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Abstract

We consider a distributed non cooperative control settmg/ich systems are
interconnected via state constraints. Each of these sgsigmoverned by an
agent which is responsible for exchanging information viishneighbours and
computing a feedback law using a nonlinear model predictbreroller to avoid

violations of constraints. For this setting we present gothm which generates
a parallelizable hierarchy among the systems. Moreoveshae both feasibility

and stability of the closed loop using only abstract prapsrof this algorithm.

To this end, we utilize a trajectory based stability resutich we extend to the
distributed setting.
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1. Introduction

Distributed control problems can arise either naturalgy, by a set of coupled
systems which shall be controlled, see, e.g., Dold and Stuyd4], or if a large
problem is decomposed into smaller, again coupled prohlseesRawlings and
Mayne [17, Chapter 10] or Scattolini [20] for an overview.the latter case, the
general idea is that smaller problems are solvable eastefaster which allows
to even overcompensate the computatiofi@reto coordinate these systems, cf.
Richards and How [19, Section 7]. In either case, one diatstges between coop-
erative control which features a centralized objective, mon cooperative control
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where the objectives of the systems are independent fromather. Using a cen-
tralized objective there are several possibilities toaiwihe optimization problem
into subproblems. If suitable conditions hold then simdarformance of the dis-
tributed control obtained from these subproblems and ot#mralized control
can be shown, see, e.g., Rawlings and Mayne [17, Chapten XBiselsson and
Rantzer|[5].

Throughout this work we focus on the non cooperative corsetting of sys-
tems driven by independent dynamics and control objectinetscoupled by con-
straints. For each system we impose an agent which exchatagjesnformation
with its neighbours and uses its local objective to computecal control which
satisfies the coupling constraints. For the computing taskogus on feedback
design via nonlinear model predictive controller (NMPC)igthminimizes the
distance of the current state to the desired equilibriunt aviaite time horizon.
To show asymptotic stability of an NMPC closed loop, onemftaposes addi-
tional stabilizing terminal constraints and costs, seg, &eerthi and Gilbert [15]
or Chen and Allgdower [3] respectively. Since such termewistraints may re-
quire long optimization horizons, we focus on the plain NM&&gting without
those modifications. In the non distributed case, stakititysuch problems has
been shown in Griine et al. [11] whereas the distributed isageated in Griine
and Worthmann [12] using the algorithm of Richards and Hody|[19].

Here, we first prove a stability idea outlined in Grine andrtWmann [12]
using the trajectory based setting of Griine and PannelCi@pter 7]. This proof
allows us to reduce the horizon length in the distributec aakile maintaining
suboptimality estimates and stability like behavior of thesed loop. Secondly,
since the computing time of the NMPC control law for each agemot negligible,
we present an algorithm which allows us to execute these atatipns in parallel
using priority and deordering rules as well as a decision orgnFrom Rawlings
and Maynel[17, Chapter 10]itis known that for the non coope&r@ontrol setting
one can only expect to reach a Nash equilibrium. Althougthsusolution may
be far from the optimal centralized solution, the closedblsolutions may still
be stable and maintain the coupling constraints. For thpgsed algorithm we
present conditions under which feasibility of the closedplas guaranteed and
present necessary as well astsient conditions for asymptotic stability using
only abstract properties of both the priority and the deonderule. While here
we focus on the plain NMPC case, we also outline how feasikaind stability
results can be obtained using NMPC with terminal constsantost.

The paper is organized as follows: First, in Secfibn 2 we fdlyrdefine the
problem under consideration for which we showfelient stability results for the
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distributed case in Sectidd 3. In the central Seclibn 4, vesegnt a covering
algorithm which allows us to generate a hierarchy of agemtisran the computa-
tions of each hierarchy level in parallel. Using this altfum, we show necessary
and stficient conditions for feasibility and stability of the resag closed loop
and also how much parallelism can be achieved. Instead oparated exam-
ple section, we use an analytical example throughout thesenbrk to present
the improvement of the stability result but also to illustréhe abstract functions
used within the proposed algorithm in Sectign 4. Finally,dse&wv conclusions in
Sectiorlb and present ideas for future research based ongbenped work.

2. Setup and Preliminaries
Throughout this work we consider a set of nonlinear disdiete systems
Xp(N+ 1) = fo(Xp(N), up(n)), peP:={1,...,P,neNy (1)

with xp(n) € X, anduy(n) € U, and Ny denoting the set of natural numbers
including zero. HereX, andUy, p € #, are assumed to be arbitrary metric
spaces denoting the state space and the set of admissihiel satues of thep-th
system, respectively. The metrics to measure distancesbattwo elements of
Xp or of Uy, are denoted bylx, : X, x Xp — Ry anddy, : Up x U, — Ry
whereR., denotes the positive reals including zero. In the followive denote
the solution of a systerp of (1) corresponding to the initial valug(0) = x?) and
the control sequenag,(k) € Uy, k=0,1,2,..., by X3(k, X)).

