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Abstract

Repetitive processes are a class of 2D systems that have physical applications,
including the design of iterative learning control laws where experimental val-
idation results have been reported. This paper uses the Kalman-Yakubovich-
Popov lemma to develop new stability tests for differential linear repetitive
processes that are computationally less intensive than those currently avail-
able. These tests are then extended to allow control law design for stability
and performance.
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1. Introduction

Many physical systems complete the same finite duration operation over
and over again. Repetitive processes have this characteristic where a series
of sweeps or passes are made through dynamics defined over a finite duration
known as the pass length. Once each pass is complete, the process resets to
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the original location and the next one begins. The output on each pass is
termed the pass profile and the notation for scalar or vector valued variables
is yk(t), 0 ≤ t ≤ α <∞, k ≥ 0, where y is the scalar or vector valued variable,
the integer k is the pass number and α is the pass length. Also the previous
pass profile contributes to dynamics of the next one and the result can be
oscillations in the pass profile sequence {y}k that increase in amplitude from
pass-to-pass (k) and cannot be controlled by standard systems theory.

The original use of repetitive process models was in the coal mining and
metal rolling industries where references to the original papers are given
in [1]. In coal mining, the cutting machine rests on the previous pass pro-
file, the height of the stone/coal interface above some datum line, during
the production of the current one and the basic geometry confirms that this
industrial application is a repetitive process in the sense defined above. The
stability problem for this repetitive process is caused, in the main, by the
machine’s weight and can result in undulations in the previous pass profile
of a level that productive work is no longer possible without their removal.

The repetitive process setting can also be used for analysis and con-
trol of other systems. Examples include classes of iterative learning control
schemes [2, 3] and iterative algorithms for solving nonlinear dynamic opti-
mal control problems based on the maximum principle [4]. Iterative learning
control algorithms designed using a repetitive process setting have been ex-
perimentally tested [5, 6]. Also there has been recent work on the use of this
setting for the analysis of OL-Nash games with a gas pipeline application [7].

This paper considers differential linear repetitive processes where the dy-
namics along the pass are governed by a linear matrix differential equation
and the pass-to-pass dynamics by a discrete linear matrix equation. The
stability theory [1] for linear repetitive processes is of the bounded-input
bounded-output (BIBO) type and is based on an abstract model in a Ba-
nach space setting that includes a large range of examples as special cases.

Stability of linear repetitive processes imposes a BIBO property defined
in terms of the linear operator that describes the contribution of the previous
pass profile to the next one, either over the finite pass length or independent
of this parameter, where this latter case can be analyzed mathematically
by letting α → ∞. It is the latter property that is required in many appli-
cations and for the processes considered in this paper it can be expressed
in terms of three linear matrix inequalities (LMIs) [8]. Each of these con-
ditions has a well defined physical interpretation and this paper uses the
Kalman-Yakubovich-Popov (KYP) lemma to develop new control law design
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algorithms for stability and performance, where the latter aspect has received
relatively little attention in the literature.

Throughout this paper, the null and identity matrices with appropriate
dimensions are denoted by 0 and I respectively. The notation X � Y (re-
spectively X � Y ) means that the matrix X − Y is positive semi-definite
(respectively, positive definite). Also sym{M} denotes the symmetric matrix
M+MT and ρ(·) denotes the spectral radius of its argument. The superscript
∗ denotes the complex conjugate transpose of a matrix, the superscript ⊥ the
orthogonal complement of a matrix and ⊗ the Kronecker matrix product.

Use will be made of the following results, known as the KYP lemma [9],
its generalized version [10] and the Elimination or Projection Lemma [11]
respectively.

Lemma 1. Let matrices A ∈ Rp×p, B ∈ Rp×q and Θ = ΘT ∈ R(p+q)×(p+q) be
given and suppose that det(jωI − A) 6= 0 for any ω ∈ R. Then the following
statements are equivalent

i) for any ω ∈ R ∪∞[
(jωI − A)−1B

I

]∗
Θ

[
(jωI − A)−1B

I

]
≺ 0, (1)

ii) there exists a symmetric matrix P such that[
AB
I 0

]∗[
0 P
P 0

][
AB
I 0

]
+Θ ≺ 0. (2)

Remark 1. As discussed in [10], particular choices of the matrix Θ allows
representation of various system properties, including positive-realness and
bounded-realness.

