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Abstract
In our previous work, we investigated detectability of discrete event systems, which is defined as
the ability to determine the current and subsequent states of a system based on observation. For
different applications, we defined four types of detectabilities: (weak) detectability, strong
detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we
extend our results in three aspects. (1) We extend detectability from deterministic systems to
nondeterministic systems. Such a generalization is necessary because there are many systems that
need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial
algorithms to check strong detectability. The previous algorithms are based on observer whose
construction is of exponential complexity, while the new algorithms are based on a new automaton
called detector. (3) We extend detectability to D-detectability. While detectability requires
determining the exact state of a system, D-detectability relaxes this requirement by asking only to
distinguish certain pairs of states. With these extensions, the theory on detectability of discrete
event systems becomes more applicable in solving many practical problems.
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1. Introduction
In many applications, we need to determine the state of a system. For example, when an
assembly line has a failure, we need to diagnose its fault before the assembly line can be
repaired and return to normal operation. Also, before we make a treatment plan for a patient,
it is necessary to determine the disease status of the patient. Obviously, there are many such
examples. In many situations, the system under consideration can be modeled as a discrete
event system [1,2,3,4,5,6] and the problems can be translated into state estimation problems
in a discrete event system framework.

State estimation problems in discrete event systems are important and interesting. They are
first investigated in [7,8] and followed by [9]. In [7,8] current state estimation and initial
state estimation are discussed. [8] discusses how to construct an observer which can describe
the ability to uniquely estimate the state for any state output sequence. In [9] the authors
discuss whether the current state can be determined periodically and call such property
stability. We first present a full investigation of state estimation in [10] by introducing
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detectability. Detectability is defined as the ability to estimate the current and subsequent
states of a system based on observation. We define four types of detectabilities for different
applications: (weak) detectability, strong detectability, (weak) periodic detectability and
strong periodic detectability. We derive necessary and sufficient conditions and algorithms
to check these four detectabilities by constructing observers.

However, systems considered in [10] are deterministic in the sense that if a system is in a
given state and a particular event occurs, then the next state is determined. In the current
paper, we first extend our results to nondeterministic discrete event systems. Even though
the ways to solve detectability of nondeterministic discrete event systems and detectability
of deterministic discrete event systems with partial event observation are similar in terms of
methodology, it is still necessary to extend the detectability results to nondeterministic
discrete event systems for more realistic applications of detectability.

Checking detectabilities using methods in [10] requires the construction of an observer.
Since in the worst case, the cardinality of the state space of the observer is exponential with
respect to the cardinality of the state space of the original system, the computational
complexity of checking detectabilities using methods in [10] is exponential with respect to
the cardinality of the state space of the original system in the worst case. So it is important to
search for more efficient algorithms for checking detectabilities. As the second contribution
of this paper, we develop a method to check strong detectability and strong periodic
detectability with only polynomial complexity in terms of the cardinality of the state space
of the original system. The method is based on the construction of a “detector”. The detector
is nondeterministic and its state space is quadratically bounded.

In our previous paper [10], the goal is to know exactly the current and subsequent states
after some finite number of observations. However, this goal may be too restrictive for many
applications. In some applications, we may want to know whether a system can enter a
subset of states periodically (see [9]). In other applications, we may want to know whether
the system always stays in a subset of states after some finite occurrences of events. For a
diagnosis problem based on states [13,14], the state set is divided into several subsets. We
want to know which subset the system is in. In supervisory control of discrete event systems
based on state feedback, we need to distinguish the states that have different control actions
[15]. In all these applications, the requirements can be translated to distinguishing certain
pairs of states. To use detectability in these applications, we need a more general definition
of detectability. The third contribution of this paper is to extend the detectability to D-
detectability. While detectability requires determining the exact state of a system, D-
detectability relaxes the requirement by asking only to distinguish certain pairs of states. We
derive necessary and sufficient conditions for checking D-detectability.

In the rest of the paper, we will generalize detectability results to nondeterministic discrete
event systems in Section 2; derive polynomial algorithms to check strong detectability and
strong periodic detectability in Section 3; and investigate D-detectability in Section 4.

