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a b s t r a c t

Discrete time, linear, stabilizable and detectable systems with known parameters are considered: the
regulation problem is addressed when the reference output and/or the disturbances contain sinusoidal
terms generated by a linear exosystemwith unknown parameters. Only an upper bound on the number of
unknown sinusoids is supposed to be known. A constructive algorithm is proposed to drive the regulation
error exponentially to zero on the basis of its measurement only, under the same necessary and sufficient
conditions which are required when the exosystem is known. The control strategy includes an online
detector for the number of excited frequencies and exponentially converging global estimates of the
exosystem unknown parameters. An illustrative example containing a variable number of frequencies
is worked out and simulated.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The output regulation problem for linear systems in the pres-
ence of unknown harmonic disturbances and/or references has at-
tracted a considerable interest in the control community. In the
framework of the regulation theory introduced in [1], the control
goal is to regulate to zero the output tracking error of a given sys-
tem which is perturbed by nonvanishing unknown modes gener-
ated by a neutrally stable linear exosystem. This research problem
is motivated by many applications such as active suspension de-
sign [2], disk drive speed regulation [3], eccentricity compensa-
tion [4], active noise control [5], harmonic elimination in power
electronics [6], feedback control of vibrations in helicopters [7,8].

In the discrete time setting, under the minimum phase
assumption (MP) on the perturbed system, it is shown in [9] that
unknown deterministic disturbances generated by exosystems
with eigenvalues on the unit circle can be compensated via the
model reference adaptive control techniques described in [10],
yielding asymptotic convergence to zero of the output regulation
error. This task is accomplished via the controller adaptation
with respect to both the system and the exosystem unknown
parameters. A different approach is followed [11–13] for systems
which are allowed to be non-minimum phase (NMP): it focuses on
the construction of regulation algorithms that are adaptive with
respect to the unknown exosystem parameters only, under the
assumption that the system parameters are known. The Youla
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parametrization of stabilizing controllers is used to construct a
regulator by introducing the additional hypothesis that a solution
to the regulation problemexistswhen the controller stable transfer
function is restricted to have all poles in zero. In this special
case, the regulation is obtained by tuning the Youla transfer
function numerator coefficients. In [14] a different approach
is followed, presenting a discrete time adaptive algorithm to
reject a known number of sinusoidal disturbances with unknown
frequencies; the strategy in [14] is tested on an active noise
control testbed, showing its practical implementability when the
system model is partially known; the regulation error is shown
to convergence to zero locally and exponentially via averaging
theory.

Currently in the discrete time setting, the exponential regula-
tion problem of a linear system allowed to be NMP perturbed by
an unknown neutrally stable exosystem is still unsolved, without
requiring additional assumptions besides the necessary hypothe-
ses for a solution to exist when the exosystem’s parameters are
known. In this paperwe solve this problem, designing an algorithm
that improves previous results. The necessary hypotheses for a
solution to exist are shown to be also sufficient for the controller
construction achieving exponential regulation even when the ex-
osystem is unknown. In fact, only an upper bound of the number
of the unknown harmonics generated by the exosystem is required
to obtain exponential regulation. This is achieved via an online de-
tection algorithm for the number of unknown excited frequencies,
which allows for the parameters of the minimal exosystem to be
exponentially estimated. The harmonic compensation algorithm
can be coupledwith any robust stabilizing controller, thus improv-
ing its performance in the presence of disturbances that contain
unknown harmonic signals.

http://dx.doi.org/10.1016/j.sysconle.2011.04.014
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An additional motivation arises also from the regulation
of continuous time linear systems. In fact, in [15], following
previous results in [16], the continuous time counterpart of the
problem addressed here is solved (see also related work for
continuous time linear systems in [17–19] and continuous time
nonlinear systems in [20–23]) by a nonlinear control algorithm. Its
implementation via fast digital devices generates approximation
errors and consequently the regulation error does not converge
to zero; the resulting error is also hard to quantify. On the other
hand, any continuous time linear system perturbed by a neutrally
stable exosystem admits an exact discrete time model if properly
coupledwithA/D andD/Adevices. Hence, a discrete time algorithm
driving to zero the output of the discretized model, drives to zero
the original continuous time output at sampling times.

Motivated by the above arguments, in this note we describe a
discrete time algorithm which differs from the continuous time
one [15] on important aspects. Its estimation strategy is based
on the interpretation of the unknown exosystem parameters as
additional system states. Since they are multiplied by the entries
of the exosystem state vector, the exosystem itself is regarded as
a nonlinear system for which we construct a nonlinear observer.
A discrete time adaptive observer is designed on the basis of a
discrete time ‘canonical’ class which has a different structure with
respect to the one associated with the continuous time problem
in [15], yielding an entirely different disturbance estimation
algorithm. Thus, we depart from the filters structure in [15] to
demonstrate, for the different discrete time filters, the persistency
of excitation condition implying exponential regulation.

The paper is organized as follows: in Section 2 the addressed
problem is precisely stated. In Section 3 the regulation strategy
is outlined. In Section 4 the design of an adaptive harmonic
compensation algorithm is described, which solves the problem
addressed in this paper. The algorithm is tested and illustrated on
a numerical example in Section 5. The conclusions are drawn in
Section 6 and in the Appendix the proofs of intermediate results
are reported.

2. Problem statement

The class of linear systemsx(k + 1) = Ax(k) + bu(k) + Pw(k); x(0) = x0
w(k + 1) = Rw(k); w(0) = w0
e(k) = cx(k) + qw(k);

(1)

is considered, where (A, b, c) is the triple associated to the system
to be regulated, with state x ∈ ℜ

n and initial condition x(0) =

x0. The vector w ∈ ℜ
r is the exosystem state that generates

both the disturbances Pw to be rejected and the signal −qw
to be tracked by the scalar output cx; we assume that R is
neutrally stable, with unknown simple eigenvalues on the unit
circle, i.e. all the eigenvalues have multiplicity of one. In this paper
we are concerned with the design of a feedback control u that
drives exponentially to zero the output e ∈ ℜ on the basis of its
measurement only. If both the triple (A, b, c) and the triple (P, R, q)
are known, following [1] the necessary and sufficient conditions for
the solution of the regulator problem are (Ij ∈ ℜ

j
× ℜ

j denotes the
identity matrix of order j)

(H1) the pair (A, b) is stabilizable (i.e. rank (A − λIn, b) < n
implies |λ| < 1);

(H2) the pair (A, c) is detectable, (i.e. rank

AT

− λIn, cT


< n
implies |λ| < 1);

