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Abstract

The fact that the heat equation is controllable to zero in any bounded do-
main of the euclidean space, any time T > 0 and from any open subset of the
boundary is well known. On the other hand, numerical experiments show
the ill-posedness of the problem. In this paper we develop a rigorous analysis
of the 1−d problem which provides a sharp description of this ill-posedness.

To be more precise, to each initial data y0 ∈ L2(0, 1) of the 1−d linear
heat equation it corresponds a boundary control of minimal L2(0, T )−norm
which drives the state to zero in time T > 0. This control is given by a
solution of the homogeneous adjoint equation with some initial data ϕ̂0,
minimizing a suitable quadratic cost. Our aim is to study the relation be-
tween the regularity of y0 and that of ϕ̂0. We show that there are regular
data y0 for which the corresponding ϕ̂0 are highly irregular, not belonging
to any negative exponent Sobolev space. Moreover, the class of such ini-
tial data y0 is dense in L2(0, 1). This explains the severe ill-posedness of
the numerical algorithms developed for the approximation of the minimal
L2(0, T )−norm control of y0 based on the computation of ϕ̂0. The lack
of polynomial convergence rates for Tychonoff regularization processes is a
consequence of this phenomenon too.
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1. Introduction

Given T > 0 arbitrary, y0 ∈ L2(0, 1) and v ∈ L2(0, T ), we consider the
following non-homogeneous 1-d heat equation

yt(t, x)− yxx(t, x) = 0 x ∈ (0, 1), t ∈ (0, T )
y(t, 0) = 0, y(t, 1) = v(t) t ∈ (0, T )
y(0, x) = y0(x) x ∈ (0, 1).

(1)

In (1) y = y(t, x) is the state and v = v(t) is the control function which
acts on the extreme x = 1. We aim at changing the dynamics of the system
by acting on the boundary of the domain (0, 1). More precisely, we say that
(1) is boundary null-controllable (or controllable to zero) in time T if for each
y0 ∈ L2(0, 1) there exists v ∈ L2(0, T ) such that the corresponding solution
of (1) verifies

y(T, x) = 0 ∀x ∈ (0, 1). (2)

There is an extensive literature in this subject. The reader is referred to
[4, 5, 9] and to the more recent survey article [16].

In the present article we address this control problem in the frame de-
veloped in [4, 5] where it is reduced to a moment problem which is solved
by constructing a biorthogonal sequence to the family of exponential func-
tions Λ = (e−λn t)n≥1, where λn are the eigenvalues of the Dirichlet Laplace
operator in (0, 1), entering in the Fourier expansion of solutions.

When a system is controllable, controls are not unique. Often the control
is chosen according to some optimality criterium. Normally, this is accom-
panied by a systematic method of constructing a uniquely defined control.
We thus analyze in this paper the most common control, the one of mini-
mal L2(0, T )-norm. These controls not only are optimal from the viewpoint
of their L2(0, T )-norm, but they can also be characterized and constructed
easily through the adjoint system and a minimization argument. In order
to fix some notation, let us briefly describe how these controls are obtained.

Given T > 0 and ϕ0 ∈ L2(0, 1) we consider the adjoint heat equation
ϕt + ϕxx = 0 x ∈ (0, 1), t ∈ (0, T )
ϕ(t, 0) = ϕ(t, 1) = 0 t ∈ (0, T )
ϕ(T, x) = ϕ0(x) x ∈ (0, 1).

(3)

In view of the regularizing properties of the heat equation, the map

ϕ0 −→
∫ T

0
(ϕx)2(t, 1)dt (4)
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which is well defined and continuous in some Sobolev space (for instance
H1

0 (0, 1)), by unique continuation, is a norm in L2(0, 1) (see, for instance,
[15] and the references therein).

Furthermore, it is by now well known that the following so-called ob-
servability inequality holds for all T > 0: There exists a constant C(T ) > 0
such that every solution of (3) satisfies:

||ϕ(·, 0)||2L2(0,1) ≤ C(T )
∫ T

0
(ϕx)2(t, 1)dt. (5)

We define the Hilbert space H as the completion of L2(0, 1) with respect
to norm (4). Now, we introduce the functional J : H → R given by

J (ϕ0) =
1
2

∫ T

0
|ϕx|2(t, 1)dt−

∫ 1

0
y0(x)ϕ(0, x)dx, (6)

where ϕ is the solution of (3) with initial data ϕ0.
It is easy to see that, for all y0 ∈ L2(0, 1), J , in view of (5), is coercive

in H and it has a unique minimizer ϕ̂0 ∈ H. Moreover, the solution ϕ̂ of (3)
with initial data ϕ̂0 gives the control of minimal L2(0, T )-nom of (1), as the
following well known result guarantees (see, for instance [11, 15]).

Proposition 1.1. Let T > 0 be given. For each y0 ∈ L2(0, 1) there exists a
unique control u ∈ L2(0, T ) for equation (1) such that

u(t) = ϕ̂x(t, 1) t ∈ (0, T ), (7)

where ϕ̂ is the solution of the adjoint problem (3) with initial data ϕ̂0 ∈ H,
the minimizer of (6). Moreover, the map G : L2(0, 1)→ H, defined by

G(y0) = ϕ̂0, (8)

is linear and continuous.