Lemma 2. Let the matrices Θ, F , Φ and Ψ be given and denote by Nω the
null space of TωF, where Tω = [I −jωI]. The inequality

N∗ωΘNω ≺ 0, with ω ∈ [ωl, ωu], (3)

holds if and only if there exist Q � 0 and a symmetric matrix P such that

F ∗(Φ⊗ P + Ψ⊗Q)F + Θ ≺ 0, (4)

where
Φ=

[
0 1
1 0

]
, Ψ=

[
−1 jωc
−jωc −ωlωu

]
, ωc=

(ωl+ωu)

2
.
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Lemma 3. Given a symmetric matrix Γ ∈ Rp×p and two matrices Λ, Σ
of column dimension p, there exists a matrix W such that the following LMI
holds

Γ + sym{ΛTWΣ} ≺ 0, (5)

if and only if the following two projection inequalities with respect to W are
satisfied

Λ⊥
T

ΓΛ⊥ ≺ 0, Σ⊥
T

ΓΣ⊥ ≺ 0, (6)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns form a basis of
nullspaces of Λ and Σ respectively.

2. Background and stability analysis

The state-space model of a differential linear repetitive process over 0 ≤
t ≤ α, k ≥ 0, is

ẋk+1(t) =Axk+1(t) +Buk+1(t) +B0yk(t),

yk+1(t) =Cxk+1(t) +Duk+1(t) +D0yk(t),
(7)

where α < +∞ denotes the pass length and on pass k xk(t) ∈ Rn is the state
vector, yk(t) ∈ Rm is the pass profile vector and uk(t) ∈ Rr is the input vector.
The boundary conditions are xk+1(0) = 0, k ≥ 0 and y0(t), with entries
that are known functions of t over [0, α]. No further explicit mention of the
boundary conditions is made in this paper. Also it is assumed throughout this
paper that the pair {A,B0} is controllable and the pair {C,A} observable.

In this model the state updating is in t and the pass profile updating is
in k. The terms B0yk(t) and D0yk(t), respectively, represent the contribu-
tion from the previous pass profile. In [1] examples are considered where
other representations for the contribution from the previous pass profile are
required. As expected, the previous pass terms are critical to the stability
properties of these processes.

The stability theory [1] for linear repetitive processes is based on an ab-
stract model in a Banach space setting that includes a wide range of such
processes as special cases, including those described by (7). Let Eα be a
Banach space, Wα a linear subspace of Eα and Lα a bounded linear operator
mapping Eα into itself. Then the dynamics of a linear repetitive process with
constant pass length are described by linear recursion relations of the form

yk+1 = Lαyk + bk+1, k ≥ 0, (8)
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where yk is the pass profile on pass k and bk+1 ∈ Wα, k ≥ 0. The term Lαyk
represents the contribution of pass k to pass k+ 1 and bk+1 represents initial
conditions, disturbances and control input effects that enter on pass k + 1.

Stability for repetitive processes requires that, for given any initial profile
y0 and any disturbance sequence {bk+1}k≥0 that converges strongly to b∞ as
k → ∞, the sequence of pass profiles generated {yk}k≥1 converges strongly
to y∞ as k →∞. This property is termed asymptotic stability in the pass-to-
pass direction, or asymptotic stability for short, of (8) and for the given finite
pass length α is equivalent [1] to the existence of finite real scalars Mα > 0
and λα ∈ (0, 1) such that ||Lkα|| ≤Mαλ

k
α, where || · || denotes both the norm

on Eα and the induced operator norm as appropriate. This property holds [1]
if and only if ρ(Lα) < 1. If this property holds let y∞, termed the limit profile,
denote the strong limit of {yk}k≥1 under asymptotic stability and consider
an input sequence {uk}k≥1 that converges strongly as k →∞ to u∞. Then

y∞ = (I − Lα)−1b∞,

where I denotes the identity operator in Eα.
For processes described by (7) it has been shown [1] that asymptotic

stability holds if and only if ρ(D0) < 1. Also if (7) is asymptotically stable
and the input sequence applied {uk}k≥1 converges strongly as k →∞ to u∞,
the resulting limit profile is described by the state-space model

ẋk+1(t) =Ax∞(t) +Bu∞(t) +B0y∞(t),

y∞(t) =Cx∞(t) +Du∞(t) +D0y∞(t),
(9)

or, since I − D0 is invertible by asymptotic stability, a differential linear
systems state-space model with state matrix Alp = (A+B0(I −D0)

−1C).
Asymptotic stability of (7) does not guarantee that the limit profile has

acceptable along-the-pass dynamics. A simple example is A = −1, B = 1,
B0 = 1 + β, C = 1, D = 0, D0 = 0, where β > 0 is a real scalar. In this case
Alp = β and the standard linear system with this state matrix is unstable in
the t-direction, that is, along the pass.

