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Abstract

We analyze the use of measures of minimal norm to control elliptic and parabolic
equations. We prove the sparsity of the optimal control. In the parabolic
case, we prove that the solution of the optimization problem is a Borel measure
supported in a set of null Lebesgue measure. In both cases, the approximate
controllability can be achieved efficiently by means of controls that are activated
in some finite number of pointwise locations. We also analyze the corresponding
dual problem.

Keywords: parabolic equations, elliptic equations, approximate
controllability, spike controls, Borel measures
2010 MSC: 35J15, 35K15, 49K20, 93B05, 93C20

1. Introduction

In this paper we address the issue of controlling elliptic and parabolic equa-
tions by means of sparse controls. As we shall see, when looking for the control
of minimal measure the sparsity is ensured. This is in contrast with the fact
that controls of minimal L2 norm end up being smooth and distributed every-
where on the support of the controller while controls of minimal L∞-norm are
of bang-bang form (see [1]).
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We first analyze the problem of approximate controllability for the heat
equation. More precisely, we consider the parabolic equation






y′ −∆y = u in Q = Ω× (0, T ),
y = 0 on Σ = Γ× (0, T ),

y(0) = y0 in Ω,

where y0 ∈ L2(Ω) is fixed, Ω ⊂ Rn is an open connected bounded set and Γ is
the boundary of Ω, that we will assume to be Lipschitz.

We wish to choose the control u such that the associated state at time T ,
yu(T ), is in the L2(Ω)-ball B̄ε(yd), where yd represents the desired final state
and ε > 0 the admissible distance to the target.

It is well known that for any ε > 0 it is possible to find u ∈ L2(Q) such that
yu(T ) ∈ B̄ε(yd); see Lions [2]. In fact the same holds when the control u has its
support in a subset ω of Ω of positive measure.

We are interested on building and analyzing the structure of the controls u of
minimal energy. In the L2-setting this can be done by considering the following
minimization problem

min
yu(T )∈B̄ε(yd)

J(u) =
1

2
‖u‖2L2(Q).

It can be checked that this problem has a unique solution that is given by
ū = −ϕ̄, where ϕ̄ is the unique solution of the adjoint equation






−ϕ̄′ −∆ϕ̄ = 0 in Q,
ϕ̄ = 0 on Σ,

ϕ̄(T ) = ḡ in Ω,

for some ḡ ∈ L2(Ω) satisfying

∫

Ω
ḡ(x)(y(x)− ȳ(x, T )) dx ≤ 0 ∀y ∈ B̄ε(yd).

Above, ȳ denotes the state associated to ū. This means that the control is
smooth but active at almost every point of Ω and at all instant t. This makes
these controls to be of little practical use in applications where one looks for
controls with small support.

In some recent papers, the use of the L1-norm instead of the L2-norm was
shown to be very efficient to obtain optimal controls with support in small
regions of the domain, the domain being adjustable in terms of the tuning of
suitable parameters entering in the cost functional; see [3], [4], [5], or [6].

However, the above control problem has no solution, in general, if we re-
place the L2(Q)-norm by the L1(Q)-norm, i.e. if we take J(u) = ‖u‖L1(Q). To
overcome this difficulty, the use of Borel measures in Q and the cost functional
J(u) = ‖u‖M(Q) was suggested in [7]. The supports of the optimal measures
turn out to be small.
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In fact, as we shall show, in the present context of the approximate con-
trollability of the heat equation, the optimal measure ū has a support of null
Lebesgue measure. To be more precise, we will prove that given any time in-
terval [T0, T1], where 0 < T0 < T1 < T , such that the controls are supported
in [T0, T1], then there exists a measure ūΩ ∈ M(Ω), having a support of null
Lebesgue measure, such that setting ū = ūΩ⊗ δT1 , the property yū(T ) ∈ B̄ε(yd)
holds. Here δT1 stands for the Dirac measure concentrated at t = T1. This
shows that, in particular, the optimal measure is concentrated on a set of points
of Ω, with zero Lebesgue measure, at the final time instant T1. We also prove
the uniqueness of this optimal measure. These are the main contributions of
this paper.

Hereafter, we will denote by ūΩ ⊗ δT1 , the measure in Q defined by

〈ūΩ ⊗ δT1 , y〉 =
∫

Ω
y(x, T1) dūΩ(x).

As proved in [8], a measure in Ω can be efficiently approximated by a com-
bination of Dirac measures. As a consequence, we deduce that the approximate
controllability can be achieved by activating the controllers in some finite num-
ber of pointwise locations at the time T1.

On the other hand, from the point of view of applications, it is natural to
limit a priori the area where the controls can be placed. Thus, given a (possibly
small) region ω ⊂ Ω, that we will assume to be an open non-empty set with
finitely many connected components, we assume that the support of u is required
to be in ω̄.

This leads to the study of the following optimal control problem

(P)

{
minJ(u) = ‖u‖M(Q0),

(u, yu(T )) ∈ M(Q0)× B̄ε(yd),

where Q0 = (Ω∩ ω̄)× [T0, T1], M(Q0) being the space of real and regular Borel
measures in Q0 and yu the solution of






y′ −∆y = u in Q,
y = 0 on Σ,

y(0) = 0 in Ω.
(1)

Without loss of generality, we have taken the initial state y0 = 0. Indeed, for
y0 ,= 0 we can consider the solution ỹ of the parabolic equation corresponding
to u = 0 and change yd by yd− ỹ(T ). Then the problem is formulated as above.
In (1), u is extended by zero outside Q0.

To avoid the trivial case where the optimal solution is ū = 0, hereafter
we will assume that ‖yd‖L2(Ω) > ε. On the other hand, let us observe that
the choice T1 < T can be convenient not only for practical reasons, but it is
theoretically necessary as well. Indeed, if T1 is taken equal to T , then yu(T )
does not belong, in general, to L2(Ω). Therefore, the problem (P) is not well
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posed in the indicated spaces. We also take T0 > 0 to avoid the use of (measure)
controls as initial condition.

We will denote

C0(Q0) = {y ∈ C(Q̄0) : y(x, t) = 0 on Σ ∩ (∂ω × [T0, T1])}.