The operator G from Proposition 1.1 is usually called the HUM (Hilbert
Uniqueness Method) operator and the control u is referred to as the HUM
control. It has the minimal L2(0, T ) norm among all the admissible controls
for (1). This important property makes the HUM control very desirable.
However, as reported in [1, 12], the minimization of (6) is severely ill-posed.
This comes from the fact that the space H is very large. In fact, due to the
regularizing effect of the heat equation, one can see that any distribution in
a negative order Sobolev space H−s(0, 1), with support away from x = 1,
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belongs to H, whatever s > 0 is. Therefore, for a given y0 ∈ L2(0, 1), the
minimizer of J may have very low regularity and it may be difficult to
capture it numerically with accuracy and robustness.

The aim of this article is to investigate the regularity of the minimizer
G(y0) = ϕ̂0 ∈ H when y0 ∈ L2(0, 1). We show that, even for a regular
initial data y0, the corresponding minimizer G(y0) of J may not belong
to any Sobolev space of negative exponent. For instance, we prove that,
when the initial datum y0 to be controlled is a sinusoidal function (y0(x) =
sin(nπx)), the Fourier coefficients of the corresponding control, G (sin(nπx)),
grow exponentially for high frequencies. Moreover, we show that the set of
initial data y0 ∈ L2(0, 1) with such property is dense in L2(0, 1). These
results are based on precise estimates for the Fourier coefficients of G(y0),
obtained by using the minimal norm biorthogonal family to the sequence of
exponential functions Λ = (e−λn t)n≥1 in L2(0, T ), entering in the Fourier
expansion of the solutions of the state and adjoint systems.

These low regularity properties explain why, in practice, the problem of
minimizing (6) is ill-posed and why it is difficult to compute numerically
with efficiency the control of minimal L2(0, T )−norm for (1).

One of the most frequent cures for ill-posed problems is the Tychonoff
regularization technique which guarantees convergence towards the mini-
mizer and gives polynomial convergence rates, with respect to the regular-
ization parameter, under appropriate regularity hypotheses on the minimizer
(see, for instance, [6, 13]). This can also be done in our context, showing
that the minimizer of a Tychonoff regularized functional converges towards
the minimizer of J with a polynomial rate provided the last one has some
Sobolev regularity. But, since we have proved that our minimizer may have
very low regularity, no convergence rate can be established and then, even-
tually, the Tychonoff regularization technique will be inefficient to compute
the control.

We point out that this phenomenon of ill-posedness occurs at the level
of the continuous heat equation. It is compatible with the fact that observ-
ability properties of semi-discrete or fully-discrete approximation schemes of
the heat equation are uniform with respect to the discretization parameters
(see, for instance, [8, 10, 15]) but makes impact on the effective computation
of controls, thus making it very difficult in practice.

In [3] it is proved that, in the context of time-reversible infinite dimen-
sional systems, the controls of minimal L2-nom inherit the regularity of the
initial data to be controlled. Our results show that this important property
is not true for the heat equation (1).

The rest of the paper is organized as follows. Section 2 is devoted to
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characterize the HUM controls of (1) and the Fourier coefficients of the
minimizer G(y0) of (6) by means of a biorthogonal sequence to the family Λ.
In section 3 we estimate the elements of the inverse of the Gramm matrix
corresponding to Λ, by analyzing three different cases. Finally, in the last
section, we discuss the main consequences of the estimates mentioned above
in the context of control of (1).

2. The moment problem and the HUM control

The following characterization of the boundary null-controllability prop-
erty of (1) is well-known (see, for instance, [5, 11]).

Proposition 2.1. Equation (1) is null-controllable in time T > 0 if and
only if, for any y0 ∈ L2(0, 1) with Fourier expansion

y0(x) =
∑
n≥1

an sin(πnx), (9)

there exists a function w ∈ L2(0, T ) such that,∫ T

0
w(t) e−n

2π2tdt = (−1)n
an

2nπ
e−n

2π2T n ∈ N∗. (10)

If w ∈ L2(0, T ) verifies (10), the function v(t) = w(T − t) is a boundary
control for (1). Problem (10) is usually referred to as a moment problem
since we are looking for a function w whose moments with respect to the
exponentials e−n

2π2t, n ∈ N∗, are given by the right hand side data in (10).

Let us introduce some notation. The eigenvalues of the 1-d Dirichlet
Laplace operator are λn = n2π2 and the corresponding eigenfunctions Φn =
sin(nπx), for every n ∈ N∗. Λ =

(
e−λnt

)
n≥1

denotes the family of the
corresponding real exponential functions.

For any T > 0, let E(Λ, T ) be the space generated by Λ and E(m,Λ, T )
be the subspace generated by

(
e−λnt

)
n≥1
n 6=m

in L2(0, T ). Also, we introduce

the notation pnT : [0, T ]→ R, pnT (t) = e−λnt. We recall that

Definition 2.1. (θmT )m≥1 is a biorthogonal sequence to Λ in L2(0, T ) if∫ T

0
pnT (t)θmT (t)dt = δnm ∀n,m ∈ N∗.
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The existence of a biorthogonal sequence to the family Λ is a consequence
of the following Theorem (see, for instance, [14]).

