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Internal stabilization of the Oseen–Stokes equations by Stratonovich noise
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Abstract

One designs a Stratonovich noise feedback controller with support in an arbitrary open subsetO0 ofOwhich exponentially stabilizes
in probability, that is with probability one, the Oseen–Stokes systems in a domainO ⊂ R

d, d = 2, 3. This completes the stabilization
results from the author’s work [6] which is concerned with design of an Ito noise stabilizing controller.
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1. Introduction and statement of the problem

This work is concerned with internal stabilization via Stra-
tonovich noise feedback controller of Oseen–Stokes system

∂X
∂t
− ν∆X + ( f · ∇)X + (X · ∇)g = ∇p in (0,∞) × O,

∇ · X = 0 in (0,∞) × O,

X(0, ξ) = x(ξ), ξ ∈ O, X = 0 on (0,∞) × ∂O.

(1)

Here,O is an open and bounded subset ofR
d, d = 2, 3, with

smooth boundary∂O and f , g ∈ C2(O;Rd) are given functions.
In the special caseg ≡ 0, system (1) describes the dynamic of
a fluid Stokes flow with partial inclusion of convection acce-
leration (f · ∇)X (X is the velocity field). The same equation
describes the disturbance flow induced by a moving body with
velocity f through the fluid. Should we mention also that in the
special casef ≡ g ≡ Xe, whereXe is the equilibrium (steady-
state) solution of the Navier–Stokes equation

∂X
∂t
− ν∆X + (X · ∇)X = ∇p+ fe,

∇ · X = 0, X|∂O = 0,
(2)

and fe ∈ C(O;Rd), system (1) is the linearization of (2) around
Xe. In this way, the stabilization of (1) can be interpreted as the
first order stabilization procedure of steady-state Navier–Stokes
flows.

Our aim here is to design a stochastic feedback controller
of the form

u = 1O0

M∑

k=1

Rk(X) ◦ β̇k, Rk ∈ L((L2(O))d), (3)

which stabilizes in probability system (1) and has the support
in an open subdomainO0 of O.
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Here,{βk}
M
k=1 is a system of mutually independent Brownian

motions on a probability space{Ω,F ,P} with filtration {Ft}t>0

while the corresponding closed loop system

dX− ν∆X dt+ ( f · ∇)X dt+ (X · ∇)g dt

= 1O0

M∑

k=1

Rk(X) ◦ dβk + ∇p dt

X(0) = x

(4)

is taken in Stratonovich sense (see, e.g., [1]) and this is the sig-
nificance of the symbolRk(X)◦ β̇k in the expression of the noise
controller (3). In the following, the terminology Stratonovich
feedback controller or Ito feedback controller refer to thesense
in which the corresponding stochastic equation (4) is consi-
dered: in the Stratonovich sense or, respectively, the Ito sense.
We have denoted by1O0 the characteristic function of the open
setO0 ⊂ O.

In [5], [6], [7], [8], the author has designed similar stabili-
zable Ito noise controllers for equation (1) and related Navier–
Stokes equations. However, it should be said that, with respect
to Ito noise controllers, the Stratonovich feedback controller (3)
has the advantage to be stable with respect to smooth changes
β̇εk of the noisėβk and this fact is crucial not only from the con-
ceptual point of view, but also for numerical simulations and
practical implementation into system (1) of the random stabi-
lizable feedback controller

uε(t) = 1O0

M∑

k=1

Rk(X(t))β̇εk(t),

whereβ̇εk is a smooth approximation ofβεk. If instead (3) we
take u to be an Ito stabilizable feedback controller, then the
corresponding Ito stochastic closed loop equation is convergent
for ε → 0 to a Stratonovich equation of the form (4) which
might be unstable because the stabilization effect of the noise
controller is given by the Ito’s formula which is valid for Ito
stochastic equation only. Thus, for numerical implementations
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of a stabilizanble noise feedback controlleru it is essential that
it is of Stratonovich type. It should be said, however, that the
option for an Ito stabilizable noise controller, like in [5]–[8], or
a Stratonovich one, as in this work, is function of the specific
techniques used to insert such a noise controller into system (1);
by direct simulation or by numerical approximating procedure.

As regards the literature on stabilization of linear differen-
tial systems by Stratonovich noise, the pioneering works [2], [3]
should be primarily cited. For linear PDEs, this procedure was
developed in [9], [10] which are related to this work. For ge-
neral results on internal stabilization of Navier–Stokes systems
with deterministic feedback controllers, we refer to [4]. (See
also [11] for noise stabilization effect into a different nonlinear
PDE context.)

