤ γ̄

∥∥∥∥∥∥∥
w̄

z̄

∥∥∥∥∥∥∥ .

+

+
w

w

z

z

Fig. 1. Feedback system

The following theorem provides a condition for the well-posedness of such an
interconnection, as well as its stability.

Theorem 1 ([21]) The uncertain feedback system of Figure 1 is well-posed
and stable if and only if there exists a Hermitian matrix Θ = Θ∗ satisfying
both conditions [

E −A
]⊥∗

Θ
[
E −A

]⊥
> 0 (3) I

∇


∗

Θ

 I
∇

 ≤ 0 , ∀∇ ∈ ∇∇ . (4)

Remark that for simplicity of calculus, the last theorem is expressed for a full
column rank matrix E which will be the case for all results presented in this
paper. The proposed methodology can then be summarized as follows:

(a) Rewrite the original delay system (2) as an interconnected feedback sys-
tem by choosing an appropriate set of operators. It generally includes the
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integral and delay related operators.
(b) Once the set ∇∇ is properly defined, we look for a separator Θ, which sat-

isfies inequality (4) for all admissible uncertainties. The second inequality
(4) is then fulfilled by construction.

(c) The first inequality (3) gives the stability condition to be tested and should
be formulated as an LMI.

3 Preliminary results

Define the integral operator I and the distributed delay operators δi,∀i ∈
{1, . . . , r}, by

I : L2e → L2e,

x(t) 7→
t∫

0
x(θ)dθ,

(5)

δi : L2e → L2e,

x(t) 7→
0∫
−h
θix(t+ θ)dθ.

(6)

Define also the uncertain operator ν by

ν : L2e → L2e,

x(t) 7→
0∫
−h

∆(θ)x(t+ θ)dθ.
(7)

Since h is an unknown constant, the operators δi and ν can be conveniently ex-

pressed in the Laplace domain by δi(s) =
0∫
−h
θieθsdθ and ν(s) =

0∫
−h

∆(θ)eθsdθ.

Following [13], we describe the uncertainty set ∇∇ as:

∇∇ = {∇(s),∀s ∈ C+}, (8)

∇(s) = diag(s−11n, δ0(s)1n, . . . , δr(s)1n, ν(s)). (9)

The definition of such an uncertainty set allows to describe the original dis-
tributed delay system (2) as a feedback interconnection as Figure 1 with

x(t)

(1nδ0)[x(t)]
...

(1nδr)[x(t)]

ν[Fx(t)]


︸ ︷︷ ︸

w(t)

=



I1n 0

δ01n

. . .

δr1n

0 ν


︸ ︷︷ ︸

∇



ẋ(t)

x(t)
...

x(t)

Fx(t)


︸ ︷︷ ︸

z(t)

, (10)
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

ẋ(t)

x(t)
...

x(t)

Fx(t)


︸ ︷︷ ︸

z(t)

=



A Ad0 . . . Adr E

1 0 . . . 0
...

...
...

1 0 . . . 0

F 0 . . . 0


︸ ︷︷ ︸

A



x(t)

(1nδ0)[x(t)]
...

(1nδr)[x(t)]

ν[Fx(t)]


︸ ︷︷ ︸

w(t)

. (11)

At this stage, we model the original system (2) as a feedback system described
by a linear transformation (11) interconnected with an uncertain transforma-
tion ∇(s) belonging to a set ∇∇ given by equation (9)-(10). In order to use
Theorem 1, we construct a parametrized separator Θ satisfying the second
inequality (4) as stated by the following lemma.

Lemma 1 Consider the uncertain operator ∇ given by (9), a separator Θ
satisfying (4) is given by

Θ =

Θ11 Θ12

Θ∗12 Θ22

 , (12)

with

Θ11 = diag(0n,−h2
maxQ0, . . . ,− h2r+2

max

(r+1)2
Qr,−αh2

max1nu),

Θ12 = diag(−P, 0n(r+1)+nu),

Θ22 = diag(0, Q0, . . . , Qr, α1nu),

and α > 0, P,Q0, . . . , Qr ∈ Rn×n some positive definite matrices.

