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1. Introduction

The output regulation problem for linear systems in the pres-
ence of unknown harmonic disturbances and/or references has at-
tracted a considerable interest in the control community. In the
framework of the regulation theory introduced in [1], the control
goal is to regulate to zero the output tracking error of a given sys-
tem which is perturbed by nonvanishing unknown modes gener-
ated by a neutrally stable linear exosystem. This research problem
is motivated by many applications such as active suspension de-
sign [2], disk drive speed regulation [3], eccentricity compensa-
tion [4], active noise control [5], harmonic elimination in power
electronics [6], feedback control of vibrations in helicopters [7,8].

In the discrete time setting, under the minimum phase
assumption (MP) on the perturbed system, it is shown in [9] that
unknown deterministic disturbances generated by exosystems
with eigenvalues on the unit circle can be compensated via the
model reference adaptive control techniques described in [10],
yielding asymptotic convergence to zero of the output regulation
error. This task is accomplished via the controller adaptation
with respect to both the system and the exosystem unknown
parameters. A different approach is followed [11-13] for systems
which are allowed to be non-minimum phase (NMP): it focuses on
the construction of regulation algorithms that are adaptive with
respect to the unknown exosystem parameters only, under the
assumption that the system parameters are known. The Youla
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parametrization of stabilizing controllers is used to construct a
regulator by introducing the additional hypothesis that a solution
to the regulation problem exists when the controller stable transfer
function is restricted to have all poles in zero. In this special
case, the regulation is obtained by tuning the Youla transfer
function numerator coefficients. In [14] a different approach
is followed, presenting a discrete time adaptive algorithm to
reject a known number of sinusoidal disturbances with unknown
frequencies; the strategy in [14] is tested on an active noise
control testbed, showing its practical implementability when the
system model is partially known; the regulation error is shown
to convergence to zero locally and exponentially via averaging
theory.

Currently in the discrete time setting, the exponential regula-
tion problem of a linear system allowed to be NMP perturbed by
an unknown neutrally stable exosystem is still unsolved, without
requiring additional assumptions besides the necessary hypothe-
ses for a solution to exist when the exosystem’s parameters are
known. In this paper we solve this problem, designing an algorithm
that improves previous results. The necessary hypotheses for a
solution to exist are shown to be also sufficient for the controller
construction achieving exponential regulation even when the ex-
osystem is unknown. In fact, only an upper bound of the number
of the unknown harmonics generated by the exosystem is required
to obtain exponential regulation. This is achieved via an online de-
tection algorithm for the number of unknown excited frequencies,
which allows for the parameters of the minimal exosystem to be
exponentially estimated. The harmonic compensation algorithm
can be coupled with any robust stabilizing controller, thus improv-
ing its performance in the presence of disturbances that contain
unknown harmonic signals.


http://dx.doi.org/10.1016/j.sysconle.2011.04.014
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:marino@ing.uniroma2.it
mailto:santosuosso@ing.uniroma2.it
http://dx.doi.org/10.1016/j.sysconle.2011.04.014

562 R. Marino, G.L. Santosuosso / Systems & Control Letters 60 (2011) 561-569

An additional motivation arises also from the regulation
of continuous time linear systems. In fact, in [15], following
previous results in [16], the continuous time counterpart of the
problem addressed here is solved (see also related work for
continuous time linear systems in [17-19] and continuous time
nonlinear systems in [20-23]) by a nonlinear control algorithm. Its
implementation via fast digital devices generates approximation
errors and consequently the regulation error does not converge
to zero; the resulting error is also hard to quantify. On the other
hand, any continuous time linear system perturbed by a neutrally
stable exosystem admits an exact discrete time model if properly
coupled with A/D and D/A devices. Hence, a discrete time algorithm
driving to zero the output of the discretized model, drives to zero
the original continuous time output at sampling times.

Motivated by the above arguments, in this note we describe a
discrete time algorithm which differs from the continuous time
one [15] on important aspects. Its estimation strategy is based
on the interpretation of the unknown exosystem parameters as
additional system states. Since they are multiplied by the entries
of the exosystem state vector, the exosystem itself is regarded as
a nonlinear system for which we construct a nonlinear observer.
A discrete time adaptive observer is designed on the basis of a
discrete time ‘canonical’ class which has a different structure with
respect to the one associated with the continuous time problem
in [15], yielding an entirely different disturbance estimation
algorithm. Thus, we depart from the filters structure in [15] to
demonstrate, for the different discrete time filters, the persistency
of excitation condition implying exponential regulation.

The paper is organized as follows: in Section 2 the addressed
problem is precisely stated. In Section 3 the regulation strategy
is outlined. In Section 4 the design of an adaptive harmonic
compensation algorithm is described, which solves the problem
addressed in this paper. The algorithm is tested and illustrated on
a numerical example in Section 5. The conclusions are drawn in
Section 6 and in the Appendix the proofs of intermediate results
are reported.

2. Problem statement

The class of linear systems

x(k + 1) = Ax(k) + bu(k) + Pw(k); x(0) = xq
{w(k + 1) =Rw(k); w(0) = wy (1)
e(k) = cx(k) + qw(k);

is considered, where (A, b, c) is the triple associated to the system
to be regulated, with state x € R" and initial condition x(0) =
Xo. The vector w € N' is the exosystem state that generates
both the disturbances Pw to be rejected and the signal —qw
to be tracked by the scalar output cx; we assume that R is
neutrally stable, with unknown simple eigenvalues on the unit
circle, i.e. all the eigenvalues have multiplicity of one. In this paper
we are concerned with the design of a feedback control u that
drives exponentially to zero the output e € % on the basis of its
measurement only. If both the triple (A, b, c) and the triple (P, R, q)
are known, following [ 1] the necessary and sufficient conditions for
the solution of the regulator problem are (I; € R x M denotes the
identity matrix of order j)

(H1) the pair (A, b) is stabilizable (i.e. rank (A — Al,,b) < n
implies [A| < 1);

(H2) the pair (A, ¢) is detectable, (i.e. rank (A" — AL, c") < n

implies |A| < 1);

A—Ayp b

(H3) rank (C 0

trally stable matrix R.