The problem highlighted by this example can be overcome by demand-
ing the BIBO property for any possible value of the pass length, where
mathematically this can be analyzed by letting α → ∞. This is the sta-
bility along-the-pass property that [1] is equivalent to the existence of finite
real scalars M∞ > 0 and λ∞ ∈ (0, 1), which are independent α, such that
||Lkα|| ≤M∞λ

k
∞, k ≥ 0.
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Lemma 4. [1] A differential linear repetitive process described by (7) is sta-
ble along the pass if and only if the following conditions hold:

i) ρ(D0) < 1,

ii) all eigenvalues of the matrix A lie in C−, the open left-half of the com-
plex plane C, and

iii) all eigenvalues of G(s) = C(sI − A)−1B0+D0, s = jω, ∀ω ≥ 0, have
modulus strictly less than unity.

By the first condition in Lemma 4 asymptotic stability is a necessary con-
dition for stability along the pass. The second condition demands stability
of the state dynamics on any pass and the third has a Nyquist-based inter-
pretation. In the single-input single-output (SISO) case, for simplicity, this
condition requires that the Nyquist plot generated by G(s) lies inside the unit
circle in the complex plane for all s = jω, ∀ω. Hence this condition requires
that each frequency component of the initial pass profile is attenuated from
pass-to-pass.

The tracking control problem for repetitive processes is to specify a refer-
ence vector and design a control law to force the pass profile sequence {yk}k≥1
to converge to this vector in the pass-to-pass direction under stability along
the pass. The vast majority of the results on control law design for these
processes are for stabilization. This paper develops new results for stabiliza-
tion plus transient performance along the passes and the first of these is the
following result for stability along the pass derived using Lemma 1.

Theorem 1. A differential linear repetitive process described by (7) is stable
along the pass if there exist P1 � 0 and P2 � 0 such that the LMI[

AP1+P1A
T+CTP2C P1B0+CTP2D0

BT
0 P1+DT

0 P2C BT
0 P1B0+DT

0 P2D0−P2

]
≺0, (10)

is feasible.

Proof. The LMI (10) can be rewritten as[
A B0

I 0

]T [
0 P1

P1 0

] [
A B0

I 0

]
+Θ≺0, (11)

where

Θ=

[
C D0

0 I

]T [
P2 0
0 −P2

] [
C D0

0 I

]
. (12)
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By Lemma 1, (11) is equivalent to[
(jωI − A)−1B0

I

]∗
Θ

[
(jωI − A)−1B0

I

]
≺ 0,

or [
G(jω)
I

]∗ [
P2 0
0 −P2

] [
G(jω)
I

]
≺ 0, (13)

where G(jω) is the frequency response matrix obtained from G(s) of iii) in
Lemma 4. Moreover, (13) can be written as

G(jω)∗P2G(jω)− P2 ≺ 0, (14)

and the existence of a P2 � 0 satisfying this last condition immediately
implies that ρ(G(jω)) < 1 ∀ω ∈ R∪∞, that is, feasibility of (10) guarantees
that condition iii) of Lemma 4 holds. Furthermore, feasibility of (10) implies

AP1+P1A
T+CTP2C ≺ 0,

BT
0 P1B0+DT

0 P2D0−P2 ≺ 0,

and, since P1 � 0 and P2 � 0, CTP2C � 0 and BT
0 P1B0 � 0. Hence AP1+

P1A
T ≺ 0 and DT

0 P2D0−P2 ≺ 0 must hold, respectively. Equivalently,
all eigenvalues of the matrix A must have strictly negative real parts and
ρ(D0) < 1, respectively, and feasibility of (10) guarantees that all three
conditions Lemma 4 are satisfied.