Theorem 2.1. (Müntz) Let 0 < λ1 < λ2 < ... < λn < ... be a se-
quence of real numbers and T ∈ (0,∞). The family of exponential functions(
e−λnt

)
n≥1

is complete in L2(0, T ) if and only if

∑
n≥1

1
λn

=∞. (11)

Since in our case λn = π2n2 and (11) is not verified, it follows from
Müntz’s Theorem, that E(Λ, T ) and E(m,Λ, T ) are proper subspaces of
L2(0, T ). Consequently, E(Λ, T ) is minimal (each element of E(Λ, T ) lies
outside the closed subspace spanned by the others). Thus, for each m ≥ 1,
pmT /∈ E(m,Λ, T ) (see [14], p. 23). Let rmT be the orthogonal projection of
pmT over the space E(m,Λ, T ) and define

θmT (t) =
1

||pmT − rmT ||2L2(0,T )

(pmT (t)− rmT (t)) . (12)

The following result may be found in [4, 5].

Theorem 2.2. For any T > 0, the sequence (θmT )m≥1 given by (12) is the
unique biorthogonal to the family Λ in L2(0, T ) such that

(θmT )m≥1 ⊂ E(Λ, T ). (13)

Moreover, this biorthogonal sequence has minimal L2(0, T )-norm.

The following theorem establishes the relation between the HUM control
(7) and the biothogonal with minimal norm (θmT )m≥1 ⊂ E(Λ, T ) to the
family Λ in L2(0, T ) given by Theorem 2.2.

Theorem 2.3. Let y0 ∈ L2(0, 1) be given by (9) and suppose that the fol-
lowing series is convergent in L2(0, T )

u(t) =
∞∑
n=1

(−1)n
an

2nπ
e−n

2π2T θnT (T − t), (14)

where (θmT )m≥1 ⊂ E(Λ, T ) is the minimal norm biorthogonal to the family
Λ in L2(0, T ) given by Theorem 2.2. Then u ∈ L2(0, T ) is the HUM control
(7) corresponding to initial data y0 of equation (1).
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Proof: By using the biorthogonal properties, it is easy to see that w(t) =
u(T − t) verifies (10). Hence, u is a control for (1).

In order to prove that u is the HUM control it is sufficient to show that
it has the minimal L2(0, T )−norm. This is true if the Fourier coefficients of
y0 are all zero, except an0 which is not zero. Indeed, in this case

u = (−1)n0
an0

2n0π
e−n0

2π2T θn0
T

and the minimality of its norm follows from that of the biorthogonal (θmT )m≥1.
This fact together with linearity of the map which assigns to each initial data
y0 its HUM control completes the proof. �

We recall that, in [4, 5], it is proved that (14) absolutely converges in
L2(0, T ) for any (an)n≥1 such that

∑∞
n=1 |an|e−δn

2
< ∞, with δ a positive

number depending only of T .
Since u given by Theorem 2.3 is the HUM control corresponding to y0,

then u = ϕ̂x( · , 1), where ϕ̂ is the solution of (3) with initial data ϕ̂0 = G(y0)
given by Proposition 1.1. Our aim is to study the regularity of ϕ̂0. A
possibility to do this consists in expanding ϕ̂0 in Fourier series

G(y0) = ϕ̂0(x) =
∑
m≥1

bm sin(πmx) (15)

and analyzing the behavior of the Fourier coefficients bm. The following
characterization of bm holds.

Theorem 2.4. Let y0 ∈ L2(0, 1) be defined as in (9). The Fourier coeffi-
cients bm of G(y0) from (15) are given by

bm =
(−1)m

mπ

∞∑
n=1

(−1)n
an

2nπ
e−n

2π2T 〈θnT , θmT 〉L2(0,T ). (16)

Moreover, the infinite matrix
(
〈θnT , θmT 〉L2(0,T )

)
n,m≥1

verifies∑
k≥1

〈θmT , θkT 〉L2(0,T ) 〈e−λkt, e−λnt〉L2(0,T ) = δmn ∀m,n ≥ 1. (17)

Proof: If ϕ̂ is the solution of (1) with initial data ϕ̂0 given by (15) and
u(t) = ϕ̂x(t, 1), the following relation is obtained from (14)

∑
m≥1

(−1)mmπbme−λmt =
∞∑
n=1

(−1)n
an

2nπ
e−n

2π2T θnT (t). (18)
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From (18) and the orthogonality properties of θmT we deduce that (16) holds.
For the second part, note that θmT , being the biorthogonal of minimal

norm, it belongs to E(Λ, T ). Therefore, for each m ∈ N∗, there exists a
scalar sequence (dmk )k≥1 such that (see [7], Theorem 8.2)

θmT (t) =
∑
k≥1

dmk e
−λkt. (19)

From (19) we deduce that

〈θmT (t), θkT (t)〉L2(0,T ) = dmk (20)

and
δmn = 〈θmT (t), e−λnt〉L2(0,T ) =

∑
k≥1

dmk 〈e−λkt, e−λnt〉L2(0,T ).

