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Abstract

Flocking behavior of multiple agents can be widely obseriedature such as schooling fish
and flocking birds. Recent literature has proposed the pitissithat flocking is possible even only
a small fraction of agents are informed of the desired pmsitind velocity. However, it is still a
challenging problem to determine which agents should berinéd or have the ability to detect the
desired information. This paper aims to address this probBy combining the ideas of virtual force
and pseudo-leader mechanism, where a pseudo-leaderaeizres agent who can detect the desired
information, we propose a scheme for choosing pseudo-lsadea multi-agent group. The presented
scheme can be applied to a multi-agent group even with anrmmexted or switching neighbor graph.
Experiments are given to show that the methods presentédsipaper are of high accuracy and perform

well.
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. INTRODUCTION

Flocking is a collective behavior of a large group of mobdeats. Typical flocking phenomena
include flocks of birds, schools of fish, herds of animals aobbrdes of bacteria. In nature,
animals achieve flocking for various reasons. For exampl@rder to keep safety in numbers
and also to confuse predators, they will form flocks for pctta. An agent is more likely to
be attacked if it strays away from the flocking group.

As a common demonstration of emergence and emergent beHaaking was first simulated
on a computer by Craig Reynolds [1]. In 1987, he started wibleid model to build a simulated
flock and introduced three rules to simulate flocking:

« Collision Avoidance: steer to avoid collision with nearbydkmates (short range repulsion).

« Velocity Matching: steer to match velocity with nearby flotites.

« Flock Centering: steer to stay close to nearby flockmategy(lange attraction).

The mechanism, known as “separation”, “alignment” and &bn”, results in all agents moving
in a formation with the same heading and a fixed network strect~rom then on, these three
rules have been widely used to study flocking behavior.

As a special case of Reynolds’ model, in [2], Vicsdlal. presented a simulation model based
on nearest neighborhood law, in which each agent’s headingpdated by the average of the
headings of its nearest neighbors and itself. It was showh ttie headings of all the group
agents converge to a common value.

A lot of works have been published based on Reynolds’ andekissmodels in recent
years [3]-[11]. To thoroughly and systematically inveatigflocking behavior, artificial potential
functions (APFs) are widely used. In [4], Tanredral. presented an APF in a network with fixed
topology which is a differential, nonnegative and radialiybounded function of the distance
between two agents. Then, he modified the APF to a nonsmoetinannetwork with switching
topology which captures the fact that there is no agentactan beyond a proper distance [5].
Later, Olfati-Saber modified Tanner's APF and defined aro#ftfeF which is a bounded and
smooth one for switching topology.

In view of the pitfall of regular fragmentation [7], which &phenomenon of flocking failure
most likely occurring for generic set of initial states ardgle number of agents, Olfati-Saber

also introduced a flocking mechanism based on a virtual tef€le Even though the initial
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states is selected randomly, the mechanism can guaranteeking behavior. However, this
method assumes that all the agents know information abeuvittual leader. In consideration
of practical use, Shet al. and Suet al. showed that flocking appears even when only some
agents are informed [8]-[10], these we call pseudo-leantetkis paper.

Though Shiet al. and Suet al. showed that flocking could appear when not all the agents are
informed in a group, precisely which agents should be infmrhas not yet been considered.
In this paper, we focus on investigating which agents shbeldelected as pseudo-leaders for
flocking in a weighted network. Another difference from poms work is that, in the absence
of control, the acceleration of each agent is dynamic. This lbe seen in our system model
in Section Il. That is, if there are no attractive/repulsoantrol, no information exchange with
others and no information received from the virtual leadeah agent, its acceleration is dynamic
instead of constant, as is the case in previous work. By usjagunov stability theory, a simple
criterion for choosing pseudo-leaders is proposed.

The reminder of this paper is organized as follows. In Sediiomodel depiction, preliminaries
about graph theory, and mathematical analysis are brieffpdoced. In Section Ill, the main
results are proposed. We investigate how to select pseaatiets for flocking in a multi-agent
dynamical group with fixed topology. Section IV gives somdeesions and discussion of
the main results so that one can gain useful insight into tleblem of choosing pseudo-
leaders. Two computational examples in small-sized angelacale groups are simulated to
illustrate effectiveness of the proposed approach in &edti We summarize the main ideas and

conclusions in Section VI.