The main drawback of Theorem 1 is that a significant degree of conserva-
tiveness can result from the requirement that there exists a constant matrix
P2 for ∀ω ∈ R ∪ ∞. Previous work [12] has shown that condition iii) of
Lemma 4 can be replaced by the existence of a positive definite Hermitian
matrix P2(jω) such that

G∗(jω)P2(jω)G(jω)− P2(jω) ≺ 0,

for all ω ∈ R ∪ ∞. This is a necessary and sufficient condition for stability
along the pass and, using a Kronecker product setting, tests can be devel-
oped that involve computations where all matrices involved are frequency
independent [13]. This condition is not suitable for extension to control law
design.
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To remove the need for the matrix P2 to be constant for all ω ∈ R ∪∞,
the method is to extend the theory to allow the use of piecewise constant
matrices over a priori chosen frequency ranges. Specifically, the complete
frequency range is divided into N intervals, where each of these do not have
to include an equal range of values, such that

[0,∞] =
N⋃
i=1

[ωi−1, ωi], ω0 = 0, ωN =∞ (15)

and then apply the result of Lemma 2 to each interval. This allows the use of
a piecewise constant matrix P2i ∀i = 1, . . . , N, together with piecewise con-
stant matrices P1i and Q1i, in the following result with the aim of achieving
a less conservative solution than Theorem 1, particularly when applied to
control law design in the next section.

Theorem 2. Suppose that the entire frequency range is arbitrarily divided
into N frequency intervals as given in (15). Then a differential linear repet-
itive process described by (7) is stable along the pass if there exist P1i � 0,
P2i � 0, Qi � 0 and W1 such that the following LMIs are feasible

−Qi P1i + jωciQi −W1 0 0
P1i − jωciQi −W T

1 −ωi−1ωiQi+A
TW1+W T

1 A W T
1 B0 CT

0 BT
0 W1 −P2i DT

0

0 C D0 −P2i

≺0, (16)

for all i = 1, . . . , N where ωci = (ωi−1 + ωi)/2.

Proof. For each i = 1, 2, . . . , N, applying the Schur’s complement formula
to the corresponding LMI of (16) gives an inequality that can be written in
the form of (5) where

Γ = [I FB]Ωi[I FB]T , (17)

FB =

 0
CT

DT
0

 ,Ωi =

[
Φ⊗ P1i + Ψ⊗Qi 0

0 Πi

]
,Πi =

[
−P2i 0

0 P2i

]
,

Σ = [0 I 0] ,Λ=
[
−I A B0

]
, ωci=(ωi−1+ωi)/2,

(18)
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and Ψ and Φ are given in (4). Suppose also that there exist matrices P1i � 0,
P2i � 0, Qi � 0 and W1 such that LMIs (16) are feasible for all i = 1, . . . , N.
Then on applying Lemma 3 to (16) the following LMIs are also feasible

[
AT I 0
BT

0 0 I

] −Qi P1i + jωciQi 0
P1i − jωciQi −ωi−1ωiQi +CTP2iC CTP2iD0

0 DT
0 P2iC DT

0 P2iD0−P2i

AB0

I 0
0 I

≺0, (19)

[
I 0 0
0 0 I

] −Qi P1i + jωciQi 0
P1i − jωciQi −ωi−1ωiQi +CTP2iC CTP2iD0

0 DT
0 P2iC DT

0 P2iD0−P2i

I 0
0 0
0 I

≺0. (20)

Also, (20) holds if and only if (19) holds and therefore it remains to establish
the feasibility of the LMI (19), which can be written as[
A B0

I 0

]T
(Φ⊗P1i+Ψ⊗Qi)

[
A B0

I 0

]
+

[
C D0

0 I

]T[
P2i 0
0 −P2i

][
C D0

0 I

]
≺ 0. (21)

Defining Θ as in (12) and applying Lemma 2 to (21) gives[
(jωI − A)−1B0

I

]∗
Θ

[
(jωI − A)−1B0

I

]
≺ 0, ∀ω ∈ [ωi−1, ωi],

or, equivalently,

G∗(jω)P2iG(jω)− P2i ≺ 0, ∀ω ∈ [ωi−1, ωi], (22)

for i = 1, . . . , N . Hence stability along the pass holds in each frequency
interval and given (15) this property is guaranteed for the entire frequency
range.

Remark 2. Following [10], for i = 0, the low frequency range starting from
ω = 0, that is, ω0 = 0, the matrix Ψ in (4) can be taken as

Ψ =

[
−1 0
0 ω2

1

]
.