This represents exactly (17) and completes the proof of the Theorem. �

Remark 2.1. The “infinite Gramm matrix” G(T ) =
(
〈pnT , pmT 〉L2(0,T )

)
n,m≥1

is an one-to-one linear operator in `2 but it is not invertible in `2. �

In order to evaluate the Fourier coefficients bm of G(y0) we need to esti-
mate the quantities dnk given by (20). In order to do that, we use a strategy
similar to [4, 5], where the norms ||θnT ||L2(0,T ) =

√
dnn are evaluated. It con-

sists in truncating the matrix G by considering only a finite number N of
exponentials and extending the time interval to (0,∞).

Before explaining how the estimates for dnk are obtained, let us intro-
duce some notation. For any T ∈ (0,∞] and N ∈ N∗, EN (Λ, T ) and
EN (m,Λ, T ) denote the subspaces generated in L2(0, T ) by the finite fam-
ilies

(
e−λkt

)
1≤k≤N and

(
e−λkt

)
1≤k≤N
k 6=m

respectively. Note that EN (Λ, T ) and

EN (m,Λ, T ) are finite dimensional subspaces and

E(Λ, T ) =
⋃
N≥1

EN (Λ, T ), E(m,Λ, T ) =
⋃
N≥1

EN (m,Λ, T ).

As before, pnT denotes the exponential function e−λnt defined on the interval
[0, T ] if T <∞ or [0,∞) if T =∞.

As in Theorem 2.2, there exists a unique biorthogonal (θmT,N )1≤m≤N ⊂
EN (Λ, T ) to the finite family of exponentials

(
e−λkt

)
1≤k≤N given by

θmT,N =
1

||pmT − rmT,N ||2L2(0,T )

(pmT − rmT,N ), (21)
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where rmT,N is the orthogonal projection of pmT over EN (m,Λ, T ). For each
m ∈ N∗, there exist some unique scalars (dmk (T,N))1≤k≤N such that

θmT,N =
N∑
k=1

dmk (T,N)pkT . (22)

Let GN (T ) denote the Gramm matrix of the family
(
e−λkt

)
1≤k≤N , i. e.

the matrix of elements

gkl(T,N) =
∫ T

0
pkT (t)plT (t)dt, 1 ≤ k, l ≤ N. (23)

As in the final part of Theorem 2.4, we have the following characteriza-
tion of the coefficients dmk (T,N).

Theorem 2.5. Let T ∈ (0,∞]. The matrix (dmk (T,N))1≤k,m≤N given
by (22) is the inverse of the Gramm matrix GN (T ). Consequently, from
Cramer’s rule,

dmk (T,N) =
|Gmk(T )|
|GN (T )|

(24)

where |GN (T )| is the determinant of matrix GN (T ) and |Gmk(T )| is the
determinant of the matrix Gmk(T ) obtained by replacing the m−th column
of GN (T ) with the k−th vector of the canonical basis.

Now, let us briefly explain how the estimates for dmk may be obtained.
If T = ∞, the determinants |GN (∞)| and |Gmk(∞)|, and consequently the
coefficients dmk (∞, N) from Theorem 2.5, may be explicitly computed. Next,
a perturbation argument and an extension theorem allow us to address the
case T < ∞ and to deduce estimates for dmk (T,N). Finally, by letting
N → ∞, we obtain the desired estimates for dmk . This is the strategy used
in the following section.

3. Estimates for dm
k

As we have said before, we study successively dmk (∞, N), dmk (T,N) and
finally dmk .
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3.1. Analysis of the case T =∞ and N <∞
In this section we evaluate the quantities dmk (∞, N) from (24), Theo-

rem 2.5. To compute the determinants |GN (∞)| and |Gmk(∞)| we use the
following lemma.

Lemma 3.1. If C = (cij)1≤i,j≤N is a matrix of coefficients cij = 1
ai+bj

then

|C| =
∏

1≤j<i≤N (ai − aj)(bi − bj)∏
1≤i,j≤N (ai + bj)

. (25)

Moreover, if Cmk denotes the matrix obtained by replacing the m−th
column of C by the k−th vector of the canonical basis, then

|Cmk| = (−1)m+k

∏′
1≤j<i≤N (ai − aj)(bi − bj)∏′

1≤i,j≤N (ai + bj)
, (26)

where ′ means that the terms containing ak and bm have been skipped in the
product.

Proof: For the first part, see [2]. For the second part, note that

|Cmk| = lim
bm→∞

lim
ak→∞

ak|C|. (27)

We have that

|C| =
∏

1≤j<i≤n(ai − aj)(bi − bj)∏
1≤i,j≤N (ai + bj)

=

∏′
1≤j<i≤N (ai − aj)(bi − bj)∏′

1≤i,j≤N (ai + bj)

×
∏

1≤j<k(ak − aj)
∏
k<i≤N (ai − ak)

∏
1≤j<m(bm − bj)

∏
m<i≤N (bi − bm)

(ak + bm)
∏

1≤j≤N, j 6=m(ak + bj)
∏

1≤i≤N, i6=k(ai + bm)
.

