
ar
X

iv
:1

10
5.

30
42

v3
 [

m
at

h.
O

C
]

27
 J

un
 2

01
2

Parallelizing a State Exchange Strategy for
Noncooperative Distributed NMPC✩

Jürgen Pannek

Faculty of Aerospace Engineering
University of the Federal Armed Forces

85577 Munich, Germany

Abstract

We consider a distributed non cooperative control setting in which systems are
interconnected via state constraints. Each of these systems is governed by an
agent which is responsible for exchanging information withits neighbours and
computing a feedback law using a nonlinear model predictivecontroller to avoid
violations of constraints. For this setting we present an algorithm which generates
a parallelizable hierarchy among the systems. Moreover, weshow both feasibility
and stability of the closed loop using only abstract properties of this algorithm.
To this end, we utilize a trajectory based stability result which we extend to the
distributed setting.

Keywords: nonlinear model predictive control, stability, parallel algorithm

1. Introduction

Distributed control problems can arise either naturally, i.e. by a set of coupled
systems which shall be controlled, see, e.g., Dold and Stursberg [4], or if a large
problem is decomposed into smaller, again coupled problems, see Rawlings and
Mayne [17, Chapter 10] or Scattolini [20] for an overview. Inthe latter case, the
general idea is that smaller problems are solvable easier and faster which allows
to even overcompensate the computational effort to coordinate these systems, cf.
Richards and How [19, Section 7]. In either case, one distinguishes between coop-
erative control which features a centralized objective, and non cooperative control

✩This work was supported by the Leopoldina Fellowship Programme LPDS 2009-36.
Email address:juergen.pannek@googlemail.com (Jürgen Pannek)

Preprint submitted to System& Control Letters August 22, 2018

http://arxiv.org/abs/1105.3042v3

where the objectives of the systems are independent from each other. Using a cen-
tralized objective there are several possibilities to divide the optimization problem
into subproblems. If suitable conditions hold then similarperformance of the dis-
tributed control obtained from these subproblems and of thecentralized control
can be shown, see, e.g., Rawlings and Mayne [17, Chapter 10] or Giselsson and
Rantzer [6].

Throughout this work we focus on the non cooperative controlsetting of sys-
tems driven by independent dynamics and control objectives, but coupled by con-
straints. For each system we impose an agent which exchangesstate information
with its neighbours and uses its local objective to compute alocal control which
satisfies the coupling constraints. For the computing task we focus on feedback
design via nonlinear model predictive controller (NMPC) which minimizes the
distance of the current state to the desired equilibrium over a finite time horizon.
To show asymptotic stability of an NMPC closed loop, one often imposes addi-
tional stabilizing terminal constraints and costs, see, e.g., Keerthi and Gilbert [15]
or Chen and Allgöwer [3] respectively. Since such terminalconstraints may re-
quire long optimization horizons, we focus on the plain NMPCsetting without
those modifications. In the non distributed case, stabilityfor such problems has
been shown in Grüne et al. [11] whereas the distributed caseis treated in Grüne
and Worthmann [12] using the algorithm of Richards and How [18, 19].

Here, we first prove a stability idea outlined in Grüne and Worthmann [12]
using the trajectory based setting of Grüne and Pannek [10,Chapter 7]. This proof
allows us to reduce the horizon length in the distributed case while maintaining
suboptimality estimates and stability like behavior of theclosed loop. Secondly,
since the computing time of the NMPC control law for each agent is not negligible,
we present an algorithm which allows us to execute these computations in parallel
using priority and deordering rules as well as a decision memory. From Rawlings
and Mayne [17, Chapter 10] it is known that for the non cooperative control setting
one can only expect to reach a Nash equilibrium. Although such a solution may
be far from the optimal centralized solution, the closed loop solutions may still
be stable and maintain the coupling constraints. For the proposed algorithm we
present conditions under which feasibility of the closed loop is guaranteed and
present necessary as well as sufficient conditions for asymptotic stability using
only abstract properties of both the priority and the deordering rule. While here
we focus on the plain NMPC case, we also outline how feasibility and stability
results can be obtained using NMPC with terminal constraints or cost.

The paper is organized as follows: First, in Section 2 we formally define the
problem under consideration for which we show different stability results for the

2

distributed case in Section 3. In the central Section 4, we present a covering
algorithm which allows us to generate a hierarchy of agents and run the computa-
tions of each hierarchy level in parallel. Using this algorithm, we show necessary
and sufficient conditions for feasibility and stability of the resulting closed loop
and also how much parallelism can be achieved. Instead of a separated exam-
ple section, we use an analytical example throughout the entire work to present
the improvement of the stability result but also to illustrate the abstract functions
used within the proposed algorithm in Section 4. Finally, wedraw conclusions in
Section 5 and present ideas for future research based on the presented work.

2. Setup and Preliminaries

Throughout this work we consider a set of nonlinear discretetime systems

xp(n+ 1) = fp(xp(n), up(n)), p ∈ P := {1, . . . ,P}, n ∈ N0 (1)

with xp(n) ∈ Xp and up(n) ∈ Up andN0 denoting the set of natural numbers
including zero. Here,Xp and Up, p ∈ P, are assumed to be arbitrary metric
spaces denoting the state space and the set of admissible control values of thep-th
system, respectively. The metrics to measure distances between two elements of
Xp or of Up are denoted bydXp : Xp × Xp → R≥0 anddUp : Up × Up → R≥0

whereR≥0 denotes the positive reals including zero. In the followingwe denote
the solution of a systemp of (1) corresponding to the initial valuexp(0) = x0

p and
the control sequenceup(k) ∈ Up, k = 0, 1, 2, . . ., by xu

p(k, x
0
p).

In order to define our goal we say that a continuous functionα : R≥0 → R≥0

is of classK∞ if it satisfiesα(0) = 0, is strictly increasing and unbounded. A
continuous functionγ : RP

≥0 → R≥0 is called a classKP
∞ function if it satisfies

γ(0) = 0, is strictly increasing in each component and is unbounded. A continuous
functionβ : R≥0×R≥0 → R≥0 is of classKL if it is strictly decreasing in its second
argument with limt→∞ β(r, t) = 0 for eachr > 0 and satisfiesβ(·, t) ∈ K∞ for each
t ≥ 0. Moreover,Br(x) denotes the open ball with centerx and radiusr and for
arbitraryx1, x2 ∈ X we denote the distance fromx1 to x2 by ‖x1‖x2 = dX(x1, x2).

