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One designs a Stratonovich noise feedback controller witpasrt in an arbitrary open subg2t of O which exponentially stabilizes
in probability, that is with probability one, the Oseen-&te systems in a domaihc RY, d = 2, 3. This completes the stabilization
results from the author’s work [6] which is concerned witlsidga of an Ito noise stabilizing controller.
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1. Introduction and statement of the problem Here,{,Bk}l';il is a system of mutually independent Brownian
motions on a probability spad€, ¥, P} with filtration {F}e0

This work is concerned with internal stabilization via Stra while the corresponding closed loop system

O tonovich noise feedback controller of Oseen—Stokes system

%—vAX+(f-V)X+(X~V)g=Vp in (0,00) x O,

dX — vAX dt+ (f - V)X dt+ (X - V)g dt

(4)

M
) = 10, ) RdX) o 4B+ Vp dt
k=1

V.-X=0 in (0,00)xO,

i
)
®
é X(0,8) =x(é), £€0, X=00n(Qeo)xad0.

X(0) = x

«— Here,O is an open and bounded subsefRf d = 2,3, with is taken in Stratonovich sense (see, e.g., [1]) and thiisity

— smooth boundaryO andf, g € C3(O; RY) are given functions. nificance of the symbdR(X) o B in the expression of the noise
=1 'In the special casg = 0, system (1) describes the dynamic of controller (3). In the following, the terminology Stratarich

a fluid Stokes flow with partial inclusion of convection acce-feedback controller or Ito feedback controller refer toskase
leration (f - V)X (X is the velocity field). The same equation in which the corresponding stochastic equation (4) is consi
<|: describes the disturbance flow induced by a moving body witldered: in the Stratonovich sense or, respectively, thedhse.
<" velocity f through the fluid. Should we mention also that in theWe have denoted biy, the characteristic function of the open

71

O special casd = g = Xe, WhereX, is the equilibrium (steady-

V-X=0, Xlso=0,

1 'state) solution of the Navier—Stokes equation
= = aX
— —vAX+(X-V)X=Vp+f
_E 6t v + ( ) p + e (2)
| S
©

andf, € C(O; RY), system (1) is the linearization of (2) around
Xe. In this way, the stabilization of (1) can be interpretedtes t
first order stabilization procedure of steady-state NaBéwkes
flows.

Our aim here is to design a stochastic feedback controller

of the form

M
U= 1g, > Re(X) o B, Re € L((L3(0))"), (3)
k=1

which stabilizes in probability system (1) and has the suppo

in an open subdomaifl, of O.
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In [5], [6], [7], [8], the author has designed similar stabil
zable Ito noise controllers for equation (1) and relatedidtay
Stokes equations. However, it should be said that, witheesp
to Ito noise controllers, the Stratonovich feedback cdlerd3)
has the advantage to be stable with respect to smooth changes
B, of the noisgBy and this fact is crucial not only from the con-
ceptual point of view, but also for numerical simulationglan
practical implementation into system (1) of the randomistab
lizable feedback controller

M
Us() = 1o, Y R(XD)BE).
k=1

Where,Bﬁ is a smooth approximation ¢f. If instead (3) we
take u to be an Ito stabilizable feedback controller, then the
corresponding Ito stochastic closed loop equation is agere
for ¢ — 0 to a Stratonovich equation of the form (4) which
might be unstable because the stabilizatiffieat of the noise
controller is given by the Ito’s formula which is valid forolt
stochastic equation only. Thus, for numerical implemeéoat
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of a stabilizanble noise feedback controllet is essential that (i) Allthe eigenvalue(s&j}’j\‘:1 are semisimple.
it is of Stratonovich type. It should be said, however, thnat t
option for an Ito stabilizable noise controller, like in {$8], or

a Stratonovich one, as in this work, is function of the specifi
techniques used to insert such a noise controller into syEkg

by direct simulation or by numerical approximating procedu

This means that the algebraic multiplicity of eaghj = 1,..., N,
coincides with its geometric multiplicity or, in other wadthe
finite-dimensional operator (matrixl, is diagonalizable. As
we will see later on, this assumption is not essentially sece
) o . . sary but it simplifies however the construction of the siainif
~Asregards the literature on stabilization of lineafetien-  qniroller because it reduces the unstable part of thersyste
tial systems by Stratonovich noise, the pioneeringwork§ 3 giagonal finite-dimensionalfiérential system. In particular,