It follows that

|C| =
∏′

1≤j<i≤N (ai − aj)(bi − bj)∏′
1≤i,j≤N (ai + bj)

×
(−1)k+m

∏
1≤p≤N, p6=k(ak − ap)

∏
1≤p≤N, p6=m(bm − bp)

(ak + bm)
∏

1≤j≤N, j 6=m(ak + bj)
∏

1≤i≤N, i6=k(ai + bm)

and consequently

|Cmk| = lim
bm→∞

lim
ak→∞

ak|C| = (−1)m+k

∏′
1≤j<i≤N (ai − aj)(bi − bj)∏′

1≤i,j≤N (ai + bj)
.

The proof of the Lemma is finished. �

Now, we can pass to estimate the numbers dmk (∞, N).
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Theorem 3.1. If (dmk (∞, N))1≤k,m≤N is the matrix in Theorem 2.5, then

dmk (∞, N) =
4π2 k2m2

k2 +m2

N∏
p=1
p6=k

k2 + p2

k2 − p2

N∏
p=1
p6=m

m2 + p2

m2 − p2
. (28)

Moreover, for each k,m ≥ 1, the sequence (|dmk (∞, N)|)N≥max{k,m} is
increasing and

lim
N→∞

dmk (∞, N) = (−1)m+k km

k2 +m2

(
eπk − e−πk

) (
eπm − e−πm

)
. (29)

Proof: We have that

dmk (∞, N)=
|Gmk(∞)|
|GN (∞)|

(30)

where |GN (∞)| denotes the determinant of matrix GN (∞) and |Gmk(∞)|
the determinant of the matrix Gmk(∞), obtained by replacing the m−th
column of GN (∞) by the k−th vector of the canonical basis. In order to
evaluate |GN (∞)| and |Gmk(∞)| we remark that the elements gij(∞) of the
matrix GN (∞) are given by

gij(∞) =
∫ ∞

0
pi∞(t)pj∞(t)dt =

1
(i2 + j2)π2

1 ≤ i, j ≤ N.

Hence, we can use Lemma 3.1 to evaluate |GN (∞)| and |Gmk(∞)|. We
deduce from (30) that

dmk (∞, N) = (k2 +m2)π2

∏
1≤p≤N, p6=m(k2 + p2)

∏
1≤p≤N, p6=k(m

2 + p2)∏
1≤p≤N, p6=k(k2 − p2)

∏
1≤p≤N, p6=m(m2 − p2)

from which (28) follows immediately.
For k ≥ 1 and N ≥ k, let us denote

SN (k) =
N∏
p=1
p6=k

k2 + p2

|k2 − p2|
=

N∏
p=1

(
1 +

k2

p2

) N∏
p=N−k+1

p

p+ k
. (31)

It follows that

SN+1(k)
SN (k)

=
(

1 +
k2

(N + 1)2

)(
1 +

k2

(N + 1)2 − k2

)
> 1
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and the sequence (|dmk (∞, N)|)N≥max{k,m} is increasing.
On the other hand, from Euler’s formula,

lim
N→∞

SN (k) =
∞∏
p=1

(
1 +

k2

p2

)
=

sin(i kπ)
i kπ

.

Therefore (29) holds and the proof of Theorem 3.1 is completed. �

3.2. Analysis of the case T <∞ and finite dimension N

Let T < ∞ be given. In this section we give estimates for dmk (T,N).
Firstly, we recall the following result (see [4, 14]).

Theorem 3.2. Let T ∈ (0,∞) and Λ be the family of exponential functions(
e−λnt

)
n≥1

, where λn = n2π2 are the eigenvalues of the Dirichlet Laplace
operator in (0, 1). The restriction operator

RT : E(Λ,∞)→ E(Λ, T ), RT (v) = v|[0,T ]
(32)

is invertible and there exists CT > 0, depending only on T , such that

||R−1
T || ≤ CT . (33)

Also, let us define the restriction

RT,N : EN (Λ,∞)→ EN (Λ, T ), RT,N (v) = v|[0,T ]
(34)

and note that, if pnT and pn∞ denote the function e−λnt defined in [0, T ] and
[0,∞) respectively, then

RT (pn∞) = RT,N (pn∞) = pnT , 1 ≤ n ≤ N. (35)

Evidently, RT,N is invertible. Moreover, since

δmn = 〈θm∞,N , pn∞〉L2(0,∞) = 〈θm∞,N , R−1
T,N p

n
T 〉L2(0,∞) =

= 〈(R−1
T,N )∗ θm∞,N , p

n
T 〉L2(0,T )

and (R−1
T,N )∗θm∞,N ∈ EN (Λ, T ), we deduce that

(R−1
T,N )∗θm∞,N = θmT,N . (36)

The following Theorem gives a first estimate for the elements dmk (T,N)
in Theorem 2.5.
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Theorem 3.3. If (dmk (T,N))1≤k,m≤N is the inverse of the Gramm matrix
GN (T ), then there exists a positive constant C = C(T ) > 0, independent of
N but depending of T , such that

|dmk (T,N)| ≤ C k2 +m2

km
|dmk (∞, N)| 1 ≤ k,m ≤ N. (37)