For the set of systems (1) the overall system is given by

x(n+ 1) = f (x(n), u(n)), n ∈ N0 (2)

with statex(n) = (x1(n)⊤, . . . , xP(n)⊤)⊤ ∈ X = X1 × . . . × XP and controlu(n) =
(u1(n)⊤, . . . , uP(n)⊤)⊤ ∈ U = U1 × . . . × UP. Now, our goal is to asymptotically
stabilize system (2) at a desired equilibrium pointxref ∈ X, i.e. to fulfill the
following:

3

Definition 1. Let xref ∈ X be an equilibrium for a system (2), i.e., there exists
u ∈ U such thatf (xref, u) = xref. Then we say thatxref is locally asymptotically
stableif for a given control sequence (u(n))n∈N0 there existr > 0 and a function
β ∈ KL such that the inequality

‖xu(n, x0)‖xref ≤ β(‖x0‖xref, n) (3)

holds for allx0 ∈ Br(xref) and alln ∈ N0.

Additionally, the solutionxu(·, x0) shall satisfy state and control constraints.
Throughout this work, we incorporate such constraints by considering suitable
subsets of the overall state and control value spaceX ⊂ X, U ⊂ U for system (2).
As a result, systems (1) are coupled via the constraint setsX andU although the
respective dynamics are decoupled. The following example illustrates this setting
and will be used throughout this paper.

Example 2. Consider two cars attempting to cross a one lane brigde, i.e.one car
has to wait, cf. Figure 1 for an illustration. Suppose the discrete time dynamics of
the cars are given by

xp(n+ 1) = xp(n) + up(n)

with up ∈ Up = {−1, 0, 1}2 and xp ∈ Z2 for p = 1, 2. Since the cars shall not
collide, we obtain the restriction

(x1,1, x1,2)
⊤
, (x2,1, x2,2)

⊤. (4)

The one lane bridge additionally imposes the constraints

xp,2 = 0 if xp,1 = 0 for p = 1, 2 and (5)
(

x1,1 + u1,1

x1,2 + u1,2

)
,

(
x2,1

x2,2

)
,

(
x1,1

x1,2

)
,

(
x2,1 + u2,1

x2,2 + u2,2

)
(6)

which together form the setX. Hence, the local set of admissible moves may
depend on which car is allowed to drive first, cf. Figures 1a and 1b. Note that
(5) is the only local constraint whereas — if they are considered – (4) induces an
algebraic and (6) a neighbouring dynamic dependent coupling.

The purpose of this work is to show conditions under which stability of the
overall systems can be guaranteed by using only local controllers. To this end, we

4

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

(a) Admissible moves ofx2 if
x1 is off the bridge

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

(b) Admissible moves ofx2 if
x1 enters bridge

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

(c) Admissible solution

Figure 1: Admissible moves for initial conditionsx0
1 = (1, 0)⊤, x0

2 = (−1, 0)⊤

impose an agent for each systemp ∈ P to compute a suitable control sequence
up(·) ∈ UN0

p := {up(k) | up(k) ∈ Up∀k ∈ N0} and to exchange information with
other agents in order to verify that the constraintsX ⊂ X, U ⊂ U are satisfied.
Throughout this work each agent computes its control sequence via a nonlinear
model predictive controller, a methodology which will be explained after Defini-
tion 6, below. In order to achieve asymptotic stability of the overall system (2) we
develop a covering algorithm to coordinate all agents. The idea of this algorithm
is the following: Since some subsystems impose constraintson each other, a prior-
ity rule is used to generate a hierarchy among the subsystems. As a result, agents
which are on the same hierarchy level can compute their localoptimal control
in parallel while the hierarchy levels remain in serial. Additionally, a deordering
rule is introduced to repeatedly verify if the hierarchy canbe flattened, i.e. if more
agents can work in parallel. For details on these rules we refer to Section 4.

Since we want to compute local controlsup we must define the local con-
straints for each single systemfp, p ∈ P. To this end, we “project” the constraint
setX to the state space of a subset of systems.

Definition 3. For an index setIp = {p1, . . . , pm} ⊂ Pwith m ∈ N, m≤ P andpi ,

p j for all i, j ∈ {1, . . . ,m} theset of partial statesis defined asXIp = Xp1× . . .×Xpm

and we denote elements ofXIp by xIp = (xp1, . . . , xpm). Accordingly, thepartial
state constraint setis defined by

XIp := {xIp ∈ XIp | there is ˜x ∈ X with x̃pi = x for i = 1, . . . ,m}.

In case of Example 2, Definition 3 basically means that only those constraints
induced by the neighbours contained inIp have to be considered, i.e. if agent

5

p = 1 ignores agentp = 2, then only constraint (5) has to be fulfilled. In the
general case, this task can be accomplished by using information on neighbouring
systems which are available to an agent and allow to generatea hierarchy among
the agents. Here, we assume that this information can be exchanged repeatedly in
between two time instantsn andn+ 1.

Throughout this work we consider changing network topologies, i.e. the sets
of neighbours at time instantsnandn+1 may differ, see Figure 2 for an illustration.

✉ ✉

✉ ✉

x1 x2

x3x4

Time instant n

✉ ✉

✉ ✉

x1 x2

x3x4

Time instant n+ 1

Figure 2: Possible sequence of communication graphs at timeinstantsn andn+ 1

Additionally, we allow the case that even if neighbouring information of a sys-
temq ∈ P\ {p} is known to an agentp ∈ P, agentp ignores that information if his
hierarchy level is higher than the level of the neighbour. Consequently, the depen-
dency graph which results from this hierarchy may differ from the communication
graph as illustrated in Figure 3.

✉ ✉

✉ ✉

x1 x2

x3x4

✉ ✉

✉ ✉

x1 x2

x3x4

Figure 3: Possible difference of communication and dependency graph

Moreover, as sent information may be delayed or even lost, wewant to allow
for considering old information on neighbours and variablelengths of this infor-
mation. Note that the latter may also allow agents to skip recomputations of con-
trols. IntroducingNq as the length andnq as the time instant at which neighbour

6

q has computed the state sequence (x
nq
q (0), . . . , x

nq
q (Nq)), we define the exchanged

neighbouring information as follows:

Definition 4. Suppose that at time instantn ∈ N0 agentp knows the state se-
quencesxnq

q (·) = (xnq
q (0), . . . , xnq

q (Nq)), Nq ∈ N0, computed at time instantnq ≤ n
for a givenneighbouring index setIp(n), that isq ∈ Ip(n) with p < Ip(n). We
define theneighbouring informationas

Ip(n) = {(q, nq,Nq, x
nq
q (·)) | q ∈ Ip(n)}

being an element of the setIp = 2Q with Q = (P \ {p}) × N0 × N0 × XN.

Knowing the states of neighbouring systems for a certain time period, we can
define the index set used within the “projection” of the constraint setX.