(H3) rank

A − λIn b
c 0


= n + 1 for any eigenvalue λ of the neu-

trally stable matrix R.
Notice that (H1) and (H2) are the necessary hypotheses for
the existence of an output feedback stabilizing controller for the
triple (A, b, c). The assumption (H3) requires that no eigenvalue
of the matrix R is a zero of the transfer function c (zI − A)−1 b. By
virtue of (H1)–(H3) (see [1]) there exists a unique matrix Γ ∈

ℜ
n

× ℜ
r and a unique vector γ ∈ ℜ

r which solve the regulator
equations

Γ R = AΓ + bγ + P; cΓ + q = 0. (2)

The pair (Γ , γ ) generates the signals xr = Γ w and ur = γwwhich
are the references for x and u respectively, since by virtue of (1),
(2) xr(k + 1) = Axr(k) + bur(k) + Pw(k) and cxr(k) + qw(k) =

0. The coordinate transformation x̃ = x − Γ w yields an error
system

x̃(k + 1) = Ax̃(k) + b (u(k) − ur(k))
e(k) = cx̃(k), (3)

in which the reference input ur = γw satisfies the ‘‘matching
condition’’ and is generated by the exosystem w(k + 1) = Rw(k).
Thus by (H1)–(H3) the regulation of system (1) is achieved by
a control law which simultaneously stabilizes the error system
(3) and reproduces the reference input ur(k), thus leading to the
following regulation problem:

Problem 2.1. Consider the system (1); assume that the triple
(A, b, c) is known and the triple (P, R, q) is unknown,with Rhaving
known dimensions and simple eigenvalues on the unit circle. If
(H1)–(H3) hold, design a dynamic feedback controller such that the
closed loop system output e(k) is driven exponentially to zero for
any initial condition x(0) ∈ ℜ

n, w(0) ∈ ℜ
r of system (1).

Remark 2.1. Notice that in the problem statement above it is
not specified how many modes are excited by the exosystem
actual initial condition w(0) ∈ ℜ

r . Thus the only information
available on ur(k) is simply an upper bound on the number of its
harmonics.

3. Stabilizing regulator design

Since by (H2) the pair (A, c) is detectable, operating a
Kalman decomposition with respect to the observable part, whose
dimension is no ≤ n, (3) is transformed into
xu(k + 1) = Auxu(k) + Auoxo(k) + bu (u(k) − ur(k)) (4)
xo(k + 1) = Aoxo(k) + bo (u(k) − ur(k))
e(k) = coxo(k)

(5)

by a linear change of coordinates [xTu, x
T
o ]

T
= T x̃,where xu ∈ ℜ

n−no

and xo ∈ ℜ
no are associated to the unobservable and observable

parts respectively; Au, Auo, Ao, bu, bo, co are known matrices and
vectors. By construction the eigenvalues of matrix Au lie inside the
unit circle, the triple (Ao, bo, co) is observable and stabilizable, with
transfer function

Wo(z) = pb(z)/po(z) = co

zIno − Ao

−1 bo. (6)

The reference input ur(k)may contain twokind ofmodes: those as-
sociated with r1 < r eigenvalues of the matrix R, located in known
positions, such as ±1 and those expressed as a sum of unbiased si-
nusoidal signalswith unknown frequencies. Operating a decompo-
sitionwith respect to these two components, by using the notation

Aj =

[
0 Ij−1
0 0

]
j×j

, Cj =

1 0 · · · 0


1×j ,

Bj =

0 · · · 0 1

T
1×j , (7)
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with j being a positive integer, the reference input ur(k) can
be expressed, without loss of generality, as the output of the
exosystem with states w1 ∈ ℜ

r1 , w2 ∈ ℜ
r2 ,

w1(k + 1) =

Ar1 − βCr1


w1(k), w1(0) ∈ ℜ

r1

w2(k + 1) = R2w2(k), w2(0) ∈ ℜ
r2

ur(k) = Cr1w1(k) + Cr2w2(k)
(8)

where Cr1w1(k) contains the modes associated with the r1 known
eigenvalues that are the roots of the polynomial pβ(z) = zr1 +
zr1−1, . . . , z, 1


β , with β ∈ ℜ

r1 and Cr2w2(k) is generated by the
modes of R2, having unknown eigenvalueswith nonzero imaginary
part.

The first step in the controller design is to introduce the known
mode compensator driven by the new control input v(k)
s(k + 1) =


Ar1 − βCr1


s(k) + Br1v(k)

u(k) = Cr1s(k)
(9)

with state s(k) ∈ ℜ
r1 and arbitrary initial condition s(0) ∈ ℜ

r1 .
Notice that

rank


Ar1 − βCr1


− λIr1 Br1

Cr1 0


= r1 + 1

for any eigenvalue λ of the matrix R2 by construction and that
system (9) is reachable and observablewith transfer function equal
to 1/pβ(z). Hence, there exists a uniquematrix Γ2 ∈ ℜ

r1 ×ℜ
r2 and

a unique vector γ2 ∈ ℜ
r2 which solve the regulator equations

Γ2R2 =

Ar1 − βCr1


Γ2 + Br1γ2; Cr1Γ2 = Cr2 . (10)

By defining the harmonic signal δ = γ2w2 and the vector xe ∈ ℜ
N ,

with N = no + r1, as xe = [xTo , (s − w1 − Γ2w2)
T
]
T , recalling (10),

the extended system (5), (8), (9) is
xe(k + 1) = Aexe(k) + be (v(k) − δ(k))
e(k) = cexe(k)

(11)

where

Ae =

[
Ao boCr1
0


Ar1 − βCr1

] ; be =

[
0
Br1

]
;

ce =

co 0


. (12)

We focus now on the stabilizing part of the controller action.
By virtue of (H1)–(H2) the undisturbed system, which is obtained
by setting in system (11) δ(k) = 0, is globally exponentially
stabilizable; i.e. there exists an output feedback controller
X(k + 1) = L1X(k) + L2e(k)
vS(k) = H1X(k) + H2e(k)

(13)

with state X ∈ ℜ
n1 , such that the origin xe = 0, X = 0 of the

closed loop autonomous systemobtained from (11), (13) by setting
δ(k) = 0, and v = vS is globally exponentially stable. Thus, the key
part of the regulator construction is the synthesis of an harmonic
compensator that generates an estimate vδ(k) of the unknown
harmonic unbiased signal δ(k). The overall compensating control
generates the signal

v(k) = vS(k) + vδ(k). (14)

