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Abstract
In the classical Kalman-Bucy filter and in the subsequent literature

so far, it has been assumed that the initial value of the signal process
is independent of both the noise of the signal and of the noise of the
observations.The purpose of this paper is to prove a filtering equation
for a linear system where the (normally distributed) initial value X0

of the signal process Xt has a given correlation function with the noise
(Brownian motion Bt) of the observation process Zt. This situation
is of interest in applications to insider trading in finance. We prove a
Riccati type equation for the mean square error

S(t) := E[(Xt − X̂t)2]; 0 ≤ t ≤ T,

where X̂t is the filtered estimate for Xt. Moreover, we establish a
stochastic differential equation for X̂t based on S(t). Our method is
based on an enlargement of filtration technique, which allows us to
put the anticipative linear filter problem into the context of a non-
anticipative two-dimensional linear filter problem with a correlation
between the signal noise and the observation noise.
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1 Introduction

In the classical Kalman-Bucy filter [KB ] it is assumed that the initial value
of the signal process is independent of both the noise of the signal and of the
noise of the observations. As far as we know, this assumption is still made
in all the subsequent presentations of linear filtering. See e.g. [LS], [K], [D]
and [Ø].

It is natural to ask what happens if we allow nonzero correlations between
the initial signal and the noises. This question is of interest not just for
mathematical curiosity, but also for applications to insider trading in finance.
For example, in the recent paper [AaBØ] an anticipative version of the Kyle-
Back insider trading problem is studied, where there is a possible correlation
between the terminal stock price ṽ and the trading process zt of the socalled
”noise traders”.

The purpose of this paper is to prove a filtering equation for a linear
system where the (normally distributed) initial value X0 of the signal process
Xt has a given correlation function with the noise (Brownian motion Bt) of
the observation process Zt. We prove a Riccati type equation for the mean
square error

S(t) := E[(Xt − X̂t)
2]; 0 ≤ t ≤ T,

where X̂t is the filtered estimate for Xt. Moreover, we establish a stochastic
differential equation for X̂t based on S(t). See Theorem 2.3. Our method
is based on an enlargement of filtration technique, which allows us to place
the anticipative linear filter problem into the context of a non-anticipative
two-dimensional linear filter problem with a correlation between the signal
noise and the observation noise.

Acknowledgments. We are grateful to Yaozhong Hu and Dirk Paulsen
for useful discussions.
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2 An anticipative linear filtering equation

Consider the following linear filtering system:

(Signal process) dXt = 0; t ∈ [0, T ],
(2.1)

(Observation process) dZt = G(t)XTdt+D(t)dBt; t ∈ [0, T ], Z0 = 0.
(2.2)

We assume that G(t) and D(t) are locally bounded deterministic processes
and |D(t)| is bounded away from 0. The process Bt is a Brownian motion,
and we let Ft = FB

t be the filtration generated by Bs; s ≤ t. We assume
that X0 = XT is a normally distributed FT -measurable random variable. For
simplicity and without loss of generality we assume that

E[X0] = 0.

However, we do not assume that X0 is independent of {Bt}t∈[0,T ] (which
would be the classical case). Since X0 is Gaussian, it can be given the
(unique) representation

(2.3) X0 =

∫ T

0

h(t)dBt;

where h ∈ L2([0, T ]) is deterministic.
This implies that the corresponding correlation function is given by

(2.4) E[X0Bt] =

∫ t

0

h(s)ds.

Let Zt be the σ-algebra generated by the observations Zs; 0 ≤ s ≤ t. We
want to find a stochastic differential equation for the estimate (filter)

(2.5) X̂t := E[Xt|Zt]; t ∈ [0, T ],

and we want to find the mean square error process S(t), defined by

(2.6) S(t) = E[(XT − X̂t)
2]; t ∈ [0, T ].

To this end we follow the presentation given in [Ø, Chapter 6] for the
classical case, with the necessary modifications needed in this anticipative
situation.

3



In the following we define

(2.7) Ht = σ(XT ) ∨ Ft; t ∈ [0, T ]

to be the filtration generated by XT = X0 and Bs; s ≤ t. Then we have (see
[P, p. 366]):

Lemma 2.1 (Enlargement of filtration (I)). There exists an Ht-adapted pro-
cess A(t) of finite variation such that A(0) = 0 and

(2.8) Bt = B̃t + At,

where B̃t is a Brownian motion with respect to H := {Ht}t∈[0,T ] (and with
respect to the same (the original) probability measure P for Bt).

In fact, in our setting the socalled ”information drift” A(t) can be found
explicitly, as follows (see [H, Theorem 3.1]).