[I. PRELIMINARIES
A. Graph theory

To make this paper self-contained, some basics of graphmttege recalled [12].

A graph G is a pair of set§V, ), whereV is a finite non-empty set of elements called
vertices and £ is a set of unordered pairs of distinct vertices calkttjes The setV and &£
are the vertex set and edge setdyfand are often denoted By(G) and £(G), respectively. If
i,7 € Vand(i,j) € &, theni andj areadjacent verticesor neighbors The set of neighbors
of a vertex: is ;. A walk in a graph is a sequence of vertices and edges:, 71, - - -, €k, i

in which each edge, = (j._1, /). A pathis a walk in which no vertex is repeated. If there is
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a path between any two vertices of a graphtheng is said to beconnectedIf G and G, are
graphs withV(G;) € V(G) and&(G;) C £(G), theng, is asubgraphof G.

The position and velocity neighbor gragh= (V,£, W) is a weighted graph consisting of a
set of indexed vertices and a set of ordered edges, where (w;;) € RY*" is the weight
matrix which represents the weighted coupling coefficiaitsteraction between the agents. If
there is a link from vertex to vertex;j (; # i), thenw;; = wj;; > 0 andw;; is the weight;
otherwise,w;; = 0. Throughout the paper, assume tWdtis a symmetric matrix satisfying

diffusive condition

N
E Wi = 0.
J=1

B. Model depiction

Consider a multi-agent system consisting’dfagents. Here, the moving model of each agent

in the group is given by

P;
Vi

Viv

f(v;) + u;,

(1)

wherel < i < N, p, € R*, v; € R" andf(v;) € R" denote the position, velocity and the
acceleration dynamics (without control input) of théh agent respectively, and € R™ is the
control input of agent.

The motion model for the virtual leader is

pl = Vl)

Vl = f(Vl),

(2)

wherep, € R", v; € R" andf(v;) € R™ represent the position, velocity and the acceleration
dynamics of the virtual leader, respectively.

The flocking task is to design an appropriate control inpusuch that Reynolds’ rules are
followed, and then all agents moving in a formation with a coom heading and collision

avoidance.
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C. Mathematical Preliminaries

In this subsection, some useful mathematical definitimmphas and assumptions are outlined.

Definition 1. A matrix A = (a;;) € RY*" is calledreducibleif the indicesl,2,--- , N can be
divided into two disjoint nonempty sets, is, - - - , i, andji, j2, - -, jg, (With 31 + B2 = N)
such that

=0

Qe o

for 1 < k; < By andl < ky < By Amatrix A = (a;;) € RV >V is irreducibleif and only

if it is not reducible.

A matrix is reducible if and only if it can be placed into blockpper-triangular form by
simultaneous row/column permutations. In addition, a mas reducible if and only if its
associated graph is not connected [14].

Definition 2 [13] . A matrix A = (a;;) € R¥*" is calleddiagonally dominantf |a;| >

i la;;| for 1 < ¢ < N. A is calledstrictly diagonally dominanif |a;| > % ||
forT< i< N. e

The Gershgorin circle theorem [13] results in many intengstonclusions. A strictly di-
agonally dominant matrix is nonsingular. A symmetric diagily dominant real matrix with
nonnegative diagonal entries is positive semi-definita. siymmetric matrix is strictly diagonally
dominant and all its diagonal elements are positive, thereigenvalues are positive; if all its
diagonal elements are negative, then its eigenvalues ayatime. Thus it is obvious that the
real part of eigenvalues of the weight matkix which are all negative except an eigenvalue
with multiplicity one. Throughout the paper, we denote aifpasdefinite (positive semi-definite,

negative definite, negative semi-definite) ma#ixasA > 0(> 0, <0, <0).

Definition 3 [15] . A set() is said to be gositively invariant sewith respect to an equation

if a solutionz(¢) of this equation satisfies

z(0) € Q = z(t) € Q vVt > 0.
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Definition 4 [15] . A continuous functiory : [0, p) — [0,00) is said to belong talassK if it
is strictly increasing ang(0) = 0. It is said to belong talasskK, if p = oo andg(p) — oo as

p — 0o.

Definition 5. 2-norm, also calledEuclidean normof a vector¢ is defined as

1€l = VETS,

where T denotes the transpose of a vector or a matrix.