= n + 1 for any eigenvalue A of the neu-

Notice that (H1) and (H2) are the necessary hypotheses for
the existence of an output feedback stabilizing controller for the
triple (A, b, ¢). The assumption (H3) requires that no eigenvalue
of the matrix R is a zero of the transfer function c (zI — A)~' b. By
virtue of (H1)-(H3) (see [1]) there exists a unique matrix I" €
A" x N and a unique vector y € R which solve the regulator
equations

I'R=ATI + by +P; cl"+q=0. (2)

The pair (I", y) generates the signalsx, = I'w and u, = yw which
are the references for x and u respectively, since by virtue of (1),
(2) x,(k + 1) = Ax,(k) + bu,(k) + Pw(k) and cx, (k) + qw(k) =
0. The coordinate transformation x = x — I'w yields an error
system

x(k+ 1) = Ax(k) + b (u(k) — u,(k)) (3)
e(k) = cx(k),

in which the reference input u, = yw satisfies the “matching
condition” and is generated by the exosystem w(k + 1) = Rw(k).
Thus by (H1)-(H3) the regulation of system (1) is achieved by
a control law which simultaneously stabilizes the error system
(3) and reproduces the reference input u, (k), thus leading to the
following regulation problem:

Problem 2.1. Consider the system (1); assume that the triple
(A, b, c¢) is known and the triple (P, R, q) is unknown, with R having
known dimensions and simple eigenvalues on the unit circle. If
(H1)-(H3) hold, design a dynamic feedback controller such that the
closed loop system output e(k) is driven exponentially to zero for
any initial condition x(0) € NR", w(0) € R of system (1).

Remark 2.1. Notice that in the problem statement above it is
not specified how many modes are excited by the exosystem
actual initial condition w(0) € N'. Thus the only information
available on u; (k) is simply an upper bound on the number of its
harmonics.

3. Stabilizing regulator design
Since by (H2) the pair (A,c) is detectable, operating a

Kalman decomposition with respect to the observable part, whose
dimension is n, < n, (3) is transformed into

{xuk + 1) = Auxy (k) 4 AuoXo(k) + by (u(k) — uy(k)) (4)
Xo(k + 1) = Ao (k) + b, (u(k) — u;(k)) 5
e(k) = cox, (k) (5)

by alinear change of coordinates [x], xI]T = TX, wherex, € R~
and x, € N™ are associated to the unobservable and observable
parts respectively; Ay, Ao, Ao, by, by, C, are known matrices and
vectors. By construction the eigenvalues of matrix A, lie inside the
unit circle, the triple (A,, bo, C,) is observable and stabilizable, with
transfer function

Wo(2) = Ps(2)/Po(@) = Co (2ln, — Ao) " bo. (6)
The reference input u, (k) may contain two kind of modes: those as-
sociated with r; < r eigenvalues of the matrix R, located in known
positions, such as +1 and those expressed as a sum of unbiased si-
nusoidal signals with unknown frequencies. Operating a decompo-
sition with respect to these two components, by using the notation

0 I

B =0
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with j being a positive integer, the reference input u,(k) can
be expressed, without loss of generality, as the output of the
exosystem with states wy € N1, w, € N2,

wi(k+ 1) = [A;, — BC | wi(k), w(0) € R"
U)2(k + 1) = R21U2(k), wz(O) e Q" (8)
U (k) = Crywi(k) + Cryw (k)

where C;, w1 (k) contains the modes associated with the r; known
eigenvalues that are the roots of the polynomial pg(z) = z +
[z171, ..., 2z, 1] B, with B € )"t and C,, w5 (k) is generated by the
modes of Ry, having unknown eigenvalues with nonzero imaginary
part.

The first step in the controller design is to introduce the known
mode compensator driven by the new control input v(k)

sk + 1) = [Ay, — BC | s(k) + Br,v(k) 9)
u(k) = ¢ s(k)

with state s(k) € 9" and arbitrary initial condition s(0) € R'1.
Notice that

A, — BCr | — Al B
rank <[ n—p rl] n r‘) =r-+1
e, 0

for any eigenvalue A of the matrix R, by construction and that
system (9) is reachable and observable with transfer function equal
to 1/pg(z). Hence, there exists a unique matrix I; € )i’ x N\ and
a unique vector y, € N2 which solve the regulator equations

DRy = [Ar, — BC | Ih + B,y

By defining the harmonic signal § = y,w- and the vector x, € %V,
withN = n, +ry,as x, = [¥], (s — wy — Iw,)T]7, recalling (10),
the extended system (5), (8), (9) is

enh=0e,. (10)

Xe(k + 1) = Aexe(k) + b, (v(k) — (k) 11
e(k) = cox, (k) (11)
where
_ [A0 boCr ) _ 10 .
A= [o [Ar, — ﬁen]] LS [ﬂn] ’
=[e 0. (12)

We focus now on the stabilizing part of the controller action.
By virtue of (H1)-(H2) the undisturbed system, which is obtained
by setting in system (11) §(k) = 0, is globally exponentially
stabilizable; i.e. there exists an output feedback controller

