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Abstract

In this article, a new model predictive control approach to nonlinear stochastic
systems will be presented. The new approach is based on particle filters, which
are usually used for estimating states or parameters. Here, two particle filters
will be combined, the first one giving an estimate for the actual state based on
the actual output of the system; the second one gives an estimate of a control
input for the system. This is basically done by adopting the basic model
predictive control strategies for the second particle filter. Later in this paper, this
new approach is applied to a CSTR (continuous stirred-tank reactor) example
and to the inverted pendulum.



Introduction

1 Introduction

Model Predictive Control (MPC) is an established technique used for the control
of mainly linear or linearized deterministic technical systems. Since nonlinear
systems with intrinsic non-Gaussian disturbances are abundant especially in
chemical and biological applications, there is an increasing need for the
development of control strategies for nonlinear stochastic systems. With usual
MPC, the control problem is formulated as an optimization problem. We show
that, in a stochastic setting, the control problem can be reformulated as an
estimation problem, in fact solutions are estimators based on smoothing
densities of the stochastic system. It is generally impossible to compute
analytical solutions to this problem in the case of nonlinear non-Gaussian
systems. During the last 15 years, Sequential Monte Carlo methods (particle
filters) have proved to be a powerful tool for the computation of approximate
solutions. In this article, we want to show that by using two nested particle
filters, one for state estimation (filtering), and one for horizon prediction, the
MPC idea can be directly transferred to stochastic nonlinear systems. We will
also show that complex control strategies can be easily incorporated into the
procedure.

The article is structured as follows: After this introduction, we first describe the
standard MPC approach for deterministic systems. Section 3 is devoted to
stochastic state space models and Sequential Monte Carlo (SMC) methods. Our
approach of applying two particle filters to the realization of MPC in this
stochastic setting will be presented in section 4. We relate our approach to
previous work in section 5, followed by the application of our method to two
different stochastic systems in section 6. Conclusions and future work in section
7 are followed by an appendix where we present the proof of the theorem
stating that our approach is indeed correspondent to classical MPC in the
special case of deterministic systems.

2 Model Predictive Control

Model Predictive Control (MPC) is a class of predictive controllers which started
developing in the late seventies. In contrast to the traditional control schemes,
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such as PID-control, the input signal determined by an MPC-controller is not
derived by only taking the actual system state into account. Instead, the MPC
approach makes use of a process model which describes the system dynamics to
predict the future behavior of the considered real system for a certain prediction
horizon Tp. Based on this prediction the control inputs are determined in such a
way that a given objective function will be minimized. Then the first input of the
obtained control input sequence is applied to the system. At the next sample
point, prediction and minimization are repeated for the same horizon, but are
shifted one time step. An introduction to MPC can be found in [6].

2.1 Deterministic formulation of MPC

In this section, we recall the classical deterministic MPC approach. For discrete
times k = 0, 1, 2, . . . , the control system is given in state space representation by
the difference equations

xk+1 = f(xk, uk),
yk = g(xk),

(1)

with given initial state x0 and subject to constraints given by

xk ∈ X ⊂ Rn

uk ∈ U ⊂ Rm.

Here, xk is the state, uk the input and yk the output of the system at time step
k. Further f : Rn × Rm → Rn, g : Rn → Rq and k ∈ N. Usually X and U are
given by box constraints:

X = {x ∈ Rn |xmin ≤ x ≤ xmax}
U = {u ∈ Rm |umin ≤ u ≤ umax}

where xmin, xmax, umin and umax are constant vectors.

The MPC strategy is to solve an open-loop optimal control problem at every time
step k for a certain prediction horizon Tp. For a fixed time k, this optimal control
problem can be formulated as an optimization problem with respect to a certain
functional J(xk, ūk:(k+Tp), Tp), where we define ūk:(k+Tp) := {ūk, . . . , ūk+Tp}.
The bar over the variables indicates that the control inputs ūj ,
j = k, k + 1, . . . , k + Tp, are meant to be predicted at the given fixed time point
k. It has to be distinguished from the real controls uk for variable time k.

The optimal control problem is generally stated as

min
ūk:(k+Tp)

J(xk, ūk:(k+Tp), Tp) (2)
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subject to

x̄j+1 = f(x̄j , ūj) (3)
ȳj = g(x̄j) (4)

for j ∈ {k, . . . , k + Tp} with x̄j ∈ X ⊂ Rn, ūj ∈ U ⊂ Rm. The bar over the state
variables x̄j indicates again, that the respective states are meant to be
predictions of the states at the fixed time k, to be distinguished from the actual
states xk when k varies. Usually, further constraints on the controls ūj are
required, e.g. that the difference between successive controls ∆ūj = ūj − ūj−1

is small. In the ideal case, the initial value x̄k is the actual state of the system at
time k, x̄k = xk. Usually, either only disturbed measurements of the states are
available, or, if the state is not fully accessible, it has to be estimated via an
observer based on the actual system output yk.

The functional J = J(xk, ūk:(k+Tp), Tp) usually has the form

J =
k+Tp∑
j=k

‖ūj − ūj−1‖2Q +
k+Tp∑
j=k+1

‖sj − x̂j‖2R.

where the norms denote weighted Euclidean norms with weights given by
matrices Q and R respectively. The first term realizes the mentioned contraints
on ∆ūj and penalizes too large values for these differences. The second term
penalizes deviances of the system states from given setpoints sj . These
setpoints denote the trajectory of the system states which shall be preferrably
attained through the control of the system.

Let u?k:(k+Tp) denote the optimal solution of the open-loop optimal control
problem obtained at time k, i.e.

u?k:(k+Tp) = arg min
ūk:(k+Tp)

J(xk, ūk:(k+Tp), Tp).

Generally, only the first value u?k of this sequence will be used as control input
for the time step k, and the rest of the sequence will be discarded. At the next
time step k + 1, when a new system output yk is available, the optimization
procedure will be repeated. In this way, one hopes to circumvent problems
arising from differences between the real system and the model used for
prediction, for instance due to linearization or time-discretization effects, or due
to unmodelled disturbances or imperfect state estimates.
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3 Particle Filter

We will now proceed from deterministic systems to stochastic systems. Since all
real systems show stochasticity in some way, be it measurement noise or
intrinsic disturbances, and since there is always some uncertainty left in
modeling, it is natural to include this stochasticity into the models used for the
purpose of control. While Gaussian noise is often straight away to be included
especially into linear systems to which classical MPC can be applied,
non-Gaussian disturbances and nonlinearity are often significant in chemical
and biological applications. In these cases, classical MPC may fail due to the fact
that it usually only works on linearized or approximated models. In this section,
we therefore describe general stochastic state space models and the particle
filter algorithm which can be used to compute approximate solutions to
estimation problems occurring in these models. In the following section, we will
then use the particle filters for the realization of an MPC approach with
nonlinear, non-Gaussian stochastic state space models.

In general, the deterministic system given by eq. (1) can be augmented by
stochastic components (variables) vk and ηk, denoting state and observation
noise, respectively. With difference equations, the stochastic system can be
written as

xk+1 = f(xk, uk, vk),
yk = g(xk, ηk).

Since for all k, the values vk and ηk are realizations of stochastic variables, as xk
and yk are, too, we could alternatively define our system using the
corresponding conditional probability densities

xk+1 ∼ ak( . |xk, uk),
yk ∼ bk( . |xk),

with an additional initial probability density x0 ∼ a0( . ) (the symbol ∼ means
“sampled from”). In the following, we will use both descriptions
interchangeably. The latter representation of the system is called stochastic
general state space model. In the following paragraphs, we will give further
details. To simplify further notation, we will omit the control uk when writing
the conditional densities ak.