Lemma 2.2 (Enlargement of filtration (II)). Put

m = E[X2
T ].

Then
dAt = αt dt,

where

(2.9) αt =
h(t)(XT −

∫ t

0
h(s)dBs)

m−
∫ t

0
h2(s)ds

We now consider our original filter problem (2.1) - (2.2) as a part of (the
first component of) the following 2-dimensional linear filtering problem:

(signal process)

(2.10)

{
dX1(t) = 0; X1(0) = ṽ (Gaussian, FT -measurable)

dX2(t) = h(t)dBt; X2(0) = 0; 0 ≤ t ≤ T

(observation process)

(2.11) dZt = G(t)X1(t)dt+D(t)dBt; Z0 = 0; t ∈ [0, T ].
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We want to find the two filters

(2.12) X̂i(t) = E[Xi(t) | Zt]; i = 1, 2,

where

(2.13) Zt = σ(Zs; s ≤ t) is the observation filtration.

As stated this problem is not a classical linear filter problem, because X1(t) =
ṽ is not Ft-adapted.

However, if we introduce the Ht-Brownian motion B̃ as in (2.8), so that

(2.14) dBt = αtdt+ dB̃t,

with

(2.15) αt =
h(t)[X1(t)−X2(t)]

m−
∫ t

0
h2(y)dy

; 0 ≤ t ≤ T,

then the observation process can be written

dZt = G(t)X1(t)dt+D(t)[αtdt+ dB̃t]

=
{
G(t)X1(t) +

D(t)h(t)[X1(t)−X2(t)]

m−
∫ t

0
h2(y)dy

}
dt+D(t)dB̃t.(2.16)

The signal process X(t) = (X1(t), X2(t))
∗, where ∗ denotes matrix trans-

posed, gets the form

(2.17)


dX1(t) = 0; X1(0) = ṽ

dX2(t) = h(t)[αtdt+ dB̃t] = h2(t)[X1(t)−X2(t)]

m−
R t
0 h2(y)dy

dt+ h(t)dB̃t;

X2(0) = 0

Note that the system (2.16)–(2.17) constitutes a linear Gaussian filter prob-
lem. It is not anticipative any more, because the drift term in the observation
process is adapted to the filtration Ht and B̃t is an Ht-Brownian motion.

The only unusual about the system (2.16)–(2.17) is that there is a corre-
lation between the signal noise and the observation noise. This case has been
studied in [Kallianpur, Section 10.5]. For completeness we recall his result
in the following:
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Consider the following linear, multi-dimensional filter problem with noise
correlation

(signal) dX(t) = [A0(t) + A1(t)X(t) + A2(t)Zt]dt+ C(t)dW (t)t

(observation) dZt = [C0(t) + C1(t)X(t) + C2(t)Zt]dt+D0(t)dW (t),

whereX(t) ∈ Rn = Rn×1, A0(t) ∈ Rn, A1(t) ∈ Rn×n, A2(t) ∈ Rn×m, C(t) ∈
Rn×q, Zt ∈ Rm, C0(t) ∈ Rm, C1(t) ∈ Rm×n, C2(t) ∈ Rm×m, D(t) ∈ Rm×q

and W (t) = (W1(t), ...,Wq(t))
∗ is a q-dimensional Brownian motion with

q = n+m; m and n are natural numbers.
Define the innovation process νt by

dνt = C1(t)(X(t)− X̂(t))dt+D0(t)dBt; t ∈ [0, T ].(2.18)

Then 1
D0(t)

dν(t) is a Brownian motion with respect to Zt and P , and the

equation for the filter X̂(t) := E[X(t) | Zt] is

dX̂(t) = [A0(t) + A1(t)X̂(t) + A2(t)Zt]dt

+ [S(t)C∗1(t) + C(t)D∗0(t)][D0(t)D
∗
0(t)]−1dνt; X̂0 = E[X0],(2.19)

where S(t) is the mean square error matrix defined by

S(t) = [Sij(t)]t≤i,j≤n ∈ Rn×n, with

Sij(t) = E[(Xi(t)− X̂i(t))(Xj(t)− X̂j(t))].