2. The noise stabilizing feedback controller

Consider the standard space of free divergence vectors
H = {y ∈ (L2(O))d; ∇ · y = 0 in O, y · n = 0 on∂O} and denote
byA0 : D(A0) ⊂ H → H the realization of the Oseen–Stokes
operator in this space, that is,

A0y = P(−ν∆y+ ( f · ∇)y+ (y · ∇)g), y ∈ D(A0), (5)

whereD(A0) = H ∩ (H2(O))d ∩ (H1
0(O))d. Here,P is the Leray

projector onH andH2(O), H1
0(O) are standard Sobolev spaces

on O. In the following, it will be more convenient to repre-
sent equation (1) in the complex Hilbert spaceH = H + iH
by extendingA0 toA : D(A) ⊂ H → H via standard proce-
dure,A(x+ iy) = A0x+ iA0y. The operatorA has a countable
set of eigenvalues{λ j}

∞
j=1 (eventually complex) with the corres-

ponding eigenvectorsϕ j . Denote byA∗ the adjoint ofA with
eigenvaluesλ j and eigenvectorsϕ∗j . Each eigenvalue is repeated
in the following according to its algebraic multiplicitymj . Nor-
malizing the system{ϕ j}

∞
j=1, we see that

|∇ϕ j |
2
H
= λ j −

〈
( f · ∇)ϕ j + (ϕ j · ∇)g, ϕ j

〉
, ∀ j,

and since, by the Fredholm–Riesz theory,|λ j | → +∞ as j → ∞,
we infer that Reλ j → +∞ as j → ∞. We denote byN the
minimal number of eigenvaluesλ j for which

Reλ j > 0 for j ≥ N, λ1 + λ2 + · · · + λN > 0. (6)

(In the above sequence, eachλ j is taken together its conjugate
λ j and, clearly, there is such a natural numberN.)

SetXu=lin span{ϕ j}
N
j=1 and denote byXs the algebraic com-

plement ofXu in X. It is well known thatXu andXs are both
invariant forA and, if we set

Au = A|Xu, As = A|Xs,

we have for their spectraσ(Au) = {λ j}
N
j=1, σ(As) = {λ j}

∞
j=N+1

and, since−As is the generator of an analyticC-semigroup
e−Ast in Xs, we have

‖e−Ast‖L(H) ≤ C exp(−ReλN+1t), t ≥ 0, (7)

(see, e.g., [5], p. 14). In the following, we shall assume that

(i) All the eigenvalues{λ j}
N
j=1 are semisimple.

This means that the algebraic multiplicity of eachλ j , j = 1, ...,N,
coincides with its geometric multiplicity or, in other words, the
finite-dimensional operator (matrix)Au is diagonalizable. As
we will see later on, this assumption is not essentially neces-
sary but it simplifies however the construction of the stabilizing
controller because it reduces the unstable part of the system to
a diagonal finite-dimensional differential system. In particular,
it follows by (i) that we can choose the dual systems{ϕ j} and
{ϕ∗j } in such a way that

〈
ϕi , ϕ

∗
j

〉
= δi j , i, j = 1, ...,N. (8)

(Here, and everywhere in the following,〈·, ·〉 stands for the
scalar product inH andH. By | · |H and | · |H we denote the
corresponding norms.)

We note that the uncontrolled Oseen–Stokes system (1) can
be rewritten in the spaceH as

dX
dt
+AX = 0, t ≥ 0, X(0) = x, (9)

and settingXu =
∑N

j=1 y jϕ j , Xs = (I − PN)X, wherePN is the
algebraic projector onXu, we have

dXu

dt
+AuXu = 0, Xu(0) = PNx, (10)

dXs

dt
+AsXs = 0, Xs(0) = (I − PN)x. (11)

We setAu =
{〈
Aϕ j , ϕ

∗
k

〉}N
j,k=1
= diag‖λ j‖

N
j=1 and so, by (8), we

may rewrite (10) in terms ofy =
{
y j =
〈
Xu, ϕ

∗
j

〉}N
j=1

as

dy
dt
+ Auy = 0, y(0) =

{〈
PNx, ϕ∗j

〉}N
j=1
. (12)

Since Tr(−Au) = −λ1 − λ2 − · · · − λN < 0, it follows by Theo-
rem 2 in [3] that there is a sequence of skew-symmetric matri-
ces{Ck}Mk=1, whereM = N − 1 such that the solutiony to the
Stratonovich stochastic system

dy+ Auy dt=
M∑

k=1

Cky ◦ dβk, t ≥ 0, (13)

has the property

|y(t)| ≤ C|y(0)|e−γ0t, P-a.s., ∀t > 0, (14)

whereγ0 > 0. The matrixCk is explicitly constructed in [3]
and it will be used below to construct a stabilizable feedback
controller of the form (3). Namely, we set in (3)