Proof: From (36) and (28) it follows that

|dmk (T,N)| =
∣∣∣〈θmT,N , θkT,N 〉∣∣∣ =

∣∣∣〈(R−1
T,N )∗θm∞,N , (R

−1
T,N )∗θk∞,N

〉∣∣∣ ≤
≤
∣∣∣∣∣∣(R−1

T,N )∗
∣∣∣∣∣∣2 ||θm∞,N || ||θk∞,N || = ∣∣∣∣∣∣(R−1

T,N )∗
∣∣∣∣∣∣2√dmm(∞, N)

√
dkk(∞, N) =

=
∣∣∣∣∣∣(R−1

T,N )∗
∣∣∣∣∣∣2 2π2 mk

N∏
p=1
p6=m

m2 + p2

|m2 − p2|

N∏
p=1
p6=k

k2 + p2

|k2 − p2|
=

=
∣∣∣∣∣∣(R−1

T,N )∗
∣∣∣∣∣∣2 k2 +m2

2 km
|dmk (∞, N)|.

On the other hand, by using Theorem 3.2, we deduce that∣∣∣∣∣∣(R−1
T,N )∗

∣∣∣∣∣∣
L(EN (Λ,∞),EN (Λ,T ))

=
∣∣∣∣∣∣R−1

T,N

∣∣∣∣∣∣
L(EN (Λ,T ),EN (Λ,∞))

≤

≤
∣∣∣∣R−1

T

∣∣∣∣
L(E(Λ,T ),E(Λ,∞))

≤ CT

and the proof ends by taking C = 1
2C

2
T . �

The main estimate for dmk (T,N) is given in the following Theorem.

Theorem 3.4. If (dmk (T,N))1≤k,m≤N is the inverse of the Gramm matrix
GN (T ), there exists a positive integer n0 > 0, independent of N but depend-
ing of T , such that

|dmk (T,N)| ≥ 1
2
|dmk (∞, N)| ∀m, k ≥ n0. (38)

Proof: For each n ∈ {1, 2, ..., N}, we have that (R−1
T,N )∗pn∞ ∈ EN (Λ, T ) and

there exist scalars (qnk )1≤k≤N ⊂ R such that

(R−1
T,N )∗pn∞ =

N∑
k=1

qnkp
k
T . (39)

13



Moreover, the coefficients qnk verify

qnk =
〈

(R−1
T,N )∗pn∞, θ

k
T,N

〉
L2(0,T )

=
〈
pn∞, R

−1
T,Nθ

k
T,N

〉
L2(0,∞)

=

∫ T

0
pnT (t)θkT,N (t)dt+

∫ ∞
T
pn∞(t)R−1

T,Nθ
k
T,N (t)dt = δnk+

∫ ∞
T
e−λntR−1

T,Nθ
k
T,N (t)dt

and therefore
qnk − δnk =

∫ ∞
T

e−λntR−1
T,Nθ

k
T,N (t)dt. (40)

From (22), we deduce that

R−1
T,Nθ

k
T,N = R−1

T,N

 N∑
j=1

dkj (T,N)pjT

 =
N∑
j=1

dkj (T,N)pj∞

which, together with (40), gives

qnk − δnk =
N∑
j=1

dkj (T,N)
(n2 + j2)π2

e−π
2(n2+j2)T 1 ≤ n, k ≤ N. (41)

On the other hand, we have that

dmk (T,N) = 〈θmT,N , θkT,N 〉L2(0,T ) =

〈
(R−1

T,N )∗
(

N∑
i=1

dmi (∞, N)pi∞

)
, θkT,N

〉
L2(0,T )

=

=
N∑
i=1

dmi (∞, N)
〈

(R−1
T )∗pi∞, θ

k
T,N

〉
L2(0,T )

=
N∑
i=1

dmi (∞, N)qik

and consequently

dmk (T,N)− dmk (∞, N) =
N∑
i=1

dmi (∞, N)(qik − δik) 1 ≤ k,m ≤ N. (42)

Now, using (42) and (41), we deduce that

|dmk (T,N)− dmk (∞, N)| =

∣∣∣∣∣∣
N∑

i,j=1

e−π
2(i2+j2)T

(i2 + j2)π2
dkj (T,N) dmi (∞, N)

∣∣∣∣∣∣ . (43)

From (43), estimate (37) and formulas (28), it follows that

|dmk (T,N)− dmk (∞, N)| ≤

14



≤ 1
2
C2
T

N∑
i,j=1

e−π
2(i2+j2)T

(i2 + j2)π2

j2 + k2

j k
|dkj (∞, N)| |dmi (∞, N)| =

= 8C2
Tπ

2
N∏
p=1
p 6=k

k2 + p2

|k2 − p2|

N∏
p=1
p6=m

m2 + p2

|m2 − p2|
×

×
N∑

i,j=1

e−π
2(i2+j2)T

i2 + j2

j2 + k2

j k

k2 j2

k2 + j2

m2 i2

m2 + i2

N∏
p=1
p6=i

i2 + p2

|i2 − p2|

N∏
p=1
p6=j

j2 + p2

|j2 − p2|
.