3.1 Definition of Stochastic General State Space model

Let (Ω,F , P ) be a probability space, and let (X ,AX ) and (Y,AY) be
measurable spaces, i.e. AX and AY are σ-algebras on the sets X and Y,
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respectively. Furthermore, let a σ-finite reference measure µX and µY be
defined on each of these measurable spaces. Let Xk : Ω −→ X denote a
random variable on Ω for each k ∈ N, and Yj : Ω −→ Y denote a random
variable on Ω for each j ∈ N∗.

The general state space model consists of an unobservable state process
(Xk)k∈N and an observation process (Yk)k∈N∗ . The state process is a Markov
chain, i.e. a stochastic process with Markov property. This means that Xk

conditioned on the past values is dependent only on the previous value, i.e.

P (Xk ∈ dxk|Xk−1 = xk−1, . . . , X0 = x0)
= P (Xk ∈ dxk|Xk−1 = xk−1) .

Due to this property, the Markov process is completely described by the initial
distribution P (X0 ∈ dx0) and the state evolution for Xk−1 → Xk (transition
distribution)

P (Xk ∈ dxk|Xk−1 = xk−1) . (5)

The observation (or measurement) Yk at time k is conditionally independent of
all other variables given Xk. The dependency between Yk and Xk is given
through the observation distribution

P (Yk ∈ dyk|Xk = xk) . (6)

In the following, it is assumed that the initial distribution for X0 and the
transition distribution for Xk|Xk−1 are µX -continuous, and that the observation
distribution for Yk|Xk is µY -continuous. Then due to the Radon-Nikodym
theorem the distributions in eqs. (5) and (6) can be expressed by densities ak
and bk, respectively:

P (Xk ∈ dxk|Xk−1 = xk−1) =: ak(xk|xk−1)µX (dxk)

and
P (Yk ∈ dyk|Xk = xk) =: bk(yk|xk)µY(dyk).

The general state space model is then completely given by providing the initial
state density a0(x0), the state transition density ak(xk|xk−1), and the
observation density bk(yk|xk). Graphically the general state space model can be
depicted as in Figure 1. Sometimes this model is referred to as Hidden Markov
Model (HMM), but usually systems are only called HMM if the state space X is
discrete and finite. We do not require these or other properties like linearity or
Gaussianity.

Since the state process X0:k is not observed directly (i.e. realizations of this
process are not known) but solely through the observation process Y1:k, the
main task in a general state space model is to do inferences on the states X0:k

given only realizations (observations, measurements) y1:k of the observation
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Figure 1 Diagram of the General State Space Model

process Y1:k (called state estimation or filtering). The basis for this is the
computation of the joint smoothing distributions

P (X0:k ∈ dx1:k|Y1:k = y1:k)

or, for practical reasons, the filtering distributions

P (Xk ∈ dxk|Y1:k = y1:k)

for each k. Once these distributions are known, the computation of point or
interval estimates is possible. Nevertheless, the computation of joint smoothing
and filtering distributions (or their densities) in general state space models is a
major problem.

As in the majority of particle filter literature, given an arbitrary random variable
X, we will now write p(dx) for distributions P (X ∈ dx), and if they have
densities with respect to a reference measure µ, they will be denoted by p(x).
Except for the densities ak and bk, all other densities will just be denoted by p.
Which density is meant will then be clear by its argument or by its context. For
instance, the joint smoothing distribution P (X0:k ∈ dx0:k|Y1:k = y1:k) will just
be written as

p(dx0:k|y1:k).

Furthermore, x will now denote the random variable X and its realization at the
same time. From now on it will be assumed that X = Rn and Y = Rq, the
σ-algebras AX and AY are the corresponding Borel σ-algebras, and also that
the reference measures µX and µY are the Lebesgue measures.

3.2 The Particle Filter algorithm

The particle filter is a sequential Monte Carlo method which allows the
approximate computation of joint smoothing and filtering densities in general
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state space models. Introductions to particle filters can also be found in [7], [2]
and [11]. The basic idea is to approximate the targeted smoothing distribution
p(dx0:k|y1:k) by a cloud of independent and identically distributed (i.i.d.)
random samples {x(i)

0:k, i = 1, . . . , Ns} with associated weights

{w(i)
k , i = 1, . . . , Ns}, which satisfy

∑
iw

(i)
k = 1, so that the target distribution at

time k can be approximated by

p(dx0:k|y1:k) ≈
Ns∑
i=1

w
(i)
k δx(i)

0:k

(dx0:k)

where δ
x
(i)
0:k

(dx0:k) is the delta-Dirac mass in x(i)
0:k:

δ
x
(i)
0:k

(dx0:k) =

{
1 if x(i)

0:k ∈ dx0:k,

0 else.

The tuples (x(i)
0:k, w

(i)
k ) are also referred to as particles. Due to degeneration

problems one usually restricts the attention to the filter distribution p(dxk|y1:k),
k = 1, . . . , N , approximated by the particle cloud (x(i)

k , w
(i)
k )Nsi=1 in step k which

can be interpreted as a representation of an empirical measure

p̂(dxk) =
Ns∑
i=1

w
(i)
k δx(i)

k

(dxk).

For instance, it can be used to compute estimates of the mean, median,
confidence intervals and quantiles of the filter distribution.

One particle filter algorithm is the SISR algorithm, which will be described in the
following paragraph.

3.3 SISR algorithm

The SISR (Sequential Importance Sampling with Resampling) algorithm can be
implemented with any choice of importance densities

q0(x0) and qj(xj |yj , xj−1), j = 1, . . . , k,

provided that their support is larger than the support of

a0(x0) and bj(yj |xj)aj(xj |xj−1), j = 1, . . . , k,

respectively. The SISR algorithm works on a set of Ns state samples x(i)
j and

weights w(i)
j , i = 1, . . . , Ns, jointly called particles, where the sample size Ns
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should be large. The state samples will be propagated according to the
importance density qj iteratively for j = 1, . . . , k, and the weights will be
updated using the system model and the measurements. To avoid a
degeneration of the particle set, a resampling step is necessary. The
degeneration can be measured in terms of the effective sample size (ESS) which
can be estimated via

N̂eff =
Ns∑Ns

i=1

(
w

(i)
j

)2 .

If this estimate is below a threshold NT < Ns, a resampling step will be done.
Resampling (randomly) selects particles from the given particle set with
probability given by the weights. This selection can be done in several ways. We
use systematic resampling to compute the resampled particles x(i)

∗ and weights
w

(i)
∗ :

• Divide the unit interval into Ns disjoint intervals

Ii =

[
i−1∑
s=1

w
(s)
j ,

i∑
s=1

w
(s)
j

)
• Sample ũ uniformly from U [0, 1] and set

u(l) =
l − 1 + ũ

Ns

• Set x(l)
∗ = x(i) with i such that u(l) ∈ Ii and set w(l)

∗ = 1/Ns for l = 1, . . . , Ns.
The complete SISR algorithm is then given by:
• Initialization:

– Sample x(i)
0 from q0(x0) independently for i = 1, . . . , Ns.

– Compute the weights

w
(i)
0 =

a0(x(i)
0 )

q0(x(i)
0 )

.

• Iteration over j = 1, . . . , k:
– If N̂eff < NT , resample.

– Sample x(i)
j from qj(xj |yj , x(i)

j−1) independently for i = 1, . . . , Ns.
– Compute the unnormalized weights

w̃
(i)
j = w

(i)
j−1

bj(yj |x(i)
j )aj(xj |x(i)

j−1)

qj(x
(i)
j |yj , x

(i)
j−1)

for i = 1, . . . , Ns.

– Compute the normalized weights

w
(i)
j =

w̃
(i)
j∑Ns

ι=1 w̃
(ι)
j

for i = 1, . . . , Ns.
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– Compute some statistical estimates (mean, median, confidence intervals
etc.) based on the weighted particles (x(i)

j , w
(i)
j ), i = 1, . . . , Ns.