Remark 3.1. The regulation algorithm separates the task of stabi-
lization from the one of exact disturbance estimation, in order to
preserve the internal stability of the regulated system, which is al-
lowed to be non-minimumphase. To achieve the exact disturbance
estimation, the exact knowledge of the regulated system parame-
ters is crucial. However, the harmonic compensation algorithm can
be coupled with any ‘robust’ stabilizing controller in the form (13),
in order to improve its performance when the disturbances acting
on system (11) contain predominantly harmonic components.
4. Harmonic compensator design

The harmonic signal δ(k) = γ2w2(k) is the output of the ex-
osystem w2(k+ 1) = R2w2(k) in (8) for a suitable initial condition
w2(0) ∈ ℜ

r2 exciting a subset of its modes. Thus δ(k) is a summ of
sinusoids, with 0 ≤ m ≤ M , where M ≤ ⌊r2/2⌋ ≤ ⌊r/2⌋ is an up-
per bound related to the dimension r of the exosystem in (1). We
describe the main steps to construct an adaptive observer of the
system composed by (11) and a minimal exosystem model yield-
ing δ(k), assuming that the integer m is known and different from
zero. The resulting algorithmwill be generalized later by replacing
m by a suitable estimate.

4.1. An adaptive observer with known number of harmonics

We introduce a linear filter that provides exponential estimates
of the state xe(k) in (11) when the sinusoidal disturbance δ(k) is
identically zero. To this purpose, let ai ∈ ℜ

+, 1 ≤ i ≤ N , be design
parameters such that the polynomial

pa(z) = zN + a1zN−1
+ · · · + aN−1z + aN (15)

has all its roots inside the unit circle. Let gs ∈ ℜ
no be such that

det [zIN − (Ae + gsce)] = zN +a1zN−1
+· · ·+aN−1z+aN . Consider

the linear filter with statexe(k) ∈ ℜ
Nxe(k + 1) = [Ae + gsce]xe(k) − gse(k) + bev,

y(k) = e(k) − cexe(k) (16)

and arbitrary initial conditionxe(0) ∈ ℜ
N . By setting x̄e = xe −xe,

from (5), (16), we obtain
x̄e(k + 1) = [Ae + gsce] x̄e(k) − beδ(k), x̄e(0) ∈ ℜ

N

y(k) = cex̄e(k).
(17)

The error dynamics state x̄e(k) ∈ ℜ
N and the output y(k) of

system (17) are bounded because (17) is a stable filter driven by
the harmonic input δ(k). The transfer functionWe(z) of system (17)
from δ(k) to y(k) is

We(z) = −pb(z)/pa(z) (18)

where pa(z) is the polynomial defined in (15) chosen by the
designer and the polynomial pb(z) is the numerator of the transfer
function Wo(z) in (6).

If m ≠ 0, then δ(k) =
∑m

h=1 σ̄h sin(ωhk + ϕ̄k), where 0 <
ωh < 2π are unknown positive real numbers such that exp(±iωh)
are among the eigenvalues of the exosystem matrix R, while
σ̄h and ϕ̄k are suitable amplitudes and phases, respectively. The
class of linear exosystems that generate the disturbance δ(k) are
associated to matrices whose characteristic polynomial is pδ(z) =∏m

i=1


z2 − 2(cosωi)z + 1


. By expanding the terms in pδ(z) we

obtain

pδ(z) =

m∏
i=1


z2 − 2(cosωi)z + 1


= z2m + θ1z2m−1

+ · · · + θm−1zm+1
+ θmzm

+ θm−1zm−1
+ · · · + θ2z2m−2

+ θ1z + 1 (19)

whichdepends on them entries of the vector θ = [θ1, θ2, . . . , θm]T ,
that in turn is a function of the m constants cosω1, cosω2, . . . ,
cosωm. By setting

S(θ) = A2m − [θ1, θ2, . . . , θm−1, θm, θm−1, . . . , θ2, θ1]T2m C2m

the disturbance δ(k) can bemodelled as the output of the following
(2m)-order linear excited harmonics minimal exosystem

w̄(k + 1) = S(θ)w̄(k), w̄(0) ∈ ℜ
2m

δ(k) = C2mw̄(k), (20)
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with state w̄(k) ∈ ℜ
2m, suitable initial condition w̄(0) ∈ ℜ

2m

that excites all the modes of the matrix S(θ), parametrized by the
vector θ ∈ ℜ

m. The eigenvalues of the extended system (17), (20)
are the roots of the polynomial pa(z) · pδ(z), where pa(z) and pδ(z)
are the polynomials defined in (15) and (19), respectively. Define
V[m](θ) ∈ ℜ

N+2m such that

pa(z) · pδ(z) = zN+2m
+ [zN+2m−1, zN+2m−2, . . . , z, 1]V[m](θ). (21)

The vector V[m](θ) is a linear combination of the entries of θ . In
order to describe a formula expressing in a compact notation the
vector V[m](θ), consider the vector α[m] ∈ ℜ

N+2m

α[m] = [0, . . . , 0, 1, a1, . . . , aN ]T (22)

and define the m + 1 vectors α[m] {j} ∈ ℜ
N+2m, j = 0, 1, . . . ,m,

according to the formulaeα[m] {j} =

(AN+2m)j + (AN+2m)2m−j α[m],

for all 0 ≤ j ≤ mα[m] {m} = (AN+2m)m α[m],

(23)

then V[m](θ) = α[m] {0} + α[m]θ whereα[m] = [α[m] {1} ,α[m] {2} ,
. . . ,α[m] {m}] ∈ ℜ

N+2m
× ℜ

m. System (17), (20) by virtue of (18)
is observable from the available output y(k) for every θ complying
with (19); thus system (17), (20) is expressed in observer canonical
form by a suitable coordinate transformation ζ (x̄e, w̄)

ζ (k + 1) = AN+2mζ (k) − y(k)
α[m] {0} +α[m]θ


y(k) = CN+2mζ (k). (24)

LetOx̄ew̄(θ) be the nonsingular observabilitymatrix of system (17),
(20) and Θζ (θ) be the observability matrix of system (24), that is
nonsingular by construction. The transformation from


x̄e, w̄T

T to
ζ is given by

ζ = T[m](θ)

[
x̄e
w̄

]
where T[m](θ) =


Θ−1

ζ (θ)Ox̄ew̄(θ)

. (25)

Recalling that w̄ ∈ ℜ
2m in (20) is bounded by construction, ζ (k) ∈

ℜ
N+2m is also bounded, since it is diffeomorphic to [x̄e, w̄] via the

nonsingular transformation (25).
Next, we construct an adaptive observer for system (24). Let

d[m] ∈ ℜ
N+2m be a vector chosen by the designer such that all the

roots of

pd(z) = zN+2m
+


zN+2m−1, . . . , z, 1


d[m] (26)

are inside the unit circle; these parameters identify a matrix in
observer canonical form defined as D[m] =


AN+2m − d[m]CN+2m


.