Endowed with the maximum norm, this is a Banach space and, according to
the Riesz representation theorem (see, for instance, Rudin [9, Theorem 6.19]),
M(Q0) is identified with the dual of C0(Q0) and

‖u‖M(Q0) = |u|(Q0) = sup
y∈C0(Q0), ‖y‖∞≤1

∫

Q0

y(x, t) du(x, t),

where |u| denotes the total variation measure associated to u.
The plan of the paper is as follows. In the next section, we analyze the

control problem (P): we prove the existence and uniqueness of a solution, we
get the optimality conditions and establish the spike structure of the optimal
control. The dual problem (P∗) is studied in §3. Some equivalent formulations
for (P) and (P∗) are considered in §4. As claimed in [7], convex duality is a
powerful framework for solving non-smooth optimal control problems. This has
motivated us to consider the study of the dual problems. Finally, the previous
results are extended to the elliptic case in §5.

2. Analysis of the Control Problem (P)

Before analyzing the control problem (P), we will comment some known facts
about the equation (1). First, we give a definition of solution of (1) and then
we study the existence, uniqueness and continuity with respect to the measure
u; see [10] or [11] for more details.

Definition 1. Given p, r ∈ [1, 2), with (2/r) + (n/p) > n+ 1, we will say that
a function y ∈ Lr([0, T ],W 1,p

0 (Ω)) is a solution of (1) if the following identity
holds ∫

Q
(−φ′y +∇φ∇y) dxdt =

∫

Q0

φ du ∀φ ∈ Φ, (2)

where
Φ = {φ ∈ C1(Q̄) : φ(x, T ) = 0 in Ω and φ(x, t) = 0 on Σ}.

Theorem 1. There exists a unique function y ∈ Lr([0, T ],W 1,p
0 (Ω)) for all

p, r ∈ [1, 2), with (2/r) + (n/p) > n+ 1, such that it is a solution of (1) and
∫

Q
(−φ′ −∆φ)y dxdt =

∫

Q0

φ(x, t) du(x, t) ∀φ ∈ Φ∞, (3)

where Φ∞ = {φ ∈ Φ : φ′ + ∆φ ∈ L∞(Q)}. Moreover, there exists a constant
Cr,p > 0 independent of u such that

‖y‖Lr([0,T ],W 1,p
0 (Ω)) + ‖y(T )‖L2(Ω) ≤ Cr,p‖u‖M(Q0). (4)
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Proof. Let us take a sequence of functions {uk}∞k=1 ⊂ C(Q̄) such that uk ⇀ u
weakly∗ in M(Q). We can assume that supp(uk) ⊂ Q̄ρ = Ω̄ × [0, T1 + ρ], with
T1 + ρ < T , and ‖uk‖L1(Q) ≤ ‖u‖M(Q0). The standard way to get this sequence
is making the convolution of u with a sequence of mollifiers. Now, we take
yk ∈ L2([0, T ], H1

0 (Ω)) ∩ C([0, T ], L2(Ω)) solution of





y′k −∆yk = uk in Q,
yk = 0 on Σ,

yk(0) = 0 in Ω.
(5)

Then, we can argue as in [10, Theorem 6.3] to deduce that

‖yk‖Lr([0,T ],W 1,p
0 (Ω)) ≤ Cr,p‖u‖M(Q0)

for some constant independent of k. As in [10], we get for a subsequence that
yk ⇀ y in Lr([0, T ],W 1,p

0 (Ω)), which is the unique solution of (1) satisfying (3).
To get the estimate for y(T ) in L2(Ω) we proceed as follows. Given g ∈ L2(Ω),
take ϕg ∈ L2([0, T ], H1

0 (Ω)) ∩ C([0, T ], L2(Ω)) solution of






φ′ +∆φ = 0 in Q,
φ = 0 on Σ,

φ(T ) = g in Ω.
(6)

Then, we have that ϕg ∈ C(Q̄ρ) and

‖ϕg‖C(Q̄ρ) ≤ Cρ‖g‖L2(Ω), (7)

where Cρ is uniformly bounded for ρ ≤ |T − T1|/2; see [13]. Hence,

∫

Ω
g(x)yk(x, T ) dx =

∫

Ω
ϕg(x, T )yk(x, T ) dx =

∫

Q
(y′k −∆yk)ϕg dxdt

=

∫

Q
uk(x, t)ϕg(x, t) dxdt ≤ ‖uk‖L1(Qρ)‖ϕg‖C(Q̄ρ) ≤ Cρ‖u‖M(Q0)‖g‖L2(Ω).

Since g ∈ L2(Ω) is arbitrary, we deduce the estimate for ‖yk(T )‖L2(Ω), which
implies the desired estimate for y(T ) in L2(Ω).

Remark 1. Let us note that passing to the limit as k → ∞ in the last relations
of the previous proof, we obtain

∫

Ω
g(x)yu(x, T ) dx =

∫

Q0

ϕg(x, t) du ∀u ∈ M(Q0) and ∀g ∈ L2(Ω), (8)

where yu and ϕg are the solutions of (1) and (6), respectively.

Now, we return to the control problem (P). We observe that (P) is a convex
problem, but the cost functional J is not strictly convex. Despite of this the
optimal control is unique as the following result shows.
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Theorem 2. The control problem (P) has at least one solution ū. Moreover,
there exists a unique element ȳT ∈ L2(Ω), with ‖ȳT − yd‖L2(Ω) = ε, such that
yu(T ) = ȳT for every solution u of (P).

Proof. First of all, we prove that the set of feasible controls is non-empty for
any ε > 0. From [12] we deduce the existence of an element y1 ∈ L2(Ω) such
that the solution ŷ of the problem






y′ −∆y = 0 in Ω× (T1, T ),
y = 0 on Γ× (T1, T ),

y(T1) = y1 in Ω,

satisfies ‖ŷ(T ) − yd‖L2(Ω) < ε
2 . On the other hand, due to the approximate

controllability property of the heat equation (see Lions [2]), we have that there
exists an element u ∈ L2(Q0) such that ‖yu(T1)− y1‖L2(Ω) <

ε
2 . Then we have

‖yu(T )− yd‖L2(Ω) ≤ ‖yu(T )− ŷ(T )‖L2(Ω) + ‖ŷ(T )− yd‖L2(Ω)

≤ ‖yu(T1)− y1‖L2(Ω) + ‖ŷ(T )− yd‖L2(Ω) < ε,

Since L2(Q0) is identified with a subspace of M(Q0), we conclude the desired
result.