3.4 Choice of importance distribution

The effectiveness of the algorithm is heavily dependent on the choice of the
importance densities qj . The optimal choice is

q0(x0) = a0(x0)

and
qj(xj |yj , xj−1) = p(xj |yj , xj−1)

=
bj(yj |xj)aj(xj |xj−1)

p(yj |xj−1)
(7)

with unnormalized weights

w̃
(i)
j = w

(i)
j−1p(yj |xj−1)

where

p(yj |xj−1) =
∫
bj(yj |xj)aj(xj |xj−1)dxj .

Unfortunately, this choice is usually not available for two reasons: sampling from
p(xj |yj , xj−1) is impossible and/or p(yj |xj−1) is not analytically computable.

In contrast, the easiest but not always good choice is to use the initial and
transition densities of the model:

q0(x0) = a0(x0)

and
qj(xj |yj , xj−1) = aj(xj |xj−1). (8)

In this case, the unnormalized weights are just

w̃
(i)
j = w

(i)
j−1bj(yj |xj) for i = 1, . . . , Ns.

4 PF-MPC: Particle Filter - Model Predictive Control

The main idea behind our new approach is to use two distinct particle filters,
one serving as state estimator in the standard way, and the other as predictor
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for the control input of the model. This latter usage of the particle filter
distinguishes our approach from others which use the particle filter algorithm;
there, it is mostly used for state estimation only. In detail, our approach is the
following:

Given a stochastic control system of the form

xk = f(xk−1, uk−1, vk−1),
yk = g(xk, ηk),

with initial condition x0 = x̂0 + v−1, where f and g can be nonlinear, and where
the noise vk−1 and ηk need not be Gaussian, we may equivalently write this
with corresponding state transition and observation densities (see beginning of
section 3)

ak(xk|xk−1, uk−1),
bk(yk|xk),

with initial density a0(x0). During the run of our proposed MPC controller,
when, at a fixed time k, the measurements yk become available und the next
control input u?k has to be determined, the first particle filter is applied with
these densities as underlying model. This is done with the aim of estimating the
filter distribution

p(dxk|y1:k, uk−1)

by approximating it with a cloud of particles (see section 3). From this particle
cloud, a point estimate x̂k for the actual state could be computed which could
be used in the optimization procedure of the usual MPC approach, as it has
been previously proposed. In contrast, we forward the complete particle cloud
(together with their weights) to the second particle filter, which is initialized
with these particles. The second particle filter works on different states and
“observations”, as will be explained in the following. At the fixed time k, each
control sequence ūk:k+Tp for the horizon j = k, k + 1, . . . , k + Tp can be seen as
a realization of a stochastic process (Markov chain) Ūk:k+Tp which is completely
determined by its initial density āu,k(ūk) and the transition densities
āu,j(ūj |ūj−1). These densities have to be provided by the user; as we will show
later, they can be derived from the chosen control strategy and from potential
constraints required for the controls. Given a realization ūk:k+Tp of the process
Ūk:k+Tp , it is possible to successively sample realizations x̄j given x̄j−1 and ūj−1

for j = k, . . . , k + Tp from the state transition density aj of our original system,
once an initial value x̄k is given. We note that the joint process
(X̄k:k+Tp , Ūk:k+Tp) is also Markovian, the initial distribution being given by

āk(x̄k, ūk)dx̄kdūk = δxk(dx̄k)āu,k(ūk)dūk

and the transition density being given by

āj(x̄j , ūj |x̄j−1, ūj−1) = āu,j(ūj |ūj−1)aj(x̄j |x̄j−1, ūj−1).
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Considering now given setpoints sj , we need a function which compares state
realizations x̄j with these setpoints sj . In general, one could use any conditional
density function b̄j(sj |x̄j) or even b̄j(sj |x̄j , ūj) (depending also on the control
value) which is maximal if x̄j is optimal with respect to the setpoint sj .
Generally, in all cases where the term

k+Tp∑
j=k+1

‖sj − x̄j‖2R

appears in the functional J , a natural choice is the multivariate Gaussian density

b̄j(sj |x̄j , ūj) =
1

(2π)n/2|R|−1/2
exp(‖sj − x̄j‖2R)

for j = k + 1, . . . , k + Tp (cf. Theorem 1). With this in mind, we have set up a
general state space model with combined state (x̄j , ūj) and “observation” sj
given by the transition and observation densities

āj(x̄j , ūj |x̄j−1, ūj−1), (9)

b̄j(sj |x̄j , ūj). (10)

If we initialize this with the states from the particle cloud of the first filter, and
additionally sample suitable first controls ūk (which we usually condition on the
last applied control u?k−1), then this allows us to use the Particle Filter algorithm
to compute successively for each j an approximation to the “joint smoothing”
distribution

p(dx̄k:j , dūk:j |sk+1:j)

which in turn leads to an approximation to the marginalisation

p(dūk:j |sk+1:j) =
∫
x̄k:j

p(dx̄k:j , dūk:j |sk+1:j).

Since the former distribution is given via a particle approximation, the latter
marginalization is easily obtained by just discarding the values x̄j in the
particles. Finally, for j = k + Tp, we get an approximation to the distribution

p(dūk:k+Tp |sk+1:k+Tp),

and marginalizing out all ūj ’s except the first one, we get an approximation to
the distribution

p(dūk|sk+1:k+Tp) =
∫
ūk+1:k+Tp

p(dūk:k+Tp |sk+1:k+Tp).

This last distribution can be interpreted in a Bayesian sense as the posterior
distribution for the control uk, given setpoints sk+1:k+Tp , and is in this sense
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optimal for given densities āj and b̄j . In this way, the second particle filter
estimates an approximation to the distribution of the next control uk under the
aspect of reaching predetermined setpoints sk+1:k+Tp , as is the aim of common
MPC. Then a point estimate u?k of the approximating particle distribution
p̂Ns(duk|sk+1:k+Tp) can be computed, for instance the mode, mean, or median.
The obtained point estimate u?k is then applied to the real system as control
input until the next time step, in which the procedure is repeated. Thus the
main MPC strategy is adopted. In figure 2 the control loop is sketched. Note

Figure 2 Sketch of the PF-MPC control loop at time k

that in the second particle filter, the setpoints sj play the role of measurements
in a standard particle filter.

4.1 Further implementation details

As mentioned above, the second particle filter, used for control prediction, has
an expanded state (x̄j , ūj) and thus is applied to a different model than the first
one. The general state space model at time k has the form

āj(x̄j , ūj |x̄j−1, ūj−1) (11)

b̄j(sj |x̄j , ūj) (12)

for j ∈ {k + 1, . . . , k + Tp}, see figure 3.

Figure 3 General State Space Model for the second Particle Filter
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This can be seen as the general state space representation of a system

x̄j = f(x̄j−1, ūj−1, v̄j−1) (13)

ūj = f̄u(x̄j−1, ūj−1, ṽj−1) (14)
sj = ḡ(x̄j , ūj , v̂j) (15)

for j ∈ {k + 1, . . . , k + Tp} with v̄j−1, ṽj−1 and v̂j being random white noise
following certain distributions. The initial conditions for this system as well as
for the general state space representation are discussed later in this section. The
functions f , f̄u and ḡu have to be chosen in the following way:

• The function f in eq. (13) is the same model, describing the state transitions
of the real system, as it is used in the first particle filter. Also the noise v̄j−1 is
sampled from the same distribution.

• The function f̄u in eq. (14) defines the transition of the future control inputs.
For example, if we choose

f̄u(x̄j−1, ūj−1, ṽj−1) = ūj−1 + ṽj−1,

then ūj lies in a neighborhood around its predecessor ūj−1. If we choose the
ṽj−1’s as samples from a normal distribution N (0,Σ), the control input is
constrained in a sense that the effort ∆ūj is kept small depending on Σ. The
effect on the control input ūj is similar to the effect of the term ‖∆ū‖Q of a
usual MPC objective function J . This link is further discussed in section 4.3.
If one is not interested in keeping the control effort small one can set

f̄u(x̄j−1, ūj−1, ṽj−1) = ṽj−1

and let the ṽ’s for instance be normally or uniformly distributed. The control
ūj is then independent from its predecessor ūj−1. This makes constraining
the input quite easy, which will be further discussed in section 4.2.