Rk(X) =
N∑

i, j=1

Ck
i j

〈
X, ϕ∗j
〉
φi , k = 1, ...,M, (15)

where‖Ck
i j ‖

N
i, j=1 = Ck,

φi =

N∑

ℓ=1

αiℓϕ
∗
ℓ , i = 1, ...,N, (16)

2



andαiℓ are chosen in such a way that

N∑

ℓ=1

αiℓγℓ j = δi j , i, j = 1, ...,N. (17)

Here,γℓ j =
∫
O0
ϕ∗
ℓ
ϕ
∗
j dξ and since, by the unique continuation

property (see [5], p. 157), the eigenfunction system{ϕ∗j } is li-
nearly independent onO0, we infer that the matrix‖γℓ j‖

N
ℓ, j=1 is

not singular and, therefore, there is a unique system{αiℓ} which
satisfies (17). Then, by (16), we see that

〈
1O0φi , ϕ

∗
j

〉
= δi j , i, j = 1, ...,N. (18)

As mentioned earlier,O0 is an arbitrary open subset ofO.
Theorem 1 is the main result.

Theorem 1. The solution X to the closed loop system(4), where
Rk are defined by(15), is exponentially stable with probability
one, that is,

P
[
|X(t)|H ≤ Ce−γt|x|H , ∀t ≥ 0

]
= 1, (19)

whereγ > 0 and C> 0 are independent ofω ∈ Ω.

2.1. The proof of Theorem 1

The idea of the proof, already used in stabilization theory
of infinite-dimensional systems with finite-dimensional unsta-
ble subspaces, is to stabilize the finite-dimensional system (10)
by a feedback controller of the form (3) and to reconstruct con-
sequently the system via the infinite-dimensional stable com-
plement (11).

Namely, taking into account (10), (11), we write the closed
loop system (4), that is,

dX+AX dt= P

1O0

M∑

k=1

Rk(X) ◦ dβk

 (20)

as

dXu +AuXudt = PN

M∑

k=1

N∑

i, j=1

Ck
i j

〈
Xu, ϕ

∗
j

〉
P(φi) ◦ dβk, (21)

dXs+AsXsdt = (I −PN)
M∑

k=1

N∑

i, j=1

Ck
i j

〈
Xu, ϕ

∗
j

〉
P(φi)◦dβk, (22)

whereXu + Xs = X.
Taking into account (18) and thatXu =

∑N
j=1 y jϕ j , we may

rewrite (21) as

dyℓ + λℓyℓdt =
M∑

k=1

Ck
ℓ jy j ◦ dβk, ℓ = 1, ...,N, (23)

and so, by (14), we have that

|yℓ(t)| ≤ Ce−γt|yℓ(0)|, P-a.s., ∀t > 0, ℓ = 1, ...,N. (24)

(We have denoted byC several positive constants independent
of t andω ∈ Ω.)

As regards the existence of a solutionXs to (22), this is
standard and follows from the general theory of linear infinite-
dimensional stochastic equations.

Now, in order to estimateXs, it is convenient to replace (22)
by its Ito formulation (see, e.g., [10])

dXs +AsXs dt =
1
2

M∑

k=1

[P(1O0Rk]
2Xudt

+

M∑

k=1

P(1O0Rk(Xu))dβk.

(25)

Taking into account that, by (7),e−Ast is an exponentially stable
semigroup onXs, without loss of generality we may assume
that Re〈Asx, x〉 ≥ γ|x|2H . (Otherwise, proceeding as in [6],
we replace the scalar product〈x, y〉 by 〈Qx, y〉 whereQ is the
solution to the Lyapunov equationAsQ + QA∗s = γI .) Then,
applying Ito’s formula in (25), we see that

d|Xs(t)|2H+2γ|Xs(t)|2Hdt=

〈
Xs(t),

M∑

k=1

[P(1O0Rk]2Xu(t)

〉
dt

+

M∑

k=1

|P(1ORk(Xu))|2dt+ 2
M∑

k=1

P(1ORk(Xu))Xsdβk.

(26)

Taking into account that, by (24),|Xu(t)|H ≤ e−γt|Xu(0)|, we
infer by (26) that

E|Xs(t)|
2
H
≤ C|Xs(0)|2e−γt, ∀t ≥ 0.

SinceM(t) =
∫ t

0

∑M
k=1 P(1O0Rk(Xu)Xs dβk is a local martingale,

it follows by (26) and Lemma 3.1 in [6] that

|Xs(t)|H ≤ C|Xs(0)|e−γt, ∀t ≥ 0, P-a.s.,

which completes the proof.

3. The design of a real valued noise controller

A nice feature of the feedback controller given by Theo-
rem 1 is its simple structure. Moreover, its computation does
not rise any special problem because the stabilizing matrices
Ck for the diagonal system (23) can be explicitly expressed.