Consider the filters

ξ[m](k + 1) = D[m]ξ[m](k) − α[m]y(k) (27)

η[m](k + 1) = D[m]η[m](k) +

d[m] −α[m] {0}


y(k) (28)

with states ξ[m](k) ∈ ℜ
N+2m, η[m](k) ∈ ℜ

N+2m and arbitrary initial
conditions ξ[m](0) ∈ ℜ

N+2m, η[m](0) ∈ ℜ
N+2m. By setting the m

vectorsξ[m] {i} ∈ ℜ
N+2m as

ξ[m] {i} =


D[m]

i
+


D[m]

2m−i

ξ[m],

for all 1 ≤ i ≤ m − 1ξ[m] {m} =

D[m]

2m
ξ[m],

(29)

and defining the matrixξ[m] ∈ ℜ
N+2m

× ℜ
m asξ[m] = [ξ[m] {1} ,ξ[m] {2} , . . . ,ξ[m] {m}], by computingξ[m](k+ 1), by virtue of (23),

(27), (29), we haveξ[m](k + 1) = D[m]
ξ[m](k) −α[m]y(k). (30)

The following property is crucial for the adaptive observer
construction of system (24).
Claim 4.1. The vector

η[m](k) +ξ[m](k)θ


∈ ℜ

N+2m tends expo-
nentially to the state ζ (k) ∈ ℜ

N+2m of system (24).
Proof. Set

∆ζ (k) = ζ (k) −

η[m](k) +ξ[m](k)θ


. (31)

By computing ∆ζ (k + 1), by virtue of (31) along with (24), (28),
(30) we obtain the dynamics

∆ζ (k + 1) = D[m]∆ζ (k) (32)

with initial condition ∆ζ (0) = ζ (0) −

η[m](0) +ξ[m](0)θ


. The

eigenvalues of D[m] are inside the unit circle and (32) implies that
limk→∞ ∆ζ (k) = 0 exponentially. �

By multiplying both sides of expression (31) for CN+2m and
setting
ȳ(k) = y(k) − CN+2η[m](k), (33)

µ[m](k) =

CN+2mξ[m](k)

T
, (34)

by rearranging the terms, we obtain an alternative expression for
ȳ(k), i.e.

ȳ(k) = µT
[m]

(k)θ + CN+2m∆ζ (k). (35)
The following property holds:

Claim 4.2. The vector µ[m](k) ∈ ℜ
m defined in (34) is bounded and

persistently exciting, (PE), i.e. there exist an integer kµ and a positive
real cµ such that

j=k+kµ−
j=k

µ[m](j)µT
[m]

(j) ≥ Imcµ for all k ≥ 0. (36)

Proof. See Appendix. �

We choose a strategy to estimate θ ∈ ℜ
m that leads to expo-

nential convergence via Lyapunov stability theory. To this purpose,
consider the scalar function

S

µ[m](k)


=


c1/

µ[m](k)
2 if

µ[m](k)
2

≥ ϵ1

c1 if
µ[m](k)

2
< ϵ1

(37)

where 0 < c1 ≤ 1, 0 < ϵ1 ≤ 1 are tuning parameters chosen by
the designer, and setθ[m](k + 1) =


Im − S


µ[m](k)


µ[m](k)µT

[m]
(k)

θ[m](k)

+ S

µ[m](k)


µ[m](k)ȳ(k) (38)

with parameter estimateθ[m](k) ∈ ℜ
m, arbitrary initial conditionθ[m](0) ∈ ℜ

m.
Since


η[m](k) +ξ[m](k)θ


∈ ℜ

N+2m tends exponentially to
ζ (k) ∈ ℜ

N+2m, its estimateζ[m](k) is defined accordingly asζ[m](k) =

η[m](k) +ξ[m](k)θ[m]


. (39)

Setθ(k) = θ −θ[m](k); the computation ofθ(k + 1) yieldsθ(k + 1) =

Im − µ̄[m](k)µ̄T

[m]
(k)

θ(k)

− S

µ̄[m](k)


CN+2m∆ζ (k) (40)

where the ‘‘normalized’’ vector µ̄(k) is defined as

µ̄[m](k) =


c1µ[m](k)/

µ[m](k)
 if

µ[m](k)
2

≥ ϵ1

c1µ[m](k) if
µ[m](k)

2
< ϵ1.

(41)

Then the following property holds:

Claim 4.3. (i) The vectorsθ[m] ∈ ℜ
m andζ[m] ∈ ℜ

N+2m are globally
bounded.(ii) The error estimation vectors ζ =


ζ (k) −ζ[m](k)


∈

ℜ
N+2m and θ(k) =


θ −θ[m](k)


with θ[m](k) defined in (38) andζ[m](k) in (39) are bounded exponentially vanishing functions of k.
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Proof. See Appendix. �

In practical cases the number of excited sinusoids may not
be known in advance, so that the construction of an harmonic
compensator has to involve a strategy to detect the actual number
m excited harmonics.

4.2. An algorithm to detect the number of excited harmonics

We present now a strategy to estimate the number m
of sinusoidal disturbances, that departs considerably from the
approach in [24], describing an algorithm to estimate the sinusoids
number in additive white noise. To this purpose, three cascaded
filters are introduced: the first one is a filter defined as

ν(k + 1) = [A2M+2 − B2M+2ā] ν(k) + B2M+2y(k) (42)

with state ν = [ν1, ν2, . . . , ν2M+2]T ∈ ℜ
2M+2, initial condition

ν(0) ∈ ℜ
2M+2, input y(k) given by (17), where the row vec-

tor ā ∈ ℜ
2M+2 is a chosen by the designer so that the matrix

[A2M+2 − B2M+2ā], has its eigenvalues, i.e. the roots of the poly-
nomial

p̄ā(z) = ā

1, z, . . . , z2M+1T

+ z2M+2, (43)

inside the unit circle. Let ν̄i = [ν1(k), ν2(k), . . . , ν2i(k)] ∈ ℜ
2i

with i ∈ [1,M + 1] be the vector collecting the first 2i entries of
ν ∈ ℜ

2M+2
; itwill be shown to bepersistently exciting if 1 ≤ i ≤ m

and not persistently exciting if m + 1 ≤ i ≤ M + 1. The vector
ν(k) ∈ ℜ

M+1 is the input to the second filter
Ω(k + 1) = cΩΩ(k) + ν(k)ν(k)T , Ω(0) > 0,
qi(k) = (10)cq(i) |detΩi(k)|1/i , 1 ≤ i ≤ M + 1