In order to define our goal we say that a continuous funatioriR.; — R
is of classkK., if it satisfiesa(0) = O, is strictly increasing and unbounded. A
continuous functiory : RS, — R, is called a class(f, function if it satisfies
¥(0) = 0, is strictly increasing in each component and is unboundentinuous
functiong : R.oxR.o — R.qis of classKZL if it is strictly decreasing in its second
argument with linp, ., B(r, t) = 0 for eachr > 0 and satisfieg(:,t) € K., for each
t > 0. Moreover,B;(x) denotes the open ball with centeand radiug and for
arbitraryxs, X, € X we denote the distance fror to x; by |[X|lx, = dx(X1, X2)-

For the set of systemisi(1) the overall system is given by

x(n+1)= f(x(n),u(n)), neNg )

with statex(n) = (x¢(n)7,...,xp(N)")T € X = X; X ... X Xp and controlu(n) =
(ur(M™,...,up(N)T)T € U = Uy x...x Up. Now, our goal is to asymptotically
stabilize system[{2) at a desired equilibrium pok € X, i.e. to fulfill the
following:



Definition 1. Let x®" € X be an equilibrium for a systeril(2), i.e., there exists
u € U such thatf(x® u) = x®". Then we say thax™ is locally asymptotically
stableif for a given control sequencei(n))ney, there exist > 0 and a function

B € KL such that the inequality

13N, X leer < B lleer, N) 3)
holds for allx’ € B,(x®" and alln € Ny,

Additionally, the solutionx'(-, x°) shall satisfy state and control constraints.
Throughout this work, we incorporate such constraints bysmering suitable
subsets of the overall state and control value spaceX, U c U for system[(R).
As a result, system§](1) are coupled via the constraint§etsdU although the
respective dynamics are decoupled. The following exanliplgtiates this setting
and will be used throughout this paper.

Example 2. Consider two cars attempting to cross a one lane brigdegne car
has to wait, cf. Figurg]1 for an illustration. Suppose themite time dynamics of
the cars are given by

Xp(N + 1) = Xp(n) + up(n)

with u, € U, = {-1,0,1}? andx, € Z? for p = 1,2. Since the cars shall not
collide, we obtain the restriction

(%11, X12) " # (%21, %22) " (4)
The one lane bridge additionally imposes the constraints
Xp2=0if X1 =0forp=1,2 and (5)
X121+ Uis + X21 ’ X11 " X1t U (6)
X12 + U2 X22 X1,2 X2+ U2
which together form the sef. Hence, the local set of admissible moves may
depend on which car is allowed to drive first, cf. Figures 1d[&D. Note that

®) is the only local constraint whereas — if they are congde- [4) induces an
algebraic and_(6) a neighbouring dynamic dependent cagiplin

The purpose of this work is to show conditions under whiclbisitg of the
overall systems can be guaranteed by using only local dtemgoTo this end, we
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-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

o1 *o1 *o1

(a) Admissible moves ok, if(b) Admissible moves ok, if  (c) Admissible solution
X1 is off the bridge X1 enters bridge

Figure 1: Admissible moves for initial condition$ = (1,0)7, x5 = (-1,0)"

impose an agent for each systgre ¥ to compute a suitable control sequence
up(-) € U§° = {up(K) | up(k) € UyVk € Np} and to exchange information with
other agents in order to verify that the constraiits X, U c U are satisfied.
Throughout this work each agent computes its control sexpigia a nonlinear
model predictive controller, a methodology which will bgy&ained after Defini-
tion[d, below. In order to achieve asymptotic stability of thverall systeni(2) we
develop a covering algorithm to coordinate all agents. tea iof this algorithm
is the following: Since some subsystems impose constramésch other, a prior-
ity rule is used to generate a hierarchy among the subsystesres result, agents
which are on the same hierarchy level can compute their loptimal control
in parallel while the hierarchy levels remain in serial. Aduhally, a deordering
rule is introduced to repeatedly verify if the hierarchy taflattened, i.e. if more
agents can work in parallel. For details on these rules v tefSection 4.

Since we want to compute local contrals we must define the local con-
straints for each single systefp, p € #. To this end, we “project” the constraint
setX to the state space of a subset of systems.

Definition 3. Foranindexsel, = {py,..., pm} CPwithme N,m< Pandp; #
p; foralli, j € {1,..., m} theset of partial statess defined ax;, = X, x...xXp,
and we denote elements ¥f, by X7, = (Xp,, ..., Xp,). Accordingly, thepartial
state constraint sas defined by

X7, == {Xr, € X7, | there isXe Xwith X, = xfori=1,...,m}.

In case of Examplel 2, Definitidn 3 basically means that onbgéhconstraints
induced by the neighbours containediig have to be considered, i.e. if agent
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p = 1 ignores agenp = 2, then only constraint{5) has to be fulfilled. In the
general case, this task can be accomplished by using infaman neighbouring
systems which are available to an agent and allow to genefaierarchy among
the agents. Here, we assume that this information can bexegek repeatedly in
between two time instantsandn + 1.

Throughout this work we consider changing network topaegi.e. the sets
of neighbours at time instantsandn+1 may difer, see Figuriel 2 for an illustration.

X4 X3 X4 X3
Time instant n Time instantn+ 1
Figure 2: Possible sequence of communication graphs atitistentsn andn + 1
Additionally, we allow the case that even if neighbourinfprmation of a sys-
temq € P\ {p} is known to an agernp € £, agentp ignores that information if his
hierarchy level is higher than the level of the neighboum$€amuently, the depen-

dency graph which results from this hierarchy maatifrom the communication
graph as illustrated in Figufe 3.