should be primarily cited. For linear PDEs, this proceduasWw it tollows by (i) that we can choose the dual systefpg and
developed in [9], [10] which are related to this work. For 9€- ("} in such a way that
j

neral results on internal stabilization of Navier—Stokgstams

with deterministic feedback controllers, we refer to [4Feé <¢i (p{‘> =6, ij=1..N. (8)
also [11] for noise stabilizationfiéect into a dfferent nonlinear '
PDE context.) (Here, and everywhere in the following,, -) stands for the

scalar product in{ andH. By |- |¢ and| - |y we denote the
corresponding norms.)

We note that the uncontrolled Oseen—Stokes system (1) can

Consider the standard space of free divergence vectoRe rewritten in the spack as
H={ye (L)% V-y=0in0,y-n=00nd0} and denote dx
by Ao : D(Ao) c H — H the realization of the Oseen—Stokes gr TAX=0.120, X(0) = x, )
operator in this space, that is,

and settingX, = LI, yjoj. Xs = (I — Pn)X, wherePy is the
Aoy = P(-vAy + (f - V)y+ (y-V)g), yeD(A), (5)  algebraic projector oi, we have

2. Thenoise stabilizing feedback controller

whereD(Ao) = H N (H*(0)) N (H3(0))". Here P is the Leray dX : B

projector onH andH?(0), H3(O) are standard Sobolev spaces at * AKXy =0, Xu(0) = Prx, (10)
on O. In the following, it will be more convenient to repre- dXe

sent equation (1) in the complex Hilbert spable= H + iH op FAXs =0 X(0) = (1 - Pr)x. (11)

by extendingAp to A : D(A) c H — H via standard proce- N
dure, A(x + iy) = Aox + iAoy. The operatorA has a countable We setA; = {<ﬂ901390i2>}j,k=1 = diadl;lIL, and so, by (8), we
set of eigenvalueg; ¥ (eventually complex) with the corres-
ponding eigenvectors;. Denote byA* the adjoint of A with

eigenvalueﬁj and eigenvector«,s*]f. Each eigenvalue is repeated dy N
in the following according to its algebraic multiplicitg;. Nor- g HAY =0 ¥(0)= {(PNX,SD,->}J.:1~ (12)
malizing the systenfip;}i2,, we see that

may rewrite (10) in terms of = {yj = (Xu, c,o*]f)}:il as

Since TrEAy) = A1 — A2 —--- — Ay < 0, it follows by Theo-
IVoil2, = 1 = ((f - V)gi + (0 - V)G 01}, Vi, rem 2 in [3] that there is a sequence of skew—syrr_1metr|c matri-
“iln ! <( Yei (i~ V)9 "OJ> : ces{Ck},'Q"zl, whereM = N - 1 such that the solutiop to the
and since, by the Fredholm-Riesz thedty, » +c0 asj — o,  Stratonovich stochastic system
we infer that Relj —» +o0 asj — . We denote byN the

minimal number of eigenvaluey for which dy+ Ay dt= ZM: CfyodB, t>0, (13)
k=1

Redj>0forj=N, A1+ A2+---+An > 0. (6)

] ) ) has the property
(In the above sequence, eathis taken together its conjugate

1; and, clearly, there is such a natural numNex ly(t)l < Cly(0)le ™, P-a.s, VYt >0, (14)

SetX,=lin sparit,o,-}’.\‘:l and denote bys the algebraic com-
plement ofX, in X. Itis well known thatX, andXs are both
invariant forA and, if we set

wherey, > 0. The matrixCX is explicitly constructed in [3]
and it will be used below to construct a stabilizable fee#tbac
controller of the form (3). Namely, we set in (3)

‘ﬂu = ﬂl/\’m ﬂS = ﬂ'/\ls’