(44)

with state Ω ∈ ℜ
2M+2

× ℜ
2M+2, 1 ≤ i ≤ M + 1, symmetric

and positive definite initial condition Ω(0) > 0, outputs qi(k),
1 ≤ i ≤ M + 1, where Ωi ∈ ℜ

i
× ℜ

i denotes the matrix col-
lecting the first 2i × 2i entries of Ω and cΩ , cq(1), . . . , cq(M + 1)
are scalar design parameters, with 0 < cΩ < 1. Notice that Ω is
symmetric and (44) can be implemented by a filter whose dimen-
sion is 2M2

+ 5M + 3. It will be shown that the outputs qi(k) with
1 ≤ i ≤ M + 1 of system (44) comply with the property that
qi(k) ≥ qM > 0 for all k > 0, for all 1 ≤ i ≤ m
lim
k→∞

qi(k) = 0, exponentially, for allm + 1 ≤ i ≤ M + 1,(45)

with qM a positive lower bound. The signals qi(k) are the inputs of
the third filter

χi(k + 1) = σi (χi(k), qi(k))

χi(k) + σ̃ (qM+1)


;

χi(0) > 0; 1 ≤ i ≤ M (46)

with state χ = (χ1, . . . , χM)T , in which σ̃ (qM+1) and σi (χi, qi) ,
1 ≤ i ≤ M depend on the tuning parameters c̄ ∈ ℜ

+ and
c̃ ∈ ℜ

+ along with χ0 ∈ ℜ
+ and are defined as σ̃ (qM+1) =

1 − exp(−c̃qM+1)

and σi (χi, qi) = exp(−c̄qi) if χi < χ0 while

σi (χi, qi) =
1
2 if χi ≥ χ0. It is shown in the following that

lim
k→∞

χi(k) = 0 exponentially, for all 1 ≤ i ≤ m

χi(k) ≥ χM > 0 for all k > 0, for allm + 1 ≤ i ≤ M,
(47)

where χM is a suitable positive lower bound. By virtue of (45), (47)
we can derive from the outputs of filters (44) and (46) an estimatem of the integer m by setting

m(k) = round


M−
i=1

qi(k)/

qi(k) + χi(k)10s̄ (48)

where round [·] yields the closest integer of its argument and s̄ ∈

ℜ
+ is a tuning parameter. The estimation property of the filters in-

troduced so far are stated as follows.
Lemma 4.1. Consider the cascaded interconnection of the filters
(42), (44), (46) with input y(k) ∈ ℜ given by (17), state ν(k) ∈

ℜ
2M+2, Ω(k) ∈ ℜ

2M+2
× ℜ2M+2, χ(k) ∈ ℜ

M , tuning parameters
0 < cΩ < 1, χ0 > 0, cq ∈ ℜ

M+1 and s̄ ∈ ℜ
+ such that cq(i) > 0 for

all i ∈ [1,M + 1], output m(k) given by (48). The following holds:

(i) the state trajectories are bounded for any ν(0) ∈ ℜ
2M+2, Ω(0) ∈

ℜ
2M+2

× ℜ
2M+2 such that Ω(0) > 0, and any χi(0) > 0, 1 ≤

i ≤ M;

(ii) there exists an integer km such that for all k ≥ km we havem(k) = m.

Proof. see Appendix. �

4.3. Main result

In this subsectionwedefine an estimatevδ(k)of the disturbance
δ(k) that will be added in the control law (14) to the stabilizing
controller (13), recalling that the number of excited frequenciesm
is determined online via its estimate m(k). To be specific, consider
the filters with states η(k) ∈ ℜ

N+2M , ξ(k) ∈ ℜ
N+2M

η(k + 1) =

[
D[m] 0
0 c0I2M−2m

]
η(k) +

[
d[m] − α[m] {0}

0

]
y(k) (49)

ξ(k + 1) =

[
DN+2m 0

0 c0I2M−2m
]

ξ(k) −

[
α[m]

0

]
y(k) (50)

with arbitrary initial conditions η(0) ∈ ℜ
N+2M , ξ(0) ∈ ℜ

N+2M ,
where 0 ≤ c0 < 1 is a design parameter. The systems above
are driven by the output y(k) of system (16), whose dynamics
depend on m(k) and d[m] ∈ ℜ

N+2m,D[m] ∈ ℜ
N+2m

× ℜ
N+2m,

α[m] {0} , α[m] ∈ ℜ
N+2m are defined as in (22) with the estimate

0 ≤ m(k) ≤ M in place of m. Consider the first N + 2m entries
of η(k) and ξ(k), i.e. set η[m](k) =


IN+2m 0


η(k)and ξ[m](k) =

IN+2m 0

ξ̄ (k). By virtue of Lemma 4.1 there exists an integer km

such that for all k ≥ km we have m(k) = m, then the dynamics of
η[m](k) and ξ[m](k) in (49), (50) coincide with the ones of (28), (27)
in Section 4 for all k ≥ km. If m(k) ≠ 0 consider the matrixξ[m] =

ξ[m] {1} ,ξ[m] {2} , . . . ,ξ[m] {m}


∈ ℜ
N+2m

× ℜ
m,

whose columns ξ[m] {1} , . . . ,ξ[m] {m} are defined as in (29) with
1 ≤ m(k) ≤ M in place of m. In accordance with (33), (34)
set ȳ(k) = y(k) − CN+2mη[m](k) and µ[m](k) =


CN+2mξ[m](k)

T
.

Consider the system with stateθ(k) ∈ ℜ
M , described by

θ(k + 1) =

[
Im − S


µ[m](k)


µ[m](k)µT

[m]
(k)


0

0 c0IM−m
]θ(k)

+

[
S

µ[m](k)


µ[m](k)

0

]
ȳ(k) (51)

arbitrary initial conditionθ(0) ∈ ℜ
M , ifm(k) ≠ 0,whileθ(k+1) =

0 if m(k) = 0. The estimation algorithm described so far, satisfies
the following properties.

Claim 4.4. (i) The vectors η(k) ∈ ℜ
N+2M , ξ(k) ∈ ℜ

N+2M ,θ(k) ∈

ℜ
M and are globally bounded for all k > 0.