Proof 1 The key idea is to construct a separator for each uncertainty s−1,
δ0, . . . , δr,ν which composes ∇ and then to concatenate all these relations to

derive the whole separator Θ. Noting that ∀s ∈ C+, |δi(s)| ≤ hi+1
max

i+1
, and follow-

ing [9], a first set of separators for δi, parametrized by Qi > 0 can be defined
using the fact that

 1n

δi1n


∗ − h2i+2

max

(i+1)2
Qi 0

0 Qi


 1n

δi1n

 < 0. (13)

A first set of separators for ν, parametrized by α > 0 can be defined using the
fact that  1nu

ν(s)


∗ −αh2

max 0

0 α


 1nu

ν(s)

 < 0. (14)

At last, a separator for I is also parametrized by a positive definite matrix P
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with:  1n

s−11n


∗  0 −P
−P 0


 1n

s−11n

 < 0. (15)

Consequently, gathering all these inequalities, the global separator associated
to ∇ defined by (10) can be chosen as (12).

Combining then Lemma 1 with Theorem 1, we propose the first delay depen-
dent stability result :

Theorem 2 Given positive scalars hmax and r, if there exist positive definite
matrices P , Qi for i = {0, . . . , r} ∈ Rn×n, a positive scalar α such that the
LMI condition (3) holds with Θ, E and A defined as (12) and (11) then system
(2) is asymptotically stable ∀h ≤ hmax.

Proof 2 In order to prove this theorem, we first model the original system
(2) into an interconnected system (10)-(11). Then, applying Theorem 1, since
Lemma 1 fulfils the second requirement (4), the first inequality (3) gives the
condition to be tested.

4 Main Results

Now, we aim at introducing new relevant relations between the different com-
ponents of the distributed delay system. The previous result can be improved
by noting that given i ≥ 1,

δi(s) = −(−h)ie−sh

s
− i

s
δi−1(s).

This additional feature links the different operators each other: δi, δi−1, s−1

and e−hs, the delay operator defined by the

D : L2e → L2e,

x(t) 7→ x(t− h).
(16)

Applying theses relations to the instantaneous state x(t) give us a new set of
relations between the state x(t) and the delayed state x(t− h): (1nδ0)[ẋ(t)] = x(t)− x(t− h),

(1nδi)[ẋ(t)] = −(−h)ix(t− h)− iδi−1[x(t)].
(17)

As it appears that the derivative of x(t) and x(t − h) play a central role in
these relations, we logically propose to consider the original model (2) as well
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as its derivative to obtain a new model:
ẋ(t) = Ax(t) +

r∑
i=0

Adi
0∫
−h
θix(t+ θ)dθ + +E

0∫
−h

∆(θ)Fx(t+ θ)dθ,

ẍ(t) = Aẋ(t) +
r∑
i=0

Adi
0∫
−h
θiẋ(t+ θ)dθ + E

0∫
−h

∆(θ)Fẋ(t+ θ)dθ.
(18)

Obviously, if this delay system (18) is proved to be asymptotically stable,
then the original delay system (2) will be also asymptotically stable. To take
into account all these new relations (17) and (18), an extended uncertain
transformation is required

∇∇ = {∇(s),∀s ∈ C+}, (19)

with

∇(s) = diag( 12ns
−1, 1ne

−hs,

12nδ0(s), . . . , 12nδr(s), 12 ⊗ ν(s)).
(20)

Having chosen the complex matrix ∇ (19) to model system (2), we now define
the matrices as well as the internal signals which compose the linear transfor-
mation E(z − z̄) = Aω:

z(t) =



ẍ(t)

ẋ(t)

x(t)

ẋ(t)

x(t)
...