{X(k + 1) = LiX (k) + Lye(k) (13)

vs (k) = HiX(k) + Hae(k)

with state X € 9™, such that the origin x, = 0,X = 0 of the
closed loop autonomous system obtained from (11), (13) by setting
8(k) = 0,and v = vy is globally exponentially stable. Thus, the key
part of the regulator construction is the synthesis of an harmonic
compensator that generates an estimate vs(k) of the unknown
harmonic unbiased signal §(k). The overall compensating control
generates the signal

v(k) = vs(k) + vs(k). (14)

Remark 3.1. The regulation algorithm separates the task of stabi-
lization from the one of exact disturbance estimation, in order to
preserve the internal stability of the regulated system, which is al-
lowed to be non-minimum phase. To achieve the exact disturbance
estimation, the exact knowledge of the regulated system parame-
ters is crucial. However, the harmonic compensation algorithm can
be coupled with any ‘robust’ stabilizing controller in the form (13),
in order to improve its performance when the disturbances acting
on system (11) contain predominantly harmonic components.

4. Harmonic compensator design

The harmonic signal §(k) = y,w, (k) is the output of the ex-
osystem w, (k + 1) = Ryw, (k) in (8) for a suitable initial condition
w,(0) € N2 exciting a subset of its modes. Thus § (k) is a sum m of
sinusoids, with 0 < m < M, where M < |r,/2]| < |r/2] is an up-
per bound related to the dimension r of the exosystem in (1). We
describe the main steps to construct an adaptive observer of the
system composed by (11) and a minimal exosystem model yield-
ing & (k), assuming that the integer m is known and different from
zero. The resulting algorithm will be generalized later by replacing
m by a suitable estimate.

4.1. An adaptive observer with known number of harmonics

We introduce a linear filter that provides exponential estimates
of the state x.(k) in (11) when the sinusoidal disturbance §(k) is
identically zero. To this purpose, let a; € %+, 1 < i < N, be design
parameters such that the polynomial

p@ =2"4+a;Z" "+ tay_iz+ay (15)

has all its roots inside the unit circle. Let g; € R™ be such that

det[zly — (Ae + gsco)] =z +a,z2VN "1+ - - +ay_1z +ay. Consider

the linear filter with state’x, (k) € %"
Xe(k+1) = [Ac + gsCe|Xe(k) — gse(k) + bev, (16)
y(k) = e(k) — cexe(k)

and arbitrary initial condition X, (0) € RN, By setting X, = X, — X,
from (5), (16), we obtain

Xe(k+ 1) = [Ae + gscel Xe (k) — bed(k),
Y(k) = Ce)_(e (k)~

The error dynamics state X.(k) € 9"V and the output y(k) of
system (17) are bounded because (17) is a stable filter driven by
the harmonic input é (k). The transfer function W, (z) of system (17)
from (k) to y(k) is

We(z) = —pp(2)/pa(2) (18)

where pq(z) is the polynomial defined in (15) chosen by the
designer and the polynomial pj(z) is the numerator of the transfer
function W, (z) in (6).

If m # O, then §(k) = ZL op sin(wpk + @), where 0 <
wp < 2m are unknown positive real numbers such that exp(Ziwy,)
are among the eigenvalues of the exosystem matrix R, while
op and ¢y are suitable amplitudes and phases, respectively. The
class of linear exosystems that generate the disturbance §(k) are
associated to matrices whose characteristic polynomial is ps(z) =
[T, [z — 2(cos wp)z + 1]. By expanding the terms in ps(z) we
obtain

X.(0) € ®N (17)

m
ps(2) = 1_[ [22 = 2(cos w))z + 1]
i=1
=24+ 027" T+ O 12 4 O
FOn1z" e+ 022" 012+ 1 (19)

which depends on the m entries of the vector & = [0;, 65, . . ., 0|7,
that in turn is a function of the m constants cos wi, cos ws, ...,
COS wy,. By setting

S(0) = Ay — 01,02, ..., Om1, O, Ot - . ., 02, 0115, Com

the disturbance § (k) can be modelled as the output of the following
(2m)-order linear excited harmonics minimal exosystem

{a)(k+ 1) =S@wk), w0)eR" (20)

§(k) = Copw(k),
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with state w(k) € 9?™, suitable initial condition w(0) € R>™
that excites all the modes of the matrix S(0), parametrized by the
vector € N™. The eigenvalues of the extended system (17), (20)
are the roots of the polynomial p,(z) - ps(z), where p,(z) and ps(z)
are the polynomials defined in (15) and (19), respectively. Define
Vim (0) € %N+2™ such that

Pa(2) - ps(z) = 2N THM 4 [ZNTEmL N2 2 1V (9). (21)

The vector Vj;;1(6) is a linear combination of the entries of 6. In
order to describe a formula expressing in a compact notation the
vector Vip(6), consider the vector o, € RV

Am) = [0 ,0,1,aq, .. aN]T (22)

and define the m + 1 vectors @ {j} € RV, j = 0,1,...,m,
according to the formulae

Umy {j} = [(*AN+2m)] + (An42m)°" ]“[m]v
forall0 <j<m (23)

iy {m} = (Anpom)™ Xms
then V[m] @) = (X[ /1]{0} + (X[m]e where @ om) = [O([m] {1}, &[m] {2},
, G {m}] € MNT2M x R™ System (17), (20) by virtue of (18)
is observable from the avallable output y(k) for every 8 complying
with (19); thus system (17), (20) is expressed in observer canonical
form by a suitable coordinate transformation ¢ (x., w)

§(k+1) = Ansamd (k) = y(K) [@my {0} + Gm ] (24)
(k) = Cnyam¢ (k).