Now, the existence of a solution can be easily proved by taking a minimizing
sequence and using the continuity of u ∈ M(Q0) → yu(T ) ∈ L2(Ω) established
in Theorem 1. On the other hand, if u ∈ M(Q0) and ‖yu(T ) − yd‖L2(Ω) < ε,
then we can take 0 < λ < 1 such that

‖yu(T )− yd‖L2(Ω) + λ‖yu(T )‖L2(Ω) ≤ ε.

Setting uλ = (1 − λ)u, then J(uλ) = (1 − λ)J(u) < J(u) and ‖yuλ(T ) −
yd‖L2(Ω) ≤ ε, hence u is not a solution of (P). Therefore, to any solution u of
(P) corresponds an optimal state y such that y(T ) is on the boundary of the
ball B̄ε(yd).

Finally, let us prove the uniqueness of ȳT = yu(T ). We argue by contradic-
tion. Let u1 and u2 be two different solutions of (P) with two different final
states yu1(T ) ,= yu2(T ). We know that

‖yu1(T )− yd‖L2(Ω) = ‖yu2(T )− yd‖L2(Ω) = ε.

Define u = (u1+u2)/2. Using the convexity of J and the strict convexity of the
L2(Ω)-norm, we infer

J(u) ≤ 1

2
(J(u1) + J(u2)) = inf (P) and ‖yu(T )− yd‖L2(Ω) < ε.

Thus, u is a solution of (P) with yu(T ) belonging to the interior of the ball
B̄ε(yd), which contradicts the property established above for the solutions of
(P). This implies the existence of a unique element ȳT satisfying the conditions
of the theorem.
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The next step in our analysis is the proof of the optimality conditions.

Theorem 3. Let ū ∈ M(Q0) such that ȳ(T ) ∈ B̄ε(yd), where ȳ is the state
associated to ū. Then, ū is a solution of problem (P) if and only if there exist
two unique elements ḡ ∈ L2(Ω) and ϕ̄ ∈ L2([0, T ], H1

0 (Ω)) ∩ C([0, T ], L2(Ω))
such that

∫

Ω
ḡ(x)(y(x)− ȳ(x, T )) dx ≤ 0 ∀y ∈ B̄ε(yd), (9)






ϕ̄′ +∆ϕ̄ = 0 in Q,
ϕ̄ = 0 on Σ,

ϕ̄(T ) = ḡ in Ω,
(10)

‖ū‖M(Q0) = −
∫

Q0

ϕ̄(x, t) dū, (11)

‖ϕ̄‖C(Q0) = 1. (12)

Furthermore, there exists a real number λ̄ > 0 such that ḡ = λ̄(ȳ(T ) − yd).
Finally, ḡ and ϕ̄ are the same for every solution of (P).

Proof. Let us consider the linear mapping A ∈ L(M(Q0), L2(Ω)), defined by
Au = yu(T ). The continuity of A follows from (4). Now, we define the functional
J : M(Q0) −→ (−∞,+∞] by

J (u) = J(u) + IB̄ε(yd)(Au),

where IB̄ε(yd) denotes the indicator function of the ball B̄ε(yd); which means
that it vanishes in B̄ε(yd) and takes the value +∞ outside. The problem (P)
can be reformulated as the minimization of the convex functional J . Then, ū
is a solution of (P) if and only if 0 ∈ ∂J (ū). Now, we apply the rules of the
sub-differential calculus of convex functions; see, for instance, [14, Chapter 1,
§5.3]. To this end, we take into account that, according to the proof of Theorem
2, there exists u0 ∈ M(Q0) such that Au0 ∈ Bε(yd), which means that the
Slater condition is fulfilled, consequently

0 ∈ ∂J (ū) ⊂ ∂J(ū) +A∗∂IB̄ε(yd)(ȳ).

This implies that there exists ḡ ∈ ∂IB̄ε(yd)(ȳ) such that −A∗ḡ ∈ ∂J(ū). Relation
(9) is precisely the definition of ḡ ∈ ∂IB̄ε(yd)(ȳ). Now, we take ϕ̄ as the solution
of (10). Then, from (8) we deduce

〈A∗ḡ, u〉 = 〈ḡ, Au〉 =
∫

Ω
ḡ(x)yu(x, T ) dx =

∫

Q0

ϕ̄(x, t) du ∀u ∈ M(Q0).

Combining this identity with the definition of −A∗ḡ ∈ ∂J(ū)

〈−A∗ḡ, u− ū〉+ J(ū) ≤ J(u) ∀u ∈ M(Q0),
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we obtain
∫

Q0

ϕ̄(x, t) dū−
∫

Q0

ϕ̄(x, t) du+ ‖ū‖M(Q0) ≤ ‖u‖M(Q0) ∀u ∈ M(Q0).

Taking u = 2ū and 1
2 ū, respectively, in the above inequality, we get (11). There-

fore, the above inequality and (11) imply

−
∫

Q0

ϕ̄(x, t) du ≤ ‖u‖M(Q0) ∀u ∈ M(Q0).

For any point (x0, t0) ∈ Q0 we select u = ±δ(x0,t0) in the above inequality,
which shows that ±ϕ̄(x0, t0) ≤ 1. Since (x0, t0) is arbitrary in Q0, we get that
‖ϕ̄‖C(Q0) ≤ 1. This inequality along with (11) and the fact that ū ,= 0 imply
(12).

Finally, we prove the uniqueness of ḡ, the corresponding uniqueness for ϕ̄
being an immediate consequence. From Theorem 2 and (9) it follows

∫

Ω
ḡ(y − yd) dx ≤

∫

Ω
ḡ(ȳT − yd) dx ∀y ∈ B̄ε(yd),

or equivalently
∫

Ω
ḡy dx ≤

∫

Ω
ḡ(ȳT − yd) dx ∀y ∈ B̄ε(0),

which implies the existence of some positive number λ̄ such that ḡ = λ̄(ȳT −yd).
Observe that ḡ ,= 0 because ‖ϕ̄‖C0(Q0) = 1. Moreover, the last identity implies
that λ̄ is uniquely determined, which concludes the proof.

As a consequence of the previous theorem we get the following result about
the structure of the optimal measure.