Definition 6 [7] . o-norm of a vector¢ is defined as

1
lel = 5 |1+ oliels-1].

whereo is a positive constant.

Due to the fact that|¢||, = 0 as ||¢]|» = 0, Z”?ﬂ: —

1!57”2”&\2 > 0 when||{]|2 # 0, ||£]|, is a classK, function of ||£]|,. On the other hand, note
g lisiiz

that even thoughj¢||, is not a norm in the sense of algebra, it is differentiableywvbere while

|l — oo as||€]ls — oo, and that

|€||2 is not. Thus||]|, instead of||£]| is used to construct APF in this paper.

Definition 7. Artificial Potential Function (APF)V;; is a differentiable, nonnegative, radially

unbounded [15] function ofp; — p;

+» Which is thes-norm of the position error between the
i-th and thej-th agentsV;(||p; — p,||») has the following properties:

(1) Vij(lp; = pllo) — oo as|p; —p;llo = 0,

(2) Vi;(llp; — p,llo) attains its unique minimum when theth agent and thg-th agent are

located at a desired distance.

An example of APF is

C2

TSR, 3)
IP; = psllZ

Vw(sz _ija) = ¢ In ||p2 - pj”g +
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wherec; > 0, c; > 0 are two constants. The potential function approaches infas||p, —p, |,
tends to0, and attains its unique minimum whéip, — p;|l, = /2.

In order to derive the main results, the following lemmas asgumption are needed.

Lemma 1. (Schur complement [16], [17]) The following linear matrixeiquality (LMI)

Alx)  Blx) | _
B(z)T C(z) ’

Q

where A(z)" = A(x),
(@) A(z) < 0andC(x) — B(z)" A(x)"'B(z) <0
(b) C(x) < 0and A(z) — B(z)C(x) "t B(z)" <O.

(x)T = C(x), is equivalent to either of the following conditions:

Lemma 2 [18] . If a symmetric matrixA = (a;) € RY*N (a; > 0, @ # j) is irre-
ducible and satisfies diffusive condition, thén— D; < 0 holds for a diagonal matrid, =
diag{0,---,0,0,0,---,0} € RVY*N where thei-th (1 < i < N) elements is any positive

constant and the others abe

Assumption 1 (A1).Suppose that there exists a positive constasatisfying(&, —&;) " (f(&2) —
f(&1)) < all& — &3 for any two vectors;, &, € R™.

I1l. M AIN RESULTS

In this section, a group of mobile agents with fixed topologyonsidered. Assume that the
position and velocity neighbor gragh = (V,£, W) is connected. That is, the weight matrix
W is irreducible. For the case thgt = (V, &, W) is unconnected, discussion will be found in
Section IV. C.

Generally, there should be attractive and repulsive maeshemin the control input, where the
attraction indicates that each agent wants to be close toyeaents and repulsion provides
the fact that each agent does not want to be too close to nfadiynates. These two mecha-
nisms can be jointly embodied in APF (actually there are maays to achieve attraction and
repulsion).

Besides “separation” and “cohesion”, “alignment” is an ortant rule in flocking. We use

the approach that group members receive moving informdtamm a virtual leader to realize
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alignment. Based on this approach, recent literatures slagen the phenomenon that flocking
will appear even if not all the agents are informed in the grddere, we investigate which agents
should be selected as informed ones for flocking in a weigh&tdork. An agent, which utilizes

the motion information of the virtual leader as a referencéts controller, is a pseudo-leader

of the group. Suppose that theth, i,-th, - - - i,,-th agents are chosen as the pseudo-leaders.

The control law for the-th agent is given by

u; = ul + u? + u,

N
up = — > wi(Vi —Vj) = > wyVy,
JEN; j=1
N
u; = — 3 wz‘jvinz'j(||pi—Pj||a) =- > wiijiVia‘(llpi—pjlla%
JEN; j=L,j#

—hi, (Viy = V1), Ty, = ki (Vi —vil3) i € {i]1<r<m, 1<i, <N},

0 otherwise,
4)

whereV represents the gradient of a functidn, is the adaptive feedback gaik;, > 0 (1 <
r < m,1 < i, < N)is a constant. For agent u} is the velocity coupling of interactions
between agents, ang stands for the coupling gradient of APF with respect to itsitian. The
termu?, which will disappear if agentis not a pseudo-leader, controls the received information
from the virtual leader. It provides an adaptive feedbagkistthg mechanism and will be more
practical in engineering than those with linear feedbackson

Define the position and velocity error between ageand the virtual leader a& £ p, —p,,

e £ v; — v, then we have

79

= f(v;) — f(v;) + u,.