Hence,

|dmk (T,N)− dmk (∞, N)| ≤ 2C2
T

m2 + k2

km2
|dmk (∞, N)| ×

N∑
i,j=1

e−π
2(i2+j2)T

i2 + j2

j i2m2

m2 + i2

N∏
p=1
p6=i

i2 + p2

|i2 − p2|

N∏
p=1
p 6=j

j2 + p2

|j2 − p2|
.

(44)

By using (28)-(29), we deduce that

N∑
i,j=1

e−π
2(i2+j2)T

i2 + j2

j i2m2

m2 + i2

N∏
p=1
p 6=i

i2 + p2

|i2 − p2|

N∏
p=1
p 6=j

j2 + p2

|j2 − p2|
≤

N∑
i,j=1

j i2 e−π
2(i2+j2)T

i2 + j2

N∏
p=1
p6=i

i2 + p2

|i2 − p2|

N∏
p=1
p 6=j

j2 + p2

|j2 − p2|
=

N∑
i,j=1

e−π
2(i2+j2)T

4π2j

∣∣∣dji (∞, N)
∣∣∣ ≤

≤
N∑

i,j=1

i e−π
2(i2+j2)T

4π2(i2 + j2)
eπ(i+j) ≤ 1

4π2

(
N∑
i=1

e−π
2T i2+πi

)2

.

Thus, there exists a constant C ′T > 0, depending only of T , such that

N∑
i,j=1

e−π
2(i2+j2)T

i2 + j2

j i2m2

m2 + i2

N∏
p=1
p 6=i

i2 + p2

|i2 − p2|

N∏
p=1
p 6=j

j2 + p2

|j2 − p2|
≤ C ′T . (45)

By denoting C = 2C2
TC
′
T , it follows from (44) and (45) that

|dmk (T,N)− dmk (∞, N)| ≤ Ck
2 +m2

km2
|dmk (∞, N)| 1 ≤ k,m ≤ N. (46)
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Now, remark that C k2+m2

km2 ≤ 1
2 if 2Ck2

k−2C ≤ m2. Thus (38) is verified for
any k ≥ 2C + 1 and m2 ≥ (2C + 1)2k. From the symmetry of the matrices
(dmk (T,N))1≤k,m≤N and (dmk (∞, N))1≤k,m≤N , we deduce that inequality (38)
holds for any m ≥ 2C + 1 and k2 ≥ (2C + 1)2m, too. The proof of the
Theorem ends by taking n0 =

[
(2C + 1)2

]
+ 1. �

3.3. Analysis of the case T <∞ and N =∞
Now we have all the ingredients needed to estimate the coefficients dmk

given by (20).

Theorem 3.5. Let (θmT )m≥1 be the biorthogonal of minimal norm to the
family Λ in L2(0, T ) and (dmk )m,k≥1 be given by (20). There exist a positive
integer n0 and a positive constant C > 0, independent of k and m, but
depending of T , such that

|dmk | ≤ Ceπ(k+m) ∀k,m ≥ 1 (47)

|dmk | ≥
km

32(k2 +m2)
eπ(k+m) ∀m, k ≥ n0. (48)

Proof: From (21)

θmT,N =
N∑
k=1

dmk (T,N)e−λkt =
1

||pmT − rmT,N ||2L2(0,T )

(pmT − rmT,N ) (49)

where rmT,N is the orthogonal projection of pmT over EN (m,Λ, T ).
On the other hand, from (12),

θmT (t) =
∑
k≥1

dmk e
−λkt =

1
||pmT − rmT ||2L2(0,T )

(pmT − rmT ) (50)

where rmT is the projection of pmT over the space E(m,Λ, T ).
Now, remark that

rmT,N → rmT as N →∞ in L2(0, T ). (51)

Indeed, since 〈rmT − rmT,N , e−λjt〉 = 0 for any 1 ≤ j ≤ N , we have that

||rmT −rmT,N ||2L2(0,T ) = 〈rmT −rmT,N , rmT −rmT,N 〉L2(0,T ) = 〈rmT −rmT,N , rmT 〉L2(0,T ) =
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=

〈
rmT − rmT,N , rmT −

N∑
n=1, n 6=m

αne
−λnt

〉
L2(0,T )

.

Now, since rmT ∈ E(m,Λ, T ) =
⋃
N≥1EN (m,Λ, T ), we deduce that (51)

holds. From formulas (49) and (50) we deduce that θmT,N → θmT as N → ∞
in L2(0, T ) and, consequently,

dmk (T,N) = 〈θmT,N , θkT,N 〉 → dmk as N →∞. (52)

By taking into account estimates (37) and (38) from Theorems 3.3 and
3.4 respectively, we obtain from (52) the conclusion of the Theorem. �

4. Control theoretical consequences

In this section we deduce some consequences of the estimates in Theorem
3.5 for the controllability of (1).