Corollary 1. Let ū be a solution of (P). Then, there exist two Borel measures
û ∈ M([∂ω ∩ Ω]× [T0, T1]) and ūω ∈ M(ω̄ ∩ Ω) such that

ū = û+ ūω ⊗ δT1 , with |supp(ūω)| = 0, (13)

where | · | denotes the Lebesgue measure in Rn. Finally, if ω = Ω, then ū =
ūΩ ⊗ δT1 , with supp(ūΩ) ⊂ Ω and |supp(ūΩ)| = 0.

Proof. Let us consider the Jordan decomposition of the measure ū, ū = ū+ −
ū−, and denote Q+

0 = supp(ū+) and Q−
0 = supp(ū−). From (11) and (12) we

deduce

‖ū‖M(Q0) = |ū|(Q0) =

∫

Q+
0

dū+(x, t) +

∫

Q−
0

dū−(x, t)

≥ −
∫

Q+
0

ϕ̄(x, t) dū+(x, t) +

∫

Q−
0

ϕ̄(x, t) dū−(x, t)

= −
∫

Q0

ϕ̄(x, t) dū(x, t) = ‖ū‖M(Q0).



E. Casas, E. Zuazua / Spike Controls for Elliptic and Parabolic PDE 9

Hence,
∫

Q+
0

(1 + ϕ̄(x, t))dū+(x, t) +

∫

Q−
0

(1− ϕ̄(x, t))dū−(x, t) = 0,

therefore
∫

Q+
0

(1 + ϕ̄(x, t))dū+(x, t) =

∫

Q−
0

(1− ϕ̄(x, t))dū−(x, t) = 0.

These identities imply that

supp(ū+) ⊂ {(x, t) ∈ Q0 : ϕ̄(x, t) = −1},
supp(ū−) ⊂ {(x, t) ∈ Q0 : ϕ̄(x, t) = +1}.

Let us prove that |ϕ̄(x, t)| < 1 for every (x, t) ∈ ω × [T0, T1). We first
observe that the regularizing property of the heat operator implies that ϕ̄ ∈
C∞(Ω×(0, T ))∩C(Ω̄×[0, T−ε]) for every ε > 0. Now, we argue by contradiction.
Suppose that there exists a point (x0, t0) ∈ ω×[T0, T1) such that ϕ̄(x0, t0) = +1.
Then, from (12) and the strong maximum principle (see, for instance, Evans
[15, Theorem 11, page 375]) we deduce that ϕ̄(x, t) = +1 for every (x, t) ∈
ωx0 × [t0, T1], where ωx0 is the open connected component of ω containing x0.
Now, using that the function x ∈ Ω→ ϕ̄(x, t) is analytic for every t, we deduce
from the principle of analytic that ϕ̄(x, t) = +1 for every x ∈ Ω and t ∈ [t0, T1].
However, this contradicts the fact that ϕ̄(x, t) = 0 for x ∈ Γ. Analogously, we
can prove that ϕ̄(x, t) > −1 for every (x, t) ∈ ω × [T0, T1). This leads to the
structure of ū described in (13). The identity |supp(ūω)| = 0 follows from the
analyticity of the function x ∈ ω → ϕ̄(x, T1). Indeed, the analyticity implies
that either the set of points where ϕ̄(x, T1) = +1 has a zero Lebesgue measure
or ϕ̄(x, T1) = +1 for every x ∈ Ω. The last option is not possible because
ϕ̄(x, T1) = 0 on Γ. Thus, (13) follows. If ω = Ω, from the boundary condition
ϕ̄ = 0 on Σ, we conclude that û = 0.

Corollary 2. Let us assume that ω = Ω. Then, there exists a unique solution
ū of problem (P).

Proof. Let u1 and u2 be two solutions of (P). Then, from Corollary 1 we deduce
the existence of two Borel measures u1Ω, u2Ω ∈ M(Ω) such that ui = uiΩ

⊗
δT1 ,

i = 1, 2. Let us take uΩ = u2Ω − u1Ω, u = uΩ
⊗

δT1 and yu = yu2 − yu1 .
Then yu satisfies (1). From the uniqueness of ȳT established in Theorem 2, we
also have that yu(T ) = 0. Now, for every g ∈ L2(Ω) let ϕg be the solution of
(6). Then, (8) implies that 〈uΩ, ϕg(T1)〉 = 0 for every g ∈ L2(Ω). Since the
space S = {ϕg(T1) : g ∈ L2(Ω)} is dense in L2(Ω) because of the approximate
controllability of the heat equation, we obtain that S is also dense in C0(Ω) and
consequently uΩ = 0. This concludes the uniqueness proof.

Remark 2. Let us consider the case n = 1, where ω = (a, b) is a subinterval
of Ω = (α, β). Then, the analyticity of the function x ∈ ω ⊂ R → ϕ̄(x, T1)
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implies that there exists a finite set of points {xj}N0
j=1 ⊂ ω̄ and real numbers

{λ̄j}N0
j=1 ⊂ R such that

ūω =
N0∑

j=1

λ̄jδxj .

On the other hand, using the analyticity of the functions t ∈ (0, T ) → ϕ̄(a, t) and
t ∈ (0, T ) → ϕ̄(b, t), we deduce the existence of two finite sets of time instants
{ta,j}Na

j=1 and {tb,j}Nb
j=1 and real numbers {λ̄a,j}Na

j=1 and {λ̄b,j}Nb
j=1 such that

û =
Na∑

j=1

λ̄a,jδ(a,ta,j) +
Nb∑

j=1

λ̄b,jδ(b,tb,j).