(ii) The vectorsθ[m](k) =

Im 0

θ(k) andζ[m](k) = (η[m](k) +ξ[m](k)θ[m]), are exponentially convergent estimates of θ ∈ ℜ
m

and ζ ∈ ℜ
N+2m, respectively.

(iii) the last 2(M − m) entries of η(k) ∈ ℜ
N+2M and ξ(k) ∈ ℜ

N+2M

tend exponentially to zero, as well as the last M − m entries ofθ(k) ∈ ℜ
M .

Proof. The results are a consequence of Claim 4.3 along with
Lemma 4.1. �
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Fig. 1. Adaptive regulator in Problem 2.1.
Recall that δ(k) is the first entry of the vector w̄ ∈ ℜ
2m, which

is related to ζ via the transformation

x̄Te w̄T

T
= T−1

[m]
(θ)ζ . By

setting ρ[m](k) = r[m](θ)ζ (k), where r[m](θ) is the (N + 1)th row
of adjoint


T[m](θ)


, δ(k) it is expressed as

δ(k) =
ρ[m](k)

det T[m](θ)
. (52)

Let r[m](θ[m](k)) be the (N + 1)th row of the adjoint of the matrix
T[m](θ[m](k))which is defined as in (25) withm(k) in place ofm. Set

ρ[m](k) = r[m](θ[m](k))ζ[m](k). (53)

By Claim 4.4,ρ[m](k)/T[m](θ[m](k)) tends exponentially to δ(k), al-
though is not guaranteed to be bounded in its transient perfor-
mance. To avoid the singularities in which det T[m](θ[m](k)) = 0,
consider the adaptive saturation algorithm
xp(k + 1) = c2xp(k) + G(k), xp(0) > 0
p(k) = c3


xp(k) + G(k)

 (54)

with state xp(k) ∈ ℜ, any initial condition such that xp(0) > 0 and
c2, c3 positive design parameters with c2 < 1, driven by the scalar
function

G(k) =
2
π

arctan

c4

θ(k + 1) −θ(k)


(55)

where c4 is a tuning parameter. Since system (54) is driven by G(k)
which tends exponentially to zero, then p(k) > 0 and limk→∞

p(k) = 0 exponentially. The functions p(k) ∈ ℜ
+,ρ[m](k) ∈ ℜ

in (53) and det T[m](θ[m](k)) ∈ ℜ provide the estimate vδ(k) of δ(k)
via the adaptive saturation algorithm

vδ(k) =


0 if m(k) = 0ρ[m](k) det T[m](θ[m](k))


/p2(k)

if m(k) ≠ 0 and
det T[m](θ[m](k))

 ≤ p(k)ρ[m](k)/ det T[m](θ[m](k))
if m(k) ≠ 0 and

det T[m](θ[m](k))
 > p(k).

(56)

The harmonic compensator described so far, shown in Fig. 2,
along with the stabilizing controller (9), (13), (14), solves
Problem 2.1. We state now the main result of this paper.

Proposition 4.1. Consider system (1). Assume that hypotheses
(H1)–(H3) hold. Then Problem 2.1 is solved via the dynamic output
feedback compensator (14), (56), with dynamics (9), (13), (16), (42),
(44), (46), (49), (50), (51), (54), whose state is s ∈ ℜ

r1 , X ∈ ℜ
n1 ,xe ∈

ℜ
N , ν ∈ ℜ

2M+2, Ω ∈ ℜ
2M+2

× ℜ
2M+2, χ ∈ ℜ

M , η ∈ ℜ
N+2M ,

ξ ∈ ℜ
N+2M ,θ ∈ ℜ

M , xp ∈ ℜ. In particular, the closed loop system
is such that: its trajectories are bounded and the output e(k) tends
exponentially to zero as k goes to infinity for any initial condition
x(0) ∈ ℜ

n, w(0) ∈ ℜ
r , of system (1) and any initial condition of the

regulator such that Ω(0) > 0, χi(0) > 0, 1 ≤ i ≤ M, xp(0) > 0.
Fig. 2. The harmonic compensator developed in Section 4, as a part of the regulator
in Fig. 1.

Proof. By Claim 4.4 the vectors η[m] ∈ ℜ
N+2m, ξ[m] ∈ ℜ

N+2m,θ[m] ∈ ℜ
m and ζ[m] ∈ ℜ

N+2m are globally bounded, hence also
the functionρ[m](k) is bounded, andwe have

ρ[m](k)
 ≤ ρM for all

k ≥ 0, where ρM is a suitable positive real. Next, we show that the
disturbance estimation error δ(k)− vδ(k) is globally exponentially
vanishing. From (56) we have

|vδ(k)| ≤
ρ[m](k)

 / |p(k)| for all k ≥ 0. (57)

From (54) recalling that the function G(k) is exponentially
vanishing by virtue of Claim 4.3, we deduce that p(0)ck2 ≤ p(k) ≤

cpλk
p for all k ≥ 0, and suitable positive real numbers cp andλp with

λp < 1. Since by Claim 4.4 the vector (θ −θ[m](k)) is exponentially
vanishing, thendet T[m](θ[m](k))

 ≥
det T[m](θ)

 − cTλk
s (58)

for suitable positive real numbers cT and λs with λs < 1. Let c̄
= max


cT , cp


and λ̄ = min


λs, λp


; from (58), recalling that

p(k) ≤ cpλk
p, we have that

p(k) ≤ c̄λ̄k and
det T[m](θ[m](k))

 ≥
det T[m](θ)

 − c̄λ̄k

for all k > 0. (59)

By setting k̄ = logλ̄[
det T[m](θ)

 /2c̄], from (59) we deduce that
| det T[m](θ[m](k))| > p(k) for all k > k̄, so that by virtue of (54)
vδ(k) = ρ[m](k)/| det T[m](θ[m](k))| for all k > k̄ and |δ(k) − vδ(k)|
≤ c̄δλk

δ if k > k̄ for suitable positive real numbers c̄δ and λδ with
λδ < 1. Notice that for 0 ≤ k ≤ k̄ the function |δ(k) − vδ(k)| is
bounded; in fact from (57) recalling that

ρ[m](k)
 ≤ ρM , we have

sup0≤k≤k̄ |δ(k) − vδ(k)| ≤ sup0≤k≤k̄ |δ(k)| +
ρM
p(0) c

−k̄
2 . We conclude
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B
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Fig. 3. (A) The reference input ur (k); (B) the control input u(k); (C) the exosystem parameter estimatesθ1(k),θ2(k).