Definition 5. For a given time instantn ∈ N0 and an agentp ∈ P with neigh-
bouring informationIp(n), we call the set of systemsq ∈ Ip(n) \ {p} which are
imposing constraints on systemp at time instantn+ k ∈ N0, k ≥ 0 neighbouring
prediction index set. This set is given by

Ip(n, k) = {q ∈ Ip(n) \ {p} | n+ k ≤ nq + Nq}.

Similar to possible moves of the cars in Example 2, we can use the partial
state constraint set connected to neighbouring information available to an agent
and define the set of admissible controls from which the control sequenceup(·)
can be chosen, cf. Figures 1a, 1b.

Definition 6. Given a time instantn ∈ N0 and an agentp ∈ P with initial value
x0

p and neighbouring informationIp(n), we define theset of admissible control
sequencesfor systemp at time instantn as

Uad
p (n, x0

p, Ip(n)) = {up(·) ∈ UN0
p | for all k = 0, 1, . . . we haveup(k) ∈ Up and

(xu
p(k, x

0
p), (x

nq
q (k + n− nq))Ip(n,k)) ∈ X{p}∪Ip(n,k)}.

Using an NMPC algorithm is one possibility to compute a control from the
set of admissible controls. In particular, the method triesto approximate a control
sequence such that the functional

J∞p (x0
p, up) =

∞∑

k=0

ℓp(x
u
p(k, x

0
p), up(k)) (7)

7

is minimized over all admissible control sequences, that issequencesup(·) with
up(k) = u∗p(0) for all k ∈ N0 with u∗p ∈ Uad

p (k, xu
p(k, x

0
p), Ip(k)). Here, the function

ℓp is a stage cost function penalizing both the distance of the state to the desired
equilibrium and the used control. A popular choice for this function isℓp(xp, up) =
‖xp‖xref

p
+ λ‖up‖uref

p
with weighting parameterλ > 0.

Computing a control minimizing (7) is, in general, computational intractable.
To circumvent this issue the NMPC algorithm uses the truncated cost functional

J
Np
p (x0

p, up) =
Np−1∑

k=0

ℓp(x
u
p(k, x

0
p), up(k)) (8)

with finite horizon of lengthNp and initial valuex0
p. Hence, a finite minimizing

control sequenceu∗p ∈ U
Np,ad
p (n, x0

p, Ip(n)) is computed with

U
Np,ad
p (n, x0

p, Ip(n)) = {up(·) ∈ U
Np
p | for all k = 0, . . . ,Np we haveup(k) ∈ Up and

(xu
p(k, x

0
p), (x

nq
q (k+ n− nq))Ip(n,k)) ∈ X{p}∪Ip(n,k)}.

In the following we assume that a minimizing control sequence exists and denote
the corresponding optimal value function by

V
Np
p (xp(n), Ip(n)) = min

up∈U
Np,ad
p (n,xp(n),Ip(n))

J
Np
p (xp(n), up)

where the minimizing control sequence is given by

u∗p = argmin
up∈U

Np,ad
p (n,xp(n),Ip(n))

J
Np
p (xp(n), up).

Here, the argmin operator is used in the following sense: given a mapa : U → R,
a nonempty subset̃U ⊆ U and a valueu∗ ∈ Ũ we writeu∗ = argminu∈Ũ a(u) if and
only if a(u∗) = minu∈Ũ a(u) holds. Note that we do not require uniqueness of the
minimizeru∗. In case of uniqueness the argmin operator can be understoodas an
assignment, otherwise it is just a convenient way of writing“u∗ minimizesa(u)”.

Having obtained a minimizing sequenceu∗p(·), only the first elementu∗p(0) of
the control sequence is implemented. Then the entire problem is shifted forward in
time by one time instant and both a new initial value and neighbouring information
need to be obtained. Applying this method iteratively results in a feedback law
which assigns the first element of the minimizing control sequenceu∗p(·) to the

8

current state of thep-th systemxp(n) and the neighbouring informationIp(n) of
the corresponding agent, i.e. a map

µ
Np
p : (xp(n), Ip(n)) 7→ u∗p(0). (9)

Accordingly, the closed loop solution of thep-th system is given by

xp(n+ 1) = f (xp(n), µ
Np
p (xp(n), Ip(n))) with xp(0) = x0

p. (10)

Using this setting, we first show conditions which guaranteeasymptotic sta-
bility of the closed loop for local controllers.

3. Stability

While commonly endpoint constraints or a Lyapunov functiontype endpoint
weight are used to ensure stability of the closed loop, see, e.g., the articles of
Keerthi and Gilbert [15], Chen and Allgöwer [3], Jadbabaieand Hauser [14] and
Graichen and Kugi [7], we consider the plain NMPC version without these modi-
fications. In order to guarantee stability in this case, we use the “relaxed” version
of the dynamic programming principle, cf. Lincoln and Rantzer [16]. In partic-
ular, one can show asymptotic stability of (2) in a trajectory based setting using
a relaxed Lyapunov condition, see Grüne and Pannek [10, Proposition 7.6]. Note
that this stability result requires a centralized setting and the horizons to satisfy
Np = N for all p ∈ P. Hence, for the overall system (2) we denote the combined
stage costs byℓ(x(n), u(n)), the finite and infinite cost functional byJN(x0, u),
J∞(x0, u) and the corresponding combined value functions byVN(x(n)), V∞(x(n))
which allows us to apply the stability result of Grüne and Pannek [10, Proposition
7.6]:

Proposition 7. Consider a feedback lawµN : X → U and the closed loop trajec-
tory x(·) of (2) with control u= µN and initial values x(0) ∈ X to be given. If the
optimal value function VN : X→ R≥0 satisfies

VN(x(n)) ≥ VN(f (x(n), µN(x(n))) + αℓ(x(n), µN(x(n))) (11)

for someα ∈ (0, 1] and all n∈ N0, then

αV∞(x(n)) ≤ αJ∞(x(n), µN) ≤ VN(x(n)) ≤ V∞(x(n)) (12)

holds for all n∈ N0.

9

If, in addition, there existα1, α2, α3 ∈ K∞ such that

α1(‖x‖xref) ≤ VN(x) ≤ α2(‖x‖xref) and ℓ(x, u) ≥ α3(‖x‖xref) (13)

holds for all x(n) ∈ X with n ∈ N0, then there exists a functionβ ∈ KL which only
depends onα1, α2, α3 andα such that the inequality

‖x(n)‖xref ≤ β(‖x(0)‖xref, n) (14)

holds for all n∈ N0, i.e., x behaves like a trajectory of an asymptotically stable
system.