For i = N, the high frequency range ending with ω = ∞, that is, ωN = ∞,
the matrix Ψ in (4) can be taken as

Ψ =

[
1 0
0 −ω2

N−1

]
, (23)
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and hence Σ and Λ in (18) must be replaced by

Σ = [−I βI 0] and Λ=
[
−I A+BK1 B0+BK2

]
,

where β > 0 is an arbitrary real scalar.

Currently, there is no systematic procedure for dividing the entire fre-
quency range into sub-ranges but, in general, the conservativeness decreases
as the number of sub-ranges increase. This is due to the introduction of ad-
ditional auxiliary slack matrix variables (introduced for every subrange) and
hence more degrees of freedom are obtained. When control law design proce-
dure is considered, the availability of frequency sub-ranges allows the design
to be specialized to the particular requirements of the application under con-
sideration. Examples include suppression of narrow-band frequency distur-
bances or in design to enforce tracking of areference signal where the dom-
inant frequencies in this signal can be determined by inspection and the
frequency sub-ranges accordingly determined. This design is a practical al-
ternative to demanding frequency attenuation over the complete frequency
range.

The condition of Theorem 1 can be rewritten (by applying transforma-
tions) as a special case of the result in Theorem 2. In particular, set Qi = Q,
P1i = P1 and P2i = P2 (there are no frequency sub-ranges and hence the
matrix variables do not vary) and then (16) can be written as[

A B0

I 0

]T
(Φ⊗P1+Ψ⊗Q)

[
A B0

I 0,

]
+

[
C D0

0 I

]T[
P2 0
0 −P2

][
C D0

0 I

]
≺ 0. (24)

Taking taking Φ=

[
0 1
1 0

]
and Ψ = 0 (no frequency sub-ranges are considered)

gives the condition of Theorem 1. Consequently, Theorem 2 introduces addi-
tional free matrix variables, which, in turn, gives greater freedom in selection
and the possibility of less conservative results.

In the LMI condition of Theorem 2, the matrix variable W1 is the same
for all frequency sub-ranges but it is routine to show that a different matrix
can be chosen in each sub-range, that is, W1i for i = 1, . . . , N, with resulting
LMI

−Qi P1i + jωciQi −W1i 0 0
P1i − jωciQi −W T

1i −ωi−1ωiQi+A
TW1i+W

T
1iA W T

1iB0 CT

0 BT
0 W1i −P2i DT

0

0 C D0 −P2i

≺0. (25)

10



This option should also reduce the level of conservativeness through the in-
troduction of more free matrix variables. Moreover, in this case the product
terms between process state-space model matrices and the P1i in the LMI of
Theorem 2 are removed and this may again lead to a reduction of conserva-
tiveness. In the case of control law design, is not possible to chose a different
W1 in each sub-range since the computed control law matrices may not be
equal. A simple way to avoid this problem, used in the next section, is to set
is to set W1i = W1, i = 1, . . . , N .

3. Control law design

The control of differential linear repetitive processes requires the use of
control laws that combine current and previous pass action. One control law
is of the form

uk+1 =
[
K1 K2

] [xk+1(t)
yk(t)

]
, (26)

where K1 and K2 are compatibly dimensioned matrices to be found. This
control law is formed as a weighted sum of current pass state feedback and
feedforward of the previous pass profile, see [1] for further background on
this form of control action. Moreover, the algorithms for control law design
currently available mainly focus on achieving stability along the pass for the
controlled process and it is necessary to expand the number of algorithms
for stability along the pass plus performance specifications. In this context,
the eigenvalues of the state matrix A govern the dynamics produced along
each pass and the open question addressed in this section is one of control
law design in the presence of constraints on the locations of the eigenvalues
of the current pass state matrix of the controlled process.

The result of Theorem 2 cannot be easily extended to control law design
since it would involve bilinear terms arising from products of the matrices
W1 and the control law matrices K1 and K2 (and this would also be the case
if the matrix W1 was replaced by a different choice for each frequency sub-
range). The following new result avoids this difficulty for stabilizing control
law design.