2. Nondeterministic Discrete Event Systems
We use an automaton to describe a nondeterministic discrete event system [3,16],

where Q is the finite state set, ∑ is the finite event set,  is the
(nondeterministic) transition function, and q0 is the initial state. The transition function f
describes the dynamic behavior of the system: if the system is in state q and event σ occurs,
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then the system moves (non-deterministically) to one of the states in f (q,σ) . An equivalent
way to define the transition function is to specify the set of all possible transitions:
{(q,σ,q’) : q’∈ f (q,σ)}. With a slight abuse of notation, we will also use f to denote the set of
all possible transitions and write (q,σ,q’) ∈ f if q’∈ f (q,σ) .

For different state estimation problems, we will assume different knowledge on the initial
state. We use Q0 (⊆ Q) to denote the set of possible initial states. If Q0 = {q0}, then we
know exactly the initial state q0; and if Q0 = Q , then we know nothing about the initial state.
More generally, we can have Q0 ⊆ Q . So the automation can be re-written as:

The event set is divided into two disjoint parts: the observable part ∑o and the unobservable
part ∑uo . The state estimation is based on event observation, which is described by the
natural projection:

where ε denotes the empty string. P−1 denotes the inverse of natural projection P :

As in [9,10], we make the following two assumptions. (1) G is deadlock free, that is, for any
state of the system, at least one event is defined at that state:  .
(2) No loops in G contain only unobservable events:

A possible trajectory of the system is represented by an infinite sequence of events that the
system may generate. The set of all possible trajectories of G is denoted by the ω-language
Lω (G) [17]. Because of the above assumptions, we know that for an infinite sequence of
events, the length of the projected observable event sequence should also be infinite.

Suppose that the discrete event system G is in a set of possible states Q’ ⊆ Q , then the set of
all possible states after observing  is denoted by

In particular, the unobservable reach is defined as:

For s ∈ Lω (G), denote the set of all its prefixes by Pr(s) . Let us also denote the set of
positive integers by N . If t is a string, then | t | denotes its length. If x is a set, | x | denotes its
cardinality (number of elements). With these notations, we can extend the definitions of
detectabilities defined in [10] to nondeterministic systems in a formal way.
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Definition 1 (Strong Detectability)
A nondeterministic discrete event system G is strongly detectable with respect to P if we can
determine, after a finite number of observations, the current state and subsequent states of
the system for all trajectories of the system. That is,

Definition 2 (Detectability)
A nondeterministic discrete event system G is detectable with respect to P if we can
determine, after a finite number of observations, the current state and subsequent states of
the system for some trajectories of the system. That is,

Definition 3 (Strong Periodic Detectability)
A nondeterministic discrete event system G is strongly periodically detectable with respect
to P if we can periodically determine the current state of the system for all trajectories of the
system. That is,

Definition 4 (Periodic Detectability)
A nondeterministic discrete event system G is periodically detectable with respect to P if we
can periodically determine the current state of the system for some trajectories of the system.
That is,

The intuition and usefulness of the above definitions of four types of detectabilities are
discussed in [10] and briefly summarized here: Strong detectability is the strongest among
four; it requires that the state can be determined after some finite observations for all
trajectories and at all time. Periodic detectability is the weakest; it requires that the state can
be determined for some trajectories and at some time. In some application, such as ensuring
safety of a nuclear reactor, we need a strong version of detectability; while in some other
applications, a weaker version may be sufficient.

The problem of checking these detectabilities can be solved by constructing an observer.
The observer can be constructed by first replacing all unobservable events in G by the empty
string ε and then converting the nondeterministic automaton into a deterministic automaton
in the usual way [3,10]. Denote the observer by

where Ac(.) denotes the accessible part and UR(Q0) is the unobservable reach of Q0 . Note
that a state x ∈ X is a subset of Q ( x ⊆ Q ). The transition function  is defined,
for x ⊆ Q and σ ∈ ∑o , as
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If the above set is empty, we say that δ(x,σ) is undefined. We extend δ to strings in the usual
way. As shown in [3,10], L(Gobs) = P(L(G)) and for s ∈ L(Gobs) , δ(xo,s) = R(Q0,s), that is,
the observer describes the estimation of possible states of the system.

To present necessary and sufficient conditions for detectabilities, we first mark the states in
Gobs that contain singleton state and denote the set by:

When Gobs is in Xm , we know exactly which state G is in. For detectability, states involved
in loops are of particular interest because Gobs can stay in these states forever. Therefore, let
us denote the set of all loops in Gobs as

Theorem 1
A nondeterministic discrete event system G is strongly detectable with respect to P if and
only if in observer Gobs ,  , that is, any state
reachable from any loop in Gobs is in Xm .