The key assumption in Proposition 7 is the relaxed Lyapunov–inequality (11)
in whichα can be interpreted as a lower bound for the rate of convergence. From
the literature, it is well–known that this condition is satisfied for sufficiently long
horizonsN, cf. Jadbabaie and Hauser [14], Grimm et al. [8] or Alamir and
Bornard [1], and that a suitableN may be computed via methods described in
Grüne and Pannek [10, Chapter 7] or Giselsson [5].

Now we consider a distributed setting of Proposition 7 usingcompositions to
combine of the set of systems (1). The idea of such compositions is to introduce
a weighting among the subsystems which in our further analysis will allow for
increases of costs along the closed loop for some subsystems.

Proposition 8. Consider feedback lawsµN
p : Xp × Ip → Up and closed loop

trajectories xp(·) of (10) with initial values xp(0) ∈ Xp to be given. If the optimal
value functions VNp : Xp→ R≥0 satisfy

VN
p (xp(n)) ≥ VN

p (fp(xp(n), µN
p (xp(n), Ip(n)))) + αℓp(xp(n), µN

p (xp(n), Ip(n))) (15)

for someα ∈ (0, 1] and all n∈ N0, then for any weighting functionγ : RP→ R≥0,
γ(x) = γ⊤x, γi ∈ R>0 we have that(12) holds for all n∈ N0 with

VN(x) := γ((VN
1 (x1), . . . ,V

N
P (xp))

⊤) and ℓ(x, u) := γ((ℓ1(x1, u1), . . . , ℓP(xP, uP))⊤).

If, in addition, for every p∈ P there existαp
1, α

p
2, α

p
3 ∈ K∞ such that

αp
1(‖xp‖xref

p
) ≤ VN

p (x) ≤ αp
2(‖xp‖xref

p
) and ℓp(xp, up) ≥ α

p
3(‖xp‖xref

p
) (16)

holds for all xp(n) ∈ X with n ∈ N0, then there exists a functionβ ∈ KL which
only depends onγ, α and allαp

1, α
p
2, α

p
3, p ∈ P, such that(14)holds for all n∈ N0.

10

Proof. Defining the abbreviationsVN
P

(x(n)) := (VN
1 (x1(n)), . . . ,VN

P (xP(n)))⊤ and
ℓP(x(n), µN(x(n), IP(n))) := (ℓ1(x1(n), µN

1 (x1(n), I1(n))), . . . , ℓP(xP(n), µN
P(xP(n), IP(n))))⊤

we combine all inequalities (15) forp ∈ P and obtain

γ(VN
P (x(n))) ≥ γ(VN

P (x(n+ 1)))+ αγ(ℓP(x(n), µN(x(n), IP(n)))). (17)

using linearity ofγ. Now we use the definition ofVN andℓ which gives us (11).
Hence, (12) follows directly from Proposition 7. Similarly, (14) follows by defi-
nition of VN andℓ which together withαi(r) := γ((α1

i (r), . . . , α
P
i (r))⊤), i = 1, 2, 3,

and again Proposition 7 shows the assertion.

Certainly, condition (15) would be desireable since it guarantees a decrease in
VN

p for eachp ∈ P. In practice, however, one would usually expectVN
p to decrease

for somep ∈ P while it increases for others as shown in the following example:

Example 9. Consider the setting of Example 2 where we suppose that each agent
p = 1, 2 is optimizing using its running costsℓp(xp, up) = ‖xp − xref

p ‖
2
2 with

xref
1 = (−2, 0)⊤ andxref

2 = (2, 0)⊤ and complete neighbouring information for ini-
tial conditionsx0

1 = (1, 0)⊤, x0
2 = (−1, 0)⊤.

Due to the constraints (4)–(6) one car has to wait before entering the bridge, cf.
Figure 1c, and even has to move aside as shown in Figure 4a. Without loss of
generality we assume that systemp = 2 moves aside. Although the optimal con-

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

(a) Optimal solution forn = 1
andN = 1

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

x
1
(0)

x
1
(1)x

2
(0)=x

2
(1)=x

1
(2)

x
2
(2)

(b) Optimal solution forn = 0
andN = 2

−2 −1 0 1 2

−1

0

1

x
p,1

x p,
2

x
1
(0)=x

2
(5)

x
1
(1)=x

2
(4)x

2
(0)=x

2
(1)=x

1
(2)=x

2
(3)

x
1
(3)

x
2
(2)

x
2
(6)

(c) Global optimal solution

Figure 4: Optimal open and closed loop trajectories

trol for agentp = 2 for anyN ≥ 2 is identical to the global optimal control, cf.
Figures 4b and 4c, we obtainVN

2 (x2(0), I2(0)) ≤ VN
2 (x2(1), I2(1)) for N = 2 and

11

N = 3. Hence, we cannot guarantee (15) to hold for theseN although the closed
loop is stable. For larger values ofN, however, we obtain

VN
2 (x2(0), I2(0)) =

37 if N = 4

41 if N = 5

42 if N ≥ 6

and ℓ2(x2(0), µN
2 (x2(0), I2(0))) = 9,

VN
2 (x2(1), I2(1)) =

32 if N = 4

33 if N ≥ 5
and ℓ2(x2(1), µN

2 (x2(1), I2(1))) = 9,

(
VN

2 (x2(n), I2(n))
)
n=2,...,5,N≥4

= (24, 10, 5, 1) and
(
ℓ2(x2(n), µN

2 (x2(n), I2(n)))
)
n=2,...,5,N≥4

= (10, 9, 4, 1)

andVN
2 (x2(n), I2(n)) = ℓ2(x2(n), µN

2 (x2(n), I2(n))) = 0 if N ≥ 4 andn ≥ 6. Accord-
ingly, the largest valuesα such that (15) holds areα = 5/9 if N = 4, α = 8/9
if N = 5 andα = 1 if N ≥ 6. Hence, we can use Proposition 8 to conclude
asymptotic stability ifN ≥ 4.

In an indeep analysis, Grüne and Worthmann [12, Theorem 5.3] have shown
conditions such that for the serial case using the algorithmof Richards and How
[18, 19] inequalities (15) and (16) hold. Note that althoughthe setting within the
articles of Richards and How [18, 19] is for one based on linear dynamics and
secondly explicitely includes perturbations in the models, this algorithm can also
be used in a nonlinear setting, cf. Grüne and Worthmann [12,Proposition 3.2].