• The function ḡ in eq. (15) defines the setpoint equation as part of the control
strategy. The idea (and the actual meaning of this equation) is to define the
constant sj , the function ḡ and the stochastic noise variable V̂j in each step j
in such a way that the constant sj can be seen as a realization of the
stochastic variable

Sj = ḡ(X̄j , Ūj , V̂j).

In the simplest case, sj is a fixed value which denotes the desired state the
system should attain, and ḡ is defined as

ḡ(X̄j , Ūj , V̂j) = X̄j + V̂j

with normally distributed V̂j with mean 0 (and some given variance σ2).
Since in this case V̂j = Sj − X̂j , this actually means that we expect the
stochastic variable Sj − X̂j to be normally distributed with mean 0, and each
realization sj − xj to be sampled from this distribution. Since sj is fixed, this

13
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means nothing else than that we expect the state xj to be normally
distributed with mean sj (and variance σ2). This is at least what we would
like to attain in the controlled system. Nevertheless, the freedom in the
choice of sj , ḡ and V̂j allows much more complex control strategies which
are moreover allowed to depend on the internal states xj (via the function
ḡ). An example of a complex control strategy can be found later in the
pendulum example (section 6.2.1).

The initial states x̄(i)
k and weights w̄(i)

k are determined through the first particle
filter in figure 2.

x̄
(i)
k = x

(i)
k

w̄
(i)
k = w

(i)
k

for all i = 1, . . . , Ns. Initial controls ū(i)
k are obtained by using u?k−1 and some

distribution
ū

(i)
k ∼ āu,k(dūk|u

?
k−1)

or, equivalently, by a function

ū
(i)
k = f̄u,k(u?k−1, ṽ

(i)
k−1),

for example
ū

(i)
k = u?k−1 + ṽ

(i)
k−1,

where ṽ(i)
k−1 is some appropriate white noise (which may be identically

distributed for all k).

Naturally, the particle filter is formulated for complete paths, like ū(i)
k:k+l for

l ∈ {1, . . . , Tp}. Usually one discards the paths and keeps only the last value

ū
(i)
k+l. The reason for this is resampling, which is a necessary step in the particle

filter algorithm to avoid weight degeneration. Nevertheless, due to this
resampling step, the particle paths degenerate, and hence the paths are usually
discarded and only the last value is kept. Here, the paths cannot be discarded
completely, since the ū(i)

k ’s are needed for determining the control input. So, the

values ū(i)
k+1:k+l−1 are discarded and only (ū(i)

k , ū
(i)
k+l) is kept, which then also

undergoes resampling. Practically this can be done by introducing the following
constant transition to (13)-(15):

ũj = ũj−1 with ũk = ūk. (16)

The unavoidable degeneration of paths in the SISR algorithm also implies that
the prediction horizon Tp should not be chosen too high.

So altogether the setup for the second particle filter is the following: First initial
controls ū(i)

k are created, then they are forwarded together with initial states

14
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(x(i)
k , w

(i)
k ) to the second particle filter with underlying equations (13)-(15) and

(16):

x̄j = f(x̄j−1, ūj−1, v̄j−1)

ūj = f̄u(x̄j−1, ūj−1, ṽj−1)
ũj = ũj−1

sj = ḡ(x̄j , ūj , v̂j)

defining the following densities:

āj(x̄j , ūj , ũj |x̄j−1, ūj−1, ũj−1)

b̄j(sj |x̄j , ūj)

for j ∈ {k + 1, . . . , k + Tp}. The result after Tp prediction steps is then

{(x̄(i)
k+Tp

, ū
(i)
k+Tp

, ũ
(i)
k+Tp

, w̄
(i)
k+Tp

)|i = 1, . . . , Ns}.

These particles are then forwarded to a point estimator, where the control input
u?k is obtained from

{(ũ(i)
k+Tp

, w̄
(i)
k+Tp

)|i = 1, . . . , Ns}.

The mean, for instance, is obtained by

Ns∑
i=1

ũ
(i)
k+Tp

w̄
(i)
k+Tp

.

In figure 4, the PF-MPC control loop is presented in the particular case in which
the transition density of the system is chosen as importance density (see the end
of section 3). The grey numbers in figure 4 give the order of actions.

Overall, the control loop works as follows:

• Initialization:
– Sample x(i)

0 from q0(x0) independently for i = 1, . . . , Ns.
– Compute the weights

w
(i)
0 =

a0(x(i)
0 )

q0(x(i)
0 )

.

• Iteration over k = 1, . . . , N :
– If N̂eff < NT , resample.

– Sample x(i)
k from qk(xk|yk, x

(i)
k−1) independently for i = 1, . . . , Ns.

– Compute the unnormalized weights

w̃
(i)
k = w

(i)
k−1

bk(yk|x
(i)
k )ak(xk|x

(i)
k−1)

qk(x
(i)
k |yk, x

(i)
k−1)

for i = 1, . . . , Ns.
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Figure 4 PF-MPC Control Loop

– Compute the normalized weights

w
(i)
k =

w̃
(i)
k∑Ns

ι=1 w̃
(ι)
k

for i = 1, . . . , Ns.

– Control Unit — Initialization:

* Sample ū(i)
k from āu,k(ūk|u?k−1) independently for i = 1, . . . , Ns.

* Set x̄(i)
k = x

(i)
k and w̄(i)

k = w
(i)
k for i = 1, . . . , Ns.

– Control Unit — Iteration over j = k + 1, . . . , k + Tp:

* If N̂eff < NT , resample.

* Sample ξ(i)
j = (x̄(i)

j , ū
(i)
j , ũ

(i)
j ) from

qj(ξj |sj , ξ(i)
j−1)

independently for i = 1, . . . , Ns.

* Compute the unnormalized weights

w̃
(i)
j = w̄

(i)
j−1

b̄j(sj |x̄(i)
j , ū

(i)
j )āj(ξj |ξ(i)

j−1)

qj(ξ
(i)
j |sj , ξ

(i)
j−1)

for i = 1, . . . , Ns.

* Compute the normalized weights

w
(i)
j =

w̃
(i)
j∑Ns

ι=1 w̃
(ι)
j

for i = 1, . . . , Ns.
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– Control Unit — Compute some statistical point estimate (mean, median,
mode etc.) based on the weighted particles (ũ(i)

k+Tp
, w

(i)
k+Tp

) to obtain u?k

4.2 Constraints

4.2.1 Control input constraints

Apart from the possibility to require constraints for ∆ūj as described above, it is
easy to require constraints for the controls ūj directly. Without loss of generality,
the control input is here assumed to be one-dimensional. One can distinguish
between hard and soft constraints. Soft constraints mean that the input should
lie in some specific region most of the time, but is allowed to leave the region
sometimes. In our case, the constraints have to be formulated with the help of
prior probabilities for ūj . One example of a soft constraint is setting the input
transition equation (14) equal to:

ūj = ṽj−1 with ṽj−1 ∼ N (0, σ2).

In this case the input lies around the origin and the variance σ2 indicates the
region where most of the inputs lie.

Hard constraints on the input mean, that the input has to lie in the interval
[a, b], with a, b ∈ R. For this and the multi-dimensional case, the hard
constraints are just box-constraints. These box-constraints can be realized in our
case by setting equation (14) equal to:

ūj = ṽj−1 with ṽj−1 ∼ U(a, b).