Proof:

(If) Assume that G is not strongly detectable with respect to P , that is,

Let n =| X | . Then such an s must go through at least one loop in Gobs . Denote the first loop
by (x,u) ∈ Loop . For this s ,  . Since (x,u) is the
first loop and |P(t)>| X | , P(t) will pass x first, that is,  .
Furthermore,

Therefore,  .

(Only If) Assume  is not true, that is,
 . Let v be any string heading to x from the initial

state, that is, δ(xo,v) = x . For any n ∈ N , there exists  and
 such that
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That is, G is not strongly detectable with respect to P .

Q.E.D

Theorem 2
A nondeterministic discrete event system G is detectable with respect to P if and only if in
observer Gobs ,  , that is, there are loops in Gobs
that are entirely within Xm .

Proof:

(If) Assume  . Let v be any string leads to x from
the initial state, that is, δ(xo,v) = x . Then there exists  and n = |v| ∈
N such that

That is, G is detectable with respect to P .

(Only If) Assume that G is detectable with respect to P , that is,

Then such a s must go through at least one loop in Gobs infinitely often. Denote this loop by
(x,u) ∈ Loop . From the above equation,

Therefore,  .

Q.E.D

Theorem 3
A nondeterministic discrete event system G is strongly periodically detectable with respect
to P if and only if in observer Gobs ,  , that is, all
loops in Gobs must include at least one state belonging to Xm .

Proof:

(If) Assume that G is not strongly periodically detectable with respect to P , that is,

Let n =| X | +1. Then such a s must go through at least one loop in Gobs such that it is the last
loop passed by P(tt’) with P(t’) =| X | . Denote this loop by (x,u) ∈ Loop .

since ,
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Therefore,  .

(Only If) Assume  is not true, that is,
 . Let v be any string leads to x from the initial

state, that is, δ(xo,v) = x . Then there exists  and 
such that

That is, G is not strongly periodically detectable with respect to P .

Q.E.D

Theorem 4
A nondeterministic discrete event system G is periodically detectable with respect to P if
and only if in observer Gobs ,  , that is, there are
loops in Gobs which include at least one state belonging to Xm .

Proof:

(If) Assume that G is periodically detectable with respect to P , that is,

Then such a s must go through at least one loop in Gobs in which | R(Q0,P(tt’)) |= 1 is true
for some t’ . Denote this loop by (x,u) ∈ Loop . From the above equation,

Therefore,  .

(Only If) Assume  is true. Let v be any string
leads to x from the initial state, that is, δ(xo,v) = x . Then there exists

 and n = |vu| ∈ N such that

That is, G is periodically detectable with respect to P .
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Q.E.D

Remark 1
The above necessary and sufficient conditions for four detectabilities are similar to those
obtained in [10]. Here we state them more formally and prove them for nondeterministic
discrete event systems. In [10], we made a mistake in stating Theorem 1 for checking strong
detectability of deterministic discrete event system. Note that deterministic discrete event
systems can be viewed as special case of nondeterministic discrete event systems. Therefore,
the correct version of the theorem is as stated in Theorem 1 above.

3. Polynomial Algorithms
Checking detectabilities using Theorems 1-4 requires the construction of an observer. Since
in the worst case, the cardinality of the state space of the observer is 2|Q| , the computational
complexity of constructing the observer is exponential. Therefore, it is useful and important
to find some more efficient ways to check detectabilities. So far, we have not found more
efficient ways to check detectability and periodic detectability. However, we have found a
method to check strong detectability and strong periodic detectability with polynomial
complexity. The method is based on the construction of a “detector”, which is defined as
follows:

The initial state of Gdet is y0 = UR(Q0) (same as x0 of Gobs ). The other states of Gdet are
subsets of Q which contain at most two elements, that is,

The transition function  is defined, for y ∈ Y’, y ⊆ Q and σ ∈ ∑o as follows.
First, define an intermediate or temporary variable

 . Then according to the number of elements in
Temp , we have

We extend ξ to strings in the usual way.

The difference between Gobs and Gdet can be viewed as follows. Whenever a state in Gobs
contains more than two elements, it is split into several states and each contains two
elements. This makes Gdet nondeterministic. Since the cardinality of the state space of Gdet
is bounded by |Y’| ≤ 1 + |Q| + |Q|(|Q| −1) / 2 , the complexity of constructing Gdet is
polynomial.