Taking a closer look at the proof of Proposition 8 we see that in fact conditions
(15) are only required to guarantee (17) to hold. Note that while condition (15)
requires a decrease inVN

p for eachp ∈ P, in (17) it suffices thatVN
p , p ∈ P is

decreasing under a mapγ. Moreover, we only requireγ ∈ KP
∞ in the remainder

of the proof of Proposition 8 to guaranteeαi ∈ K∞, i = 1, 2, 3. Accordingly, we
obtain the following more general result:

Proposition 10. Consider feedback lawsµN
p : Xp × Ip → Up and closed loop

trajectories xp(·) of (10) with initial values xp(0) ∈ Xp to be given. If the optimal
value functions VNp : Xp → R≥0 satisfy(17) for someα ∈ (0, 1], γ ∈ KP

∞ and all
n ∈ N0, then(12)holds for all n∈ N0 with VN andℓ defined as in Proposition 8.

If, in addition, for every p∈ P there existαp
1, α

p
2, α

p
3 ∈ K∞ such that(16)holds

for all xp(n) ∈ X with n ∈ N0, then there exists a functionβ ∈ KL which only
depends onγ, α and allαp

1, α
p
2, α

p
3, p ∈ P, such that(14)holds for all n∈ N0.

12

Proof. Follows directly from the proof of Proposition 8.

The conclusion that can be drawn from Proposition 10 is that the weighting
functionγ may allow us to partially violate condition (15). Since (15)is typically
fulfilled if the horizon Np is large enough, a good choice ofγ may reduce the
horizon lengthNp as we will see in the following example:

Example 11. Consider Example 9 and supposeγ to be the 1–norm, then we ob-
tain for N = 2

2∑

p=1

VN
p (xp(n), Ip(n))

n=0,...,5

= (31, 24, 20, 13, 5, 1)

2∑

p=1

ℓp(xp(n), µN
p (xp(n), Ip(n)))

n=0,...,5

= (18, 13, 11, 9, 4, 1)

and
∑2

p=1 VN
p (xp(n), Ip(n)) =

∑2
p=1 ℓp(xp(n), µN

p (xp(n), Ip(n))) = 0 for n ≥ 6. Hence,
(17) holds withα = 4/13 and we obtain asymptotic stability of the closed loop
by Proposition 10. Sinceα > 0 holds for allN ≥ 2 this example illustrates the
advantage of considering condition (17) instead of (15).

As outlined before Proposition 10, under certain conditions the algorithm of
Richards and How [18, 19] can be applied to generate solutions such that (15) and
(16) hold. However, the nature of this algorithm is serial, that is while one agent
p ∈ P is computing its control, all other agentsq ∈ P \ {p} have to wait until
agentp finished computing. Hence, if the number of systemsP is large, such an
algorithm may cause rather long waiting times, a feature which may be unwanted
if fast sampling is used. Still, as noted in Richards and How [19, Section 7], due
to its decentralized nature the dimension of each problem issignificantly smaller
and hence the algorithm reduces the numerical effort compared to a centralized
solution considerably.
Apart from the serial nature, the algorithm of Richards and How requires acces-
sibility to the full neighbouring information, i.e. a full communication graph.
Additionally, an agentp ∈ P always uses the latest available neighbouring in-
formation to compute a minimizing controlu∗p which results in a full dependency
graph. While the latter condition on the dependency graph may be relaxed easily,
it is a complex task to obtain a parallel algorithm and to relax the requirement of
a full communication graph.

13

4. The covering algorithm

In this section we provide a covering algorithm which is a modification of the
Algorithm of Richards and How [18, 19] and allows us to run theagentsp ∈ P
in parallel if they are independent from one another. Unfortunately, working in a
parallel distributed setting omits the use of standard techniques from optimization
such as first and second order information of the cost functional and the constraints
for the interlink between systems to search for optimal controls.

To circumvent this deficiency we introduce abstract mapsΠ,Θ : 2P → 2P

which denote priority and deordering rules, see Haupt [13] and Bäckström [2].
The aim of this section is to show how much parallelism can be expected using the
algorithm we propose next and the basic properties ofΠ, Θ being a permutation
and a self concatenation mapping respectively.
The structural layout of the algorithm we present now is closely related to the
NMPC algorithm outlined in Section 2:

Algorithm 12. Set listsP1 := (1, . . . ,P) andPp := ∅ for p = 2, . . . ,P, n := 0 and
Ip(n) := ∅ for p = 1, . . . ,P.

1. Obtain new measurementsxp(n) for p ∈ P.
2a. (Decision memory and deordering rule)For i from 2 toP do

For j from 1 to♯Pi do
(i) SetIpj (n) := Θ(Ipj (n)) (Ipj (n)

(ii) If Ipj (n) = ∅, then removep j fromPi and setP1 := (P1, p j)
Else: If m̃= mink∈Pm,pk∈Ipj (n) m< i holds, then removep j fromPi

and setPm̃ := (Pm̃, p j)
2b. Compute a controlu∗p(·) minimizing (7) or (8) withx0

p = xp(n) and send
information to all agentsq ∈ {q ∈ P | q ∈ P j , p ∈ Pi and j ≥ i} for p ∈ P in
parallel

2c. (Priority rule) For i from 1 toP do
(i) If ♯Pi ∈ {0, 1}, goto Step 3.

Else: Sort index list by settingPi := Π(Pi)
(ii) For j from 2 to♯Pi do

If systemp j violates constraints imposed by systemspk, k < j,
then setPi+1 := (Pi+1, j) andI j(n) := I j(n) ∪ {pk ∈ Pi \ Pi+1 |

pk, k < j, induces constraints violated by systemp j} and setPi :=
Pi \ Pi+1

(iii) Compute a controlu∗p(·, Ip(n)) minimizing (7) or (8) for allp ∈ Pi+1 in
parallel and send information to all agentsq ∈ {q ∈ P | q ∈ P j, j ≥ i}

14

3. ImplementµNp
p (xp(n), Ip(n)) := u∗p(0), setn := n+ 1 and goto Step 1.

The general idea of the algorithm is to first generate priority listsPi of the systems
according to the ruleΠ and according to their interconnection with other systems,
cf. Step 2c, – just as the right-before-left rule in street traffic or the search direc-
tion in optimization methods. Secondly, these lists are used to remember earlier
decisions which avoids generating periodic behaviour. This part of the algorithm,
contained in Step 2a, is inspired by Bland’s rule and the lexicographic ordering
method used in the simplex algorithm to cope with degeneracy. Last, the deorder-
ing ruleΘ which is used together with the memory in Step 2a offers a possibility
to break up earlier decisions. Proceeding this way avoids blockages and reduces
both the number of priority lists and thereby the numerical effort to compute the
control sequences.