that |δ(k) − vδ(k)| ≤ cδλk

δ for all k ≥ 0 and cδ = λ−k̄
δ max{sup0≤k≤k̄

|δ(k) − vδ(k)| , c̄δ}. By setting X̄ =

xTe , X

T , w̄T
T , the closed loop

system (11), (13), (20), by virtue of (14), becomes X̄(k + 1) =

ĀX̄ + b̄ (δ(k) − vδ(k)), where b̄ is a constant vector and Ā is a
Hurwitz matrix by construction. Recalling that |δ(k) − vδ(k)| ≤

cδλk
δ we conclude that the vector X̄(k) and the output e(k) are

bounded and globally exponentially vanishing. The state xu(k) ∈

ℜ
n−no of system (4) is also bounded and globally exponentially

vanishing since the matrix Au in (4) has the eigenvalues inside the
unit circle and both xo(k) and u(k)−ur(k) are bounded and globally
exponentially vanishing. �

5. An example

Consider a system in the form (3), described by the set of
differential equationsx(k + 1) =

[
0.3 1
1 0

]
x(k) +

[
1
2

]
(u(k) − ur(k))

e(k) =

1 0


x(k),

(60)

with state x = [x1, x2]T ∈ ℜ
2, control input u ∈ ℜ, output

e ∈ ℜ to be regulated to zero, reference input ur ∈ ℜ. System
(60) has unstable unforced dynamics and is non-minimum phase.
We set ur(k) = 2 + δ̄(k) + ν(k), where δ̄(k) is an harmonic
disturbance and ν(k) is an unmodelled noise produced with the
MatLab Simulink Block ‘band limited white noise’ with power
equal to 0.002 and initial seed equal to zero. To compensate the
unknown bias equal to 2, we define a knownmode compensator (9)
setting s(k + 1) = s(k) + v(k) and u(k) = s(k) that yields
along with (60) a system in the form (11) perturbed by δ(k) =

δ̄(k+1)−δ̄(k).We consider a stabilizing controller in the form (13),
starting from zero initial conditions, whose transfer function from
e(k) tovS(k) isWS =

0.2z2+2.8z+2.36
z3+2.3z2+3.24z+1.94

. This is a robust discreteH∞

dynamic controller produced via the MatLab function dhinf (see
MatLab 5.3 ReferenceManual).We assume to have three operating
conditions for δ̄(k) (see Box I).

We set the harmonic upper bound M = 2, and simulate the
algorithm for 0 < k ≤ 1400 choosing the numerical values of
the constant design parameters as follows: in system (16) we
choose a1, a2, a3, so that all the eigenvalues of pa(z) in (15) coincide
with 0.2. In system (42) we choose a vector ā associated with
a polynomial (43) whose roots coincide with the number 0.2. In
system (44) we let cΩ = 0.4 and cq = [3.6; 3.6; 8]. In system
(46) we set χ0 = 1, c̄ = 10, and c̃ = 1. In expression (48) we
set s̄ = 6.5. In (49), (50) we consider the vectors d[1],d[2], that
are associated to polynomials pd(z) in (26) with eigenvalues in
0.2 and set c0 = 0.1. The parameters of the function S


µ[m](k)


defined in (37) are ϵ1 = 1, c1 = 0.1. In system (54) we set
c2 = 0.9, c3 = 10 and in (55) c4 = 50. The compensator dynamics
have been simulated starting from zero initial conditions except
for Ω(0) = I6, χi(0) = 1, i ∈ [1, 2, 3] and xp(0) = 100.

The simulation results are reported in Figs. 3, 4. In Fig. 3 the
reference input ur(k), the control input u(k), and the estimatesθ1(k),θ2(k), of the parameters θ1, θ2, are displayed. It illustrates
that the three operating conditions involving a different minimal
excited harmonics exosystem structure are detected by the
observation algorithm. The upper plot (A) in Fig. 4 reports the
output e(k) in the setting considered so far; the central plot (B) in
Fig. 4 displays |e(k)|dB, i.e. its absolute value expressed in decibel.
The lower plot (C) in Fig. 4 reports |e(k)|dB in a different setting:
when ur(k) = δ̄(k) (that is in absence of noise). The plot in Fig. 4(C)
illustrates that without unmodelled noise ν(k) the regulation
strategy may drive exponentially to zero the output e(k).

6. Conclusion

In this paper we have solved the problem of exponentially
driving to zero the output regulation error of a known, discrete
time, linear system allowed to be non-minimum phase (NMP),
whose disturbances and/or references are generated by an
unknown exosystem with simple eigenvalues on the unit circle,
under the minimal set of hypotheses for the problem to admit
a solution. The exponential convergence results are guaranteed
from any initial condition of both the regulated system and the
exosystem, i.e. even when the initial conditions excite a subset,
possibly empty, of the exosystemmodes. The algorithm includes a
module to detect the number of the unknown excited frequencies
and provides exponentially convergent estimates of the unknown
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1)
(i) (ii) (iii)
Time: t ≤ 400 Time: 400 < k ≤ 1200 Time: 1200 < t

Harmonic Input :
δ̄(k) = sin(1.3k)

Harmonic Input :
δ̄(k) = sin(1.3k) − sin (0.5k)

Harmonic Input :
δ̄(k) = 0

Minimal Exosystem (20):
˙̄w1 = −0.534w̄1 + w̄2
˙̄w2 = w̄1

Minimal Exosystem (20):
˙̄w1 = −2.290w̄1 + w̄2
˙̄w2 = 2.939w̄1 + w̄3
˙̄w3 = −2.290w̄1 + w̄4
˙̄w4 = w̄1

No Excited Harmonics

(6

Box I.
A

B

C

Fig. 4. (A) The regulation error e(k) with exact regulated system parameters and noisy disturbance; (B) |e(k)|dB in the same setting; (C) |e(k)|dB without noise.
exosystem parameters for any initial condition of the estimates.
The controller is tested on a numerical example in the presence
of a disturbance affecting the input channel: the disturbance
is chosen to be a biased sum of sinusoids with piecewise
constant frequencies and abrupt changes in their number and
frequencies, showing the capability of the algorithm to adapt to
a varying disturbance and its robustness with respect to noises.
The simulation performed on a numerical example achieves exact
exponential regulation for a purely harmonic input reference.

Notice that the methodology described here may inspire
other algorithms to solve also a different problem with respect
to the one considered in this paper, i.e. the case in which
harmonic disturbances affect the output channel. However, its
implementation for NMP systems requires a specific strategy
which will be the object of future research.