X4 X3 X4

*
|
|
|
|
|
|
|
|
7
X1 X2 X1 iﬁ ———————— >0 X2

Figure 3: Possible flierence of communication and dependency graph
Moreover, as sent information may be delayed or even lostyarg to allow
for considering old information on neighbours and varidblegths of this infor-

mation. Note that the latter may also allow agents to skipmgautations of con-
trols. IntroducingN, as the length and, as the time instant at which neighbour
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q has computed the state sequencg(0), .. ., x;'(Ny)), we define the exchanged
neighbouring information as follows:

Definition 4. Suppose that at time instante Ny agentp knows the state se-
quencesq'() = (X4(0), - .., X3'(Ng)), Ny € No, computed at time instamt, < n
for a givenneighbouring index sef ,(n), that isq € 7 ,(n) with p ¢ 7,(n). We
define theneighbouring informatioms

Ip(n) = {(9, Ng, Ny, ng()) | g€ Tp(n)}
being an element of the skt = 29 with Q = (P \ {p}) x No x Ny x X,

Knowing the states of neighbouring systems for a certaie fperiod, we can
define the index set used within the “projection” of the coaist setX.

Definition 5. For a given time instam € Ny and an agenp € # with neigh-
bouring informationl ,(n), we call the set of systenmgge 7,(n) \ {p} which are
imposing constraints on systepmat time instant + k € Ny, k > 0 neighbouring
prediction index setThis set is given by

To(nK) ={ge Tp(n)\{p} I n+K<ng+ Ny}

Similar to possible moves of the cars in Example 2, we can hisgartial
state constraint set connected to neighbouring informati@ilable to an agent
and define the set of admissible controls from which the cbisgquence,(-)
can be chosen, cf. Figures [a] 1b.

Definition 6. Given a time instanh € Ny and an agenp € # with initial value
xg and neighbouring informatiof,(n), we define theset of admissible control
sequence®r systemp at time instant as

U2, 53, 1,(n)) = {up()) € Up° [forallk = 0,1, ... we haveup(K) € Up and
(5(k, X0), (%" (K + N = Ng)) 7,n9) € Xipuzy(nig)-

Using an NMPC algorithm is one possibility to compute a colnfirom the
set of admissible controls. In particular, the method tieegpproximate a control
sequence such that the functional

3508, up) = > €04 (k X0, up(K) (7)
k=0



is minimized over all admissible control sequences, thaepuencesy(-) with
up(K) = ui(0) for allk € No with uy € IU‘;d(k, Xo(K, X9), 1,(K)). Here, the function
{p is a stage cost function penalizing both the distance oftie $o the desired
equilibrium and the used control. A popular choice for thisdtion is€,(Xp, Up) =
[IXpllert + Allupllger with weighting parametet > 0.

Computing a control minimizind{7) is, in general, compigasl intractable.
To circumvent this issue the NMPC algorithm uses the triettaost functional

Np-1

Jp" 0k Up) = D £(X (k. X0), Up(K) (8)

k=0

with finite horizon of lengthN, and initial valuex?). Hence, a finite minimizing
control sequence;, Uy, X9, 15(n)) is computed with

Up™n, 58, 1(n) = {up(-) € Up® |forall k= 0,...., Ny we haveu(K) € Uy and
(k. X2), (%" (K + N = Ng)) 7,n0) € Xipuzyiniy)-

In the following we assume that a minimizing control sequeaxists and denote
the corresponding optimal value function by

N . N
Vo' (%p(n), (M) = min Jp" (Xp(N), Up)
upeUp" " (nxp(N), 1 (M)

where the minimizing control sequence is given by

up = argmin Jg'p(xp(n), Up).

P UpeU P2, xp (), ()
Here, the argmin operator is used in the following senseergavma@ : U — R,
anonempty subsét ¢ U and a valuer € U we writeu* = argmin,g a(u) if and
only if a(u*) = min g a(u) holds. Note that we do not require uniqueness of the
minimizeru*. In case of uniqueness the argmin operator can be underasoarl
assignment, otherwise it is just a convenient way of writingminimizesa(u)”.
Having obtained a minimizing sequengg-), only the first elementi;(0) of
the control sequence is implemented. Then the entire proisishifted forward in
time by one time instant and both a new initial value and rgagiing information
need to be obtained. Applying this method iteratively rssid a feedback law
which assigns the first element of the minimizing controlusweus() to the
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current state of th@-th systemx,(n) and the neighbouring informatian(n) of
the corresponding agent, i.e. a map

15 = (Xp(), 15() > Us(0). (9)
Accordingly, the closed loop solution of theth system is given by
Xp(N+ 1) = f(xp(n),u?,"’(xp(n), Ip(n))) with x,(0) = x‘;. (10)

Using this setting, we first show conditions which guararasgmptotic sta-
bility of the closed loop for local controllers.

3. Stability

While commonly endpoint constraints or a Lyapunov functigme endpoint
weight are used to ensure stability of the closed loop, seg, e articles of
Keerthi and Gilbert/[15], Chen and Allgower [3], Jadbabame Hauser [14] and
Graichen and Kugl [7], we consider the plain NMPC versiorhaiit these modi-
fications. In order to guarantee stability in this case, weethe “relaxed” version
of the dynamic programming principle, cf. Lincoln and Ramtfl6]. In partic-
ular, one can show asymptotic stability 0f (2) in a trajegtbased setting using
a relaxed Lyapunov condition, see Griine and Pannek [1@oBition 7.6]. Note
that this stability result requires a centralized settind ¢he horizons to satisfy
N, = N for all p € . Hence, for the overall systeml (2) we denote the combined
stage costs by(x(n), u(n)), the finite and infinite cost functional byN(x°, u),
J*(x°, u) and the corresponding combined value function&Byx(n)), V= (x(n))
which allows us to apply the stability result of Griine andfzk [10, Proposition
7.6]:

Proposition 7. Consider a feedback lapM : X — U and the closed loop trajec-
tory X(-) of (@) with control u= N and initial values ¥0) € X to be given. If the
optimal value function V : X — R, satisfies

VNx(m) = VI(F(x(), g (x(n))) + a(x(n), 1™ (x(n))) (11)
for somex € (0, 1] and all ne Ny, then
aV=(x(n)) < ad”(x(n), ) < VR (x(n) < V=(x(n)) (12)

holds for all ne Np.