N
— Kk #\ g —

we have for their spectra(A,) = {/lj}g\‘:l’ o(As) = {/lj}(jx;NJrl R(X) = -Zlqj <X, ‘10j>¢|, k=1,...,M, (15)
and, since-As is the generator of an analyt{€-semigroup b=
e in X5, we have where||CKIN._, = C¥,

lle" ™Iz < Cexp-Rednst), t>0, (7) N
P = s, 1=1,..,N, 16
(see, e.g., [5], p. 14). In the following, we shall assumé tha # ;a'[% (16)
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andaj, are chosen in such a way that

N
Zaim/fj = 0jj, i,j=1,..,N. a7

=1
Here,y,; = foo ¢,¥;d¢ and since, by the unique continuation
property (see [5], p. 157), the eigenfunction syst{@rﬂ is li-
nearly independent o@, we infer that the matriqug,H{, is

not singular and, therefore, there is a unique systep}\wmch
satisfies (17). Then, by (16), we see that

<1Oo¢i,<ﬁ]‘F> =6ij, 1,j=1..,

As mentioned earliet), is an arbitrary open subset Gf
Theorem 1 is the main result.

N. (18)

Theorem 1. The solution X to the closed loop systgt)) where
Ry are defined by15), is exponentially stable with probability
one, that is,

P[IX()ly < Ce™'IX, V20| = (19)
wherey > 0and C> 0 are independent ab € Q.

2.1. The proof of Theorem 1

The idea of the proof, already used in stabilization theory,

of infinite-dimensional systems with finite-dimensionabkta:
ble subspaces, is to stabilize the finite-dimensional ay$1®)
by a feedback controller of the form (3) and to reconstruatco
sequently the system via the infinite-dimensional stabla-co
plement (11).

Namely, taking into account (10), (11), we write the closed
loop system (4), that is,

M
dX+ AX dt= P [100 D RdX) 0 dﬂk} (20)
k=1
as
M N
dX,+ AXudt =Py Y > Cl (X)) Po) o A (21)
k=11i,j=1

M N
dXs+ AsXedt = (I - Py) Z D, Cf (X)) P@0) 0 dBi. (22)
k=11i,j=1
whereX, + Xs = X.
Taking into account (18) and that, = Z'j\‘zl Yipj, we may
rewrite (21) as

M
dy, + Ayedt= Y ClyjodBe €=1,..,N, (23)
k=1
and so, by (14), we have that
lye(t)] < Cely,(0), P-a.s, Vt >0, £=1,..,N. (24)

(We have denoted b§ several positive constants independent

of tandw € Q.)

As regards the existence of a soluti®g to (22), this is
standard and follows from the general theory of linear itdini
dimensional stochastic equations.

Now, in order to estimat¥,, it is convenient to replace (22)
by its Ito formulation (see, e.g., [10])

I =

dXs + AXsdt

M
5 D [PUoRIX.dt
k=1

M

Z P(1o,Ra(Xu))dBic

k=1

(25)

+

Taking into account that, by (787! is an exponentially stable
semigroup orXs, without loss of generality we may assume
that Re({Asx, X) > y|X|2 (Otherwise, proceeding as in [6],
we replace the scalar produgt y) by (Qx, y) whereQ is the
solution to the Lyapunov equatiagfsQ + QA; = yl.) Then,
applying Ito’s formulain (25), we see that

M
dIXs(D)12,+2yIXs(t) 2, dt= <Xs(t), Z[P(looRk]ZXu(t)> dt
k=1

(26)
M M
+ ) IPLoR(Xa))Pdt + 2 > P(LoRe(Xu))XsBik.
k=1 k=1
Taking into account that, by (24)Xu(t)lx < e Xy (0)], we

infer by (26) that

EIXs(t)I5, < CIXs(0)Pe™, Vvt > 0.
SinceM(t) = fot S M P(Lo,Re(Xu)Xs 0Bk is a local martingale,
it follows by (26) and Lemma 3.1 in [6] that

IXs(t)l# < CIXs(0)e™, Vt>0, P-as,

which completes the proof.

3. Thedesign of areal valued noise controller

A nice feature of the feedback controller given by Theo-
rem 1 is its simple structure. Moreover, its computationsdoe
not rise any special problem because the stabilizing nestric
C for the diagonal system (23) can be explicitly expressed.