We like to mention that Algorithm 12 can be extended to an iterative com-
putation of the controlsu∗p, p ∈ P. To this end only a few steps within the opti-
mization method used to solve the problems of Steps 2b and 2c(iii) are performed.
Additionally a second loop containing Steps 2b and 2c is introduced which is ter-
minated if some stopping criterion like the suboptimality based criterion given
in Grüne and Pannek [9] is satisfied. Note that the algorithmalso allows us to
stop agents during such an iterative computation, i.e. if (15) is satisfied for some
α ≥ α ∈ (0, 1). Since we allowed for using old and even outdated information in
Definition 4, the algorithm even allows to block any computations of some agents
for a certain period depending on the length of an agents prediction without com-
promising feasibility.

Given Algorithm 12, we first consider the question whether a feasible feedback
µ

Np
p can be computed via Algorithm 12:

Theorem 13. Assume a feasible initial value x0 ∈ X for system(2) to be given.
Suppose that for all p∈ P and all n ∈ N0 we have that the sets of admissible
controlsUad

p (n, xp(n), Ip(n)) in case of cost functional(7) or U
Np,ad
p (n, xp(n), Ip(n))

in case of cost functional(8) in Steps 2b and 2c(iii) are not empty, then the closed
loop solutions(10)satisfy x(n) = (x1(n)⊤, . . . , xP(n)⊤)⊤ ∈ X.

Proof. Using x0 ∈ X andUad
p (0, xp(0), Ip(0)) , ∅ for all p ∈ P in case of cost

functional (7) orU
Np,ad
p (0, xp(0), Ip(0)) , ∅ for all p ∈ P in case of cost functional

(8), we obtain from Steps 2b and 2c(iii) that optimal controls u∗p(·, Ip(0)) exist for
all p ∈ P. Hence, by definition of the closed loop in (10) and Step 3 we obtain
that x(1) = (x1(1)⊤, . . . , xP(1)⊤)⊤ ∈ X holds. Applying the same argumentation
inductively for alln ∈ N0 the assertion follows.

15

Before showing results for Algorithm 12 together with general priority and
deordering rulesΠ, Θ, we like to illustrate both rules using the example outlined
in Section 3. The idea of the priority rule is straight forward. In fact, we have
already used it in Example 9 to solve the blockage in the very first step:

Example 14. Again consider Example 9. Due to the constraint setsX, U and
the dynamics of the systemsfp, one of the agentsp has to move aside first to let
the system of the other agent pass by before it can proceed towards its desired
equilibrium. Putting priority of agentp = 1 into a mathematical form, we see that
Π can be implemented as a lexicographic ordering, that is a list L is mapped to
its minimal permutation with respect to the dictionary ordering<d induced by the
total orderings{<1, . . . , <m} wherem is the length of the listL and<i, i = 1, . . .m
is the usual ordering< of the natural numbersN.

Apart from the lexicographic ordering, also other heuristics like the greedy
heuristic might be used. It is not clear how the priority ruleshould be chosen in a
nonlinear setting, and throughout this work we will not focus on this question but
instead concentrate on general properties of Algorithm 12.
The idea of the deordering ruleΘ is more involved as it may interfere with the
idea of keeping track of earlier decisions. The purpose of this rule is to reduce the
number of the priority lists since Step 2c of Algorithm 12 is aserial call for all
listsPi. Accordingly, agentsp ∈ Pi+1 always have to wait until all agentsp ∈ Pi

have finished computing, a fact we wish to avoid. Note that this serial nature is
independent from the parallel computation of control sequencesu∗p, p ∈ Pi. Using
the deordering ruleΘ allows us to “test” whether a systemp ∈ Pi still interferes
with all systemsp ∈ Pk, k < i, or if it can be inserted into a different priority list
Pk, k < i, causing the number of lists and hence the number of non parallel steps to
shrink. Yet even if systemp cannot be inserted in a different priority list, applying
the deordering rule might still result in reducing the size of the neighbouring index
setIp(n). If this is the case, then the number of constraints of system p is reduced
which in turn reduces the numerical effort to compute the control sequenceu∗p.

Example 15. Consider once more Example 9 withΘ(P) = ∅. Applying Algo-
rithm 12 we obtain thatu∗2 depends on the solution of systemp = 1 for n ∈ {0, 1}
only whereas for alln ≥ 2 both problems can be solved in parallel.

Turning towards the central point of this section, we now analyze how much
parallelism is possible even if we do not know the exact sorting and testing op-
eratorsΠ,Θ. Based on conditions on the priority listsPi our first result shows in
which case all agents can compute their controls independently from each other:

16

Lemma 16. Suppose that for given systems(1), mapsΠ,Θ : 2P → 2P and n∈ N0

we have thatP2 = ∅ holds in Step 2c(i) of Algorithm 12. Then every agent p∈ P
can compute its control sequence independently of all otheragents q∈ P \ {p}.

Proof. SinceP2 = ∅ Step 2c(ii) of Algorithm 12 guarantees that there are no
systemsp1, p2 ∈ P1, p1 , p2, such thatp1 induces a constraint onp2 which is
violated byp2, i.e. Ip(n) = ∅ for all p ∈ P. Hence, for each agentp ∈ P the set
of admissible controls simplifies to

Uad
p (n, x0

p, Ip(n)) = {up(·) ∈ UN0
p | up(k) ∈ Up andxu

p(k, x
0
p) ∈ Xp for all k ∈ N0}

if cost functional (7) or

U
Np,ad
p (n, x0

p, Ip(n)) = {up(·) ∈ U
Np
p | up(k) ∈ Up andxu

p(k, x
0
p) ∈ Xp

for all k ∈ {0, . . . ,Np}}

if cost functional (8) is considered withx0
p = xp(n) showing the assertion.

Using the self-concatenation property of the mapΘ, we can also show that
under certain conditions the priority lists show dependency of agents:

Lemma 17. Consider systems(1), P ≥ 2 to be given. Suppose that applying
Algorithm 12 for given mapsΠ,Θ : 2P → 2P we have thatPi , ∅ with i ≥ 2 holds
for some n≥ n and alln ∈ N0. Then for each system p∈ Pi there exists at least
one system q∈ P j, j < i such that q∈ Ip(n). Moreover, in case cost functional
(7) is used, we have

u∗p = argmin
up∈U

ad
p (n,xp(n),∅)

J∞p (xp(n), up) < U
ad
p (n, xp(n), Ip(n)) (Uad

p (n, xp(n), ∅)

and in case of cost functional(8) we have

u∗p = argmin
up∈U

Np,ad
p (n,xp(n),∅)

J
Np
p (xp(n), up) < U

ad
p (n, xp(n), Ip(n)) (U

Np,ad
p (n, xp(n), ∅).