If, in addition, there existrq, a», a3 € K. such that
a1([IXllxer) < VN(X) < aa(IXlwer)  and (%, U) > aa(|[Xlxer) (13)

holds for all Xn) € X with n e Ny, then there exists a functighe KL which only
depends o, ay, @z anda such that the inequality

[IX(Mllxer < BAUIX(OYl e, 1) (14)

holds for all ne Ny, i.e., x behaves like a trajectory of an asymptotically k&ab
system.

The key assumption in Propositibh 7 is the relaxed Lyapuimaguality [11)
in whicha can be interpreted as a lower bound for the rate of conveegdfrom
the literature, it is well-known that this condition is sdieed for stficiently long
horizonsN, cf. Jadbabaie and Hauser [14], Grimm et al. [8] or Alamir and
Bornard [1], and that a suitabld may be computed via methods described in
Griine and Pannek [10, Chapter 7] or Giselsson [5].

Now we consider a distributed setting of Proposifibn 7 usiogipositions to
combine of the set of systemis (1). The idea of such compasii®to introduce
a weighting among the subsystems which in our further arsalysl allow for
increases of costs along the closed loop for some subsystems

Proposition 8. Consider feedback laws) : X, x I, — U, and closed loop
trajectories x(-) of (10)with initial values x(0) € X, to be given. If the optimal
value functions ‘§}' : Xp = Ry satisfy

VpN(Xp(n)) 2 VL“(fp(Xp(n),u'S(Xp(n), 1p(N)))) + afp(xp(n),ﬂg(xp(n), Ip(n)) (15)

for somex € (0, 1] and all ne Ny, then for any weighting function: R — R.,,
v(X) = ¥"X, 7i € R.o we have thafld) holds for all ne Ny with

WN() i= (V) (%), ..., VR (%)) and  €(x,u) = y((€1(Xe, U), - . ., Ep(Xp, Up))T).
If, in addition, for every pe ¥ there exist], o}, af € K., such that
@} (IXpllesr) < V(%) < af(iXpllge)  and  £p(%p, Up) > @5(IXplleer)  (16)

holds for all x,(n) € X with n € Ny, then there exists a functighe KL which
only depends op, @ and alla?, @b, a8, p € P, such tha(I4) holds for all ne No.
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Proof. Defining the abbreviationg}(x(n)) := (V}'(x(n)), ..., Vi (xe(n)))" and

Ep(x(n), uN(X(), Ip(M)) = (Ca(xa(n), £y (xa(N), 12(M))), - - -, Lp(Xe (), 5 (Xp (M), 1p(N)))) "
we combine all inequalitie (15) fqr €  and obtain

y(Vp (x(n)) = y(Vp (x(n + 1)) + ay(p(x(n), " (x(n), 12(n))).  (17)

using linearity ofy. Now we use the definition 8N and¢ which gives us[(11).
Hence, [(1R) follows directly from Propositioh 7. Similar§t4) follows by defi-
nition of VN and¢ which together withi(r) := y((a(r), ..., el (r))7),i = 1,2,3,
and again Propositidd 7 shows the assertion. O

Certainly, condition[(I55) would be desireable since it guéees a decrease in
Vr’)“ for eachp € P. In practice, however, one would usually exp‘ep‘tto decrease
for somep € P while it increases for others as shown in the following exEmp

Example 9. Consider the setting of Example 2 where we suppose that egctt a
p = 1,2 is optimizing using its running cos®,(Xp. Up) = X, — x'pefllg with
X = (-2,0)" and X" = (2,0)" and complete neighbouring information for ini-
tial conditionsx = (1,0)7, 9 = (-1,0)".

Due to the constraint§l(4)4(6) one car has to wait beforeriegtéhe bridge, cf.
Figure[1¢t, and even has to move aside as shown in Figlre 4doWWitoss of
generality we assume that syst@gn 2 moves aside. Although the optimal con-

%,0=x,(1)=x,(2) | x,(1) X,(0)=x,(1)=x, (2)=x,(3) X, (1)=x,(4)
x,(0) ) L, X,(0)=x,(5)

BN 2 N o ANl
= 0 o e =0 N ° &0 C mo o x
H /N H /N 7T\

%,(6)

-1 X -1 X%,2) -1 %2
2 E 0 1 2 2 E 0 1 2 2 E 0 1 2
X X X

(a) Optimal solution fon = 1(b) Optimal solution fom = 0 (c) Global optimal solution
andN =1 andN =2

Figure 4: Optimal open and closed loop trajectories

trol for agentp = 2 for anyN > 2 is identical to the global optimal control, cf.
Figures'4b and4c, we obtaW)(x,(0), 12(0)) < V)'(xx(1),1,(1)) for N = 2 and
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N = 3. Hence, we cannot guarantée](15) to hold for theésdthough the closed
loop is stable. For larger values Nf however, we obtain