Ifall 2;, j = 1,...,N, are real, then the feedback controller
{R¢} given by Theorem 1 as well as the closed loop system (4)
are real, too. However, if somy are complex, then the above
feedback controller does not stabilize system (1), butdte-c
plex realization in the spacH = H + iH. In this case, though
the stabilizing feedback controller (3) is quite simpls,jiihple-
mentation into real systems rises some delicate problems be
cause the feedback controller is in implicit form as functad
ReX, ImX. In order to circumvent these inconvenience, we
will derive below from the above construction a real valued
noise feedback controller which has a stabilizifigget on the
Oseen-Stokes system (1).

To this end, we denote kj;b, N , the orthogonalized system
(via Schmidt procedurelRey;, Im ¢j, | = 1,..,N}. Taking



into account that eacl; in the above system arises together
with its conjugate, the dimension of the syst@sm) is againN.
We also set

X7 = lin sparfy )

and note thak[? = {Rey; y € X} andH = X[F & XY, where
Xg¥ = {Rey; y € Xs}. Moreover, the operataf leaves inva-
riant space«’, XT and if we set

re re
‘ﬂu = ﬂo'.f\’ﬁe’ ‘ﬂs = ﬂ0|z\”§,

we have, of course,
e ™Yy < Ce™,  Vt>0, (27)
for someyy > 0. Itis also easily seen that
Tr[-A7] = Tr[-Ay] < 0.
Then, we define as in (15) the operators

N

R =D Ck(Xp)d. k=1..M,
ij=

,j=1

(28)

whereCk = ||6}<j IIN._, is the matrix system which stabilizes with
probability one, via Theorem 2 in [3], the finite-dimensibna
system

M
dy+ Ay dt= Z C*y o dBx.

k=1

Here,A® = || (ﬂ[ﬁbi, z,bj> Ny andg; is given by

N
¢i = Zaiew, i=1..,N,

=1

wherea;, are chosen in such a way that

N
Z'c?iﬁfj =dij, Vi =f Yoy jdé.
=1 Qo

As in the previous case, the syst@m}?‘zl is still linearly inde-
pendent or0p which implies that ddfy,;|| # 0 and the above
system has a unique solutioy.

Then, arrived at this point, the proof of Theorem 1 applies

neatly to conclude that the feedback noise controller (3 wi
R« instead ofRy is stabilizing in the probability system (9).
Namely, we have the following stabilization result.

Theorem 2. The solution X to the closed loop syst&fiwith
R« = R« defined by(28) satisfieg19)in the real normX(t)|.

Remark 3. It should be emphasized that there is a close con-

nection between the unique continuation property of eigecd

tions ¢; (or ¢}) of the Oseen—Stokes operator and the above

construction of a stabilizing finite-dimensional feedback-
troller (3). In fact, as seen above, the desigruah the form
(15) or (28) is essentially based on this sharp propertyuiiino
existence in the algebraic system (17).

It should be mentioned also that, likewise the correspandin
Ito noise controller (see [5]), the stabilizable feedbagkteol-
ler (3) is robust.

Remark 4. One might speculate that the noise feedback con-
troller

M
u=1g, » RdX~Xe)ods (29)

k=1
inserted in the right hand side of Navier—Stokes systemté2) s
bilizes exponentially in probability the equilibrium sdilon X,
to (2). In general, this might not be true, but it happens for |
noise of the form (29) for any in a suficiently small neighbor-
hood of X, (see [8]) and one might expect that the fixed point
argument used there for the equivalent random system lis stil
applicable in the present case. We expect to give details in a
later work.

4. Conclusions

We have designed in this paper a Stratonovich stochastic
feedback controller which exponentially stabilizes in lpabi-
lity a general Oseen—Stokes system from fluid dynamics. The
controller has the support in an arbitrary open suldgbdf
the velocity field domairO c RY, d = 2,3, and has a finite-
dimensional linear structure which involves the dual efgan-
tions corresponding to unstable eigenvalues of the systéhes
stabilization &ect is independent of the Reynold numbév 1
through the dimensioN of the stabilizing controller (3) might
depend on.
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