Proof. Suppose thatPi , ∅ with i ≥ 2 holds for somen ≥ n and alln ∈ N0 and
fix p ∈ Pi arbitrarily. Suppose furthermore that there exists noq ∈ P j, j < i such
thatq ∈ Ip(n) holds. Then, by the deordering ruleΘ and Step 2a(i) we obtain that
there existsn ∈ N0 such thatPi = ∅ for all n ≥ n contradicting our assumption.
Hence, sincep ∈ Pi was chosen arbitrarily, we obtain that for eachp ∈ Pi there
exists a systemq ∈ P j, j < i such thatq ∈ Ip(n) holds.
Now, due to Step 2c(ii) and the fact that there exists a systemq ∈ Ip(n) imposing
constraints on systemp which are violated ifq < Ip(n) the assertion for both cost
functionals (7) and (8) follows.

17

Now we can use Lemma 17 to answer the question under which conditions
asymptotic stability can be shown. In particular, we first prove a necessary condi-
tion for asymptotic stability of (2).

Theorem 18. Consider systems(1), P ≥ 2 to be given. Suppose that applying
Algorithm 12 for all mapsΠ,Θ : 2P → 2P we have thatPi , ∅, i ≥ 2 holds for
some n≥ n and alln ∈ N0 withIp(n, 1) , ∅ for some p∈ Pi. Then there exists no
functionβ ∈ KL such that(14)holds for all n∈ N0.

Proof. Fix mapsΠ,Θ : 2P → 2P. Then Lemma 17 states that for each system
p ∈ Pi there exists a systemq ∈ P j, j < i such thatq ∈ Ip(n). If for any p ∈ P

and anyn ∈ N0 we have thatUad
p (n, xp(n), Ip(n)) = ∅ or UNp,ad

p (n, xp(n), Ip(n)) = ∅
in case if cost functional (7) or (8) are used, respectively,we are done since no
admissible solution exists. Otherwise, we obtainu∗p

1(·) , u∗p
2(·) with

u∗p
1(·) = argmin

up∈U
ad
p (n,xp(n),Ip(n))

J∞p (xp(n), up), u∗p
2(·) = argmin

up∈U
ad
p (n,xp(n),∅)

J∞p (xp(n), up)

in case of cost functional (7) and with

u∗p
1(·) = argmin

up∈U
Np,ad
p (n,xp(n),Ip(n))

J
Np
p (xp(n), up), u∗p

2(·) = argmin
up∈U

Np,ad
p (n,xp(n),∅)

J
Np
p (xp(n), up)

in case of cost functional (8).

Hence, due to the fact thatx
u∗p

2

p (k, x(n)) for somek violates a constraint imposed

by systemq which is not violated byx
u∗p

1

p (k, x(n)), we obtain that the open loop

trajectoriesx
u∗p

1

p (·, x(n)) and x
u∗p

2

p (·, x(n)) differ. UsingIp(n, 1) , ∅, we can con-

clude that there exists aδ1 > 0 such thatdX(x
u∗p

1

p (1, xp(n)), x
u∗p

2

p (1, xp(n))) > δ1
holds. Since we always implement the first element of each optimal admissible
control, we have thatdX(fp(xp(n), u∗p

1(0)), fp(xp(n), u∗p
2(0))) > δ1 holds. Now we

have to consider two cases: Ifxp(n + 1) = xref
p , then we can use the fact that the

deviationdX(x
u∗p

1

p (1, xp(ñ)), x
u∗p

2

p (1, xp(ñ))) > δ1 will occur again for some ˜n > n
due to the assumptions of the theorem. Ifxp(n+ 1) , xref

p , we immediately obtain
the existence of aδ2 > 0 such that‖xp(n + 1)‖xref

p
> δ2 holds. In either case, we

obtain that there exists a time index ˜n > n such that‖xp(ñ)‖xref
p
> δ = min(δ1/2, δ2)

holds.
Now suppose there exists a functionβ ∈ KL such that (14) holds for alln ∈ N0.
Due to theL-propertyβ in its second argument, we have that for eachε > 0 there

18

exists an̂ ∈ N0 such that‖x(n)‖xref < ε for all n ≥ n̂. Now we chooseε < δ and
n̂ ∈ N0 accordingly. Since Lemma 17 holds for alln ∈ N0, we can conclude that
for ñ > n ≥ n = n̂ the inequality‖x(ñ)‖xref ≥ ‖xp(ñ)‖xref

p
> δ > ε holds. This

contradicts the existence of a functionβ ∈ KL such that (14) holds for alln ∈ N0.
Last, since the mapsΠ andΘ were chosen arbitrarily, the argumentation holds for
all choices ofΠ andΘ which completes the proof.

Remark 19. ConditionIp(n, 1) , ∅ in Theorem 18 is required since fromq ∈

Ip(n) we can only conclude thatx
u∗p

1

p (kn, xp(n)) andx
u∗p

2

p (kn, xp(n)) differ for some
kn ≥ 0. According to the NMPC algorithm, only the first control element is

implemented and we may face the situation that againx
u∗p

1

p (kn+1, xp(n + 1)) and

x
u∗p

2

p (kn+1, xp(n+ 1)) differ for somekn+1 ≥ kn. Now if kn > 0 holds for alln ∈ N0,
then systemp may be asymptotically stable.

Turning from necessary to sufficient conditions we like to stress that the con-
verse of Theorem 18 does not hold, not even in the special casethat the conditions
of Lemma 16 hold for alln ≥ n with n ∈ N0. This conclusion is due to the fact
that even ifP2 = ∅ we can only guarantee that a control which minimizes (8) for
all systemsp ∈ P can be computed without having to consider any other system
q ∈ P \ {p}, but not whether all systems are actually stable.

Theorem 20. Suppose that for given mapsΠ,Θ : 2P → 2P we have that for a
given initial value x0 ∈ X the set of admissible controlsU

Np,ad
p (n, xp(n), Ip(n)) is

not empty for all p∈ P and all n ∈ N0. Suppose furthermore that there exist
α

p
1, α

p
2, α

p
3 ∈ K∞, γ ∈ K∞ andα > 0 such that inequalities(16) and (17) hold for

all n ∈ N0. Then there exists a functionβ ∈ KL which only depends onα, γ and
all αp

1, α
p
2, α

p
3, p ∈ P, such that(14)holds for all n∈ N0.

Moreover, there exists ann ∈ N0 such that for each n≥ n we either have that
Pi , ∅, i ≥ 2 holds withIp(n, 1) = ∅ for all p ∈ Pi or P2 = ∅.