3. The Dual Problem (P∗)

In this section we are going to get the expression of the dual problem of (P)
in the sense of Fenchel and Rockafellar. To this end, we will follow [14, Chapter
3]. Then we have to identify two pairs of topological vector spaces (V, Y ) and
(V ∗, Y ∗) with a duality relation. We will take V = M(Q0) endowed with
the weak∗-topology, V ∗ = C0(Q0) and Y = Y ∗ = L2(Ω). With the notation
introduced in the proof of Theorem 3, we have A ∈ L(V, Y ), Au = yu(T ) and
the functional J : V −→ R given by J (u) = J(u) + IB̄ε(yd)(Au). Then, the
dual problem is defined by

(P∗) sup
g∈Y ∗

{−J∗(A∗g)− I∗B̄ε(yd)
(−g)},

where J∗ and I∗
B̄ε(yd)

are the Fenchel conjugate functions of J and IB̄ε(yd),

respectively. Let us to obtain the expression of the above terms. First, we look
at A∗g. Since A∗ ∈ L(Y ∗, V ∗) = L(L2(Ω), C0(Q0)), for every u ∈ M(Q0) we
get with (8)

〈u,A∗g〉 = 〈Au, g〉 =
∫

Ω
yu(T )g dx =

∫

Q0

ϕg(x, t) du(x, t) = 〈u, ϕg |Q0
〉,

where ϕg is the solution of (10). Notice that ϕg |Q0
∈ C0(Q0). Therefore, we

deduce that A∗g = ϕg |Q0
. Now, from the definition of a conjugate function we

get
J∗(A∗g) = sup

u∈M(Q0)
{〈u,A∗g〉 − J(u)}

= sup
u∈M(Q0)

{
∫

Q0

ϕg(x, t) du(x, t)− ‖u‖M(Q0)} =

{
+∞ if ‖ϕg‖C0(Q0) > 1,
0 otherwise.

(14)
On the other hand,

I∗B̄ε(yd)
(−g) = sup

ψ∈L2(Ω)
{(ψ,−g)L2(Ω) − IB̄ε(yd)(ψ)} = sup

ψ∈B̄ε(yd)

∫

Ω
ψg dx
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= sup
ψ∈B̄ε(0)

∫

Ω
(ψ + yd)g dx = ε‖g‖L2(Ω) + (yd, g)L2(Ω). (15)

From (14) and (15) we obtain the following expression for the dual problem

(P∗)

{
sup{−ε‖g‖L2(Ω) − (yd, g)L2(Ω)},

(g, ϕg |Q0
) ∈ L2(Ω)×B,

where B is the unit closed ball of C0(Q0) centered at 0. Let us introduce the
functions G : L2(Ω) −→ R and G : L2(Ω) −→ (−∞,+∞] given by

G(g) = ε‖g‖L2(Ω) + (yd, g)L2(Ω) and G(g) = G(g) + IB(A
∗g).

Now, the problem (P∗) can be written

(P∗) sup
g∈L2(Ω)

{−G(g)} = − inf
g∈L2(Ω)

G(g).

Finally, we study the relation between (P) and (P∗). Observe that the
existence and uniqueness of a solution for (P∗) is not obvious a priori. However,
this is true as claimed in the next theorem.

Theorem 4. Let (ū, ȳ, ϕ̄, ḡ) given by Theorem 3. Then, ḡ is the unique solution
of problem (P∗) and inf(P) = sup(P∗).

Proof. First, we recall that ϕ̄|Q0
= A∗ḡ and ‖ϕ̄‖C0(Q0) = 1, see (12), hence

G(ḡ) < +∞. Since G is a convex function, then ḡ is a minimum of G if and only
if 0 ∈ ∂G(ḡ). To calculate ∂G(ḡ) we use that the Slater condition is fulfilled.
Indeed, A∗0 = 0 is in the interior of the unit ball B, therefore

∂G(ḡ) = G′(ḡ) +A∂IB(A
∗ḡ) =

ε

‖ḡ‖L2(Ω)
ḡ + yd +A∂IB(ϕ̄).

From the expression ḡ = λ̄(ȳ(T )− yd) obtained in Theorem 3 and the property
‖ȳ(T )− yd‖L2(Ω) = ε proved in Theorem 2, we obtain

∂G(ḡ) = ȳ(T ) +A∂IB(ϕ̄).

If we prove that −ū ∈ ∂IB(ϕ̄), then from the identity ȳ(T ) = Aū, we conclude
that 0 ∈ ∂G(ḡ). Thus, ḡ is a solution of (P∗). Let us prove that −ū ∈ ∂IB(ϕ̄),
which means

〈−ū, φ− ϕ̄〉 ≤ 0 ∀φ ∈ B.

This is equivalent to

sup
φ∈B

∫

Q0

φdū ≤ −
∫

Q0

ϕ̄ dū ⇔ ‖ū‖M(Q0) ≤ −
∫

Q0

ϕ̄ dū,

which follows from (11).
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Now, we prove that inf(P) = sup(P∗). Using again that ḡ = λ̄(ȳ(T ) − yd)
and ‖ȳ(T )− yd‖L2(Ω) = ε along with (8) and (11), we get

G(ḡ) = ε‖ḡ‖L2(Ω) + (yd, ḡ)L2(Ω) = λ̄‖ȳ(T )− yd‖2L2(Ω) + λ̄(yd, ȳ(T )− yd)L2(Ω)

= λ̄(ȳ(T ), ȳ(T )− yd)L2(Ω) = (ȳ(T ), ḡ)L2(Ω) =

∫

Q0

ϕ̄ dū = −‖ū‖M(Q0) = −J (ū),

thus
sup (P∗) = −G(ḡ) = J (ū) = inf (P).

Finally, let us prove that ḡ is the unique solution of (P∗). If g ∈ L2(Ω) is
different from δḡ for every δ ∈ R, the inequality ‖(g+ ḡ)/2‖L2(Ω) < (‖g‖L2(Ω) +
‖g‖L2(Ω))/2 implies that g can not be a solution of (P∗) because it would lead
to a contradiction. If g = δḡ for some real number |δ| > 1, then ‖ϕg‖C0(Q0) =
|δ|‖ϕ̄‖C0(Q0) = |δ| > 1, then G(g) = +∞, and g is not a solution. If δ ≤ 0, then

G(g) ≥ (yd, g)L2(Ω) ≥ δG(ḡ) = −δ‖ū‖M(Q0) > −‖ū‖M(Q0) = G(ḡ).

Finally, if 0 < δ < 1, then G(g) = δG(ḡ) > G(ḡ) due to the fact that G(ḡ) < 0.
This concludes that ḡ is the unique solution of (P∗).