Remark 2
Polynomial algorithms to check event-based diagnosability are presented in [11,12]. [11]
checks diagnosability by constructing a verifier and [12] checks diagnosability by
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constructing a new automaton Gd . There are significant differences between the results of
[11,12] and our results. First, we study detectability while [11,12] investigate diagnosability.
In particular, the initial state in [11,12] is certain, but in our paper it is uncertain.
Furthermore, in terms of technology, the transitions defined for verifier and Gd are totally
different from the transitions defined for our detector. Our transitions are obtained by
splitting the state Temp after we observe an observable event.

The following lemma relates observer Gobs and detector Gdet and will be used in the proofs
of the results later.

Lemma 1
The relation between observer Gobs and detector Gdet is as follows.

1. For any  ,  if |δ(x0,s)| = 1 .

2. For any  and any y ⊆ Q such that |y| = 2 ,  .

Proof:

Since the definitions of δ(y,σ) and Temp are the same, from the definition of ξ , we can
conclude the following.

(C1) If δ(y’,σ) satisfies |δ(y’,σ)| = 1 , then

(C2) If δ(y’,σ) satisfies |δ(y’,σ)| ≥ 2 , then for any state y ⊆ Q such that |y| = 2 ,

Using (C1) and (C2), we can prove the lemma by induction on the length | s | of  .

Base: For | s |= 1 , that is, s = σ ∈ ∑o , we can prove Part 1 of the lemma by letting y’ = y0 in
(C1) and prove Part 2 of the lemma by letting y’ = y0 = x0 in (C2).

Induction Hypothesis (IH): Suppose that for any  such that | s |≤ n Lemma 1 is true.

Induction Step: we need to prove that Lemma 1 is true for any  such that | sσ |= n
+1. Since the size of δ(y0,s) and δ(y0,sσ) may be one or more than one, we need to discuss
four possible cases as follows.

Case 1: |δ(x0,s)| = 1 and |δ(x0,sσ)| = 1 .

Since |δ(x0,sσ)| = 1, we need to prove ξ(y0,sσ) = {δ(x0,sσ)}, which can be done as follows.
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Case 2: |δ(x0,s)| = 1 and |δ(x0,sσ)| ≥ 2 .

Since |δ(x0,sσ)| ≥ 2 , we need to prove for any y ⊆ Q such that |y| = 2 ,
 . This can be done as follows.

Case 3: |δ(x0,s)| ≥ 2 and |δ(x0,sσ)| = 1 .

Since |δ(x0,sσ) = 1 , we need to prove ξ(y0,sσ) = {δ(x0,sσ)} , which can be done as follows.

Case 4: |δ(x0,s)| ≥ 2 and |δ(x0,sσ)| ≥ 2 .

Since |δ(x0,sσ)| ≥ 2 , we need to prove for any y ⊆ Q such that |y| = 2 ,
 . This can be done as follows.
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Detector Gdet can be used to check strong detectability and strong periodic detectability. To
do this, let us mark singleton states in Gdet as:

Similar to Gobs , let us denote the set of all loops in Gdet as

The necessary and sufficient conditions to check strong detectability and strong periodic
detectability are given in the following theorems.

Theorem 5
A nondeterministic discrete event system G is strongly detectable with respect to P if and
only if in detector Gdet ,  , that is, any state
reachable from any loop in Gdet is in Ym .

Proof:

By Theorem 1, we only need to show that  if and
only if  .

(Only If) If  is true, then in particular, any state in
any loop in Gobs belongs to Xm , that is,  . Hence, none of these states
will be split in Gdet . Formally, for any (x,u) ∈ Loop , let v be any string that leads to x from
the initial state, that is, δ(xo,v) = x . By Lemma 1, ξ(yo,v) = {δ(xo,v)}. Therefore, the set of
loops in Gobs , Loop , is isomorphic to the set of loops in Gdet , YLoop . Hence, by Lemma 1,

(If) If  is true, then in particular, any state in any
loop in Gdet belongs to Ym . Hence, none of these states is obtained by splitting states in
Gobs . Therefore, as in the Only If part of the proof, the set of loops in Gdet , YLoop , is
isomorphic to the set of loops in Gobs , Loop . Hence, by Lemma 1,
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Q.E.D

Theorem 6
A nondeterministic discrete event system G is strongly periodically detectable with respect
to P if and only if in detector Gdet ,  , that is, all
loops in Gdet must include at least one state belonging to Ym .

