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Abstract

We consider the classic problem of exact output regulation for a linear time invariant plant. Under
the assumption that either a state feedback or measurement feedback output regulator exists, we give
design methods to obtain a regulator that avoids overshoot and undershoot in the transient response.

1 Introduction
The problem of output regulation is central to modern control theory. The basic problem considers
a multivariable linear time invariant (LTI) plant that is subject to known external disturbances, and
which is desired to track a known reference signal. The reference signals and external disturbances are
modelled by two independent exosystems. The aim of the problem is to design a feedback controller
which internally stabilises the plant while rejecting the disturbances and ensuring the output converges
asymptotically to the desired reference signal. The problem has a long history, and extensive compila-
tions of results are given in [2] and [3].

A special case of the output regulation problem is that of designing a control law to ensure the
plant output takes a known constant reference value, and also exhibits a desirable transient response,
in particular the absence of overshoot or undershoot. Much of the literature for this problem has
concerned single-input single-output systems (SISO). Dharba and Bhattacharyya [4] showed how to
design a two parameter feedback controller for an LTI continuous-time plant that renders the step
response nonovershooting. Bement and Jayasuriya [5] gave an eigenvalue assignment method to obtain
a nonovershooting LTI state feedback controller for continuous-time plants with one nonminimum
phase zero. In [6] conditions are given for the existence of a controller to achieve a sign invariant
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impulse response, and hence also a nonovershooting step response. However such an approach is
inherently conservative, because a sign invariant impulse response (and hence also a monotonic step
response) is not necessary to avoid undershoot or overshoot.

To date there have been few papers offering analysis or design methods for undershoot or over-
shoot in the step response of multi-input multi-output (MIMO) systems. A recent contribution in this
area is [7], which gave conditions under which a state feedback controller could be obtained to yield
a nonovershooting step response for LTI MIMO systems; this design method is applicable to nonmin-
imum phase systems, and could be applied to both continuous-time and discrete-time systems. In [8]
it was shown that the state feedback law can be implemented in conjunction with a dynamic observer;
the nonovershooting property was seen to be preserved if the initial observer error is sufficiently small.
In [9] the design method of [7] was modified to achieve a step response for MIMO systems that is both
nonovershooting and nonundershooting.

For the general problem of exact output regulation, there have been only a few papers offering
design methods to deliver a desirable transient response. Saberi et al [10] gave a general framework for
optimising transient performance in regulation problems. By defining a performance index involving
the energy of the error signal, they introduced several optimal and suboptimal control problems to find
control laws that achieve output regulation and also obtain the infimum of this performance index.
The authors noted that in some problems it was necessary to employ high-gain feedback controllers.
More recently, Zhang and Lan [11] considered output regulation for SISO systems and employed
the composite nonlinear feedback (CNF) technique of [12]-[13] to obtain a nonlinear state feedback
control law that offered improved transient response, relative to that achievable with a linear control
law. We note however that neither the methods of [10] nor [11] were able to avoid overshoot or
undershoot in the transient response of the tracking signal.

In this paper we seek to adapt the multivariable design methods of [7] and [9] to the general
problem of exact output regulation. We assume the problem of output regulation by state feedback
is solvable, i.e. there exists a linear state feedback controller that internally stabilizes the plant and
achieves output regulation. In this case we show that if there exists a state feedback controller that
yields a nonovershooting response for a step reference, then a state feedback output regulator can be
obtained to deliver a nonovershooting output regulation. Secondly, for the problem of output regulation
by measurement feedback, we show that if the problem is solvable and if there exists a dynamic
observer that yields a nonovershooting response for a constant step reference, then a measurement
feedback output regulator can be found to deliver nonovershooting output regulation. To the best
of the authors’ knowledge, this is the first design method that achieves multivariable exact output
regulation with a nonovershooting (or nonundershooting) transient response.