4. Some equivalent formulations for (P) and (P∗)

So far we have proved that the system (1) can be approximately controlled
by using Borel measures with sparse support. To do this we have followed
a direct approach, just looking for the minimum of problem (P). However, the
analysis of the approximate controllability of the heat equation has traditionally
followed a different approach. Indeed, the approximate controllability of (1) by
using L2 controls concentrated in ω× (0, T ) has been obtained by studying the
adjoint optimization problem

(Pε) min
g∈L2(Ω)

Jε(g) =
1

2

∫ T

0

∫

ω
|ϕg|2 dxdt+ ε‖g‖L2(Ω) −

∫

Ω
ydg dx,

where ϕg is the solution of (6). In [2], it was proved that (Pε) has a unique
solution ḡ. Then, the control ū ∈ L2(ω × (0, T )) of minimum norm, with asso-
ciated state ȳ, satisfying that ‖ȳ(T ) − yd‖L2(Ω) ≤ ε is given by ū = ϕ̄χω×(0,T ),
where χω is the characteristic function of ω× (0, T ) and ϕ̄ is the solution of (6)
corresponding to ḡ.

Later, the problem of controlling approximately the system (1) by using
bang-bang controls was studied in [16]. To this end the authors considered the
optimization problem

(Pbb,ε) min
g∈L2(Ω)

Jbb,ε(g) =
1

2

(∫ T

0

∫

ω
|ϕg| dxdt

)2

+ ε‖g‖L2(Ω) −
∫

Ω
ydg dx.
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Once again, the problem (Pbb,ε) has a unique solution ḡ, with associated state
ϕ̄. Taking

ū(x, t) =

∫ T

0

∫

ω
|ϕ̄| dxdt sign(ϕ̄(x, t)), with sign(s) =






−1 if s < 0,
+1 if s > 0,

[−1,+1] if s = 0,

the control ū turns out to be of bang-bang form with a minimum L∞-norm in the
class of bounded controls u with associate state satisfying ‖yu(T )−yd‖L2(Ω) ≤ ε.

We refer to [1] for a more detailed presentation of this approach and other
related results and, in particular, to the problem of finite-approximate control-
lability in which, in addition to the approximate controllability property, one
also controls exactly the projection of the solution over a finite-dimensional
subspace.

The minimization of the L2-norm of ϕg in the problem (Pε) provided the
control ū of minimal L2-norm. In problem (Pbb,ε), we minimized the L1-norm
of ϕg, which gave us the control of minimal L∞-norm. Then, it seems natural
that if we look for a measure in Q0 of minimal norm leading the state to the
ball B̄(yd), then we should study the problem

(P∞,ε) min
g∈L2(Ω)

J∞,ε(g) =
1

2
‖ϕg‖2C0(Q0) + ε‖g‖L2(Ω) −

∫

Ω
ydg dx.

Let us analyze this control problem. First of all, it is obvious that J∞,ε is strictly
convex and continuous. Moreover, it is coercive. Indeed, let {gk}∞k=1 ⊂ L2(Ω)
such that ‖gk‖L2(Ω) → +∞. We will prove that

lim
k→∞

J∞,ε(gk)

‖gk‖L2(Ω)
≥ ε.

To this end, we set g̃k = gk/‖gk‖L2(Ω) and, by taking a subsequence, we can
assume that g̃k ⇀ g weakly in L2(Ω). Denote ϕk = ϕgk and ϕ̃k = ϕg̃k . Then,

J∞,ε(gk)

‖gk‖L2(Ω)
=

1

2
‖gk‖L2(Ω)‖ϕ̃k‖2C0(Q0) + ε−

∫

Ω
ydg̃k dx.

The following two cases may occur:
1.- lim infk→∞ ‖ϕ̃k‖C0(Q0) > 0. In this case we obtain immediately that

J∞,ε(gk)

‖gk‖L2(Ω)
→ ∞.

2.- lim infk→∞ ‖ϕ̃k‖C0(Q0) = 0. Now, using the weak∗ convergence ϕ̃k ⇀ ϕg in
L∞(Q0) (recall (7)), we get by the lower semi-continuity

‖ϕg‖L∞(Q0) ≤ lim inf
k→∞

‖ϕ̃k‖L∞(Q0) = 0.
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Hence, ϕg = 0 in Q0. Now, Holmgren Uniqueness Theorem implies that ϕg ≡ 0
in Ω × (0, T ) and consequently g = 0. Therefore, gk ⇀ 0 weakly in L2(Ω) and∫
Ω ydgk dx → 0 as well. Finally, we have

lim inf
k→∞

J∞,ε(gk)

‖gk‖L2(Ω)
≥ lim inf

k→∞
[ε−

∫

Ω
ydgk dx] = ε,

which concludes the proof.
Let us denote by ḡ∞ the solution of (P∞,ε) and by ϕ̄∞ the associated state.

Since we have assumed that ‖yd‖L2(Ω) > ε, setting gλ = λyd, it is easy to
check that J∞,ε(gλ) < 0 if λ > 0 is small enough. Consequently, we have that
ḡ∞ ,= 0. To write the optimality conditions satisfied by ḡ∞, we will use the
linear operator A∗ ∈ L(L2(Ω), C0(Q0)) introduced in §3. Then, J∞,ε can be
expressed in the form

J∞,ε(g) =
1

2
‖A∗g‖2C0(Q0) + ε‖g‖L2(Ω) −

∫

Ω
ydg dx.

Then, it holds 0 ∈ ∂J∞,ε(ḡ∞), which implies the existence of an element ū∞ ∈
∂‖ · ‖C0(Q0)(ϕ̄∞), where ϕ̄∞ = ϕḡ∞ , such that

0 = ‖ϕ̄∞‖C0(Q0)Aū∞ +
ε

‖ḡ∞‖L2(Ω)
ḡ∞ − yd.

If ȳ∞ denotes the solution of (1) corresponding to ū∞, then Aū∞ = ȳ∞(T ); see
§3. Then the above equality can be rewritten

‖ϕ̄∞‖C0(Q0)ȳ∞(T )− yd = − ε

‖ḡ∞‖L2(Ω)
ḡ∞. (16)

On the other hand, ū∞ ∈ ∂‖ · ‖C0(Q0)(ϕ̄∞) implies by definition

∫

Q0

(z − ϕ̄∞) dū∞ + ‖ϕ̄∞‖C0(Q0) ≤ ‖z‖C0(Q0) ∀z ∈ C0(Q0).