4.2.2 State/output constraints

Hard constraints have to be formulated in the system model or transition
density, respectively. If this is not the case, constraints can be violated due to
disturbances or the Euler-Maruyama discretization (see section 6). For that
reason, only soft constraints are formulated here. These soft constraints are
formulated as densities inside the observation density (15). There is no general
way to do so, they have to be individually formulated for each case. Later, an
example of how to handle constraints on the states will be given, when we
discuss the control of the inverted pendulum, see section 6.2.2.

4.3 Link between classic MPC and PF-MPC

In this paragraph, we want to establish a link between classic MPC and the new
developed particle filter approach in a particular case. We assume that our
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system is deterministic, or that the expected value of the disturbance is taken as
the nominal value of the system. This is the setup as in classical MPC. Since we
still want to work in the proposed framework, our model is stochastic; this leads
to delta distributions in the state transitions. In Theorem 1, it will be shown that
PF-MPC, with this special setup, is doing approximately the same as classic MPC.
But note that this is a theoretical result; the PF-MPC is applicable to a much
broader class of systems than classical MPC, and in this particular case, the
algorithm may be ineffective due to the delta distributions of the state
transitions.

Theorem 1 For a fixed time k, let the following system be given

x̄j = f(x̄j−1, ūj−1), (17)
ūj = ūj−1 + ṽj−1, (18)
sj = x̄j + v̂j , (19)

with j ∈ {k+ 1, . . . , k+ Tp}, Tp > k, f : Rn ×Rm → Rn, ṽj−1 ∼ N (0, Q−1) and
v̂j ∼ N (0, R−1), where Q ∈ Rm×m and R ∈ Rn×n are symmetric positive
definite matrices. Let initial x̄k = x̂k and ūk−1 be given and ūk = ūk−1 + ṽk−1

with ṽk−1 ∼ N (0, Q−1). Then the mode of the distribution

p(ūk:k+Tp |sk+1:k+Tp)dūk:k+Tp

(i.e. the value where the maximum of the corresponding density is attained) is
reached at the same point as the minimum of a usual MPC functional

J =
k+Tp∑
j=k

‖ūj − ūj−1‖2Q +
k+Tp∑
i=k+1

‖si − x̂i‖2R.

Thus

arg max
ūk:k+Tp

p(ūk:k+Tp |sk+1:k+Tp)

= arg min
ūk:k+Tp

k+Tp∑
j=k

‖ūj − ūj−1‖2Q +
k+Tp∑
i=k+1

‖si − x̂i‖2R,

where x̂i = f(x̂i−1, ūi−1) is recursively defined, starting with x̂k.

The proof will be presented in section 8.

The theorem shows that the PF-MPC approach does approximately the same as
classic MPC, in the special case where the system from Theorem 1 is chosen and
the mode is taken as point estimator — keeping in mind that the second
particle filter computes just an approximation of the distribution

p(ūk:k+Tp |sk+1:k+Tp)dūk:k+Tp .
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5 Relation to existing methods

In the majority of articles which use the particle filter algorithm for Model
Predictive Control, the particle filter is exclusively used as state estimator by
computing a point estimate from the particle cloud. This point estimate is then
used in the usual MPC optimization procedure. Our first particle filter serves the
same purpose of state estimation, but in contrast we use the complete particle
cloud for the subsequent steps of determining the control input. In the
overview article [1] the authors present methods where the optimal control
input is either found by enumeration (in the case of only finitely many possible
controls) or by gradient methods (in the continuous case). A more recent article
is [5], but also here, SMC methods are used only for state estimation. Another
approach with particle methods was taken by [4], the idea there is to
approximate the original stochastic control problem by a deterministic one, thus
avoiding the use of particle filters at all. The optimization problem is instead
solved with Mixed-Integer Linear Programming techniques. The approach which
possibly comes closest to our method is described in the recent article [15]
(which came to our knowledge only after the submission of this article). Similar
to our method, they, too, use a particle-based approach in the control
prediction/optimization step. In our notation, at a given time k, they sample a
complete control path ūk:k+Tp for each particle, and given this path, a state
path xk:k+Tp . This path is then used to compute incremental weights via a cost
function. In contrast to our approach, the path ūk:k+Tp is changed completely(!)
and the procedure repeated iteratively. The Monte Carlo method used there is a
variant of Simulated Annealing and, since the paths are always sampled
completely in each iteration, principally not sequential. In contrast, our
approach is fully sequential because incremental weights are computed for each
j after sampling of ūj and x̄j , and resampling is applied if necessary. Also, in
contrast to Simulated Annealing as a direct optimization method, our approach
computes some kind of posterior distribution, and optimization is done more
indirectly. We expect a truly sequential method, as ours is, to be superior to a
method where complete paths have to be resampled. Nevertheless, this remains
to be shown in future experiments.
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6 Examples

In this section, the PF-MPC control approach is applied to two nonlinear
disturbed systems, namely to a continuous stirred-tank reactor (CSTR) and to the
inverted pendulum. The PF-MPC controller is implemented in R, a language and
environment for statistical computing and graphics [18]. All computations were
made on a Thinkpad T60 with a 2GHz Core2Duo processor and 2GB of RAM.

Generally, the differential equations used for describing the CSTR and the
inverted pendulum are deterministic. In order to be able to introduce
disturbances we want to transform them into stochastic differential equations
(SDE). For discretizing these SDEs, the Euler-Maruyama method, which is similar
to the well known Euler method for ordinary differential equations, will be used.

6.1 Application to the CSTR

C Current concentration
Cf Feed concentration
T Current temperature
T0 Feed temperature
qc Coolant stream temperature

Figure 5 Sketch of the CSTR

A continuous stirred-tank reactor (CSTR) as it is sketched in figure 5 is a
chemical reactor. The reactor is fed with some chemical A with concentration
Cf and temperature T0. Inside the reactor, a first-order exothermic and
irreversible chemical reaction A→ B takes place. It is assumed that the interior
of the reactor is perfectly mixed. This means that the temperature T and the
concentration C is the same at each point in the reactor. The reactor is cooled
by a coolant stream qc which flows around the reactor. The aim is to keep the
concentration C of the product at a certain level. This is achieved by
manipulating the coolant stream, which is thus the control input of the system.
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Only the temperature T of the system will be measured (disturbed by some
measurement noise), the concentration C itself, which has to be controlled, is
not accessible directly. The CSTR can be modeled by the following differential
equations:

Ċ =
q

V
(Cf − C)− k0Ce

−E
RT (20)

=: f1(C, T )

Ṫ =
q

V
(T0 − T )− k0∆H

ρcp
Ce

−E
RT

+
ρccpcqc
ρcpV

(
1− e

−hA
qcρccpc

)
(TC0 − T ) (21)

=: f2(C, T )

where the parameters are set as shown in table 1. This specific example was

Parameter Description Unit Value
Cf Feed concentration mol/l 1
T0 Feed temperature K 350
V Reactor volume l 100
q Process flow rate 1/min 100
TC0 Inlet coolant temperature K 350
hA Heat transfer term K cal/min 7× 105

k0 Reaction rate constant 1/min 7.2× 1010

E/R Activation energy term K 104

∆H Heat of reaction cal/mol −2× 105

ρ, ρc Liquid densities g/l 1000
cp, cpc Specific heats K cal/g 1

Table 1 Parameters of the CSTR

taken from [5], which in turn had been taken from [3]. The CSTR will be
simulated and controlled using the PF-MPC approach. For that reason, we
transform the ordinary differential equations (20) and (21) to the following SDE
by adding stochastic terms:

dX(t) = f(X(t))dt+ F (X(t))dW (t)

with

X(t) = (C(t), T (t)),
f(X(t)) = (f1(C(t), T (t)), f2(C(t), T (t))),

F (X(t)) =
(
ηC 0
0 ηT

)
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where dW = (dWC(t), dWT (t)) is a 2-dimensional Wiener process. The entries
ηC and ηT are both positive real numbers and their particular choices for the
different simulation runs will be described later in the corresponding
paragraphs.