Let Oz, (6) be the nonsingular observability matrix of system (17),

(20) and ©, (9) be the observability matrix of system (24), that is

. . . _ T
nonsingular by construction. The transformation from [xe, wT] to
¢ is given by

¢ = Tym(6) [’;‘)’] where Tjn(0) = [@;1(9)(9,—@,,3(9)]. (25)

Recalling that w € %?™ in (20) is bounded by construction, ¢ (k) €
MN+2m is also bounded, since it is diffeomorphic to [X., w] via the
nonsingular transformation (25).

Next, we construct an adaptive observer for system (24). Let
dim € RNT2™ be a vector chosen by the designer such that all the
roots of

pa(z) = 2N 4 [N 2,1 dpy (26)

are inside the unit circle; these parameters identify a matrix in
observer canonical form defined as D, = [AN+2m — d[m]@N+2m].
Consider the filters

§m (k + 1) = Dpm&pm) (k) — otmyy (k) (27)
Nim) (kK + 1) = Dy nmy (k) + {d[ml — Upm) {0}}y(k) (28)

with states & (k) € RN, (k) € RNT2M and arbitrary initial
conditions &m (0) € RNF2M i (0) € RNT2M. By setting the m
vectors E[m] {i} € RN+2m a5

Em {i} = [(DlmJ)i + (Dlml)zm_i] Eim»

forall1<i<m-—1 (29)
~ 2
& {m} = (Dpm))™" &pm»
and defining the matrix &, € V2" x R™ as &y = [Em (13,
Em {2}, ..., &m {m}], by computing &y (k+ 1), by virtue of (23),

(27),(29), we have

Emy(k 4 1) = Dimpm (k) — Fgmyy (k). (30)

The following property is crucial for the adaptive observer
construction of system (24).

Claim 4.1. The vector (1m (k) +am] (k)0) € RNT2™ tends expo-
nentially to the state ¢ (k) € RN*2™ of system (24).
Proof. Set

Ac (k) = ¢(0) = (mmi (k) + Em ()6) . (31)
By computing A, (k + 1), by virtue of (31) along with (24), (28),
(30) we obtain the dynamics

Ag(k+ 1) = Dy A (k) (32)

with initial condition A;(0) = ¢(0) — (1m(0) + & (0)6). The
eigenvalues of Dy are inside the unit circle and (32) implies that
limy_, oo Az (k) = 0 exponentially. O

By multiplying both sides of expression (31) for Cy42m and
setting

(k) = y(k) — Cny21pm (K), (33)

- T
Mm) k) = [@N+2m$[m] (k)] , (34)
by rearranging the terms, we obtain an alternative expression for
y(k), i.e.
J(k) = 1 (k)6 + Cnsam Ay (k). (35)
The following property holds:
Claim 4.2. The vector pimj(k) € N™ defined in (34) is bounded and

persistently exciting, (PE), i.e. there exist an integer k,, and a positive
real ¢, such that

j=ktky
> sm Dl () = Incy forallk = 0. (36)
j=k

Proof. See Appendix. O

We choose a strategy to estimate & € R™ that leads to expo-
nential convergence via Lyapunov stability theory. To this purpose,
consider the scalar function

. 2
if [ (0 |° = e

c1/ ||M[m](k) ”2
m l =
S (reimi (K)) {Cl if im0 < e

where 0 < ¢; < 1,0 < ¢; < 1 are tuning parameters chosen by
the designer, and set

Omi(k+1) = [In =S (12m () £41m) (K) oy (K)] Gy (k)

+ S (im (0)) 1apm (R)F (k) (38)
w1th parameter estimate aml(k) € N™, arbitrary initial condition
Q[m] (0) e nm,

Since (npm(k) + Em) (k)@) e RNH2M tends exponentially to
¢ (k) € RN+2M jts estimate ¢y (k) is defined accordingly as
Lo (k) = (npm (k) + E[m](k)Q[m]) . (39)
Set 5(/() =0 — am] (k); the computation of5(1< + 1) yields
Ok +1) = [In — jtgm (k) iy ()] 6 (K)

— S (j2m (k) Cnyam A (k) (40)
where the “normalized” vector ¢ (k) is defined as

(37)

it im0 = €

i} ctitpm (K)/ || im0 ||
Hem) { if ||M[m](/<)||2 < €.

C1/4my (k)
Then the following property holds:

Claim 4.3. (i) The vectors Gy, € R™ and C[m] € RN are globally
bounded.(ii) The error estimation vectors { = [¢(k) — Tim) 0] €
RN+2m and §(k) = [0 — Oimy (k)] with Bym (k) defined in (38) and
am] (k) in (39) are bounded exponentially vanishing functions of k.
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Proof. See Appendix. O

In practical cases the number of excited sinusoids may not
be known in advance, so that the construction of an harmonic
compensator has to involve a strategy to detect the actual number
m excited harmonics.