Notation. Throughout this paper, the symbol 0n represents the zero vector of length n, and In is
the n-dimensional identity matrix. For a square matrix A, we use σ(A) to denote its spectrum. We
say that a square matrix A is Hurwitz-stable if σ(A) lies within the open left-hand complex plane,
and it is anti-Hurwitz-stable if σ(A) lies within the open right-hand complex plane. For any real or
complex scalar λ and vector v, we say that (λ ,v) form an eigenpair of a square matrix A if Av = λv.
For any matrix A with 2n rows, we define π{A} and π{A} by taking the upper n and lower n rows of
A, respectively. If α is a vector of length n, we use diag(α) to denote the n×n diagonal matrix whose
leading diagonal contains the entries of α .
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Figure 1: Output feedback control architecture

2 Problem formulation
We consider a linear multivariable plant ruled by the equation

Σ :






ẋ(t) = Ax(t) + Bu(t) + H d(t)
y(t) = Cy x(t) + Dy u(t) + Gy d(t)
z(t) = C x(t) + Du(t)

(1)

where, for all t ≥ 0, the signal x(t) ∈ Rn represents the state, u(t) ∈ Rm represents the control input,
y(t) ∈ Rp represents the measured output, z(t) ∈ Rq represents the controlled output, r(t) ∈ Rρ repre-
sents a reference signal and d(t) ∈ Rδ represents a disturbance signal, as shown in Figure 1. All the
matrices appearing in (1) are appropriate dimensional constant matrices.

The disturbance input d and the reference input r are generated by two autonomous exosystems
ruled respectively by

Σexo,1 :

{
η̇(t) = S1 η(t), η(0) = η0

d(t) = L1 η(t)
and Σexo,2 :

{
ζ̇ (t) = S2 ζ (t), ζ (0) = ζ0

r(t) = L2 ζ (t)

where, for all t ≥ 0, η(t) ∈ Rn1 and ζ (t) ∈ Rn2 , and S1,S2,L1,L2 are also appropriate dimensional
constant matrices. We assume that all the eigenvalues of S1 and S2 are anti-Hurwitz-stable, i.e., they
all have non-negative real part. This assumption does not cause any loss of generality, see [3, p. 18];
indeed, if the closed-loop system (excluding the exosystems) is internally stable, the vanishing modes
of the exosystem do not affect the regulation of the output. We also assume that the states of the
exosystems η and ζ are measurable, i.e., they are available to be used to generate a feedforward action
in the control law.

We design a controller with measurement signal y which generates the control input signal u. Our
design objective is for the reference signal r to be asymptotically tracked by the output z of the system,
while minimising or eliminating the effect of the disturbance. As such, by defining the error signal

e(t) def
= z(t)− r(t),

our objective is to achieve limt→∞ e(t) = 0. We then consider a new system Σe obtained from Σ by
considering the new output e instead of z:

Σe :






ẋ(t) = Ax(t) + Bu(t) + H d(t), x(0) = x0

y(t) = Cy x(t) + Dy u(t) + Gy d(t)
e(t) = C x(t) + Du(t) − r(t)
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It is convenient to incorporate the two exosystems into a single exosystem whose state w is defined as

w(t) def
=

[
η(t)
ζ (t)

]

so that

Σexo :

{
ẇ(t) = Sw(t), w(0) = w0[

d(t)
r(t)

]
=

[
L1 0
0 L2

]
w(t)

where S =
[

S1 0
0 S2

]
. By defining

Ew
def
=

[
H L1 0

]

Dyw
def
=

[
Gy L1 0

]

Dew
def
=

[
0 −L2

]

we can re-write Σe as

Σe :






ẋ(t) = Ax(t) + Bu(t) + Ew w(t), x(0) = x0

ẇ(t) = Sw(t), w(0) = w0

y(t) = Cy x(t) + Dy u(t) + Dyw w(t)
e(t) = Ce x(t) + Deu u(t) + Dew w(t)

(2)

In order to avoid issues of well-posedness of output dynamic architectures, and in order to simplify
the derivations of the tracking control law, we assume Dy = 0. This assumption does not lead to a
significant loss of generality, as shown in [3, p. 16]. For design purposes we will also consider the
nominal plant Σnom which arises when both exosystems are excluded from consideration. In this case
Σe simplifies to the homogenous system