UL
[
D

Since Al holds, we obtain

e (f(vi) —f(v)) < o€}

for 1 < i < N. In addition, it is easily to get
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Vo, Vii(Ip; = pille) = Vp, Vi€ — €|5)
= VeVy(le —€ll,)

and

and then it follows

LVilllp —pylle) = QéfTVegVij(He?— o)
= 2¢&'" Vp, Vii(lIp; = pylls)-

7

Theorem 1.Suppose that Al holds. Wy _,, + aly_,, < 0, whereW _,, is the minor matrix
of the weight matrixW by removing all thei.-th (1 < r < m,1 < i. < N) row-column
pairs, flocking behavior appears in system (1) by the corgt@itegy (2) and (4). That is, the
velocities of all agents approach the desired velocity gagtically, collisions between agents
are avoided and the distances between all agents are mvdfiathermore, the global potentials

of all agents in the group are minimized with the final confajiom.

Proof. Consider a positive semi-definite function as

XX L T
L = 5% > wiVylle,—pjlle) +35 > € €
i=1 j=1,j#i i=1
T\ (hi —h)?
_‘_% Zl ( 7kir ) ,
r—=

whereh > 0 is a constant to be determined.

We now prove thaf). = {(p; — p;,€/)|L < ¢, ¢ > 0}, the sub-level set of,, is compact.
Firstly, from L < cone getd/e!||? = €' €' < 2candw; Vii(llpi=p,llo) < 2cforl <45 <
N. Due to the fact that the continuous functigp is radially unboundedy;;(||p; —p,ll,) — oo

as||p, —p;ll» — 0, and that||p, —p; |, is a classiC, function with respect td{p, — p,||2, there

exists a positive constant such that|[p, — p;[lo < ¢. Thus(2. is a bounded set. Secondly,
becaus€Y, = {L|L < ¢, ¢ > 0} is closed,. is a closed set for the continuity of function

L. Then according to Heine-Borel Theorem [19)], is compact.
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10

RegardingL as a Lyapunov candidate, its derivative along the trajeetasf (1), (2) and (4)

is

. N N N
L = Y& (f(Vz’) —f(vi) + Zl wi; € — Y wj Vpi‘/ij(Hpi_ijU))
j:
N
>

i=1 j=1,j%i
N m
+ wi; € Vo, Vii(llp; = pylle) — Z e e+ Z( —h)e Tel
i=1j=1,j%i r=1
N N N
< Yoaele + 3> we e - ZheVT
i=1 i=1 j=1
N T m )
= > alel + 2 wi lefl3 + Z Z wi; & & — L hlle
i=1 1= 1 j=1,j#1
N N
< Salel+ X waleli+ Y wi €2 [|1€f]l2 — Z hles 3
i=1 1=1 1=1 j=1,j#i
£ eTQe,
wheree' = (||€]l|2, €42, -, ]|€kll2) ", @ = aly + W — H, andH is a diagonal matrix

whosei,-th (1 <r < m) elements aré and the others are.

After applying row-column permutatior can be changed into

W* + al,, — hl,, W
w T W_m + al y_m
where W*, W** are the corresponding matrices with compatible dimensiSisce W y_,,, +
aly_, < 0, Wy_,, + aly_,, is invertible. According to Lemma 1, choosihgbe a positive
constant satisfyingVv* + al,, — hl,, = W™ (Wx_,, + aly_,,) 7! wW*T < 0, we haveQ < 0.
Furthermore,L < 0, L(t) is a non-increasing function af Thus any solution of (1), (2) and
(4) starting inQ2. will stay in it. Namely, 2. is a positively invariant set.

Because),. is compact and positively invariant, every solution of tlygstem converges to the
largest invariant se@?* of the set{(p, — p,,€) | L = 0} on the basis of LaSalle’s invariance
principle [15]. InQ*, & = &’ = 0, which means that all agent velocities are equal and their
position differences remain unchanged in steady state.