The matrix valued function S(t) satisfies the Riccati equation
(2.20)

dS(t)
dt

= A1(t)S(t) + S(t)A∗1(t) + C(t)C∗(t)

−[S(t)C∗1(t) + C(t)D∗0(t)][D0(t)D
∗
0(t)]−1[C1(t)S(t) +D0(t)C

∗(t)];

S(0) = E[(X(0)− E[X(0)])(X(0)− E[X(0)])∗]

We now apply this to our setting (2.16)–(2.17). Here n = 2, m = 1,
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B̃t = W1(t) and

A0 = 0, A1(t) =

[
0 0

h2(t)

m−
R t
0 h2(y)dy

− h2(t)

m−
R t
0 h2(y)dy

]
, A2 = 0,

A3 = 0, C(t) =

[
0
h(t)

] [
1 0 0

]
,

C0(t) = 0, C2(t) = 0, D(t) = D0(t)
[
1 0 0

]
and

C1(t) =

[
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

,− D(t)h(t)

m−
∫ t

0
h2(y)dy

]

Therefore the filter equation is
(2.21)

dX̂(t) =

[
0

h2(t)(X̂1(t)−X̂2(t))

m−
R t
0 h2(y)dy

]
dt+ S(t)

G(t) + D(t)h(t)

m−
R t
0 h2(y)dy

− D(t)h(t)

m−
R t
0 h2(y)dy

D−2(t)dνt;

X̂(0) =

[
0

0

]

i.e.
(2.22){

dX̂1(t) = 1
D2(t)

[
S11(t)

(
G(t) + D(t)h(t)

m−
R t
0 h2(y)dy

)
− S12(t)

D(t)h(t)

m−
R t
0 h2(y)dy

]
dνt

X̂1(0) = 0

and

(2.23)


dX̂2(t) = h2(t)(X̂1(t)−X̂2(t))

m−
R t
0 h2(y)dy

dt

+ 1
D2(t)

[
S21(t)

(
G(t) + D(t)h(t)

m−
R t
0 h2(y)dy

)
− S22(t)

D(t)h(t)

m−
R t
0 h2(y)dy

]
dνt;

X̂2(0) = 0.
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The Riccati equation (2.20) becomes

dS(t)

dt
=

[
0 0

h2(t)

m−
R t
0 h2(y)dy

− h2(t)

m−
R t
0 h2(y)dy

]
S(t)

+ S(t)

[
0 h2(t)(m−

∫ t

0
h2(y)dy)−1

0 −h2(t)(m−
∫ t

0
h2(y)dy)−1

]
+

[
0 0
0 h2(t)

]

− 1

D2(t)

(
S(t)

G(t) + D(t)h(t)

m−
R t
0 h2(y)dy

− D(t)h(t)

m−
R t
0 h2(y)dy

+D(t)

[
0
h(t)

])
×

(2.24)

×
([
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

,− D(t)h(t)

m−
∫ t

0
h2(y)dy

]
S(t) +D(t)[0, h(t)]

)
The matrix equation (2.24) is a compact formulation of the following

system (2.26) - (2.28) of coupled Riccati equations in the four components
Sij(t); i, j = 1, 2, where
(2.25)

S11(t) = E[(ṽ − E[ṽ | Zt])
2]

S12(t) = S21(t) = E[(ṽ − E[ṽ | Zt])(
∫ t

0
h(s)dBs − E[

∫ t

0
h(s)dBs | Zt])]

S22(t) = E[(
∫ t

0
h(s)dBs − E[

∫ t

0
h(s)dBs | Zt])

2]
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d

dt
S11(t) = − 1

D2(t)

[
S11(t)

(
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

)
(2.26)

− S12(t)
D(t)h(t)

m−
∫ t

0
h2(y)dy

]2
d

dt
S12(t) = (S11(t)− S12(t))

h2(t)

m−
∫ t

0
h2(y)dy

(2.27)

− 1

D2(t)

[
S11(t)

(
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

)
− S12(t)

D(t)h(t)

m−
∫ t

0
h2(y)dy

]
×
[
S12(t)

(
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

)
− S22(t)

D(t)h(t)

m−
∫ t

0
h2(y)dy

+D(t)h(t)
]

d

dt
S22(t) = (S12(t)− S22(t))

h2(t)

m−
∫ t

0
h2(y)dy

+ h2(t)(2.28)

− 1

D2(t)

[
S12(t)

(
G(t) +

D(t)h(t)

m−
∫ t

0
h2(y)dy

)
− S22(t)

D(t)h(t)

m−
∫ t

0
h2(y)dy

+D(t)h(t)
]2
.

We summarize our result as follows:

Theorem 2.3. The solution

(2.29) X̂(t) = (X̂1(t), X̂2(t))
∗ = (E[ṽ | Zt], E[

∫ t

0

h(s)dBs | Zt])
∗

of the filter problem (2.10) -(2.11) is given by (2.21) (or, equivalently, by(2.22),
(2.23)), where the mean square error matrix S(t) is given by (2.24)-(2.25)
(or, equivalently, by (2.25) - (2.28)).
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