ẋ(t)

x(t)

Fẋ(t)

Fx(t)



, w(t) =



ẋ(t)

x(t)

x(t− h)

(1nδ0)[ẋ(t)]

(1nδ0)[x(t)]
...

(1nδr)[ẋ(t)]

(1nδr)[x(t)]

ν[Fẋ(t)]

ν[Fx(t)]



. (21)

Defining ∀i ≥ 0, Ādi = 12 ⊗ Adi , and Ē = 12 ⊗ E.

Ā =

A 0 0

0 A 0

 , E1 =



1 0 0

0 1 0

0 1 0

0 0 1


, V =


1
...

1

 ∈ R(r+2),
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and

A1 =

V ⊗ 12n

12 ⊗ F

 ,

A2 =



0 1 −1 −1 0 . . . . . . . . . . . 0

0 0 h1 0 −1 −1 0 . . . 0
...

...
...

...
. . . . . . . . . . . .

...

0 0 −(−h)r1 0 . . . 0 −r1 −1 0


.

The matrices defining the linear transformation are then given by :

E =

 EH

0n(r+1)×n(2r+5)+2nu

 , EH = diag(E1, 12n(r+1)+2nu),

A =


Ā Ād0 . . . . . . . . . . . . . . . . . . . . . Ādr Ē

A1 02n(r+2)+2nu×n(2r+3)+2nu

A2 0n(r+1)×2nu

 .
(22)

We now construct a separator Θ for the uncertain set described by (19).

Lemma 2 Consider the uncertain operator ∇ given by (20), a separator Θ
satisfying (4) is given by

Θ =

Θ11 Θ12

Θ∗12 Θ22

 , (23)

where

Θ11 = diag(0,−R,−h2
maxQ0, . . . ,− h2r+2

max

(r+1)2
Qr,−h2

maxα11nu ,−h2
maxα21nu),

Θ12 = diag(−P, 0, . . . , 0),

Θ22 = diag(0, R,Q0, . . . , Qr, α11nu , α21nu),

with P,Q0, . . . , Qr ∈ R2n×2n, R ∈ Rn×n, r + 3 positive definite matrices and
α1, α2 positive scalars.

Proof 3 This proof follows essentially the same line than the one of Lemma
1, except that an additional uncertainty e−hs, representing the point wise delay
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is added to ∇. Noting that ∀s ∈ C+, |e−hs| ≤ 1, we get 1n

e−hs1n


∗ −R 0

0 R


 1n

e−hs1n

 < 0. (24)

Gathering the former relations (13), (14), it is straightforward to prove that
separator (23) along with (20) satisfies inequality (4), which concludes the
proof.

We are now ready to present a second original result.

Theorem 3 For given positive scalars h, hmax, r such that 0 ≤ h ≤ hmax, if
there exists positive definite matrices P,Q0, . . . , Qr ∈ R2n×2n and R ∈ Rn×n,
two positive scalars α1, α2 then system (2) is asymptotically stable for the given
h, if the LMI condition (3) holds with Θ, E and A defined as (23) and (22).

Proof 4 This proof is similar to the one of Theorem 2 and is thus omitted.

Remark 2 The proposed LMI condition relies on a matrix whose coefficients
depend polynomially on the value of the delay h. Therefore, as h belongs to
a given interval [hmin, hmax], some tools inherited from robust analysis can be
used to transform the problem into a set of LMI which depend only on the
values hmin and hmax. In particular, two different techniques could be investi-
gated:

• The proposed LMI is transformed into an LFT transformation depending
on the variable h. This is always possible since h appears rationnaly in the
coefficients of the LMI. Then, a D-G scaling [22] can be used to caracterise
h, as h is a real variable belonging to an interval. Finally, the use of KYP
lemma allows to derive an LMI, numerically tractable.

• Another interesting possibility relies on the use of Sum Of Squares method-
ology to developp an efficient criterion ([7] for a comprehensive treatment
of such optimisation scheme).