4.2. An algorithm to detect the number of excited harmonics

We present now a strategy to estimate the number m
of sinusoidal disturbances, that departs considerably from the
approach in [24], describing an algorithm to estimate the sinusoids
number in additive white noise. To this purpose, three cascaded
filters are introduced: the first one is a filter defined as

vk + 1) = [Am42 — Bam420] v(k) + Bom42y (k) (42)

with state v = [vq, Vo, ..., vaus2]" € RZM*2 initial condition
v(0) e N2M+2 input y(k) given by (17), where the row vec-
tora € M?M+2 is a chosen by the designer so that the matrix
[Aan12 — Bam2a], has its eigenvalues, i.e. the roots of the poly-
nomial

pa(2) :a[l,z,...,22M+1]T+22M+2, (43)

inside the unit circle. Let b; = [v1(k), vo(k), ..., v5i(k)] € R*
withi € [1, M + 1] be the vector collecting the first 2i entries of
v € M2M+2- it will be shown to be persistently excitingif 1 <i <m
and not persistently exciting if m + 1 < i < M + 1. The vector
v(k) € MM+1 s the input to the second filter

QUk+1) =co2@k) +vkvk)", £0) >0,
qi(k) = (10)%7 |det 2;(k)|'", 1<i<M+1

with state 2 € RWM+2 x (WM+2 1 < i < M + 1, symmetric
and positive definite initial condition £2(0) > 0, outputs g;(k),
1 <i< M+ 1, where 2; € % x % denotes the matrix col-
lecting the first 2i x 2i entries of 2 and cg, ¢g(1), ..., (M + 1)
are scalar design parameters, with 0 < co < 1. Notice that 2 is
symmetric and (44) can be implemented by a filter whose dimen-
sion is 2M? 4 5M + 3. It will be shown that the outputs g;(k) with
1 <i< M + 1of system (44) comply with the property that

(44)

qi(k) > qu >0 forallk >0, foralll1<i<m
klim gi(k) = 0, exponentially, forallm+1<i<M + 1,(45)
— 00

with gy a positive lower bound. The signals g;(k) are the inputs of
the third filter

xitk+ 1) = 01 (0, 4i(k) [xi(k) + & (@u+0)];

xi(0)>0; 1<i<M (46)
with state x = (x1, ..., xu)", in which & (qu+1) and o; (x;. g;) ,
1 < i < M depend on the tuning parameters ¢ € R*' and
¢ € N along with xo € R* and are defined as & (qu+1) =
[1 - exp(—Cqu+1)] and 0 (xi, 4) = exp(—Cqy) if xi < xo While
oi (i, qi) = % if x; > xo. It is shown in the following that

li i(k)=0 ially, foralll1 <i<
{kl)rgo xi(k) exponentially, forall1 <i<m (47)

xi(k) > xy >0 forallk >0, foralm+1<i<M,
where ) is a suitable positive lower bound. By virtue of (45), (47)

we can derive from the outputs of filters (44) and (46) an estimate
m of the integer m by setting

M
m(k) = round [Z qi(k)/ [qi(k) + Xi(k)]os]:| (48)
i=1
where round [-] yields the closest integer of its argument and s €

R is a tuning parameter. The estimation property of the filters in-
troduced so far are stated as follows.

Lemma 4.1. Consider the cascaded interconnection of the filters
(42), (44), (46) with input y(k) € N given by (17), state v(k) €
RIMF2 (k) € R2MF2 x M2M+2 .y (k) € RM, tuning parameters
0<co<1,x >0,¢ € MM ands € R such that ¢, (i) > 0 for
alli € [1, M + 1), output m(k) given by (48). The following holds:

(i) the state trajectories are bounded for any v(0) € R*M*2, 2(0) €
R2MA2 5 R2MH+2 qych that £2(0) > 0, and any x;(0) > 0,1 <
i<M;

(ii) there exists an integer k,, such that for all k > k, we have
m(k) = m.

Proof. see Appendix. O

4.3. Main result

In this subsection we define an estimate v; (k) of the disturbance
8(k) that will be added in the control law (14) to the stabilizing
controller (13), recalling that the number of excited frequencies m
is determined online via its estimate m(k). To be specific, consider
the filters with states n(k) € WNt2M £(k) € RN+M

e =[P 0 Tao+ |47y as)
Ek+1) = [D”gz'ﬁ Co,zg_m} £ - [“{)ﬁ]} y®) (50)

with arbitrary initial conditions 7(0) € RNt2M £(0) e RVT2M
where 0 < ¢y < 1 is a design parameter. The systems above
are driven by the output y(k) of system (16), whose dynamics
depend on m(k) and djm; € RNT2, Dy € RMNTEM ¢ jvE2Im
a7 {0}, oy € MNT2 are defined as in (22) with the estimate
0 < m(k) < M in place of m. Consider the first N 4 2m entries
of n(k) and & (k), i.e. set nz (k) = [Iny2m 0] n(k)and &) (k) =
[In+2m O] & (k). By virtue of Lemma 4.1 there exists an integer ky,
such that for all k > k,, we have m(k) = m, then the dynamics of
N (k) and & (k) in (49), (50) coincide with the ones of (28), (27)
in Section 4 for all k > ky,. If m(k) # 0 consider the matrix

G = (G (1), & 2), . By (7)) € RVF2T e ™,

whose columns ’E\[TIAT] {1}, ... ,aa] {m} are defined as in (29) with
1 < m(k) < M in place of m. In accordance with (33), (34)

_ - T
set y(k) = y(k) — Cnamnm (k) and e (k) = [Cni2mém (0] -
Consider the system with state 6 (k) € "M, described by

Blk+1) = [(’n? =S (i (’<)())Mlﬁ1 Q) Colg_a} (k)
+ [s (“W(kg) H W(k)] (k) (51)

arbitrary initial condition 8(0) € %KM, if (k) # 0, whiled (k+1) =
0if m(k) = 0. The estimation algorithm described so far, satisfies
the following properties.