Σnom :

{
˙̃x(t) = Ax̃(t) + Bũ(t), x̃(0) = x̃0

ẽ(t) = Ce x̃(t) + Deu ũ(t)
(3)

For this system, the problem of exact output regulation consists of driving the system state to
the origin from some arbitrary non-zero initial condition. In later sections we will consider control
methodologies that regulate the nominal plant with desirable transient performance, and then consider
the conditions under which these control methods can also be used to achieve the same desirable
transient performance when applied to Σe. Next we briefly revisit some classic results on output
regulation by state feedback and measurement feedback. The discussion that follows is based on [3,
Chapter 2]. We will only consider the continuous-time case. However, all the results presented here
can be adapted to the discrete-time case with only minor modifications.

2.1 Exact output regulation with state feedback
In the case where the controller has access to the state of the system, as well as to the reference and
the disturbance, we have p = n,

Cy = I, Dy = 0, Dyw = 0,
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and the control input has the form

u(t) = F x(t)+Gw(t), (4)

which is given by a static state-feedback component F x(t) and a static feedforward component Gw(t)
that uses the states of the exosystems. The closed-loop system is

ΣCL :






ẋ(t) = (A+BF)x(t)+(BG+Ew)w(t), x(0) = x0

ẇ(t) = Sw(t), w(0) = w0

e(t) = (Ce +Deu F)x(t)+(Dew G+Dyw)w(t)
(5)

Definition 2.1 (a) A state feedback controller u of the form (4) is said to achieve exact output feedback
regulation if both the following conditions hold

(I) Internal Stability: The system ẋ(t) = (A+BF)x(t) is asymptotically stable, and

(II) Output Regulation: For all x0 ∈ Rn, and w0 ∈ Rn1+n2 , the system ΣCL satisfies limt→∞ e(t) = 0.

(b) For a given initial condition (x0,w0) of Σe, the control law u in (4) is said to achieve nonovershoot-
ing exact output feedback regulation for Σe from (x0,w0) if the output e → 0 without changing sign in
any component, i.e., for each i ∈ {1, . . . ,q}, sgn(ei(t)) is constant for all t ≥ 0. Finally, we say the
controller achieves globally nonovershooting exact output feedback regulation if e is nonovershooting
for all initial conditions (x0,w0).

The following theorem gives conditions under which exact output feedback regulation can be
achieved by a state feedback control law of the form (4).

Theorem 2.1 ([3], Theorem 2.3.1) Assume system Σe in (1) satisfies the following assumptions

(A.1) The pair (A,B) is stabilizable.

(A.2) The matrix S is anti-Hurwitz-stable.

(A.3) There exists matrices Γ and Π satisfying

ΠS = AΠ+BΓ+Ew (6)

0 = C Π+DΓ+Dew (7)

Let F be any matrix such that A+BF is Hurwitz-stable, and let G= Γ−F Π. Then u as in (4) achieves
exact output feedback regulation for Σe.

These last two equations are known as the regulator equation. Solvability conditions for these equa-
tions are given in [3, Chapter 2].

2.2 Exact output regulation problem with measurement feedback
In the general case of any measurement y being available for feedback, we consider measurement
feedback controllers of the form

Σc :

{
v̇(t) = Acv(t)+Bcy(t)
u(t) = Ccv(t)+Dcy(t)

(8)
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Definition 2.2 A measurement feedback control law Σc of the form (8) is said to achieve exact output
feedback regulation if both the following conditions hold

(I) Internal Stability: The system

ẋ(t) = (A+BDcCy)x(t)+BCcv(t) (9)

v̇(t) = BcCyx(t)+Acv(t) (10)

is Hurwitz-stable

(II) Output Regulation: For all x(0) ∈ Rn, v(0) ∈ Rδ and w(0) ∈ Rρ , the closed-loop system ΣCL

satisfies limt→∞ e(t) = 0.