Here, compared to these robust analysis tools, we propose an alternative
method based on the introduction of extra variables and a complete rewriting
of the original system. Indeed, we aim at expressing the relationship (17) as a
set of equations, linear with respect to h:

δ0(s) = 1−e−hs
s

,

δ1(s) = he−hs

s
− 1

s
δ0(s),

δi(s) = −(h+ i
s
)δi−1(s)− h(i−1)

s
δi−2(s),∀i ≥ 2.

(25)

Furthermore, in order to take advantage from these new relations, following
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the work of [4], we consider the augmented vector:

y(t)T =
[
x(l−1)T (t) x(l−2)T (t) . . . ẋ(t)T x(t)T

]
.

This extended vector and its derivative are linked by the linear relation:
0 1
...

. . .

0 1


︸ ︷︷ ︸

E2

ẏ(t) =


1 0

. . .
...

1 0


︸ ︷︷ ︸

E1

y(t). (26)

We now consider the following augmented system:

ẏ(t) = Āy(t) +
r∑
i=0

Ādi

0∫
−h

θiy(t+ θ) + Ē

0∫
−h

∆̄(θ)F̄ y(t+ θ), (27)

with Ā = 1l⊗A, Ādi = 1l⊗Adi,∀i ∈ {1, . . . , l},Ē = 1l⊗E,F̄ = 1l⊗F ,∆̄(θ) =
1l⊗∆(θ). In order to represent such a system into an interconnected feedback
as Figure 1, we propose to use the following uncertain set:

∇∇ = {∇(s),∀s ∈ C+}, (28)

with

∇(s) = diag( 1nls
−1, 1nle

−hs,

1nlδ0(s), . . . , 1nlδr(s), 1l ⊗ ν(s)).
(29)

Choosing the uncertain transformation ∇ as (28), the modelling of system
(27) is described as follows. Firstly, we introduce the internal signals:

z(t) =



ẏ(t)

y(t)

y(t)
...

y(t)

F̄ y(t)


, w(t) =



y(t)

y(t− h)

(1nlδ0)[y(t)]
...

(1nlδr)[y(t)]

(1l ⊗ ν)[F̄ y(t)]


. (30)

Then, we aim at describing system (27) using internal signals (30).
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• We first take into account the redundant equations in the internal signals
and system equations (27):



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
. . .

...

0 0 0 . . . 1

E2 −E1 0 . . . 0


︸ ︷︷ ︸

E1

z(t) =



Ā 0 Ād0 . . . Ādr Ē

1 0 0 0 . . . 0
... 0 0 0 . . . 0

1 0 0 0 . . . 0

F̄ 0 0 0 . . . 0

0 0 0 0 . . . 0


︸ ︷︷ ︸

A1

w(t).

• Applying E1y(t) to relations (25) yields to the following equations:
E1(1nlδ1)[y(t)] = E2y(t)− E2y(t− h),

E1(1nlδ1)[y(t)] = hE2y(t− h)− E2(1nlδ0)[y(t)],

E1(1nlδi)[y(t)] = −(hE1 + iE2)(1nlδi−1)[y(t)]− h(i− 1)E2(1nlδi−2)[y(t)],∀i ≥ 2,

(31)
which can rewritten as linear relations using only w(t):

−E2 E2 E1 0 0 0 . . . 0

0 −hE2 E2 E1 0 0 . . . 0

0 0 hE2 (hE1 + 2hE2) E1 0 . . . 0
...

...
. . . . . . . . . . . . . . . 0

0 0 0 0 h(r − 1)E2 (hE1 + rhE2) E1 0


︸ ︷︷ ︸

A2

w(t) = 0.