Claim 4.4. (i) The vectors n(k) € RVEM £k) € RVF2M G(k) €
MM and are globally bounded for all k > 0.

(ii) The vectors O (k) = [l 0]0(k) and ¢ (k) = (k) +
E[ﬁ,] (k)’G\[a]), are exponentially convergent estimates of 6 € R™
and ¢ € RN2M respectively.

(iii) the last 2(M — m) entries of (k) € WM and & (k) € RV+2M
tend exponentially to zero, as well as the last M — m entries of
0(k) € WM.

Proof. The results are a consequence of Claim 4.3 along with
Lemma4.1. O
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[

Fig. 1. Adaptive regulator in Problem 2.1.

Recall that §(k) is the first entry of the vector w € %?™, which
is related to ¢ via the transformation [x] ﬁ)T]T = T (0)¢. By
setting ppm (k) = rim1(0)¢ (k), where rpp,;(0) is the (N + 1)th row
of adjoint [ Tjm(0)] . 8(k) it is expressed as

Plm] (k)

(52)
Let @) (/O\m (k)) be the (N + 1)th row of the adjoint of the matrix
Tii (07 (k) which is defined as in (25) with mi(k) in place of m. Set

P () = 111 Gpy (0) iy (). (53)

By Claim 4.4, o (k) /Ty ('9\[,,1] (k)) tends exponentially to §(k), al-
though is not guaranteed to be bounded in its transient perfor-

mance. To avoid the singularities in which det Tz (O[m] (k) =0,
consider the adaptive saturation algorithm

x,(0) >0

54
p(k) = c3 (x,(k) + G(k)) (54)
with state x, (k) € ), any initial condition such that x,(0) > 0 and
C,, C3 positive design parameters with ¢, < 1, driven by the scalar
function

{xp(k + 1) = cax, (k) + G(k),

G(k) = % arctan (cq [0k +1) =8k |) (55)
where c, is a tuning parameter. Since system (54) is driven by G(k)
which tends exponentially to zero, then p(k) > 0 and limj_,
p(k) = 0 exponentially. The functions p(k) € RT, D (k) € R
in (53) and det Ty @m] (k)) € N provide the estimate vs (k) of § (k)
via the adaptive saturation algorithm

0 ifmk) =0
[p[m] (k) det Tiza) Gy (k)] /p? (k)

if m(k) # 0 and |det Ty Bp ()| < pllo)
P (k) / det Ty Bp (k)

if m(k) # 0and |det Ty Oy k)| > p(k).

vs(k) = (56)

The harmonic compensator described so far, shown in Fig. 2,
along with the stabilizing controller (9), (13), (14), solves
Problem 2.1. We state now the main result of this paper.

Proposition 4.1. Consider system (1). Assume that hypotheses
(H1)-(H3) hold. Then Problem 2.1 is solved via the dynamic output
feedback compensator (14), (56), with dynamics (9), (13), (16), (42),
(44), (46),(49), (50), (51), (54), whose stateiss € R, X € R" X, €
RV v e M2 0 e RIMHF2 5 2MH2 5 e RM 5 e RN+,
£ e WVTM g ¢ {M, Xy € M. In particular, the closed loop system
is such that: its trajectories are bounded and the output e(k) tends
exponentially to zero as k goes to infinity for any initial condition
x(0) € N", w(0) € N', of system (1) and any initial condition of the
regulator such that £2(0) > 0, x;(0) > 0,1 <i <M, x,(0) > 0.

HARMONIC COMPENSATOR

y '_ n
(49) £
R (s0) |_¥ R
n -
M (s51) [ (56) v

n ]

i

(48)

Fig. 2. The harmonic compensator developed in Section 4, as a part of the regulator
in Fig. 1.

Proof. By Claim 4.4 the vectors nym € RVE™, &) € RN+2T
Q[m] € A" and g“[m] e RN+ are globally bounded, hence also
the function P (k) is bounded, and we have | o (k) | < py forall
k > 0, where py is a suitable positive real. Next, we show that the
disturbance estimation error § (k) — vs (k) is globally exponentially
vanishing. From (56) we have

lvs ()| < [ (k)| / Ip(o)|  forallk > 0.

From (54) recalling that the function G(k) is exponentially
vanishing by virtue of Claim 4.3, we deduce that p(O)c§ < pkk) <
cpk’lj forallk > 0, and suitable positive real numbers ¢, and A, with
Ap < 1.Since by Claim 4.4 the vector (9 —/0\[,71] (k)) is exponentially
vanishing, then

|det Ty (O (k)| =
for suitable positive real numbers cr and As with A; < 1. Let ¢
= max {cr, ¢} and A = min {A;, 4, }; from (58), recalling that
p(k) < cpA%, we have that

(57)

|det Ty ()| — craf (58)

p(k) < €i* and |det Tym B (k)| >

forall k > 0.

|det Ty (0)| — EA¥
(59)

By setting | k = log;[|det Ty (0)] /2¢], from (59) we deduce that
| det Tim (H[m] k)| > p(k) for all k > k, so that by virtue of (54)
vs(k) = Py (k)/| det Ty (9[m] (k)| for all k > k and |8(k) — vs (k)|
< cskk if k > k for suitable posmve real numbers ¢; and As with
Ls < 1. Notice that for 0 < k < k the function |8(k) — vs(k)| is
bounded; in fact from (57) recalling that |z (k)| < pm, we have

SUPg<p<i 16(K) — v5(K)| < supgpi [8(K)| + pp(’(v)') Cz_k We conclude
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Fig. 3. (A) The reference input u, (k); (B) the control input u(k); (C) the exosystem parameter estimates §1 (k), ?)\z(k).