Furthermoreg’ = 0 leads to€/ = 0 in Q*. Combining with equation (1), (2) and (4), we
have % wi; Vp,Vij([Ip; = p;lls) = 0 for 1 < i < N. This indicates that the group final

j=1,j7#i
configuration is a local minima of global potential functiohagent:.
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Collision avoidance can be proved by contradiction. Asstina¢ there exists a timg > 0
so that the position difference between two distinct agénéd:** satisfies|p,. —p;««|[2 — 0

ast — t;. Then||p,. — p;«|[o — 0 since|. ||, is a class,, function with respect td . ||..

According to the definition of APF/;;(||p;- — P;«|lo) — oo. This is in contradiction with the
fact that(2. is a positively invariant set. Therefore, no two agentsidelat any time: > 0.

Thus the proof is completed. O

From this theorem, iA,,.. (Wy_,,) < —a, where,,...(.) represents the maximum eigenvalue
of a symmetric matrix)) = {iy, i, ,%,,} can be chosen as the pseudo-leader set to guarantee

flocking in system (1), (2) and (4).

V. DISCUSSION ANDEXTENSIONS

In this section, some remarks and extensions are discusggdet some insights into the main

results.

A. Other flocking models

Previous papers studied a classical model for flocking biehav such as [4]-[9]. The motion

models of thei-th agent and the virtual leader respectively are

pi = Vi,
: ®)
Vi = Uy,
and
5 = v,
N ©)
VvV, = O,
wherep,, v; (i = 1,2,--- /N,l), u;(¢« = 1,2,---,N) andf have the same meaning with the

equations (1) and (2). It is assumed that if there are noctittedrepulsive control, no information
exchange with others and no information receiving from timual leader for an agent, then its

acceleration id(v;) = f(v;) = 0. For the virtual leaderf(v;) = 0 implies that it moves along
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a straight line with a desired velocity(0). Letting« = 0, we have the following theorem for

choosing pseudo-leaders in the classical model.

Theorem 2.1f Wy_,, < 0 holds, flocking behavior will appear in system (5) by the coint
strategy (4) and (6). That is, the velocities of all agentsraach the desired velocity asymptoti-
cally, collisions between agents are avoided and the distabetween all agents are invariant. In

addition, the global potentials of all these agents aremmized with the group final configuration.

For other flocking models such as taking velocity damping icdnsideration [10] (which is
frequently unavoidable when objects move with high speeds @ viscous environment), the

schemes for determining pseudo-leaders can be attainemnidgrsanalysis.

B. A single pseudo-leader is enough for flocking

Consider the classical model at first. Denote the minor maifiWw by deleting any row-
column pair asW y_;. It can be rewritten a®¥Vy_; = Wy, + Z D;, wherel < i < ¥,

1 < x < N—1,Wy_; is the corresponding symmetric and dziﬁ‘usive matrix, dndis the
diagonal matrix where théth element is negative and the others aréAccording to Lemma
2, Wy_1 is negative definite. Therefore, flocking will occur with jume single pseudo-leader
(any agent is available as an option) based on Theorem 2.

Below we will discuss the model presented in Section Il. Bpgse that the weight matrix
W = wB, wherew > 0 is the common weight couplin® = (b;;) € RY*" is the adjacent
matrix with b;; = b;; = 1 if there is a link from agent to agentj (j # ) andb; = 0
otherwise. MoreoverB satisfies diffusive conditiorg: bi; = 0. For an agent, (1 < r <
m, 1 < i, < N), if the minor matrixBy_; that is Jo:titained by deleting the-th row-column
pair of B satisfies\,...(Bn-1) < —2, it can be picked out as a pseudo-leader for flocking
according to Theorem 1. Sin@&y_, is negative definite by Gerschgorin theorem, it is concluded
that flocking will be achieved with just one single pseudadier, which can be selected randomly

from the vertex seV, provided that the common coupling weightis large enough.
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C. The position and velocity neighbor graph is unconnected

In the main results, we assume that the position and velogighbor graplg = (V,&, W)
is connected. In reality, however, it is not always the c&appose that the graph consists
of several connected subgrapfé = (V7,&/,W7) (j € {1,2,---}), whereJ V' = V,
Ué =g, W’ ¢ RNi*xNi js the weight matrix of subgrap’ which is symmetrjic, irreducible
énd diffusive, an(E N; = N.In subgraphg’, pseudo-leader s&@¥ can be picked out according
to Theorem 1 or j‘l’heorem 2. Put the pseudo-leaders in all thgraphs together, the scheme
for choosing pseudo-leader sgt= U V7 of the whole unconnected group is obtained.