37 ifN=4
V7' (%(0), 12(0)) =141 ifN=5 and  £5(x(0), 15 (%2(0), 12(0))) = 9,
42 ifN>6

32 ifN=4

33 ifNss5  od O(%(1), 15 (%(1), 12(2))) = 9,

V3 (%(2), 12(2)) = {

(V3'0e(n), |2(n)))n=2w5’N24 =(24,10,5,1) and
(C20xe). 1O, 1200))) _, oy = (10.9.4.2)

andV)'(x(n), 12(n)) = £2(x2(n), 1h (%2(N), 12(n))) = 0 if N > 4 andn > 6. Accord-
ingly, the largest values such that[(15) holds ar@ = 5/9 if N = 4, « = 8/9

if N =5anda = 1if N > 6. Hence, we can use Propositidn 8 to conclude
asymptotic stability ifN > 4.

In an indeep analysis, Griine and Worthmenn [12, Theoreijrh&\& shown
conditions such that for the serial case using the algorahRichards and How
[18,/19] inequalities(15) and (1.6) hold. Note that althotigh setting within the
articles of Richards and How [18,/19] is for one based on lirganamics and
secondly explicitely includes perturbations in the mogdils algorithm can also
be used in a nonlinear setting, cf. Grine and WorthmannRi&position 3.2].

Taking a closer look at the proof of Propositidn 8 we see thédt conditions
(@5) are only required to guarantéel(17) to hold. Note thatendondition [15)
requires a decrease Vi}‘ for eachp € P, in (17) it sufices thatv), p € P is
decreasing under a map Moreover, we only requirg € KT in the remainder
of the proof of Propositioh]|8 to guarantege K, i = 1,2, 3. Accordingly, we
obtain the following more general result:

Proposition 10. Consider feedback laws) : X, x I, — U, and closed loop
trajectories x(-) of (L0) with initial values %(0) € X, to be given. If the optimal
value functions ‘é}' ' Xp = Ry satisfy(I7) for somea € (0,1], y € KL and all
n € Ny, then(T2) holds for all ne Ny with VN and¢ defined as in Propositidd 8.
If, in addition, for every pe P there exist}, b, @} € K., such that(I8) holds
for all x,(n) € X with n € Ny, then there exists a functigh e KL which only
depends ony, @ and allaf, a5, af, p € P, such that{I4) holds for all ne No.

12



Proof. Follows directly from the proof of Propositidmn 8. O

The conclusion that can be drawn from Proposifioh 10 is thatteighting
functiony may allow us to partially violate condition (IL5). Sin€el(1&6}ypically
fulfilled if the horizon N, is large enough, a good choice pfmay reduce the
horizon lengthN, as we will see in the following example:

Example 11. Consider Examplel9 and supposé be the 1-norm, then we ob-
tain forN = 2

2
(Z VY (xp(n), | p(n))] = (31 24,20,13,5,1)
p=1

2
[Z (%), 12N (%o (), |p(n)))] = (18,13,11,9,4,1)
p=1

andy? ; Vi (Xp(n), 1p(n)) = f):l Lp(Xp(N), 1 (Xp(n), 15(n))) = O forn > 6. Hence,
(@7) holds witha = 4/13 and we obtain asymptotic stability of the closed loop
by Proposition 10. Since > 0 holds for allN > 2 this example illustrates the
advantage of considering conditidn17) instead of (15).

As outlined before Propositidn 110, under certain condgitre algorithm of
Richards and How [18, 19] can be applied to generate sokisooh thatf (15) and
(@18) hold. However, the nature of this algorithm is seriahttis while one agent
p € ® is computing its control, all other agemse # \ {p} have to wait until
agentp finished computing. Hence, if the number of systdPris large, such an
algorithm may cause rather long waiting times, a featurelwhiay be unwanted
if fast sampling is used. Still, as noted in Richards and Hb% Section 7], due
to its decentralized nature the dimension of each problesigisficantly smaller
and hence the algorithm reduces the numeri@arecompared to a centralized
solution considerably.

Apart from the serial nature, the algorithm of Richards ammvHequires acces-
sibility to the full neighbouring information, i.e. a fulloenmunication graph.
Additionally, an agenfp € # always uses the latest available neighbouring in-
formation to compute a minimizing contra} which results in a full dependency
graph. While the latter condition on the dependency grappimaelaxed easily,

it is a complex task to obtain a parallel algorithm and toxehe requirement of

a full communication graph.
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4. The covering algorithm

In this section we provide a covering algorithm which is a ifiodtion of the
Algorithm of Richards and How [18, 19] and allows us to run #ggentsp € £
in parallel if they are independent from one another. Unifoately, working in a
parallel distributed setting omits the use of standardrtegles from optimization
such as first and second order information of the cost funatiand the constraints
for the interlink between systems to search for optimal st

To circumvent this deficiency we introduce abstract mHAp® : 2 — 2%
which denote priority and deordering rules, see Haupt [I®] Backstrom|[2].
The aim of this section is to show how much parallelism cardpeeted using the
algorithm we propose next and the basic propertied,ad being a permutation
and a self concatenation mapping respectively.

The structural layout of the algorithm we present now is elipselated to the
NMPC algorithm outlined in Sectidd 2:

Algorithm 12. SetlistsP; := (1,...,P)andP,:=0forp=2,...,P,n:=0and
lp(n) :=0forp=1,...,P.