that |5(k) — vs(k)| < 65A§ forallk > Oandcs = kgk max{supg<k
18(k) — vs(k)| , Cs}. By setting X = [xI, X7, ﬁ)T]T, the closed loop
system (11), (13), (20), by virtue of (14), becomes X(k + 1) =
AX + b (8(k) — vs(k)), where b is a constant vector and A is a
Hurwitz matrix by construction. Recalling that |5(k) — vs(k)| <
65A§ we conclude that the vector X (k) and the output e(k) are
bounded and globally exponentially vanishing. The state x, (k) €
A" of system (4) is also bounded and globally exponentially
vanishing since the matrix A, in (4) has the eigenvalues inside the
unit circle and both x, (k) and u(k) —u, (k) are bounded and globally
exponentially vanishing. O

5. An example

Consider a system in the form (3), described by the set of
differential equations

03 1 1
x(k+1) = [ 1 o] x(k) + [2] (u(k) — ur(k)) (60)
e(k) =[1 0]x(k),
with state x = [x1,x]7 € %2 control input u € R, output

e € N to be regulated to zero, reference input u, € 9. System
(60) has unstable unforced dynamics and is non-minimum phase.
We set u,(k) = 2 + §(k) + v(k), where §(k) is an harmonic
disturbance and v(k) is an unmodelled noise produced with the
MatLab Simulink Block ‘band limited white noise’ with power
equal to 0.002 and initial seed equal to zero. To compensate the
unknown bias equal to 2, we define a known mode compensator (9)
setting s(k + 1) = s(k) + v(k) and u(k) = s(k) that yields
along with (60) a system in the form (11) perturbed by 6(k) =
8(k+1)—38(k). We consider a stabilizing controller in the form (13),
starting from zero initial conditions, whose transfer function from

. 2 .. .
e(k) tovs (k) is Ws = %.Thls is arobust discrete H®

dynamic controller produced via the MatLab function dhinf (see
MatLab 5.3 Reference Manual). We assume to have three operating
conditions for & (k) (see Box I).

We set the harmonic upper bound M = 2, and simulate the
algorithm for 0 < k < 1400 choosing the numerical values of
the constant design parameters as follows: in system (16) we

choose ay, a;, as, so that all the eigenvalues of p,(z) in (15) coincide
with 0.2. In system (42) we choose a vector a associated with
a polynomial (43) whose roots coincide with the number 0.2. In
system (44) we let ¢, = 0.4 and ¢; = [3.6; 3.6; 8]. In system
(46) we set xo = 1,¢ = 10,and ¢ = 1. In expression (48) we
sets = 6.5.In (49), (50) we consider the vectors dpy),dpp;, that
are associated to polynomials pg(z) in (26) with eigenvalues in
0.2 and set ¢ = 0.1. The parameters of the function S (M[ﬁu (k))
defined in (37) are ¢ = 1,c; = 0.1. In system (54) we set
¢c; = 0.9, c3 = 10 and in (55) ¢4, = 50. The compensator dynamics
have been simulated starting from zero initial conditions except
for 2(0) =1Is, xi(0) = 1,i € [1, 2, 3] and x,(0) = 100.

The simulation results are reported in Figs. 3, 4. In Fig. 3 the
reference input u; (k), the control input u(k), and the estimates
01(k), 6,(k), of the parameters 61, 6, are displayed. It illustrates
that the three operating conditions involving a different minimal
excited harmonics exosystem structure are detected by the
observation algorithm. The upper plot (A) in Fig. 4 reports the
output e(k) in the setting considered so far; the central plot (B) in
Fig. 4 displays |e(k)|gs, i.e. its absolute value expressed in decibel.
The lower plot (C) in Fig. 4 reports |e(k)|4p in a different setting:
when u, (k) = §(k) (thatis in absence of noise). The plot in Fig. 4(C)
illustrates that without unmodelled noise v(k) the regulation
strategy may drive exponentially to zero the output e(k).

6. Conclusion

In this paper we have solved the problem of exponentially
driving to zero the output regulation error of a known, discrete
time, linear system allowed to be non-minimum phase (NMP),
whose disturbances and/or references are generated by an
unknown exosystem with simple eigenvalues on the unit circle,
under the minimal set of hypotheses for the problem to admit
a solution. The exponential convergence results are guaranteed
from any initial condition of both the regulated system and the
exosystem, i.e. even when the initial conditions excite a subset,
possibly empty, of the exosystem modes. The algorithm includes a
module to detect the number of the unknown excited frequencies
and provides exponentially convergent estimates of the unknown
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Time: t < 400 Time: 400 < k < 1200 Time: 1200 < t

Harmonic Input :
8(k) = sin(1.3k)

] Harmonic Input :
8(k) = sin(1.3k) — sin (0.5k)
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S(k)y =0

wi = —0.534w, 4+ w,

{ :
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(61)
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Fig. 4. (A) The regulation error e(k) with exact regulated system parameters and noisy disturbance; (B) |e(k)|qp in the same setting; (C) |e(k)|qp Without noise.

exosystem parameters for any initial condition of the estimates.
The controller is tested on a numerical example in the presence
of a disturbance affecting the input channel: the disturbance
is chosen to be a biased sum of sinusoids with piecewise
constant frequencies and abrupt changes in their number and
frequencies, showing the capability of the algorithm to adapt to
a varying disturbance and its robustness with respect to noises.
The simulation performed on a numerical example achieves exact
exponential regulation for a purely harmonic input reference.