Proof:

By Theorem 3, we only need to show that  if and
only if  .

(Only If) If  is true, then any loop will include at
least one state δ(x,w) ∈ Xm . Such a singleton state δ(x,w) will not be split in Gdet . Formally,
for any (x,u) ∈ Loop , let v be any string that leads to x from the initial state, that is, δ(xo,v) =
x . By Lemma 1, ξ(yo,vw) = {δ(xo,vw)} . Therefore, although Gdet may have more loops than
Gobs , but all the loops in Gdet will include at least one singleton state. Hence,

(If) Suppose  is true, then any loop will include
at least one singleton state ξ(y,w) ∈Ym , which is not obtained by splitting states in Gobs .
Therefore, as in the Only If part of the proof, although Gdet may have more loops than Gobs ,
but all the loops in Gobs will include at least one singleton state. Hence,

Q.E.D

To illustrate the above results on how to check detectabilities, let us consider the following
example.

Example 1
Consider a discrete event system shown in Figure 1. We assume that all the events are
observable and we know nothing about the initial state, that is: ∑o = ∑ and Q0 = Q .

To check detectabilities, we construct the observer, which is shown in Figure 2. The marked
states Xm = {x ∈ X : | x |= 1} are those in the last row in Figure 2. Because not all the loops
in Gobs are entirely within Xm , by Theorem 1, the system is not strongly detectable. Because
there are loops in Xm , by Theorem 2, the system is detectable. Because there are loops in
Gobs which are entirely within X − Xm , by Theorem 3, the system is not strongly
periodically detectable. Because there are loops in Gobs which include at least one state
belonging to Xm , by Theorem 4, the system is periodically detectable. Observer Gobs has
2|Q| −1 = 24 −1 = 15 states, which is exponential with respect to the number of states in Q .
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To avoid the exponential complexity, let us construct detector Gdet as shown in Figure 3.
Detector Gdet has | Q | (| Q | −1) / 2+ | Q | +1 = 4·3/ 2 + 4 + 1 = 11 states, which is
polynomial with respect to the number of states in Q .

For detector Gdet , the marked states Ym = {y ∈Y : |y| = 1} are those in the last row in Figure
3. Because not all the loops in Gdet are entirely within Ym , by Theorem 5, the system is not
strongly detectable. Because there are loops in Gdet which are entirely within Y − Ym , by
Theorem 6, the system is not strongly periodically detectable.

4. D-Detectability
Detectabilities discussed in the previous sections require that we can exactly determine the
current and subsequent states after a finite number of observations. This requirement is
useful in some applications but may be too strong in others. In this section, we relax this
requirement and ask only to distinguish certain pairs of states. The requirement of
distinguishing certain pairs of states is used in communication problems and sensor
activation problems [15]. However, it has not been studied in terms of detectability before.
Detectabilities in terms of distinguish certain pairs of states will be called D-detectabilities
(D for “distinguish”). To define D-detectabilities, we define the set of state-pairs T , for a
given set of states Q , as

Noted that (q,q’) and (q’,q) are the same state-pair. We specify the set of state-pairs to be
distinguished as a subset of T , that is,

We call Tspec a specification. D-detectability requires that any state pair (q,q’) in
specification Tspec is distinguishable after a finite number of observations.

If the estimation of the states is a subset Q’ ⊆ Q , then the set of undistinguishable state pairs
is given by:

Since the set of all possible states after observing t ∈ ∑* is denoted R(Q0,t), when we
observe event sequence t ∈ ∑*, the set of undistinguishable state pairs is given by:

Therefore, we have the following definitions of D-detectabilities.

Definition 5 (Strong D-detectability)
A nondeterministic discrete event system G is strongly D-detectable with respect to P and
Tspec if we can distinguish state pairs in Tspec all the time, after a finite number of
observations, for all trajectories of the system. That is,
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Definition 6 (D-detectability)
A nondeterministic discrete event system G is D-detectable with respect to P and Tspec if we
can distinguish state pairs in Tspec all the time, after a finite number of observations, for
some trajectories of the system. That is,

Definition 7 (Strong Periodic D-detectability)
A nondeterministic discrete event system G is strongly periodically D-detectable with
respect to P and Tspec if we can distinguish state pairs in Tspec periodically for all trajectories
of the system. That is,

Definition 8 (Periodic D-detectability)
A nondeterministic discrete event system G is periodically D-detectable with respect to P
and Tspec if we can distinguish state pairs in Tspec periodically for some trajectories of the
system. That is,

To check D-detectabilities, we construct an observer Gobs as in Section 2. However, we
mark the states differently as follows:

In other words, when the system is in x ∈ XD , we can distinguish all the state pairs in Tspec .