Regrouping all the terms yields to a linear representation of the extended
system:

E1

0


︸ ︷︷ ︸
E

z(t) =

A1

A2


︸ ︷︷ ︸
A

w(t). (32)

Given the interconnected feedback given by equation (32) and (29), we propose
a separator:

Lemma 3 Consider the uncertain operator ∇∇ given by (29), a separator Θ
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satisfying (4) is of the form (33)

Θ =

Θ11 Θ12

Θ∗12 Θ22

 , (33)

where

Θ11 = diag(0,−R,−h2
maxQ0, . . . ,− h2r+2

max

(r+1)2
Qr,−h2

maxα11nu , . . . ,−h2
maxαl1nu),

Θ12 = diag(−P, 0, . . . , 0),

Θ22 = diag(0, R,Q0, . . . , Qr, α11nu , . . . , αl1nu),

with R,P ∈ Rnl×nl,Q0, . . . , Qr ∈ Rnl×nl some positive definite matrices and
α1, . . . , αl ∈ R some positives scalars.

Proof 5 This proof is similar to the one of Lemma 1 and is thus omitted.

We are now in position to propose a delay-range stability criterion :

Theorem 4 For given positive scalars hmin, hmax, r, l such that hmin ≤ hmax,
if there exists positive definite matrices Q0, . . . , Qr ∈ R2n(l+1)×2n(l+1), P,R ∈
Rn(l+1)×n(l+1) and a matrix X ∈ R2n(l+1)(5+2r)×(nl(4r+7)+n(3r+5)), such that Θ +XS(hmin) + S(hmin)TXT > 0,

Θ +XS(hmax) + S(hmax)TXT > 0,
(34)

with

S(hmin) =
[
E −A(hmin)

]
,

S(hmax) =
[
E −A(hmax)

]
,

and Θ, E, A(h) defined as (33) and (32), then system (2) is asymptotically
stable for h, such that hmin ≤ h ≤ hmax.

Proof 6 The proof follows the same lines than the one of Theorem 3. We use
Theorem 2 to the uncertain interconnection defined by equations (29) and (32).
By construction of the separator (33), the second requirement (4) is fulfilled.
Then, the first requirement (3) gives that[

E −A(h)

]⊥∗
Θ
[
E −A(h)

]⊥
> 0. (35)

This last inequality is not linear in h but using Finsler Lemma, a sufficient
condition for (35) is :

Θ +X
[
E −A(h)

]
+
[
E −A(h)

]T
XT > 0, (36)
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with X a matrix of appropriate dimensions. This last inequality is then linear
in h and this inequality has to be assessed on the 2 vertices of the polytop
generated by the interval on h, which concludes the proof.

Remark 3 (Robust Stability) System (2) is modeled in a robust frame-
work, the extension of previous result to the robust case is straightforward and
thus will not be explained.

Remark 4 (Conservatism reduction) As Theorem 3 is based on the re-
sults of Theorem 2, if we prove that system (1) is stable for [0, h∗] with Theo-
rem 2, it implies that the LMI of Theorem 3 is also fullfilled.

Remark 5 (Computationnal complexity) Numerically, the different LMI
problems have the following characteristics:

- Theorem 2. The overall number of decision variables is (r+2)(n+1)n
2

+ 1.
- Theorem 3. The overall number of decision variables is (r + 2)(2n + 1)n +

2 + n(n+1)
2

.
- Theorem 4. The overall number of decision variables is n(l+1)(r+1)(2n(l+

1)+1)+n(l+1)(n(l+1)+1)+l+2n2(l+1)(5+2r)(l(4r+7)+3r+5). These last
comments on the numbers of variables for the LMI problem clearly indicate
that even if one can prove some asymptotic property as l grows to infinity,
it would be numerically intractable.

5 Examples

Example 1 :
Consider the following scalar example which has been considered in [19]:

ẋ(t) = −0.5x(t) +

0∫
−h

γ(2, 1,−θ)x(t+ θ)dθ (37)

with x(t) ∈ R, γ(k, α, θ) = θk−1e−θ/α

Γ(k)αk
is the probability density function of the

gamma distribution. Let choose a polynomial P (θ) and an uncertain set ∆(θ)
such that the function is entirely covered by P±δ, where δ plays the role of the
uncertainty. We construct the polynomial P using a polynomial interpolation
of order 4 in a least-squares sense. In this example P (θ) = −0.7466θ−0.644θ2−
0.235θ3−0.039θ4−0.0026θ5, and we choose δ = 0.05. The results are illustrated
in Figure 2. Using Theorem 3 and 4, we get then the results summarized in
table 1.