Notice that the methodology described here may inspire
other algorithms to solve also a different problem with respect
to the one considered in this paper, i.e. the case in which
harmonic disturbances affect the output channel. However, its
implementation for NMP systems requires a specific strategy
which will be the object of future research.

Appendix
Proof of Claim 4.2. In what follows we will set & = pupn and
i = [m for conciseness. First, recall that the vector &, and

the entries of the matrix &, € R¥*2" x %™ are bounded, being
linear combinations of the entries of the bounded vector &,); so

that u = fim = @U+2m§[m] is also bounded. If PE holds, given

any constant vector 0 = [01, 02, ...,0ml" with |lo]l = 1, by
computing the expression o' [Z‘;sz“ [,L(_f)/LT(_i)] o and setting
YY) = ¢ forall k = 0.

Y, (k) = u'(k)o, (36) yields Y ._

By contradiction, assume that PE does not hold; then there exists
a constant vector ¢ € R™ such that we have limy_, o, Y, (k) = 0.
Letp,(2) = 012" + -+ 4+ om 12" + 0mZ™ + om 12" +
-+ -+ 01z, the scalar function Y, (k) can be shown to be the output
of the linear filter with input y(k) and transfer function W, (z) =
(Pa(2)p,(2)) /pa(2). The signal y(k) is the output of system (17)
with input 8(k) and transfer function given by (18). By setting
Z[6(k)] = Ns(z)/ps(z) with ps(z) is defined in (19) and Ns(z)
; ; _ _P@po@ Ns(2) N (@)
suitable polynomial, then Z[Y, (k)] = TR + PR’
where N,(z) is a suitable polynomial. The last equality implies
that in Z[Y, (k)] there is at least the z-transform of a sinusoid,
contradicting that limy_. Y, (k) =0. O

Lemma A.1. Consider the nonlinear system x(k + 1) = f (x(k), k) +
gx(k), ku(k), with state x(k) € R" and input u(k) € R™. Let
If x(k), Bl < ¢ lIx(R)|| and llg(x(k), )| < ¢ for all x(k) € R"
and k > 0, with ¢; and cg positive real numbers. Assume that there
exists a Lyapunov function V (x, k) and positive numbers a; € R™,
i <i < 4such that:

(i) aq [Ix]|? < V(x, k) < oy ||x]|? forallx € R and k > 0.

(i) V(xq + x5, k) < V(xq, k) + V(xp, k) + a3 lxqll lIxp ]l for all

X € R xp € R and k > 0.

(iii) V(F(x(k), k), k+1) — V(x(k)) < —ay |lx(k)|%.
If u(k) is a bounded and globally exponentially vanishing function of
k, then x(k) is also a bounded and globally exponentially vanishing
function of k.
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Proof. Itis straightforward via standard Lyapunov techniques. O

Proof of Claim 4.3, We show that system (40) complies with
Lemma A.1 with 6 in place of x and A, in place of u. In fact by
Claim 4.3, we infer that the preliminary properties of Lemma A.1
are satisfied. Consider now the Lyapunov function V; (9 k) =
07 (In + 2Q(k)) 6, where Q(k) € %®™ x %™ is the state of the
filter with dynamics Q(k + 1) = 5 (Q(k) + (k)" (k)), initial
state Q(0) € RN™ x N™ such that ||Q(0)|| < 1.1t can be shown by
induction that there exists a suitable positive real q,, < 1, such that
qmlm < Q(k) < Iy forallk > 0. From the last inequalities we infer
that properties (i) and (ii) ofLemm~a A.1hold for VL(O, k).Inorder to
show property (iii), set V; (k) £ 1621 + 25’ Q(k)0 and Vi(k+1) £
Vi([Im — "] 9,k + 1) where for conciseness 8 = 0(k), i =
(k). By completmg the squares, straightforward computations
lead to the inequality Vi(k 4+ 1) — Vi(k) < —(QTQ(k)Q)/IO <
—qm ||92 I/ 10, which is a particularization of (iii) in Lemma A.1 with
Gm/10in place of y. O

Proof of Lemma 4.1. Let v;(k) denote the first 2i entries of v €
N2M+2; for any vector b! = [by, by, ..., by] € R, we have

b .z 2i—1
BiIG, (k) = e(k) 4 z—1 [ Gurrbaztthaiz )””(Z)N““)],where (k)

Pa(2)pa(2)ps (2)
is an exponentially vanishing function, Ns(z) is a suitable poly-
nomial and pz(2), pa(2), ps(z) defined in (43), (15), (19) respec-
tively. f m+ 1 < i < M + 1, by setting b! = [1,6;,...,
Om—1, Oms Om_1, 61, 1,0, ...,0] € R, we obtain limy_, », bI1;(k)
= 0 and this implies that lim;_,, g;(k) = O exponentially. To
the contrary, if i < m, it does not exist a vector bl € %% such
that limy_, (k)b = 0 and we conclude that (45) holds. Con-
sider now system (46): if 1 < i < m by virtue of (45), recalling
that qy41(k) is exponentially vanishing we deduce that limy_, o
xi(k) = 0 exponentially. If m + 1 < i < M since g;(k) is expo-
nentially vanishing then q;(k) < qM)JL; for suitable positive real
numbers qu, Ay < Tand 1 > oi(qi(k)) > exp(—qMA")' from
(46) we infer that x;(k) > xu = xo exp(—q"” q) > 0 for all k

> 0 and we conclude that (47) holds. The convergence properties
of the harmonics number estimate m (k) in (48) is a consequence
of (45) and (47), the asymptotic properties of g;(k) and y;(k), for
1<i<M. O
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