Based on observer Gobs , the following necessary and sufficient conditions for D-
detectability can now be derived as shown in the following theorems, whose proofs are
omitted because they are similar to the proofs in the previous sections.

Theorem 7
A nondeterministic discrete event system G is strongly D-detectable with respect to P and
Tspec if and only if in observer Gobs ,  , that is, any
state reachable from any loop in Gobs is in XD .

Theorem 8
A nondeterministic discrete event system G is D-detectable with respect to P and Tspec if
and only if in observer Gobs ,  , that is, there are
loops in Gobs that are entirely within XD .
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Theorem 9
A nondeterministic discrete event system G is strongly periodically D-detectable with
respect to P and Tspec if and only if in observer Gobs ,

 , that is, all loops in Gobs must include at least
one state belonging to XD .

Theorem 10
A nondeterministic discrete event system G is periodically D-detectable with respect to P
and Tspec if and only if in observer Gobs ,  , that is,
there are loops in Gobs which include at least one state belonging to XD .

In Section 3 we propose a method to check strong detectability and strong periodic
detectability with polynomial complexity by constructing a detector. This method also
works for strong D-detectability. Let Gdet be the detector for G as in Section 2. Mark the

states in  . We have the following theorem to check strong D-
detectability with polynomial complexity.

Theorem 11
A nondeterministic discrete event system G is strongly D-detectable with respect to P and
Tspec if and only if in detector Gdet ,  , that is, any
state reachable from any loop in Gdet is in YD .

Proof:

By Theorem 7, we only need to show that  if and
only if  .

For a state in Gobs , x ∈ X , if | x |> 2 , then let us split it into states in Gdet , that is,

It is not difficult to show that

On the other hand, if | x |≤ 2, then x will remain the same and clearly

With this in mind, we can prove the theorem as follow.

(Only If) If  is true, the all states in all loops are in
XD . Some states will be split in Gdet and possibly forms more loops. By the above
observation, all those split states must be in YD . Hence,
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(If) By the same observation, if all split states in all loops in Gdet are in YD , then all the
original states in all loops in Gobs are in XD . Hence,

Q.E.D

Note that the proof of the above theorem is also different than the corresponding Theorem 5.
Also, unlike detectability, detector Gdet cannot be used to check strong periodic D-
detectability. Let us take an example to illustrate it.

Example 2
Consider a discrete event system shown in Figure 4(a). We assume that all the events are
observable and we know nothing about the initial state, that is: ∑o = ∑ and Q0 = Q . The
specification is {(q1,q3)} . Then the observer is constructed as in Figure 4(b) and the
detector is constructed as in Figure 5.

From the observe we can see that the system is not strongly periodically detectable because
there is one loop  . However, there are no loops in Y − YD .

Remark 3
Detectability is a special case of D-detectability. If we let Tspec = Q×Q − {(q,q) : q ∈ Q} ,
then we want to distinguish all states. Hence D-detectability reduces to detectability.

Remark 4
Stability of discrete event systems has been investigated before, including in [18,19,20].
According to [18,20], a discrete event system is stable if the system will eventually enter and
stay in a subset of states denoted by Qs ⊆ Q . A weak stability is defined in [19], which says
that discrete event system is weak stable if the system will periodically enter a subset of
states denoted by Qs ⊆ Q . If we define the specification Tspec as Tspec = (Q − Qs) × Q , then
the stability becomes strong D-detectability and weak stability becomes strong periodic D-
detectability.

5. Conclusion
In this paper, we extended the results on detectability of discrete event systems in [10] in
several directions. First, we considered nondeterministic discrete event systems rather than
deterministic discrete event systems. We then developed polynomial algorithms to check
detectability for nondeterministic systems (and hence for deterministic systems as well) by
introducing a new tool called detector. We also extended detectability to D-detectability for
more applications.
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Figure 1.
Discrete Event Systems
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Figure 2.
the observer Gobs for the system in Figure 1
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Figure 3.
The Detector Gdet for the system in Figure 1
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Figure 4.
A discrete event system and its observer Gobs
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Figure 5.
The detector Gdet for the system shown in figure 4(a)
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