The following theorem gives conditions under which exact output feedback regulation can be
achieved by a measurement feedback control law of the form (8).

Theorem 2.2 ([3], Theorem 2.4.1) Assume system Σe in (2) satisfies the following assumptions (A.1),
(A.2) as well as the following assumption

(A.3) the pair
([

Cy Dyw

]
,

[
A Ew

0 S

])
is detectable.

Then, the exact output regulation problem is solvable by measurement feedback if and only if there
exist matrices Γ and Π satisfying (6)-(7). A suitable measurement feedback controller is then given by

Σc :






[
˙̂x(t)
˙̂w(t)

]
=

[
A Ew

0 S

] [
x̂(t)
ŵ(t)

]
+

[
B
0

]
u(t)

+

[
KA

KS

]([
Cy Dyw

] [ x̂(t)
ŵ(t)

]
− y(t)

)

u(t) = F x̂(t)+(Γ−FΠ) ŵ(t)

(11)

where F, KA and KS are such that

A+BF and

[
A+KACy Ew +KADyw

KSCy S+KSDyw

]

are both Hurwitz stable.

2.3 Nonovershooting and nonundershooting tracking controller design
methods
The paper [7] gave several methods for the design of a linear state feedback control law to deliver a
nonovershooting step response for systems in the form Σnom, and [9] extended the design methods to
deliver a nonundershooting step response system, and also a monotonic step response. Our aim in this
paper is to consider how these methods may be employed to achieve exact output regulation with a
nonovershooting (or nonundershooting) transient response. We now briefly review these methods.

The design methods assume the system Σnom is at a known initial equilibrium (uo,x0,y0), and that
the closed loop poles are to be selected from within a user-specified interval [a,b] of the negative real
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line. The algorithm selects candidate sets L of distinct closed-loop eigenvalues within the specified
interval and then associates them with candidate sets of eigenvectors V and eigendirections W . These
are obtained in terms of the system matrix pencil

PΣ(s)
def
=

[
A− sIn B

C D

]
(12)

in such a way that only a small number (generally one or two, or at most three) of the closed-loop
modes contribute to each output component. The error function e(t) is then formulated in terms of the
candidate set of eigenvectors and a test is used to determine if the system response is nonovershooting
(or nonundershooting) in all components. If the test is not successful, then a new candidate set L

is chosen, and the process is repeated. If it succeeds, then the desired matrix F can be obtained by
applying Moore’s algorithm [14] to the sets V and W . The tests are analytic in nature, and do not
require simulating the system response to test for overshoot or undershoot.

The method exploits any minimum phase zeros that may exist; these modes are then chosen among
the closed-loop poles and rendered invisible at the outputs. Recently the design method was incorpo-
rated into a public domain MATLAB R© toolbox, known as NOUS [15]. The toolbox asks the user to
specify their LTI system in state space form, together with a specified initial condition and desired step
reference. The user is also asked to nominate a subinterval [a,b] of the negative real line within which
the poles of the closed loop system are to be located. The User also specifies whether a nonovershoot-
ing, or nonundershooting, or monotonic, response, is desired. The NOUS toolbox then seeks to obtain
a gain matrix that will deliver these closed loop poles, and also the desired transient response.

Testing by the present authors using the NOUS toolbox has provided enough evidence that shows
that the search method is likely to be successful if the number of system states, less the number of
minimum phase zeros, is not more than three times the number of control inputs, i.e. the inequality

n− z ≤ l p (13)

holds true for some l ≤ 3, where z is the number of minimum phase zeros. Interestingly, for MIMO
systems the presence of non-minimum phase zeros does not negatively impact upon the success of the
search, and [16] gave several examples of systems for which nonovershooting and nonundershooting
responses could be obtained, notwithstanding the presence of several real nonminimum phase zeros.
Moreover, the search algorithm can some times be successful even where (13) requires l = 4 or more.