Discretization of this SDE with the Euler-Maruyama scheme at a sampling rate of
δ = 0.05min and time instances tk = kδ for k = 0, 1, 2, . . . leads to the transition
densities denoted by ak in section 4. We will use these for simulation runs of
the CSTR, and for the simultaneous application of our PF-MPC controller to the
simulated reactor. During the simulation, measurements of the temperature T
at each sampling point will also be generated. These simulated measurements
will be additionally disturbed by an artificial measurement error w ∼ N (0, η̂2

T )
(realizing the observation density bk). From these measurements, the filter
distribution of the concentration C and temperature T will be estimated with
the first particle filter. Then a control input candidate will be determined by the
PF-MPC controller, realized by the second particle filter, so that the
concentration C follows the setpoint sC1 = 0.1 for t ∈ [0, 150 · δ). At t = 150 · δ,
we will change the setpoint to sC2 = 0.12 for t ∈ [150 · δ, 300 · δ]. We realize the
setpoint distribution b̂j of the second particle filter by the following equation:

sC(j) = C(j) + v̂C(j)

with v̂C(j) ∼ N (0, η̂2
set).

The distribution of the control qc (denoted by āu,j in section 4) is chosen as

q̄c(j) = q̄c(j − 1) + ṽ(j − 1)

with
ṽ(j − 1) ∼ N (0, η̂2

pred),

thus obtaining a small control effort. In the following, results of simulations
with different setups will be presented.

6.1.1 Results of the CSTR simulations

In the first simulation run, very small disturbances (given by the parameters ηC
and ηT ) for the states C and T , respectively, as well as a small measurement
noise (given by η̂T ) will be used to figure out if the PF-MPC control loop is able
to handle the CSTR. With this model, it is possible to use the optimal importance
distribution eq. (7) in the SISR algorithm. The following parameters will be used:

Tp = 20 Ns = 1000
ηC = 0.000001 ηT = 0.000001
η̂T = 0.5 η̂pred = 0.4 η̂set = 0.005
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Figure 6 State C over k

An example of a simulated trajectory of the controlled state C can be seen in
figure 6. Note that this trajectory is not accessible in the real system, and that it
has not been used in the controller. In this example, the PF-MPC control loop
works very well and is able to handle the slightly disturbed CSTR. In figure 7, the
control input computed by our algorithm in this run is shown. In the figures
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Figure 7 Control qc over k

8-10, we plot the prediction horizons for the state C and the control candidate
q̃c at certain fixed time steps k, illustrating the results of the second particle filter
(the x-axis represents values j = k, . . . , k + Tp). In these figures, a solid line
depicts the mean estimate. Additionally, vertical stripes sketch the particle
distribution at each j, where darker tones mean higher density, and lighter
tones mean lower density. We will adhere to this indication for the following
figures concerning the prediction horizons. In figure 8, one can already see that
at time k = 0, the PF-MPC controller predicts that the concentration C will reach
its predetermined setpoint sC1 = 0.1. At k = 100, where the concentration C
already follows sC1 , the prediction horizon for C is to be seen in figure 9. It can
be observed from this figure that the predicted concentration will stay stable at
the setpoint sC1 for the whole prediction horizon j = k, . . . , k + Tp. At k = 150
where the setpoint change sC1 → sC2 takes place, one can see in figure 10 that
C will reach sC2 . The average computing time the control loop needs for one
step with the parameters chosen above is approximately 0.12 seconds. Since the
model of the CSTR is sampled with δ = 0.05min which equals 3sec, the
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Figure 8 Prediction of C at k = 0
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Figure 9 Prediction of C at k = 100
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Figure 10 Prediction of C at k = 150
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computation for one step is around 25 times faster than the real-time process.
Thus, for the first parameter constellation, the PF-MPC controller worked very
well in the simulations and would be applicable to the real system. In the next
simulation run, the controller will be tested on a simulated system with
increased state and measurement noise, i.e. increased values for ηC , ηT , and η̂T .
The following parameters will be used:

Tp = 20 Ns = 1000
ηC = 0.001 ηT = 0.1
η̂T = 2.5 η̂pred = 0.4 η̂set = 0.005

With these parameters, the simulated trajectory of the state C over time k
obtained during a simulation run with applied PF-MPC controller can be found
in figure 11. Here, too, one observes that the PF-MPC control loop works very
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Figure 11 State C over k

well and that it can handle the CSTR with larger transition and observation
errors. As expected, due to the higher disturbances, the concentration C shows
higher variation around its setpoint than in the previous case. The predictions
are not plotted and discussed here, because they are very similar to the ones
already discussed in the case where the disturbances were small.

6.2 Application to the inverted pendulum

The following parameters are assumed to hold for the inverted pendulum,
which is sketched in figure 12:

l = 0.5m m = 0.3kg
mc = 3kg g = 9.81m

s2

The behavior of the inverted pendulum can be modeled by the following two
coupled differential equations:

φ̈ =
g sinφ+ cosφ−f−mlφ̇

2 sinφ
mc+m

l
(

4
3 −

m cos 2φ
mc+m

) ,

p̈ =
f +ml(φ̇2 sinφ− φ̈ cosφ)

mc +m
.
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p Position of the cart
φ Deflection of the pendulum
l Length of the pendulum
m Mass of the pendulum
mc Mass of the cart
g Gravitational acceleration
f Force/control input

Figure 12 Sketch of the pendulum

By adding process noise, a stochastic differential equation can be formulated:

dX(t) = h(X(t)) +H(X(t))dW (t) (22)

with

X(t) =


φ1(t)
φ2(t)
p1(t)
p2(t)

 =


φ(t)
φ̇(t)
p(t)
ṗ(t)

 ,

h(X(t)) =


φ2(t)

g sinφ1(t)+cosφ1(t)
−f(t)−mlφ2

2 sinφ1(t)

mc+m

l
“

4
3
−m cos 2φ1(t)

mc+m

”
p2(t)

f(t)+ml(φ2(t)2 sinφ1(t)−φ̇2(t) cosφ1(t))
mc+m

 ,

H(X(t)) =


0 0
ηφ2 0
0 0
0 ηp2


where W (t) is a two-dimensional Wiener process. The entries ηφ2 and ηp2 are
constant positive real numbers. The SDE (22) is again discretized with the
Euler-Maruyama method and a sampling rate of δ = 0.05 seconds. The initial
value of the SDE (22) is

X0 =
[
π 0 0 0

]T
,

which means that the cart is standing at the origin with pendulum down.
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6.2.1 Controlling deflection and velocity of the inverted pendulum

We will now discuss how to control the inverted pendulum and how additional
constraints can be applied. The goal of controlling the pendulum is to stabilize
the pendulum in the upright position while the cart should stay in a predefined
area. We will first discuss the setpoint conditions and afterwards how to
implement the necessary constraints for the cart. Possibly, the easiest way is to
use a setpoint for the deflection of the pendulum only, and set it to 0, which
corresponds to the upright position the pendulum should be stabilized in (note
that one has to cope with the fact that φ = φ1 is cyclic modulo 2π, thus 0 ≡ 2πk
for all k ∈ Z). Using this idea works fine and delivers good results, but we want
to show that the PF-MPC controller allows the application of more complex
control strategies. In the following, we want to show how those can be easily
implemented using more complex setpoint equations.