1. Obtain new measurements(n) for p € P.
2a. (Decision memory and deordering rulepri from 2 toP do
For j from 1 tofi?; do
(i) Setlp(n) =060 y(n) S Ip(n)
(i) If Ip(n)=0,thenremovep; from P; and setP; := (P4, p;)
Else: If M = Minep,, per, m M < i holds, then remove; from #;
and setPs = (P, Pj)
2b. Compute a contraly(-) minimizing (4) or (8) Withxg = Xp(n) and send
information to all agentg e {qe P |qe P, pe P andj > i} for pe Pin
parallel
2c. (Priority rule) Fori from 1 toP do
(i) If #P; € {0, 1}, goto Step 3.
Else: Sort index list by setting; := I1(%;)
(i) For jfrom 2 tof; do
If systemp; violates constraints imposed by systemsk < j,
then setPi,; = (Pi1, J) andZj(n) := 7;(n) U {pk € Pi \ Pis1 |
Pk, kK < J, induces constraints violated by systpmand sef; :=
Pi\ Pis1
(iii) Compute a controly(-, Ip(n)) minimizing () or (8) for allp € .1 in
parallel and send information to all ageqts {q e P | g€ Pj, | > i}

14



3. Implemenu'g"(xp(n), Ip(n)) := uy(0), setn := n+ 1 and goto Step 1.

The general idea of the algorithm is to first generate psidists #; of the systems
according to the rul&l and according to their interconnection with other systems,
cf. Step 2c, —just as the right-before-left rule in streaffic or the search direc-
tion in optimization methods. Secondly, these lists arelusgemember earlier
decisions which avoids generating periodic behaviours plit of the algorithm,
contained in Step 2a, is inspired by Bland’s rule and thectegiaphic ordering
method used in the simplex algorithm to cope with degenetaast, the deorder-
ing rule® which is used together with the memory in Step Zers a possibility
to break up earlier decisions. Proceeding this way avoidskalges and reduces
both the number of priority lists and thereby the numerid¢tdréto compute the
control sequences.

We like to mention that Algorithmh-12 can be extended to arattee com-
putation of the controlsi;, p € #. To this end only a few steps within the opti-
mization method used to solve the problems of Steps 2b afig aoé performed.
Additionally a second loop containing Steps 2b and 2c isthiced which is ter-
minated if some stopping criterion like the suboptimaligsbd criterion given
in Grine and Pannek![9] is satisfied. Note that the algori#tisn allows us to
stop agents during such an iterative computation, i.6.5j {4 satisfied for some
a > a € (0,1). Since we allowed for using old and even outdated infoionah
Definition[4, the algorithm even allows to block any compiatas of some agents
for a certain period depending on the length of an agentsgiiea without com-
promising feasibility.

Given Algorithn12, we first consider the question whethezastble feedback
,u'g" can be computed via Algorithm11.2:

Theorem 13. Assume a feasible initial valug x X for system(2) to be given.
Suppose that for all g # and all n € Ny we have that the sets of admissible
controlsU’;‘,d(n, Xp(N), 1p(n)) in case of cost functionl]) or U'g"’ad(n, Xp(N), 1p(N))

in case of cost functiond8) in Steps 2b and 2c(iii) are not empty, then the closed
loop solutiong10) satisfy Xn) = (x(N)7, ..., xp(n)")" € X.

Proof. Using Xy € X andUgd(O, Xp(0), 1,(0)) # 0 for all p € # in case of cost

functional [7) orIU'g"’ad(O, Xp(0), 15(0)) # 0 for all p € # in case of cost functional
(8), we obtain from Steps 2b and 2c(iii) that optimal corgrg)(-, 1,(0)) exist for
all p € . Hence, by definition of the closed loop In_{10) and Step 3 wimiab
thatx(1) = (x2(1)7, ..., xp(1)")" € X holds. Applying the same argumentation
inductively for alln € Ny the assertion follows. 0J
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Before showing results for Algorithin 12 together with gexigariority and
deordering rule$l, ®, we like to illustrate both rules using the example outlined
in Section 8. The idea of the priority rule is straight fordiann fact, we have
already used it in Examplé 9 to solve the blockage in the vesydtep:

Example 14. Again consider Examplel 9. Due to the constraint $&tdJ and
the dynamics of the systenfs, one of the agentp has to move aside first to let
the system of the other agent pass by before it can proceeatdsvits desired
equilibrium. Putting priority of agenp = 1 into a mathematical form, we see that
IT can be implemented as a lexicographic ordering, that ist &lis mapped to
its minimal permutation with respect to the dictionary aidg <¢ induced by the
total orderinggd<y, ..., <m} Wheremis the length of the lisf_ and<;,i = 1,...m

is the usual ordering of the natural numbery.

Apart from the lexicographic ordering, also other hewsstike the greedy
heuristic might be used. It is not clear how the priority rsit®uld be chosen in a
nonlinear setting, and throughout this work we will not fe@n this question but
instead concentrate on general properties of Algorithin 12.