As discussed in the previous subjsection, one single psieader in each connected subgroup
is enough for flocking. If, however, there exists a conneaeldgroup in which no agent is
informed, it is impossible for this subgroup to detect theigil moving information. Thus

flocking failure, such as regular fragmentation, may ocauwteau this circumstance.

D. The position and velocity neighbor graph is switching

The aforementioned results are on the basis of a multi-agyenip whose topology is fixed.
We can also consider a switching position and velocity newlgraphG(t) = (V,E(t),W(t)),

where

W(t) = W(Tk) t € [Tk,Tk+1), ]{5:0,1,---

with 7, = 0 is a switching matrix. It is easy to see that the graph swidtesome instant time.
SinceW (7 is invariant in[7;,, 741), @ temporal pseudo-leader 34t in this time interval can
be determined based on Theorem 1 or Theorem 2. Thus for a-agdtit group whose topology
is switching, a switching scheme can be employed to choosedosleaders for flocking.

For those switching models which utilize local informatigmearest neighbor law) to establish
the group topology [7]-[9], this technique will be more eifiat than using a fixed pseudo-leader

set.

E. Center of the group members

Define the position and velocity of the center of all group rbems as
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gol
lI>
2=
M=
-

.
Il
—

A ] N
V=S E V;
=1
Then we have the error system
A 1 N
e2p-p=yx¢,
.:1
A ZN
& EV—v =42 e

@
Il
—

According to the proof of Theorem 1, every solution of theteys converges to the largest
invariant set(2* of the set{(p, — p,,€) | L =0}, inwhiche = ¢ =0forl < i < N.
This results ine® = & = 0in Q*. That is, in steady state, the center of all agent velocities
is equal to the desired velocity, and the position diffeeebetween the center and the virtual

leader remains unchanged.

V. NUMERICAL SIMULATIONS
A. Flocking in a small-sized multi-agent group

In the following, Theorem 1 is illustrated by using LU systg20] as the dynamical ac-

celeration in system (1) and (2). As a typical benchmark tbaystem, LU system is given

by

—a a O Ty 0
X = 0 ¢ 0 xg | | —xiws
0 0 —b x3 122
£ Rx + T(X),

which has a chaotic attractor when= 36, b = 3, ¢ = 20. For any two state vectong and z
of LU system, there exist constant$, such that||y,||, ||zs]] < M, for 1 < s < 3 since the
LU attractor is bounded within a certain region. From sinpumerical calculation)/; = 25,
M, = 30, M5 = 45 is obtained. Therefore, one has
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=(y—-2"R(y—z (y1 — 21) (223 — Y2 23)
SR 0 % ¥
=(y-2)"' $ ¢ 0 |+ -2 0 0 (y—2)
0 0 —b o0 0
o g-y %
< )\ma:v % — % Cc 0 ||(y - Z)HZ
Y2 0 —b

~ 60.3402 ||(y — 2)]|?
Thus LU system satisfies the assumption Al with= 60.3402.

For simplicity, consider the group with ten nodes whose @) matrix is

-1 1 o0 1 o0 1 1 1 1
1 -4 0 0 o0 1 1 1 0 O
1 0 -4 1 0 0 0 O 1 1
o o 1 -3 1.1 O 0O 0 O
5 _ 10 o0 1 -2 0 0 0 0 O
c 1 o0 1 0 -2 0 0 0 O
11 0 O O O =2 0 0 O
11 0 O O O 0 =2 0 0
10 1 0 O O 0 0 -2 0
10 1 0 o0 O 0 0 0 =2

The common weight coupling i® = 70. By deleting the first three row-column pairs Bf the

maximum eigenvalue of the minor matrix 1s,..(B7) = —1. It is easy to see that

(8%
Amaz(B7) < ——.
(Br) < —

Thus the first three agents can be picked out as pseudo-4$aadbe group according to Theorem
1.

October 25, 2018 DRAFT



16

Fig. 1. Initial moving state of the group wheX = 10 andm = 3.