4.1. Control for one mode
Let us consider the case in which the initial data y0 of (1) to be con-

trolled is the n−th eigenfunction Φn. It follows from Theorem 2.3 that the
corresponding HUM control is given by

u(t) =
(−1)n

2nπ
e−n

2π2T θnT (T − t) =
(−1)n

2nπ

∑
k≥1

dnke
−(n2+k2)π2T ek

2 π2 t. (53)

Moreover, the Fourier coefficients (b0,nm )m≥1 of the initial data G(y0) =
ϕ̂0,n which gives the HUM control corresponding to y0, may be computed
by using (16):

b0,nm =
(−1)n+m

2nmπ2
e−n

2π2Tdnm m ≥ 1. (54)

From (54) and estimates (47)-(48) from Theorem 3.5, we immediately
obtain the following properties of the Fourier coefficients (b0,nm )m≥1.

Corollary 4.1. Let (b0,nm )m≥1 be the Fourier coefficients of G(Φn). Then

|b0,nm | ≤
C

nm
e−π

2T n2+π(m+n) ∀m ≥ 1. (55)

Moreover, if n ≥ n0, then

|b0,nm | ≥
1

64π2(n2 +m2)
e−π

2T n2+π(m+n) ∀m ≥ n0. (56)

The constants C > 0 and n0 are those given by Theorem 3.5, are independent
of n and m but depend of T .
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Remark 4.1. Estimates (56) from Corollary 4.1 show that the initial data
G(Φn) of (3), which gives the HUM control for the n−th eigenfunction Φn,
has a very low regularity. Indeed, for any m ≥ 2πT n2, we obtain that
|b0,nm | ≥ e

π
2
m and therefore G(Φn) does not belong to any Sobolev space of

negative order. Also, note that the first Fourier coefficients b0,nm , correspond-
ing to m ≤ απT n2, with α < 1, are exponentially small for as n→∞. �

4.2. Controls for initial data in L2(0, 1)
Let us now study the regularity of the HUM controls for initial data in

L2(0, 1). We have the following result.

Corollary 4.2. For any y0 ∈ L2(0, 1) and ε > 0 there exists y0
ε ∈ L2(0, 1)

and a positive constant C, depending only of T and ε, such that

||y0 − y0
ε ||L2(0,1) < ε (57)

|b0ε,mk | ≥
C

m2
eπmk ∀k ≥ 1, (58)

where (b0ε,m)m≥1 are the Fourier coefficients of G(y0
ε) and (mk)k≥1 is an

increasing sequence of positive integers.

Proof: Let G(y0) =
∑∞

m=1 b
0
m sin(mπx) and n0 be the positive integer from

Theorem 3.5. We define y1 = y0 + ε sin(n0πx) and remark that G(y1) =
G(y0) + εG(Φn0), where G(Φn0) was studied in Corollary 4.1. If (b1m)m≥1 are
the Fourier coefficients of G(y1), we deduce from (54) that

b1m = b0m + εb0,n0
m = b0m + ε

(−1)n0+m

2n0mπ2
e−n

2
0π

2Tdn0
m m ≥ 1. (59)

Consequently, max{|b0m|, |b1m|} ≥
ε|dn0

m |
4n0mπ2 e

−n2
0π

2T and, by taking into
account (48) from Theorem 3.5, we deduce that

max{|b0m|, |b1m|} ≥
ε

128π2(n2
0 +m2)

e−n
2
0π

2T eπ(m+n0) ∀m ≥ n0. (60)

Thus, at least one of the sequences (b0m)m≥1 or (b1m)m≥1 has a subse-
quence which verifies (58). If this is (b0m)m≥1, we choose y0

ε = y0. Otherwise,
we take y0

ε = y1. In both cases y0
ε verifies (57) and (58) and the proof ends.

�

Remark 4.2. Corollary 4.2 shows that the set of initial data y0 whose HUM
controls are given by a minimizer G(y0) of J which do not belong to any
Sobolev space of negative order is dense in L2(0, 1). �
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4.3. Monochromatic controls
Another natural question is the reciprocal of the one addressed in the

paragraph 4.1: which is the regularity of the initial datum y0 of (1) whose
HUM control is given by the solution of (3) with initial datum ϕ̂0 = sin(mπx)
containing one single Fourier component? The following Corollary shows
that y0 is highly irregular.

Corollary 4.3. The initial data y0 =
∑∞

n=1 an sin(nπx), whose HUM con-
trol is given by the solution of (3) with initial data ϕ̂0 = sin(mπx), verifies

|an| ≥ C
mn

m2 + n2
eT π

2 n2 ∀n ≥ 1, (61)

where C is a positive constant independent of n and m.

Remark 4.3. This result confirms that the data for which the controls are
smooth are irregular. This complements our previous results showing that
the control associated with smooth data are highly irregular. This also shows
that the operator G : L2(0, 1)→ H defined in Proposition 1.1 is injective but
not surjective. �

Proof: From (18) we deduce that

(−1)mmπe−λmt =
∞∑
n=1

(−1)n
an

2nπ
e−Tπ

2 n2
θnT (t) (62)

and consequently an = (−1)n+m2nmπ2 eTπ
2 n2〈pnT , pmT 〉L2(0,T ) from which

(61) follows immediately. �
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