These inequalities are equivalent to

‖ϕ̄∞‖C0(Q0) =

∫

Q0

ϕ̄∞ dū∞ and ‖ū∞‖M(Q0) = 1. (17)

Finally, if we set

(ḡ, ϕ̄) = − 1

‖ϕ̄∞‖C0(Q0)
(ḡ∞, ϕ̄∞) and (ū, ȳ) = ‖ϕ̄∞‖C0(Q0)(ū∞, ȳ∞),

then we get from (16) and (17) that (ḡ, ϕ̄, ū, ȳ) satisfies (9)-(12) and consequently
ū is the solution of (P).

We have proved that the solution ϕ̄∞ of (P∞,ε) also gives the solution of (P)
by the formula ū ∈ ‖ϕ̄∞‖C0(Q0)∂‖ · ‖C0(Q0)(ϕ̄∞). Analogously, the solution ϕ̄
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of problem (P∗), studied in §3, provided the solution of (P) by the formula ū ∈
−∂‖·‖C0(Q0)(ϕ̄). If we compare the functionals J∞,ε and G, whose minimization
lead to ϕ̄∞ and ϕ̄, respectively, we remark two differences. One is the different
sign in the integral

∫
Ω ydg dx, which justifies the different signs in the previous

formulas for ū. The second and most important difference comes from the terms
involving ϕg: (1/2)‖ϕg‖2C0(Q0)

and IB(ϕg). It is interesting to observe that the

function IB(ϕg) coincides with J∗(A∗g), as proved in §3, and J∞,ε(ϕg) coincides
with F ∗(A∗g), where F : M(Q0) −→ R is defined by F (u) = (1/2)‖u‖2M(Q0)

.

Therefore, the problem (P∞,ε) is, except for the sign before the integral involving
yd, the dual of the problem

(P̃)

{
minF (u) = 1

2‖u‖
2
M(Q0)

,

(u, yu(T )) ∈ M(Q0)× B̄ε(yd).

It is obvious that (P) and (P̃) are essentially the same. Consequently, the
dual problems (P∗) and (P∞,ε) are very close. Indeed, the problem (P∗) can be
transformed into (P∞,ε) by a simple scaling. This is not surprising. Indeed, the
solution ḡ∞ of (P∞,ε) is the solution of

{
min ε‖g‖L2(Ω) −

∫
Ω ydg dx,

g ∈ L2(Ω) and ‖ϕg‖C0(Q0) ≤ ‖ϕ̄∞‖C0(Q0).

It is enough to divide g by −‖ϕ̄∞‖C0(Q0) to obtain the problem (P∗), and then
ḡ = −g∞/‖ϕ̄∞‖C0(Q0).

5. The elliptic case

In this section, we consider the following elliptic version of the control prob-
lem (P):

(E)

{
min J(u) = ‖u‖M(Ω),

(u, yu) ∈ M(Ω)× B̄ε(yd),

where M(Ω) = C0(Ω)∗ is the space of real and regular Borel measures in Ω,
Bε(yd) is the ball of radious ε in L2(Ω) with center on yd, and yu is the solution
of {

−∆y = u in Ω,
y = 0 on Γ.

(18)

The results we shall present are also valid for more general second order
elliptic operator with Lipschitz continuous coefficients aij ∈ C(Ω̄). Indeed, by
using the coefficient freezing method, the elliptic operator is locally reduced to
the Laplace operator, which allows us to get the regularity results we need and
the Lipschitz regularity of the coefficients ensures the key unique continuation
property.

For technical reasons we limit our discussion to the cases 1 ≤ n ≤ 3. Indeed,
observe that given a measure u ∈ M(Ω), there exists a unique solution y of (18)
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belonging to W 1,p
0 (Ω) for every 1 ≤ p < n

n−1 . Moreover, the following inequality
holds

‖y‖W 1,p
0 (Ω) ≤ Cp‖u‖M(Ω); (19)

see, for instance, [17] and [18]. Since W 1,p
0 (Ω) ⊂ L2(Ω) for very 2n

n+2 ≤ p < n
n−1 ,

the problem (E) is well defined in M(Ω). In view of this, in dimensions n ≥ 4
similar problems can be considered but by taking Bε(yd) to be the ball in a
suitable Lp(Ω) space, with p depending on the dimension n.

As for the problem (P), hereafter we assume that ‖yd‖L2(Ω) > ε, otherwise
the solution of the problem (E) is ū = 0. Concerning the solvability of (E), we
have the following result.

Theorem 5. The control problem (P) has a unique solution ū. Moreover, the
associated state ȳ satisfies ‖ȳ − yd‖L2(Ω) = ε.

Proof. The existence of u such that the state y belongs to B̄ε(yd) is obvious
by a density argument and due to the fact that −∆ is an isomorphism from
H2(Ω)∩H1

0 (Ω) into L
2(Ω). Then, the existence of a solution can be easily proved

by taking a minimizing sequence and using the continuity of u ∈ M(Ω) → yu ∈
L2(Ω); see (19). Finally, the proof of the uniqueness of solution follows the
steps of the proof of the uniqueness of ȳT in Theorem 2. To this end we use the
injectivity of the control-to-state mapping.

The analogue of Theorem 3 also holds for problem (E) as follows.

Theorem 6. Let ū ∈ M(Ω) such that ȳ ∈ B̄ε(yd), where ȳ is the state associ-
ated to ū. Then, ū is the solution of problem (E) if and only if there exist two
unique elements ḡ ∈ L2(Ω) and ϕ̄ ∈ W 1,s

0 (Ω), for n < s ≤ n + δΩ, for some
δΩ > 0, such that

∫

Ω
ḡ(x)(y(x)− ȳ(x)) dx ≤ 0 ∀y ∈ B̄ε(yd), (20)

{
−∆ϕ̄ = ḡ in Ω,

ϕ̄ = 0 on Γ,
(21)

‖ū‖M(Ω) = −
∫

Ω
ϕ̄ dū, (22)

‖ϕ̄‖C0(Ω) = 1. (23)

Furthermore, there exists a real number λ̄ > 0 such that ḡ = λ̄(ȳ − yd).