Appendix

Proof of Claim 4.2. In what follows we will set µ = µ[m] and
µ̄ = µ̄[m] for conciseness. First, recall that the vector ξ̄[m] and
the entries of the matrixξ[m] ∈ ℜ

N+2m
× ℜ

m are bounded, being
linear combinations of the entries of the bounded vector ξ[m]; so
that µ = µ̄[m] = Cv+2mξ[m] is also bounded. If PE holds, given
any constant vector ϱ = [ϱ1, ϱ2, . . . , ϱm]T with ‖ϱ‖ = 1, by
computing the expression ϱT

∑j=k+kµ
j=k µ(j)µT (j)


ϱ and setting

Yϱ(k) = µT (k)ϱ, (36) yields
∑j=k+kµ

j=k Y 2
ϱ (j) ≥ cµ for all k ≥ 0.
By contradiction, assume that PE does not hold; then there exists
a constant vector ϱ ∈ ℜ

m such that we have limk→∞ Yϱ(k) = 0.
Let pρ(z) = ϱ1z2m−1

+ · · · + ϱm−1zm+1
+ ϱmzm + ϱm−1zm−1

+

· · · + ϱ1z; the scalar function Yϱ(k) can be shown to be the output
of the linear filter with input y(k) and transfer function Wϱ(z) =
pa(z)pρ(z)


/pd(z). The signal y(k) is the output of system (17)

with input δ̄(k) and transfer function given by (18). By setting
Z[δ̄(k)] = Nδ(z)/pδ(z) with pδ(z) is defined in (19) and Nδ(z)
suitable polynomial, then Z[Yϱ(k)] = −

pb(z)pρ (z)
pd(z)

Nδ(z)
pδ(z)

+
N2(z)

pd(z)pa(z)
,

where N2(z) is a suitable polynomial. The last equality implies
that in Z[Yϱ(k)] there is at least the z-transform of a sinusoid,
contradicting that limk→∞ Yϱ(k) = 0. �

Lemma A.1. Consider the nonlinear system x(k+ 1) = f (x(k), k) +

g(x(k), k)u(k), with state x(k) ∈ ℜ
n and input u(k) ∈ ℜ

m. Let
‖f (x(k), k)‖ ≤ cf ‖x(k)‖ and ‖g(x(k), k)‖ ≤ cg for all x(k) ∈ ℜ

n

and k ≥ 0, with cf and cg positive real numbers. Assume that there
exists a Lyapunov function V (x, k) and positive numbers αi ∈ ℜ

+,
i ≤ i ≤ 4 such that:
(i) α1 ‖x‖2

≤ V (x, k) ≤ α2 ‖x‖2 for all x ∈ ℜ
n and k ≥ 0.

(ii) V (xa + xb, k) ≤ V (xa, k) + V (xb, k) + α3 ‖xa‖ ‖xb‖ for all
xa ∈ ℜ

n, xb ∈ ℜ
n, and k ≥ 0.

(iii) V (f (x(k), k), k + 1) − V (x(k)) ≤ −α4 ‖x(k)‖2 .

If u(k) is a bounded and globally exponentially vanishing function of
k, then x(k) is also a bounded and globally exponentially vanishing
function of k.



R. Marino, G.L. Santosuosso / Systems & Control Letters 60 (2011) 561–569 569
Proof. It is straightforward via standard Lyapunov techniques. �

Proof of Claim 4.3. We show that system (40) complies with
Lemma A.1 with θ in place of x and ∆ζ in place of u. In fact by
Claim 4.3, we infer that the preliminary properties of Lemma A.1
are satisfied. Consider now the Lyapunov function V1(θ, k) =θ T


Im +

2
5Q (k)

θ , where Q (k) ∈ ℜ
m

× ℜ
m is the state of the

filter with dynamics Q (k + 1) =
1
2


Q (k) + µ̄(k)µ̄T (k)


, initial

state Q (0) ∈ ℜ
m

× ℜ
m such that ‖Q (0)‖ < 1. It can be shown by

induction that there exists a suitable positive real qm < 1, such that
qmIm ≤ Q (k) ≤ Im for all k > 0. From the last inequalities we infer
that properties (i) and (ii) of LemmaA.1hold forV1(θ, k). In order to
show property (iii), set V1(k) , ‖θ2

‖ +
2
5 θ̃

TQ (k)θ and V1(k+ 1) ,

V1(

Im − µ̄µ̄T

θ, k + 1) where for conciseness θ = θ(k), µ̄ =

µ̄(k). By completing the squares, straightforward computations
lead to the inequality V1(k + 1) − V1(k) ≤ −(θ̃ TQ (k)θ)/10 ≤

−qm‖θ2
‖/10,which is a particularization of (iii) in LemmaA.1with

qm/10 in place of α4. �

Proof of Lemma 4.1. Let ν̄i(k) denote the first 2i entries of ν ∈

ℜ
2M+2

; for any vector b̄[i]
=


b̄1, b̄2, . . . , b̄2i


∈ ℜ

2i, we have

b̄[i]ν̄i(k) = ϵ(k) + Z−1

(b̄1+b̄2z+···+b̄2iz2i−1)pb(z)Nδ(z)

p̄ā(z)pa(z)pδ(z)


, where ϵ(k)

is an exponentially vanishing function, Nδ(z) is a suitable poly-
nomial and p̄ā(z), pa(z), pδ(z) defined in (43), (15), (19) respec-
tively. If m + 1 ≤ i ≤ M + 1, by setting b̄[i]

= [1, θ1, . . . ,
θm−1, θm, θm−1, θ1, 1, 0, . . . , 0] ∈ ℜ

2i, we obtain limk→∞ b̄[i]ν̄i(k)
= 0 and this implies that limk→∞ qi(k) = 0 exponentially. To
the contrary, if i ≤ m, it does not exist a vector b̄[i]

∈ ℜ
2i such

that limk→∞ ν̄i(k)b̄[i]
= 0 and we conclude that (45) holds. Con-

sider now system (46): if 1 ≤ i ≤ m by virtue of (45), recalling
that qM+1(k) is exponentially vanishing we deduce that limk→∞

χi(k) = 0 exponentially. If m + 1 ≤ i ≤ M since qi(k) is expo-
nentially vanishing then qi(k) ≤ qMλk

q for suitable positive real
numbers qM , λq < 1 and 1 ≥ σi(qi(k)) ≥ exp(−qMλk

q); from

(46) we infer that χi(k) ≥ χM = χ0 exp(−
qMλq
1−λq

) > 0 for all k
≥ 0 and we conclude that (47) holds. The convergence properties
of the harmonics number estimate m(k) in (48) is a consequence
of (45) and (47), the asymptotic properties of qi(k) and χi(k), for
1 ≤ i ≤ M . �
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