The idea for a possible control strategy can be derived from the following
deliberations: Consider the pendulum when it slightly deviates from its
swung-up position (φ1 > 0) with zero velocity (φ2 = 0). Clearly, the pendulum
then drops down and begins swinging. Simulation results are shown in figure
13, where the resulting velocity and the angle of the pendulum are plotted
against each other. As this figure shows, the velocity of the pendulum is nearly
0 every time it reaches the upright position (φ1 ≡ 0 mod 2π). We conclude that,

0 2 4 6 8 10 12 14

0
2

4
6

8

φφ1

φφ 2

Figure 13 Swinging Pendulum

for each deflection angle, the corresponding velocity obtained in this way can
be seen as nearly optimal for reaching the upright position with velocity 0 at this
point. Since the behaviour of the system is similar when time is reversed, the
same is true if we reverse time by multiplying the velocity by −1. The idea is
now to first approximate the function giving the optimal velocity for each
deviation angle on the interval [0, 2π], and to use it to build a
setpoint-determinator function for the velocity of the pendulum dependent on
its deflection. So the aim of this function is, given a deflection φ1, to return the
needed velocity the pendulum should have in φ1 to reach the upright position
smoothly. Once the pendulum has swung up, we must avoid any slight positive
deviation from the upright position (0 < φ1 < β for some small angle β) causing
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the controller to swing the pendulum again around in direction φ1 = 2π. Rather,
the setpoint for the velocity should be set to the opposite direction. Note also
that we have to reverse angles and velocities when the actual velocity of the
pendulum is negative (φ2 < 0).

We thus obtain the right setpoint equation within three steps: We first apply
quadratic approximation, using as interpolation points the angles φ1 = 0 and
φ1 = 2π (upright position) with velocity equal to zero, and the simulated value
of the velocity at the opposite angle φ1 = π in order to obtain an approximated
function f1. In our case, the result was

f1(φ1) = −0.806314φ2
1 + 5.06622φ1.

Using f1, we construct

f2(φ1) =

{
−f1(φ1), if φ1 ∈ [0, β]
f1(φ1), if φ1 ∈ (β, 2π)

and finally the setpoint determination function

f3(φ1, φ2) =

{
f2(φ1), if φ2 > 0,
−f2(−φ1), if φ2 < 0.

The constant β gives the angle until which the controller should try to stabilize
the already swung up pendulum. One should keep in mind that φ1 is 2π cyclic.
The function f3 gives approximately the right velocity for all angles for the
pendulum to reach the upright position with zero velocity there. Due to the
construction of f3 the pendulum will also be balanced in the fixed point, as long
as it does not drop beyond the angles β or −β. The function f3 with β = 0.4 is
plotted in figure 14. The setpoint equation used in the PF-MPC controller (15)

−2 0 2 4 6 8

−
5

0
5

φφ1

φφ 2

φφ2 >> 0
φφ2 << 0

Figure 14 Setpoint determination function f3

then equals for all times j

sφ2(j) = f3(φ1(j), φ2(j))− φ2(j) + v̂φ2(j), (23)

with v̂φ2(j) ∼ N (0, η̂2
φ2

) and sφ2(j) set to 0. The corresponding density b̂ is then
proportional to

e

−(f3(φ1,φ2)−φ2)2

2η̂2
φ2 .
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6.2.2 Controlling the inverted pendulum with constraints on the cart position

Until now only the angle or the velocity of the pendulum were considered under
the aspect of stabilizing the pendulum. But it is necessary as well to control
(constrain) the movement of the cart on which the pendulum is fixed, because
being uncontrolled, the cart would possibly move in one direction and never
stop. As already mentioned in section 4.2, the constraints have to be
formulated in densities. The easiest way of constraining the cart is to introduce
an additional setpoint equation for the cart position, determining the region
which the cart should remain in:

sp1(j) = p1(j) + v̂p1(j). (24)

So, if the cart should stay around the origin, sp1 should be chosen to be zero.
The variance η̂2

p1 of the added Gaussian noise v̂p1 ∼ N (0, η̂2
p1) together with η̂2

φ2

determine the width of the region the cart should not leave. Alternatively or
additionally, one could constrain the cart velocity in a certain way with another
setpoint equality:

sp2(j) = p2(j) + v̂p2(j) (25)

with sp2(j) = 0 for all j and

v̂p2(j) ∼ N (0, σ2
p2(j)).

The variance σ2
p2(j) is not constant but dependent on the actual velocity of the

cart. It is chosen such that it is large if the cart is inside a given interval
[p1 min, p1 max] and small if it is outside and the velocity has the wrong direction.
That means, if the position of the cart is left of p1 min and the velocity is positive,
the variance is large because the cart is on the way back, but the variance is
small if the velocity is negative because otherwise the cart would veer away
further from [p1 min, p1 max]. Small variance σmin p2 means that the cart slows
down and large variance σmax p2 means that the cart is allowed to move. The
values of these variances have to be tuned by the user, and are dependent on
the model and particle filter parameters. One way of formulating the variance
σ2
p2(j) mathematically is:

σ2
p2(j) =


σmax p2

{
if p1(j) > p1 min and p2(j) < 0
or p1(j) < p1 max and p2(j) > 0

σmin p2

{
if p1(j) ≤ p1 min and p2(j) < 0
or p1(j) ≥ p1 max and p2(j) > 0

(26)

(see figure 15).

6.2.3 Results of the inverted pendulum simulations

For our simulation run, we will use the setpoint equation (23) and the additional
setpoint equation (25). The model and PF-MPC controller will be initialized with
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Figure 15 Variance of p2

the following parameters
ηφ2 = 0.1 Tp = 26 Ns = 500
ηp2 = 0.1 η̂meas = 0.01 η̂φ2 = 0.5
p1 min = −0.4 p1 max = 0.4
σmin p2 = 0.001 σmax p2 = 5

In this case, it is not possible to use the optimal importance distribution for the
particle filters. Instead, we used the state transitions, see eq. (8). We again
simulate the pendulum and apply the PF-MPC controller to the simulation. The
simulated trajectory of the cart together with the pendulum is plotted in figure
16. The color changes from black to brighter tones as time increases. The
trajectories are also plotted separately and can be found in figures 17 and 18.
The figures show clearly that the controller stabilizes the pendulum while
satisfying the constraints. Figure 18 shows that the cart remains in the desired

−0.5 0.0 0.5

−
0.

6
−

0.
2

0.
2

0.
6

Position of the Cart p1

Figure 16 Moving pendulum over time

interval [−0.4, 0.4]. If one looks at the fixed time step k = 25, one observes in
the corresponding figure 19 that even the controller predictions for the cart
position remain in the desired interval [−0.4, 0.4]. In figure 20, we see the
trajectory of the pendulum velocity depicted. The light-colored curve in this
figure shows the corresponding setpoints for the velocities, which are
determined by the setpoint determinator function f3. Summarizing, we can say
that PF-MPC works very well even if the setpoint equation is more complex and
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Figure 17 Deflection φ1 of the pendulum
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Figure 19 Prediction of p1 at k = 25
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Figure 20 Pendulum velocity φ2 and corresponding setpoint
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Summary and conclusion

if we have additional constraints on states or controls. One drawback with the
parameter setting we applied in our simulation run is that the pendulum is not
controllable in real time, since it is approximately 0.01 seconds to slow in each
step. By reducing samples and prediction horizon and by increasing sampling
time, however, the controller is also able to handle the pendulum in real time.

7 Summary and conclusion

In this article, a new model predictive control technique has been presented. It
appeared that this new approach, which is based on the particle filter algorithm,
performs very well. It is capable of handling nonlinear disturbed systems in real
time, as it was seen by the CSTR and by the inverted pendulum simulations.

The advantage of the PF-MPC loop is that the current state estimations are
given in distributions and not, as in usual control theory, as single point
estimates. This provides much more information for the control unit. Another
advantage is that complicated input constraints can be handled very easily, soft
as well as hard constraints. For state and output constraints so far only soft
constraints have been considered, which the controller also handled well. In
addition to this, the controller is not restricted to Gaussian noise. It should be
noted that this approach is supported by the well-developed Monte Carlo
theory, and it is therefore less heuristic than many other approaches.