Theorem 3. Suppose that a control law of the form (26) is applied to a dif-
ferential linear repetitive process described by (7). Suppose also that the en-
tire frequency range is divided into N frequency intervals given in (15). Then
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the resulting controlled process is stable along the pass if there exist matrices
P̂1i � 0, P̂2i � 0, Q̂i � 0, N1, N2, Ŵ1 and Ŵ2 such that the following LMIs

−Q̂i P̂1i+jωciQ̂i−Ŵ T
1

P̂1i−jωciQ̂i−Ŵ1 −ωi−1ωiQ̂i+sym
{
AŴ1+BN1

}
0 Ŵ T

2 B
T
0 +NT

2 B
T

0 CŴ1+DN1

0 0

B0Ŵ2+BN2 Ŵ T
1 C

T +NT
1 D

T

−P̂2i Ŵ T
2 D

T
0 +NT

2 D
T

D0Ŵ2+DN2 P̂2i−Ŵ T
2 −Ŵ2

≺0,

(27)

are feasible for all i = 1, . . . , N, where ωci = (ωi−1+ωi)/2. If these LMIs are
feasible, stabilizing control law matrices K1 and K2 of (26) can be computed
using

K1 = N1Ŵ
−1
1 , K2 = N2Ŵ

−1
2 . (28)

Proof. Suppose that set of LMIs (27) are feasible in P̂1i � 0, P̂2i � 0, Q̂ � 0,
N1, N2, Ŵ1 and Ŵ2 where, without loss of generality, it is also assumed that
Ŵ1 and Ŵ2 are invertible. Next, apply the congruence transformation defined
by diag

{
Ŵ−1

1 , Ŵ−1
1 , Ŵ−1

2 , Ŵ−1
2

}
, introduce the change the variables

Qi=Ŵ−T1 Q̂iŴ
−1
1 , P1i=Ŵ−T1 P̂1iŴ

−1
1 ,W1=Ŵ−11 , W2=Ŵ−12 , P2i=Ŵ−T2 P̂2iŴ

−1
2 ,

and apply (28) to obtain
−Qi P1i+jωciQi−W1 0 0

P1i−jωciQi−W T
1 −ωi−1ωiQi+sym

{
W T

1 A+W T
1 BK1

}
W T

1 B0+W T
1 BK2 0

0 BT
0 W1+KT

2 B
TW1 −P2i 0

0 0 0 P2i



+sym




0
CT +KT

1 D
T

DT
0 +KT

2 D
T

−I

[0 0 0 W2

]≺0.

(29)

Introducing the substitutions

Σ=
[
0 0 0 I

]
, Λ=

[
0 C+DK1 D0+DK2 −I

]
12



into (29) and then applying Lemma 3 gives −Qi P1i+jωciQi−W1 0
P1i−jωciQi−W T

1 −ωi−1ωiQi+sym
{
W T

1 A+W T
1 BK1

}
W T

1 B0+W T
1 BK2

0 BT
0 W1+KT

2 B
TW1 −P2i


+

 0
CT +KT

1 D
T

DT
0 +KT

2 D
T

P2i

[
0 C+DK1 D0+DK2

]
≺0.

Application of the Schur’s complement formula to this last inequality gives (16)
for the controlled process state-space model and by Theorem 2 stability along
the pass holds for each frequency interval and hence for the entire range.

3.1. Design for stability and performance
In most practical situations, it will be required to design a control law for

stability and performance and/or disturbance rejection. The vast majority
of the currently available control law design algorithms for linear repetitive
processes are for stabilization and there is a need for algorithms that ensure
stability plus satisfactory transient response along the passes. An obvious ap-
plication area with this requirement is iterative learning control as discussed
in the conclusions’ section of this paper.

Given that the eigenvalues of the current pass state matrix A in (7) govern
the dynamics produced along the trial, the problem considered in this section
is the design of the control law (26) for stability along the pass plus the
assignment of the eigenvalues of Acl = A+BK1, inside a pre-specified region
of the open left-half of the complex plane.

The assignment of the eigenvalues of Acl is by choice of Φ in (4) or (18),
where [10] this matrix must satisfy det(Φ) < 0 and hence the region of interest
for the eigenvalues of Acl is either a circle or a half-plane. Consider, therefore,
the circle of radius r with center at c given by

C(c, r) := {x+ jy ∈ C : |x+ jy − c| = r} . (30)

Then, to guarantee that the interior of this circle is located in open left-half
of the complex plane, requires c < 0 and |c| > r and Φ of the form

Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
=

[
1 −c
−c |c|2 − r2

]
. (31)
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Also if the eigenvalues of Acl are located in C(c, r) then the lower bound
on the exponential-decay rate and the damping ratio of the corresponding
modes are |c|−r and