The idea of the deordering rut@ is more involved as it may interfere with the
idea of keeping track of earlier decisions. The purposeisfrtiie is to reduce the
number of the priority lists since Step 2c of Algoritthml 12 isexial call for all
listsP;. Accordingly, agent € #;,, always have to wait until all agenfse #;
have finished computing, a fact we wish to avoid. Note that si@rial nature is
independent from the parallel computation of control segeeus, p € ;. Using
the deordering rul® allows us to “test” whether a systeme #; still interferes
with all systemsp € Py, k < i, or if it can be inserted into a filerent priority list
Py, k < i, causing the number of lists and hence the number of nonglestEps to
shrink. Yet even if system cannot be inserted in aftierent priority list, applying
the deordering rule might still result in reducing the sikéhe neighbouring index
setZ ,(n). If this is the case, then the number of constraints of systés reduced
which in turn reduces the numericaf@t to compute the control sequence

Example 15. Consider once more Examplé 9 wi@(®) = 0. Applying Algo-
rithm[12 we obtain that; depends on the solution of systgm= 1 forn € {0, 1}
only whereas for alh > 2 both problems can be solved in parallel.

Turning towards the central point of this section, we howlywehow much
parallelism is possible even if we do not know the exact sgréind testing op-
eratorsIl, ®. Based on conditions on the priority lis# our first result shows in
which case all agents can compute their controls indepéilydeom each other:
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Lemma 16. Suppose that for given syste(f mapsIl,® : 2 — 2¥ and ne N,
we have thaf, = 0 holds in Step 2c(i) of Algorithin 12. Then every agert P
can compute its control sequence independently of all aigents ge P \ {p}.

Proof. Since®, = 0 Step 2c(ii) of Algorithm 1P guarantees that there are no
systemsp;, p2 € P1, p1 # P2, such thatp; induces a constraint op, which is
violated byp,, i.e. 7n(n) = 0 for all p € . Hence, for each agempte P the set

of admissible controls simplifies to

Ua%(n, X2, 15(M) = {up(-) € Uy | up(k) € Uy andxi(k, x9) € X, for all k € No}
if cost functional[(¥) or
U™, 58, 15(M) = {Up(-) € Up” | up(K) € Up andxi(k, X) € X,
forallk € {0, ..., Np}}
if cost functional [(8) is considered Wibkg = Xp(n) showing the assertion. [

Using the self-concatenation property of the npwe can also show that
under certain conditions the priority lists show depengefagents:

Lemma 17. Consider system§ll), P > 2 to be given. Suppose that applying
Algorithm12 for given mapH, © : 2¥ — 2” we have tha®; # 0 with i > 2 holds
for some n> n and alln € Nyo. Then for each systeme®; there exists at least
one system @ #;, j < i such that qe 7,(n). Moreover, in case cost functional
(@) is used, we have

u, = argmin - J3(Xp(n), up) ¢ U3(n, xp(n), 1,(n)) € U3, x,(), 0)
Upelad(n,xp(n),0)

and in case of cost function@) we have

= argmin Iy (%), Up) & U2(n, xp(n), 1,(M) & Up™*(n, xp(n), 0).

upeU’;p’ad(n,xp(n),QJ)

Up
Proof. Suppose thaP; # 0 with i > 2 holds for somen > n and alln € Ny and
fix p € #; arbitrarily. Suppose furthermore that there existgjro®;, j < i such
thatq € 7,(n) holds. Then, by the deordering rdeand Step 2a(i) we obtain that
there existdi € Ny such thatP; = 0 for all n > i contradicting our assumption.
Hence, since € #; was chosen arbitrarily, we obtain that for egzle #; there
exists a system € #;, j < i such thafy € 7,(n) holds.

Now, due to Step 2c(ii) and the fact that there exists a systend ,(n) imposing
constraints on systemwhich are violated ify ¢ 7 ,(n) the assertion for both cost
functionals[(¥) and (8) follows. O
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Now we can use Lemniafl7 to answer the question under whichitoord
asymptotic stability can be shown. In particular, we firgiyara necessary condi-
tion for asymptotic stability ofi(2).

Theorem 18. Consider systeml), P > 2 to be given. Suppose that applying
Algorithm[12 for all mapdl, @ : 2 — 2” we have tha®; # 0, i > 2 holds for
some > n and alli € Ng with 7,(n, 1) # 0 for some p= #;. Then there exists no
functiong € KL such that(14) holds for all ne Ny.

Proof. Fix mapsIl, ® : 2 — 2”. Then Lemma17 states that for each system
p € P; there exists a systeme Pj, j < i such thaig € 7,(n). If forany p e #
and anyn € Ny we have thaUgd(n, Xp(N), Ip(N)) = 0 or U'[\,'p’ad(n, Xp(N), 1p(N) =0

in case if cost functional{7) of[8) are used, respectively,are done since no
admissible solution exists. Otherwise, we obtaji(-) # uy*(-) with

uy"() = argmin  J3(xp(n), Up),  Up*() argmin J;"(x(n), Up)

upelUaY(n,xp(n). 1 p()) upelad(n,xp(n),0)
in case of cost functiondl(7) and with

u’;l(.): argmin Jgp(xp(n),up), u’;z(') = argmin Jgp(xp(n),up)

UpeUpP 2 (n,xp(N), 1 (1) UpeUpP 2 (n,xp(n),0)

in case of cost functiondl](8).
% 2
Hence, due to the fact thaxf,p (k, x(n)) for somek violates a constraint imposed

« 1
by systemq which is not violated by(l;," (k, x(n)), we obtain that the open loop
trajectoriesx?,z (-, x(n)) and x?f’ (-, X(n)) differ. UsingZ,(n,1) # 0, we can con-

« 1 %2
clude that there exists @ > 0 such thatlx(x (1, X,(n)), X;° (L, Xp(N))) > &1
holds. Since we always implement the first element of eacimaptadmissible
control, we have thadx(fp(Xp(n), Uy*(0)), fp(Xp(N), U3*(0))) > 61 holds. Now we

have to consider two cases:Af(n + 1) = x;)ef, then we can use the fact that the

deviationdy (X" (L, x,(f), X (L, (1)) > 6, will occur again for some > n
due to the assumptions of the theoremxfn + 1) # xrpef, we immediately obtain
the existence of @, > 0 such that|x,(n + 1)||Xr;f > §, holds. In either case, we
obtain that there exists a time index"n such that|xp(ﬁ)||xrpef > 6 = mMin(61/2,62)
holds.