Clearly there are also some drawbacks. The most serious drawback is that it is
hard to state anything about the stability of the PF-MPC loop, as is the case for
most nonlinear control schemes. One also cannot say anything about the
amount of particles needed for estimating the states and controlling the system.
In some cases, one has to use so many particles to obtain good results that the
computational effort is too high to handle the system in real time. In the
pendulum example, the controller was capable of real time handling (results not
shown), but the results with more samples looked much better. Another
drawback is that in general the choice of the system transition densities as
importance densities is not always a good choice. In this case, the particle filter
may possibly show a bad performance or even fail. This drawback can be
compensated by using better importance densities. Their development and
further investigation can be seen as a future goal.

Also, future work should investigate possibilities for the application of this newly
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Proof of Theorem 1

developed PF-MPC controller on a real system, for the implementation of better
discretization schemes (replacing the Euler-Maruyama scheme), and for the
usage of better point estimates for the control inputs (replacing the mean
value). It is worth taking a look at hard output constraints, too. An idea for this
could be to reject drawn samples which are in contradiction to constraints.

Overall, the proposed controller has great potential, in particular when applied
to nonlinear disturbed systems.

8 Proof of Theorem 1

W.l.o.g. let k = 0. First the following proportionality will be shown:

p(ū0:Tp |s1:Tp) ∝
Tp∏
j=0

p(ūj |ūj−1)
Tp∏
i=1

p(si|x̂i).

Therefore, we first consider the posterior density

p(x̄0:Tp , ū0:Tp |s1:Tp)

of the joint states (x̄0:Tp , ū0:Tp). For this posterior density it holds that

p(x̄0:Tp , ū0:Tp |s1:Tp)

∝ p(sTp |x̄Tp , ūTp)p(x̄Tp , ūTp |x̄Tp−1, ūTp−1) (27)

· p(x̄0:Tp−1, ū0:Tp−1|s1:Tp−1).

Since sTp is conditionally independent from ūTp given x̄Tp , it holds that

p(sTp |x̄Tp , ūTp) = p(sTp |x̄Tp). (28)

Further, x̄Tp is conditionally independent from ūTp given x̄Tp−1, and ūTp is
conditionally independent from x̄Tp−1 given ūTp−1. Thus the following holds for
the transition density of the joint state:

p(x̄Tp , ūTp |x̄Tp−1, ūTp−1)

= p(x̄Tp |ūTp , x̄Tp−1, ūTp−1)p(ūTp |x̄Tp−1, ūTp−1)

= p(x̄Tp |x̄Tp−1, ūTp−1)p(ūTp |ūTp−1). (29)
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Proof of Theorem 1

Plugging (28) and (29) into (27), one obtains

p(x̄0:Tp , ū0:Tp |s1:Tp)

∝ p(sTp |x̄Tp)p(x̄Tp |x̄Tp−1, ūTp−1)p(ūTp |ūTp−1)

· p(x̄0:Tp−1, ū0:Tp−1|s1:Tp−1).

From this, one recursively gets the following decomposition

p(x̄0:Tp , ū0:Tp |s1:Tp)

∝ p(x̄0)p(ū0|ū−1)
Tp∏
i=1

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)p(ūi|ūi−1).

Then, the marginalized density p(ū0:Tp |s1:Tp) is given by

p(ū0:Tp |s1:Tp)

=
∫
p(x̄0:Tp , ū0:Tp |s1:Tp)dx̄0:Tp

∝
∫
p(x̄0)p(ū0|ū−1)

·
Tp∏
i=1

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)p(ūi|ūi−1)dx̄0:Tp

=
Tp∏
j=0

p(ūj |ūj−1)
∫
p(x̄0)

Tp∏
i=1

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)dx̄0:Tp .

Now, we collect all components containing x̄0 and split the integral in the
following way:

p(ū0:Tp |s1:Tp) ∝
Tp∏
j=0

p(ūj |ūj−1)
∫∫

p(x̄0)p(x̄1|x̄0, ū0)dx̄0

· p(s1|x̄1)
Tp∏
i=2

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)dx̄1:Tp .

(30)

Since the transition of x̄j is deterministic and x̂0 is known, the following holds
for the integral over x̄0:∫

p(x̄0)p(x̄1|x̄0, ū0)dx̄0 =
∫
p(x̄1|x̄0, ū0)δx̂0(dx̄0)

= p(x̄1|x̂0, ū0),

and therefore (30) is equal to

p(ū0:Tp |s1:Tp)
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∝
Tp∏
j=0

p(ūj |ūj−1)
∫
p(x̄1|x̂0, ū0)p(s1|x̄1)

·
Tp∏
i=2

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)dx̄1:Tp .

The components containing x̄1 are now collected and the integral is split again

p(ū0:Tp |s1:Tp)

∝
Tp∏
j=0

p(ūj |ūj−1)
∫∫

p(s1|x̄1)p(x̄1|x̂0, ū0)p(x̄2|x̄1, ū1)dx̄1

· p(s2|x̄2)
Tp∏
i=3

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)dx̄2:Tp .

The integral over x̄1 ∫
p(s1|x̄1)p(x̄1|x̂0, ū0)p(x̄2|x̄1, ū1)dx̄1

is equal to ∫
p(s1|x̄1)p(x̄2|x̄1, ū1)δf(x̂0, ū0)︸ ︷︷ ︸

=x̂1

(dx̄1)

= p(s1|x̂1)p(x̄2|x̂1, ū1)

and thus (30) equals

p(ū0:Tp |s1:Tp)

∝
Tp∏
j=0

p(ūj |ūj−1)
∫
p(s1|x̂1)p(x̄2|x̂1, ū1)p(s2|x̄2)

·
Tp∏
i=3

p(si|x̄i)p(x̄i|x̄i−1, ūi−1)dx̄2:Tp .

The former steps are repeated recursively for x̄2 up to x̄Tp . This finally results in

p(ū0:Tp |s1:Tp) ∝
Tp∏
j=0

p(ūj |ūj−1)
Tp∏
i=1

p(si|x̂i).

Since ṽj−1 and v̂j−1 are Gaussian, the following holds:

p(ū0:Tp |s1:Tp)
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∝
Tp∏
j=0

p(ūj |ūj−1)
Tp∏
i=1

p(si|x̂i)

∝
Tp∏
j=0

exp
(
−1

2
(ūj − ūj−1)TQ(ūj − ūj−1)

)

·
Tp∏
i=1

exp
(
−1

2
(si − x̂i)TR(si − x̂i)

)

=
Tp∏
j=0

exp
(
−1

2
‖ūj − ūj−1‖2Q

) Tp∏
i=1

exp
(
−1

2
‖si − x̂i‖2R

)

= exp

−1
2

Tp∑
j=0

‖ūj − ūj−1‖2Q

 exp

−1
2

Tp∑
i=1

‖si − x̂i‖2R


= exp

−1
2

 Tp∑
j=0

‖ūj − ūj−1‖2Q +
Tp∑
i=1

‖si − x̂i‖2R

 .

Thus the following holds:

arg max
ū0:Tp

p(ū0:Tp |s1:Tp) =

arg max
ū0:Tp

exp

−1
2

 Tp∑
j=0

‖ūj − ūj−1‖2Q +
Tp∑
i=1

‖si − x̂i‖2R

 .

The maximum of a strictly monotone function is reached at the same point as
the maximum of its argument, hence

arg max
ū0:Tp

exp

−1
2

 Tp∑
j=0

‖ūj − ūj−1‖2Q +
Tp∑
i=1

‖si − x̂i‖2R


= arg max

ū0:Tp

−1
2

 Tp∑
j=0

‖ūj − ūj−1‖2Q +
Tp∑
i=1

‖si − x̂i‖2R


= arg min

ū0:Tp

 Tp∑
j=0

‖ūj − ūj−1‖2Q +
Tp∑
i=1

‖si − x̂i‖2R

 .
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