√
1− r2

c2
, respectively, for c < 0 and |c| > r. If the modes

are required to have a minimum decay rate of a > 0 then the eigenvalues of
Acl must be located to the left of the line x = −a in the complex plane. The
region of the complex plane whose boundary is a straight line in the complex
plane with normal vector a+ jb 6= 0 is the collection of points given by

L(a, b, d) = {x+ jy ∈ C : 2(ax+ by + d) = 0},

and the matrix Φ must be chosen as

Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
=

[
0 a+ jb

a− jb 2d

]
. (32)

It is possible to guarantee that the eigenvalues of

Gcl(s) = (C+DK1)(sI−(A+BK1))
−1(B0 +BK2)+(D0+DK2), (33)

lie in the interior of the circle of radius γ ≤ 1 with center at the origin. In
this case Φ must be of the form (31) where c = 0 and r = γ ≤ 1. Moreover,
the inequality [

Gcl(jω)
I

]∗
Φ⊗ P2

[
Gcl(jω)

I

]
≺ 0,

guarantees that ρ(Gcl(jω)) < γ ∀ω ∈ R∪∞. The frequency response matrix
Gcl(jω) governs the pass-to-pass attenuation of the initial pass profile and it
is possible to choose different γi ≤ 1 for each frequency interval i = 1, . . . , N.
This, in turn, allows the rate of pass-to-pass attenuation of the initial pass
profile frequency content to vary over the frequency intervals and this prop-
erty is of particular importance in iterative learning control as discussed in
the conclusions section of this paper.

Theorem 4. Suppose that a control law of the form (26) is applied to a dif-
ferential linear repetitive process described by (7). Suppose also that the en-
tire frequency range is arbitrarily divided into intervals satisfying (15). Then
the resulting controlled process is stable along the pass with eigenvalues of the
state matrix Acl = A+BK1 located inside the region described by (31) or (32)
and ρ(Gcl(jω)) < γi if there exist matrices P̂1i � 0, P̂2i � 0, Q̂i � 0, N1, N2,
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Ŵ1 and Ŵ2 such that the following LMIs
Φ11P̂1i − Q̂i Φ12P̂1i+jωciQ̂i−Ŵ T

1

ΦT
12P̂1i−jωciQ̂i−Ŵ1 Φ22P̂1i − ωi−1ωiQ̂i+sym

{
AŴ1+BN1

}
0 Ŵ T

2 B
T
0 +NT

2 B
T

0 CŴ1+DN1

0 0

B0Ŵ2+BN2 Ŵ T
1 C

T +NT
1 D

T

−γiP̂2i Ŵ T
2 D

T
0 +NT

2 D
T

D0Ŵ2+DN2 P̂2i−Ŵ T
2 −Ŵ2

≺0,

(34)

are feasible i = 1, . . . , N, where ωci = (ωi−1 + ωi)/2. If these LMIs are
feasible, the required control law matrices K1 and K2 of (26) can be calculated
using (28).

Proof. The LMI (34) is established in an identical manner to that of (27)
in Theorem 3 where the regional eigenvalue location constraints are imposed
by choosing the appropriate form of Φ.

4. Numerical example

The dynamics of certain types of material rolling can be approximated
by a differential linear repetitive process and in this section the linearized
model from [14] is considered where in (7)

A =

[
0 1
−a0 0

]
, B =

[
0
c0

]
, B0 =

[
0

−b0 + a0b2

]
,

C =
[
1 0

]
, D = 0, D0 = −b2,

(35)

with

a0 =
λ1λ2

M(λ1 + λ2)
, b0 =

−λ1λ2
M(λ1 + λ2)

, b2 =
−λ2

λ1 + λ2
, c0 =

−λ1
M(λ1 + λ2)

,

where M is the lumped mass of the roll-gap adjusting mechanism, λ1 is
the stiffness of the adjustment mechanism spring, λ2 is the hardness of the metal
strip and λ = λ1λ2

λ1+λ2
is the composite stiffness of the metal strip and the roll

mechanism.
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In this paper the data used is λ1 = 600 N/m, λ2 = 2000 N/m, M = 100
kg and λ = 461.54, resulting in the state-space model matrices[

A B B0

C D D0

]
=

 0 1 0 0
−4.6154 0 −0.0023 1.0651

1 0 0 0.7692

 .
Suppose also that the entire frequency range [0,∞] is divided into 4 frequency
intervals (frequencies are in [rad/sec])

[0,∞] = [0, 1] ∪ [1, 2] ∪ [2, 3] ∪ [3,∞].