Proof. Using x0 ∈ X, UNp,ad
p (n, xp(n), Ip(n)) , for all p ∈ P and alln ∈ N0 and

Theorem 13 we obtain that the closed loop solutionx(n) = (x1(n)⊤, . . . , xP(n)⊤)⊤

exists for alln ∈ N0 and satisfiesx(n) ∈ X for all n ∈ N0. Now, since inequalities
(16) and (17) hold for alln ∈ N0, the existence ofβ ∈ KL follows directly from
Proposition 10. To show the existence ofn ∈ N0 such that forn ≥ n we either
have thatP2 = ∅ or Pi , ∅, i ≥ 2 holds withIp(n, 1) = ∅ for all p ∈ Pi, suppose
thatPi , ∅, i ≥ 2 holds for somen ≥ n and alln ∈ N0 with Ip(n, 1) , ∅ for
somep ∈ Pi. Then, using Theorem 18 and the existence ofβ ∈ KL we obtain a
contradiction showing the assertion.

19

Remark 21. While the stability result of Theorem 20 is given for the NMPCcase
without stabilizing terminal constraints or terminal costs, the only critical compo-
nent in the proof of this theorem is the condition thatU

Np,ad
p (n, xp(n), Ip(n)) , ∅

which guarantees that the closed loop solutionx(·) = (x1(·)⊤, . . . , xP(·)⊤)⊤ exists
and satisfies the state constraints. Hence, if instead of theexistence conditions of
α

p
1, α

p
2, α

p
3 ∈ K∞ andα > 0 such that inequalities (16) and (17) hold we impose

other stability conditions – e.g., the terminal constraintcondition given in Keerthi
and Gilbert [15] or the terminal costs from Chen and Allgöwer [3] – then the same
proof can be used to guarantee asymptotic stability of the closed loop.

5. Conclusion

We presented a generalized stability result for NMPC controllers without sta-
bilizing terminal constraints or terminal costs. Moreover, we described an algo-
rithm which allows us to generate a hierarchy of such controllers in a distributed
non cooperative setting. Using only abstract priority and testing maps, we have
shown necessary as well as sufficient conditions for stability of the closed loop.

Future research concerning the algorithm will certainly deal with the question
how the priority and testing maps should be chosen to minimize the number of
priority lists or to maximize the number of controllers thatcan be run in parallel.
From the stability side an indeep analysis is required to apriori guarantee condition
(17). The availability of such a condition would then allow us to apriori guarantee
Algorithm 12 to asymptotically stabilize the system. One idea in this direction
is outlined in Grüne and Worthmann [12, Section 7] and suggests the use of ISS
small gain theorems to treat this problem.

References

[1] Alamir, M., Bornard, G., 1995. Stability of a truncated infinite constrained
receding horizon scheme: the general discrete nonlinear case. Automatica
31 (9), 1353–1356.

[2] Bäckström, C., 1998. Computational aspects of reordering plans. Journal of
Artificial Intelligence Research 9, 99–137.

[3] Chen, H., Allgöwer, F., 1999. Nonlinear model predictive control schemes
with guaranteed stability. In: Nonlinear Model Based Process Control.
Kluwer Academic Publishers, Dodrecht, pp. 465–494.

20

[4] Dold, J., Stursberg, O., 2009. Distributed Predictive Control of Communicat-
ing and Platooning Vehicles. In: Proceedings of the 48th IEEE Conference
on Decision and Control held jointly with the 28th Chinese Control Confer-
ence CDC/CCC 2009. pp. 561 –566.

[5] Giselsson, P., 2010. Adaptive Nonlinear Model Predictive Control with Sub-
optimality and Stability Guarantees. In: Proceedings of the 49th Conference
on Decision and Control. Atlanta, GA, pp. 3644–3649.

[6] Giselsson, P., Rantzer, A., 2010. Distributed Model Predictive Control with
Suboptimality and Stability Guarantees. In: Proceedings of the 49th Confer-
ence on Decision and Control. Atlanta, GA, USA.

[7] Graichen, K., Kugi, A., nov. 2010. Stability and incremental improvement
of suboptimal mpc without terminal constraints. AutomaticControl, IEEE
Transactions on 55 (11), 2576 –2580.

[8] Grimm, G., Messina, M., Tuna, S., Teel, A., 2005. Model predictive control:
for want of a local control Lyapunov function, all is not lost. IEEE Trans.
Automat. Control 50 (5), 546–558.

[9] Grüne, L., Pannek, J., 2010. Analysis of unconstrainedNMPC schemes with
incomplete optimization. In: Proceedings of the 8th IFAC Symposium on
Nonlinear Control Systems – NOLCOS 2010. Bologna, Italy, pp. 238–243.

[10] Grüne, L., Pannek, J., 2011. Nonlinear Model Predictive Control: The-
ory and Algorithms, 1st Edition. Communications and Control Engineering.
Springer.

[11] Grüne, L., Pannek, J., Seehafer, M., Worthmann, K., 2010. Analysis of un-
constrained nonlinear MPC schemes with varying control horizon. SIAM J.
Control Optim. 48 (8), 4938–4962.

[12] Grüne, L., Worthmann, K., 2011. A distributed NMPC scheme without stabi-
lizing terminal constraints. In: Johansson, R., Rantzer, A. (Eds.), Distributed
Decision Making and Control. Springer, 259–285.

[13] Haupt, R., 1989. A survey of priority rule-based scheduling. Vol. 11.
Springer Berlin/ Heidelberg.

21

[14] Jadbabaie, A., Hauser, J., 2005. On the stability of receding horizon control
with a general terminal cost. IEEE Trans. Automat. Control 50 (5), 674–678.

[15] Keerthi, S., Gilbert, E., 1988. Optimal infinite-horizon feedback laws for
a general class of constrained discrete-time systems: stability and moving-
horizon approximations. J. Optim. Theory Appl. 57 (2), 265–293.

[16] Lincoln, B., Rantzer, A., 2006. Relaxing dynamic programming. IEEE
Trans. Automat. Control 51 (8), 1249–1260.

[17] Rawlings, J. B., Mayne, D. Q., 2009. Model Predictive Control: Theory and
Design. Nob Hill Publishing, Madison.

[18] Richards, A., How, J., 2004. A decentralized algorithmfor robust con-
strained model predictive control. In: Proceedings of the American Control
Conference 2004. Boston, Massachusetts, pp. 4261–4266.

[19] Richards, A., How, J., 2007. Robust distributed model predictive control.
International Journal of Control 80 (9), 1517–1531.

[20] Scattolini, R., 2009. Architectures for distributed and hierarchical Model
Predictive Control - A review. Journal of Process Control 19(5), 723–731.

22

	1 Introduction
	2 Setup and Preliminaries
	3 Stability
	4 The covering algorithm
	5 Conclusion