Proof. The proof follows the same steps as in Theorem 3. Let us mention
the differences. First, we observe that the regularity ϕ̄ follows from [18]. It is
proved in [18] that δΩ > 2 for n = 2 and δΩ > 0 if n = 3. For n = 3 we also
assume that δΩ ≤ 3 due to the necessary embedding L2(Ω) ⊂ W−1,s(Ω). In the
case of a C1 boundary Γ, ϕ ∈ W 1,s

0 (Ω) for all 2 < s < ∞ if n = 2 and for s = 6
if n = 3. In any case, since s > n, ϕ̄ ∈ W 1,s

0 (Ω) ⊂ C0(Ω). Now, we consider the
linear mapping A ∈ L(M(Ω), L2(Ω)), defined by Au = yu solution of (18). The
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continuity of A follows from (19). Then, the problem (E) can be reformulated
as the minimization of the functional J : M(Ω) −→ R defined by

J (u) = J(u) + IB̄ε(yd)(Au).

Finally, we have to prove the identity

〈A∗ḡ, u〉 =
∫

Ω0

ϕ̄ du ∀u ∈ M(Ω). (24)

Since yu ∈ W 1,p
0 (Ω) for every p < n

n−1 , we can take p close enough to n
n−1 such

that n < s = p′ ≤ n + δΩ. Therefore, we can multiply the equation (18) by ϕ̄
and make an integration by parts to get with (21)

∫

Ω
ϕ̄ du =

∫

Ω
∇yu∇ϕ̄ dx =

∫

Ω
ḡyu dx =

∫

Ω
ḡAu dx = 〈A∗ḡ, u〉,

which proves (24).

Corollary 3. Let ū = ū+ − ū− be the Jordan decomposition of the measure ū,
then the following inclusions hold

{
supp(ū+) ⊂ {x ∈ Ω : ϕ̄(x) = −1},
supp(ū−) ⊂ {x ∈ Ω : ϕ̄(x) = +1}. (25)

This corollary is deduced from (22) and (23) as in the proof of Corollary
1. Concerning the support of the measure ū, we can say that it is reduced
to a finite set of points in many situations, while, in others, for instance, the
set where ϕ̄(x) = +1 (respectively, -1) may be a curve or a hypersurface of
dimension n− 1.

Problem (E) is very close to the one studied by Clason and Kunisch [7]

(Pα)

{
minJα(u) =

1
2‖yu − yd‖2L2(Ω) + α‖u‖M(Ω),

u ∈ M(Ω),

where α > 0. Indeed, let us assume that uα is the solution of (Pα) with
yα and ϕα as associated state and adjoint state, respectively. Let us denote
εα = ‖yα − yd‖2L2(Ω), then it is immediate that uα is the solution of (E) for
ε = εα. This follows from the fact that the state ȳ associated to the solution
ū of (E) satisfies ‖ȳ − yd‖L2(Ω) = ε. Moreover, as proved in [7], (uα, yα, ϕα)
satisfies

{
−∆ϕα = yα − yd in Ω,

ϕα = 0 on Γ,
(26)

‖uα‖M(Ω) = − 1

α

∫

Ω
ϕα dū, (27)

‖ϕα‖C0(Ω) = α. (28)
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Comparing this system with (21)-(23), we deduce that ϕ̄ = 1
αϕα and λ̄ = 1

α .
Conversely, if ū is the solution of (E) and we take λ̄ as in Theorem 6, we deduce
that ū is the solution of problem (Pα) for α = 1/λ̄. Indeed, it is enough to
observe that (ū, ȳ, ϕ̄/λ̄) satisfies the optimality system (26)-(28).

Although the solution ū of (E) is a measure with possibly a support not
reduced to a finite number of points, its numerical approximation can be carried
out in a efficient way by a linear combination of Dirac measures. The reader is
referred to [8] for this issue.

Concerning the dual problem of (E), we can proceed as in §3 to deduce that
it is formulated as follows

(E∗)

{
sup{−ε‖g‖L2(Ω) − (yd, g)L2(Ω)},

(g, ϕg) ∈ L2(Ω)×B,

where B is the unit closed ball of C0(Ω) centered at 0 and ϕg is the solution of
the Dirichlet problem {

−∆ϕ = g in Ω,
ϕ = 0 on Γ.

Analogous comments to those of §4 can be translated to the control problem
(E) and its dual (E∗). In particular, the adjoint methodology for the approx-
imate controllability of the heat equation, based on the minimization of the
functional J∞,ε, can be adapted to the present context. Indeed, it suffices to
minimize the functional

J∞,ε(g) =
1

2
‖ϕg‖2C0(Ω) + ε‖g‖L2(Ω) −

∫

Ω
ydg dx,

for g ∈ L2(Ω) where ϕg is the solution of the adjoint equation (5). The minimizer
g̃ ∈ L2(Ω) exists and is unique and it leads to an approximate control, localized
on the set where the corresponding adjoint state ϕ̃ achieves extremal values
±‖ϕ̃g‖C0(Ω).

Similar issues can be treated in the case where the control is localized in
a subset on Ω. We refer to [19] for the analysis of these problems in the L2-
setting. The adaptation of the techniques of the present paper to that setting
is an interesting open problem.

6. Further comments and open problems

The methods and results of the present paper can be extended to various
other problems. Let us mention some of them:

• Boundary control for the heat equation: Similar results hold in the
context of the boundary control of the heat equation for various boundary
conditions, in particular of Dirichlet and Neumann type.
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• Null control of the heat equation: The same techniques can be applied
in the context of the null control of the heat equation in which the goal is
to drive the solution to the null equilibrium, both in the context of internal
or boundary control. We refer to [1] for a recent survey on the state of
the art in what concerns the problem of null control of the heat equation
in the classical context of smooth and bang-bang controls.

A number of interesting issues are still widely open and need to be investi-
gated.

• Wave equations: The same problems make sense for the wave equation.
But this time, optimal measures can not be guaranteed to be localized
on narrow sets. Indeed, the sets where the solutions of the adjoint wave
equation achieve extremal values (± its L∞-norm) can be arbitrary. Sim-
ilar phenomena occur in what concerns the bang-bang property that fails
to hold for the wave equation (see [1] and [20]).

• Semilinear heat equations: There is an extensive literature on the
existence of controls of minimal L2-norm and of bang-bang form for the
null and approximate control of the semilinear heat equation (see [1]).
Most often controls are built by fixed point arguments, by means of a
careful analysis of the dependence of controls of the heat equation with a
potential. The problem of whether optimal control measures are supported
on a finite number of points is open in that case due, mainly, to the fact
that such a property, at least along the proof developed in the present
article needs the potential to be analytic.
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