Setting β = 10, γ1 = γ2 = γ3 = γ4 = 1, the LMIs (34) for the regional
constraint C(−5, 2) on the eigenvalues of the matrix Acl = A+BK1 are
feasible and give

K1 =
[
7516.5 4018.9

]
, K2 = 440.1.

The plot generated by |Gcl(jω)| computed from (33) for this SISO example
is shown in Fig. 1 and confirms that |Gcl(jω)| < 1 for all the frequency inter-
vals as required. Also a routine computation confirms that the eigenvalues
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10
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10
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10
1

10
2

10
3

0.7685

0.769

0.7695

0.77

0.7705

0.771

0.7715

0.772

Frequency (rad/s)

|G
cl
(jω

)|
 (

ab
s)

Figure 1: The magnitude of Gcl(jω) for the controlled process.

of Acl = A + BK1 are −4.6372± j0.6763 and clearly lie inside the specified
region C(−5, 2).

5. Conclusions

This paper has developed new LMI based conditions for stability of dif-
ferential linear repetitive processes, leading to new control law design algo-
rithms. These new algorithms allow control law design in the presence of

16



practically motivated design specifications such as regional constraints on
the location of the eigenvalues of the state matrix of the controlled pro-
cess. There is much further research required to fully exploit this approach
to control law design with application examples and, in particular, iterative
learning control as discussed next.

Iterative learning control (ILC) has been developed for systems that re-
peat the same finite duration operation over and over. The exact sequence is
that an execution, known as a trial is completed and then the system resets
to the original location ready for the start of the next one. On competition
of each trial all information generated during its execution is available for use
in updating the control law for the next trial [2, 3]. Given a reference vec-
tor, the error on each trial can be computed and used, together with other
previous trial information if required, to compute the control signal to be
used on the next trial. Let yref (t), 0 ≤ t ≤ α, be the reference signal and
ek(t) = yref (t) − yk(t) the error on trial k. Then the design problem is to
enforce error convergence in k under some suitable norm but in many appli-
cations it is also required to regulate the dynamics produced along the trials.
If the along the trial dynamics are discrete, one way to proceed is to de-
sign a feedback control loop for the system and then enforce pass-to-pass
error convergence based on the lifted model of the iterative learning control
dynamics, see many references in the survey papers [2, 3]. This option is
not available if the along the trial dynamics are differential and direct digital
control is not possible. Using a repetitive process setting for analysis it is pos-
sible to consider control law for along the pass performance and pass-to-pass
error convergence simultaneously as outlined next.

Consider a differential linear system whose dynamics are described in the
ILC setting as

ẋk+1(t) =Axk+1(t) +Buk+1(t),

yk+1(t) =Cxk+1(t), 0 ≤ t ≤ α, k ≥ 0,
(36)

where the subscript k denotes the trial number, α the trial length, xk(t) ∈ Rn

is the state vector, yk(t) ∈ Rm is the pass profile vector, uk(t) ∈ Rr is the in-
put vector and no loss of generality arises from assuming zero state initial
vector on each trial. Also introduce, for analysis purposes, the following vec-
tor defined in terms of the difference between the current and previous pass
state vector in the system state-space model

ηk+1(t) =

∫ t

0

(xk+1(τ)− xk(τ)) dτ.

17



Suppose that the ILC law to be applied computes the input on trial k + 1
as uk+1(t) = uk(t) + ∆uk+1(t), where this latter term is the correction to
the input used on the previous trial and one possible choice is ∆uk+1(t) =
K1η̇k+1(t) +K2ėk(t). In this case, the controlled system dynamics can be
written in the form of (7) as

η̇k+1(t) =(A+BK1)ηk+1(t)+(BK2)ek(t),

ek+1(t) =− C(A+BK1)ηk+1(t)+(I−CBK2)ek(t).

This is a differential linear repetitive process state-space model of the form (7)
with no input terms, state vector ηk+1(t) and output (pass profile) vector
ek+1(t). Hence both the asymptotic and along the pass stability properties
can be applied. If the former is present, that is, ρ(I−CBK2) < 1, then
the trial-to-trial error {ek} converges but, due to the finite trial length, the
dynamics produced along the trials can be unacceptable. In such cases,
stability along the pass (or trial in ILC terminology) is an option and further
research effort should be directed towards full exploitation of this approach
with onward transfer to applications. Robust control law design should also
be addressed.
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