Example 2 :
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0.35

0.4
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P
(θ

),
γ
(2

,1
,−

θ
)

 

 

γ(2,1,− θ)

P (θ) + 0.05

P (θ) −0.05

P (θ)

Fig. 2. γ(θ), P (θ)± δ for θ ∈ [−5; 0]

Method hmax Numbers of variables

Theorem 3, 0.86 24

Theorem 4,l = 1 1.480 2887

Theorem 6, [19] 1.442 14

Analytical bound [2] 1.489 -
Table 1
Maximum allowable delay hmax for system (37)

Consider the distributed delay system:

ẋ(t) = −2x(t) +

0∫
−h

(1 + θ + θ3)x(t+ θ)dθ. (38)

Using an analytical method [2], system (38) is shown to be asymptotically
stable for all delays less than 1.759. Using Theorem 3, we prove that system
(38) is asymptotically stable ∀h < 1.0. Then, choosing hmin = 0 and using
Theorem 4, we get the results summarized in table 2.

Using an augmented vector to model the original system allows a reduction of
conservatism. Nevertheless, for l ≥ 3, increasing l do not improve anything.
Moreover, surprisingly, if the kernel Ad(θ) = 1+θ+θ3 is modeled as a polyno-

mial of order greater than r, taking the distributed kernel as Ad(θ) =
µ∑
i=0

Adi

with Adi = 0, ∀i ≥ 3, we introduce therefore fictitious operators δr+1, δr+2, . . .,
which slightly improved results as shown in Table 2. Combining these two
effects, the choice of the polynomial degree and the number of higher deriva-
tives, we expect an improvement of our results. Hence, using r = 9, l = 9, we
prove that system is stable for h ≤ 1.758, close to the analytical bound.
Example 3 :
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Method hmax Numbers of variables

Theorem 4,l = 0 1.32 322

Theorem 4,l = 1 1.58 1499

Theorem 4,l = 2 1.60 3530

Theorem 4,l ≥ 3 1.61 -

Theorem 4, l = 0 hmax Numbers of variables

r = 3 1.32 322

r = 4 1.43 459

r = 5 1.432 620
Table 2
Maximum allowable delay hmax for system (38)

This example is a second order distributed system of the form (2):

ẋ(t) =

0.2 0.01

0 −2

x(t) +

0∫
−h

−1 + 0.3θ 0.1

0 −0.1

x(t+ θ)dθ (39)

Obviously this system is unstable for h = 0. Furthermore, using the analytical
method proposed by [2] and a gridding technique, this system appears to be
stable for 0.195 ≤ h ≤ 1.71. Using Theorem 4 over a sliding window, we
obtain the following results, summarized in Table 3. Finally, gathering all

Theorem 4, hmin hmax Numbers of variables

l = 1, r = 1 0.23 1 2221

l = 1, r = 2 0.21 1.2 3873

l = 1, r = 3 0.2 1.29 5973

l = 2, r = 1 0.21 1 5240

l = 2, r = 2 0.20 1.2 9134

l = 2, r = 3 0.20 1.3 14034
Table 3
Intervall of stability [hmin, hmax] for system (39) w.r.t. l and r

these intervals, we prove then that system (39) is stable ∀h ∈ [0.20, 1.3].
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6 Conclusion

The paper is dedicated to the stability of distributed delay system by using
the quadratic separation paradigm. It allows to consider to a wider class of
distibuted kernel and to exploit some interactions between the different signals
related to the delayed dynamics. Future works include extension of this work to
more general kernels. Approximating the kernel by a polynomial and modelling
the related error by a bounded uncertainty seems to be a promising way.
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