If all λ j , j = 1, ...,N, are real, then the feedback controller
{Rk} given by Theorem 1 as well as the closed loop system (4)
are real, too. However, if someλ j are complex, then the above
feedback controller does not stabilize system (1), but its com-
plex realization in the spaceH = H + iH . In this case, though
the stabilizing feedback controller (3) is quite simple, its imple-
mentation into real systems rises some delicate problems be-
cause the feedback controller is in implicit form as function of
ReX, Im X. In order to circumvent these inconvenience, we
will derive below from the above construction a real valued
noise feedback controller which has a stabilizing effect on the
Oseen–Stokes system (1).

To this end, we denote by{ψ j}
N
j=1 the orthogonalized system

(via Schmidt procedure){Reϕ j , Imϕ j , j = 1, ...,N}. Taking
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into account that eachϕ j in the above system arises together
with its conjugate, the dimension of the system{ψ j} is againN.
We also set

Xre
u = lin span{ψ j}

N
j=1

and note thatXre
u = {Rey; y ∈ Xu} andH = Xre

u ⊕ X
re
s , where

Xre
s = {Rey; y ∈ Xs}. Moreover, the operatorA0 leaves inva-

riant spacesXre
u , X

re
s and if we set

Are
u = A0|Xre

u
, Are

s = A0|Xre
s
,

we have, of course,

‖e−A
re
s t‖L(H) ≤ Ce−γ0t, ∀t > 0, (27)

for someγ0 > 0. It is also easily seen that

Tr[−Are
u ] = Tr[−Au] < 0.

Then, we define as in (15) the operators

R̃k(x) =
N∑

i, j=1

C̃k
i j

〈
X, ϕ j

〉
φ̃i , k = 1, ....,M, (28)

whereC̃k = ‖C̃k
i j ‖

N
i, j=1 is the matrix system which stabilizes with

probability one, via Theorem 2 in [3], the finite-dimensional
system

dy+ Are
u y dt=

M∑

k=1

C̃ky ◦ dβk.

Here,Are
u = ‖

〈
Are

u ψi , ψ j

〉
‖Ni, j=1 andφ̃i is given by

φ̃i =

N∑

ℓ=1

α̃iℓψℓ, i = 1, ....,N,

whereα̃iℓ are chosen in such a way that

N∑

ℓ=1

α̃iℓγ̃ℓ j = δi j , γ̃ℓ j =

∫

O0

ψℓψ jdξ.

As in the previous case, the system{ψ j}
N
j=1 is still linearly inde-

pendent onO0 which implies that det‖̃γℓ j‖ , 0 and the above
system has a unique solutioñαiℓ.

Then, arrived at this point, the proof of Theorem 1 applies
neatly to conclude that the feedback noise controller (3) with
R̃k instead ofRk is stabilizing in the probability system (9).

Namely, we have the following stabilization result.

Theorem 2. The solution X to the closed loop system(4) with
Rk = R̃k defined by(28)satisfies(19) in the real norm|X(t)|H.

Remark 3. It should be emphasized that there is a close con-
nection between the unique continuation property of eigenfunc-
tions ϕ j (or ϕ∗j ) of the Oseen–Stokes operator and the above
construction of a stabilizing finite-dimensional feedbackcon-
troller (3). In fact, as seen above, the design ofu in the form
(15) or (28) is essentially based on this sharp property through
existence in the algebraic system (17).

It should be mentioned also that, likewise the corresponding
Ito noise controller (see [5]), the stabilizable feedback control-
ler (3) is robust.

Remark 4. One might speculate that the noise feedback con-
troller

u = 1O0

M∑

k=1

Rk(X − Xe) ◦ dβk (29)

inserted in the right hand side of Navier–Stokes system (2) sta-
bilizes exponentially in probability the equilibrium solution Xe

to (2). In general, this might not be true, but it happens for Ito
noise of the form (29) for anyx in a sufficiently small neighbor-
hood ofXe (see [8]) and one might expect that the fixed point
argument used there for the equivalent random system is still
applicable in the present case. We expect to give details in a
later work.

4. Conclusions

We have designed in this paper a Stratonovich stochastic
feedback controller which exponentially stabilizes in probabi-
lity a general Oseen–Stokes system from fluid dynamics. The
controller has the support in an arbitrary open subsetO0 of
the velocity field domainO ⊂ R

d, d = 2, 3, and has a finite-
dimensional linear structure which involves the dual eigenfunc-
tions corresponding to unstable eigenvalues of the systems. The
stabilization effect is independent of the Reynold number 1/ν

through the dimensionN of the stabilizing controller (3) might
depend onν.
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