Now suppose there exists a functire KL such that[(I4) holds for atli € No.
Due to theL-propertyg in its second argument, we have that for each0 there
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exists an"e Ny such thaf|x(n)|lyet < & for all n > A. Now we choose < ¢ and

N € Np accordingly. Since Lemniall7 holds for ale Ny, we can conclude that
for i > n > N = n the inequality||X(N)llxer > [[Xp(M)llyer > 6 > & holds. This
contradicts the existence of a functigre KL such that[(I4) holds for afi € No.
Last, since the mad$ and® were chosen arbitrarily, the argumentation holds for
all choices oflT and® which completes the proof. O

Remark 19. ConditionZ,(n,1) # 0 in Theoren 1B is required since frome

« 1 * 2
7 ,(n) we can only conclude thag® (kn, X,(n)) andx,® (kn, X,(n)) differ for some
k. > 0. According to the NMPC algorithm, only the first control rlent is

implemented and we may face the situation that a@%ﬁr(km, Xp(n + 1)) and

* 2
xl;p (Kns1, Xp(n + 1)) differ for somek,,; > k,. Now if k, > 0 holds for alln € Ny,
then systenp may be asymptotically stable.

Turning from necessary to ficient conditions we like to stress that the con-
verse of Theorerin 18 does not hold, not even in the speciaticasthe conditions
of LemmalL6 hold for alh > fi with i € Ny. This conclusion is due to the fact
that even ifP, = 0 we can only guarantee that a control which minimizes (8) for
all systemsp € # can be computed without having to consider any other system
g e P\ {p}, but not whether all systems are actually stable.
Theorem 20. Suppose that for given maps 0 : 2 — 2” we have that for a
given initial value ¥ € X the set of admissible controB'g"’ad(n, Xp(N), Ip(N)) is
not empty for all pe £ and all n € Ny. Suppose furthermore that there exist
ab,ab,af € K.,y € K anda > 0 such that inequalitie€l6) and (I7) hold for
all n € No. Then there exists a functighe KL which only depends om, y and
all af, a5, af, p € P, such that(I4) holds for all ne No,.

Moreover, there exists ame Ny such that for each i n we either have that
Pi# 0,1 > 2holds withZp(n,1) = 0 for all p € ; or P, = 0.

Np.ad

Proof. Using x, € X, Up”"(n, Xp(n), Ip(n)) # for all p € £ and alln € Ny and
Theoreni 1B we obtain that the closed loop solutigm = (x(n)7, ..., xp(N)") T
exists for alln € Ny and satisfiex(n) € X for all n € No. Now, since inequalities
(@6) and [(1¥7) hold for alh € Ny, the existence g8 € KL follows directly from
Propositior ID. To show the existenceE Ny such that fom > n we either
have thatP, = 0 or #; # 0, i > 2 holds withZ y(n,1) = 0 for all p € #;, suppose
that®; # 0,1 > 2 holds for somen > nand allin € Ng with 7(n, 1) # 0 for
somep € P;. Then, using Theorem 118 and the existencg af K we obtain a
contradiction showing the assertion. 0J
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Remark 21. While the stability result of Theorem R0 is given for the NMP&se
without stabilizing terminal constraints or terminal cgshe only critical compo-
nent in the proof of this theorem is the condition tl@l{,{“’ad(n, Xp(N), 1p(N)) # 0
which guarantees that the closed loop solutkén = (x1(-)7, ..., xp(-)")" exists
and satisfies the state constraints. Hence, if instead aiiséence conditions of
ab,ay,af € K, ande > 0 such that inequalitie§ (1L6) arld{17) hold we impose
other stability conditions — e.g., the terminal constramtdition given in Keerthi
and Gilbert[15] or the terminal costs from Chen and Allgdy3} — then the same
proof can be used to guarantee asymptotic stability of thsed loop.

5. Conclusion

We presented a generalized stability result for NMPC cdlett®without sta-
bilizing terminal constraints or terminal costs. MoreqQwee described an algo-
rithm which allows us to generate a hierarchy of such colarein a distributed
non cooperative setting. Using only abstract priority agsting maps, we have
shown necessary as well adistient conditions for stability of the closed loop.

Future research concerning the algorithm will certainlgldath the question
how the priority and testing maps should be chosen to mirrthie number of
priority lists or to maximize the number of controllers tizan be run in parallel.
From the stability side an indeep analysis is required tmamguarantee condition
(@7). The availability of such a condition would then allos/to apriori guarantee
Algorithm[12 to asymptotically stabilize the system. Oneddn this direction
is outlined in Griine and Worthmann [12, Section 7] and satgthe use of ISS
small gain theorems to treat this problem.
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