Simulation results are shown in Fig. 1 - Fig. 4 . In the simolat the initial positions of
the ten agents in the group are distributed randomly fromctitee [0, 5]3. The initial velocity
coordinates are randomly chosen from the c{the]®. The initial position and velocity of the
virtual leader, which is marked with a red star in Fig. 1 and. 2, are set ap,(0) = (6,6,6)"
andv;(0) = (1,1,1)T respectively. Other parameters are chosema&) = 1 andk; =
0.01 (1 <r <m, 1 <4 < N). Lettingo = 0.1 in g-norm andc; = ¢; = %, we use the

following APF

2
1P = 1yll5
The group’s moving states at= 0 and¢ = 30 are illustrated in Fig. 1 and Fig. 2. Here, the

‘/ZJ(sz _ija) = ¢ In ||p2 - pj||c2r +

solid circles represent the pseudo-leaders that receiwengnanformation of the virtual leader,
and the hollow ones denote the followers in the group. Thewardisplay velocity vectors of
all the agents. The dash lines depict the connections batagents. From these two figures, it
is seen that in spite of the initial disordered state, alldgents flock at = 30.

The state of position and velocity differences between tents and the virtual leader are
illustrated in Fig. 3 and Fig. 4 respectively. It is showntthiae velocities of all the group
members converge to the desired velocity. Moreover, thé&iposerrors between agents remain

fixed after a period of time.
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Fig. 2. Group’s moving state whelN = 10 andm = 3 att = 30.

Fig. 3. The position differences, (1 < i < 10, 1 < s < 3) between the agents and the virtual leader wher- 10 and

m = 3.

B. Flocking in a 200-sized multi-agent group

Large-scale groups with complex topology are common inneatit has been demonstrated
that the topological information of most large-sized sy®edisplay scale-free features, among
which Barabasi and Albert (BA) model [21] of preferentigiaghment has become the standard
mechanism to explain the emergence of scale-free netwbltdes are added to the network
with a preferential bias toward attachment to nodes witleaaly high degree. This naturally
gives rise to hubs with a degree distribution following a posaw.

In this subsection, a BA scale-free network consistingf agents withy, = 5 andg = 5 are

October 25, 2018 DRAFT



18

v
€1
o

o
[&)]

10 15 20 25 30

v
Ci2
o
L i%;:—

o
(&3]

10 15 20 25 30

Fig. 4. The velocity differences;, (1 < i < 10, 1 < s < 3) between the agents and the virtual leader wheg= 10 and

m = 3.

considered, wherg, is the size of the initial network, anglis the number of edges added in each
step. Similar to the previous simulation, we take the Litesysas the dynamical acceleration
in system (1) and (2). The initial positions and the velesitof the200 agents are selected
randomly from the cubé), 50]* and |0, 2%, and that of the virtual leader are selectepgds) =
(60,60,60)" andv;(0) = (1,1,1). Assume that the other parameters in the simulation are the
same as those in the previous subsection.

Denote BE as the minor matrix of the adjacent matB&* by removing6 row-column
pairs which corresponds to tlteagents with the largest degree in the whole group. Since the

maximum eigenvalue 0B’} satisfies

Amac(BE) = —0.9284 < —0.8620 = —,

w
the 6 agents with the largest degrees can be picked out as pseaders of the group. After
using the control mechanism presented in Theorem 1, flockipgars by letting just% agents
be informed. The moving states of all the group memberns=a) andt¢ = 30 are exhibited in
Fig. 5 and Fig. 6.
Clearly, the approaches presented in this paper are of lugiwracy with good performance

not only for small-sized multi-agent groups but also fogarscale multi-agent systems.
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Fig. 5. Initial moving state of the group wheX = 200 andm = 6.
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Fig. 6. Group’s moving state whelN = 200 andm = 6 at¢ = 30.

VI. CONCLUSIONS

In this paper, we have presented a criterion for choosingigis¢éeaders in a multi-agent
dynamical group. Particularly, the weight configurationtbé position and velocity neighbor
graph is not necessarily irreducible or time invariant. Byndining the ideas of virtual force and
pseudo-leader mechanism, mathematical analysis has bdenet! to illustrate how to determine
the pseudo-leader set in a group. The proposed schemes éavetoved rigorously by using
Schur complement and Lyapunov stability theory. Finallyg tomputational examples including
small-sized and larger-scale multi-agent groups have bbewn to illustrate the effectiveness

of the proposed approach.
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