3 Nonovershooting and nonundershooting output regula-
tion
In this section we present the main results of our paper. We extend the classic problem of output
regulation to also consider the design of linear control laws of the form (4) and (11) to deliver a
desirable transient response. Specifically, we consider the problem of choosing the control laws for
Σe such that e is nonovershooting, for any given (x0,w0). Our first result indicates that if we can
obtain a state feedback control law ũ(t) = F x̃(t) that achieves nonovershooting exact output feedback
regulation for Σnom, then the state feedback law u in (4) with this F will achieve nonovershooting exact
output feedback regulation for Σe.
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Theorem 3.1 Let (x0,w0) be any initial condition for Σe in (2). Assume that (A.1)-(A.2) hold and that
Π and Γ satisfy (6)-(7). Assume there exists F such that ũ(t) =F x̃(t) yields ẽ(t)→ 0 without overshoot
from initial condition x̃0 = x0 −Πw0, and let G def

= Γ−F Π. Then u in (4), with this F and G, yields
nonovershooting exact output feedback regulation for system Σe from the initial condition (x0,w0).

Proof: The closed-loop system arising from applying ũ = F x̃ to Σnom is
{

˙̃x(t) = (A+BF) x̃(t), x̃(0) = x̃0

ẽ(t) = (Ce +Deu F) x̃(t)
(14)

and by assumption we have ẽ → 0 without overshoot. Next we consider Σe and introduce the change
of coordinates ξ (t) = x(t)−Πw(t). Then ξ (0) = x(0)−Πw(0) = x̃0, and since ẇ = Sw, we obtain

ξ̇ (t) = ẋ(t)−ΠSw(t)

= (A+BF)x(t)+(Ew +B(Γ−FΠ)−ΠS)w(t)

= (A+BF)x(t)− (A+BF)Πw(t), using (6)

= (A+BF)ξ (t). (15)

(Ce +DeuF)x(t)+(Deu(Γ−FΠ)+Dew)w(t) = (Ce +DeuF)x(t)+(DeuΓ−DeuFΠ+Dew)w(t)

= Cex+DeuF(x(t)−Πw(t))+(DeuΓ+Dew)w(t)

= Ceξ (t)+DeuFξ (t)+(CeΠ+DeuΓ+Dew)w(t)

= (Ce +DeuF)ξ (t) (16)

by (7). Hence the closed loop system arising from Σe under u in (4) with initial condition (x0,w0) is
{

ξ̇ (t) = (A+BF)ξ (t), ξ (0) = ξ0,

e(t) = (Ce +Deu F)ξ (t)
(17)

which is identical to (14), and so e → 0 without overshoot. Hence u achieves nonovershooting exact
output regulation for Σe from (x0,w0).

The significance of Theorem 3.1 is that if the exact output regulation of Σe can be achieved by
state feedback, then the design methods of [7] can be utilised to obtain nonovershooting exact output
regulation. It is an immediate corollary to Theorem 3.1 that if ũ = Fx̃ delivers a nonundershooting,
or monotonic, step response for Σnom, then u with this same F will deliver nonundershooting, or
monotonic, output regulation for Σe.

Our second result says that if we can obtain a state feedback control law ũ(t) = F x̃(t) that achieves
nonovershooting exact output feedback regulation for Σnom, then the measurement feedback control
law u in (11) with this F will achieve nonovershooting exact output feedback regulation for Σe, pro-
vided the initial estimator error is sufficiently small. First we require a technical lemma.

Lemma 3.1 Let {µ1, . . . ,µn} and {λ1, . . . ,λn} be sets of distinct negative real numbers such that for
all i, j ∈ {1, . . . ,n}, we have µi < λ j. Let {α1, . . . ,αn} and {β1, . . . ,βn} be arbitrary sets of real
numbers, with αn (= 0 and βn (= 0. Define

f (t) =
n

∑
i=1

αieµit , g(t) =
n

∑
i=1

βieλit (18)
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and assume g(t) (= 0 for all t ≥ 0. Then there exists a positive real number δ such that g(t)+δ f (t) (= 0
for all t ≥ 0.

Proof: Let the µi and λi are ordered so that µ1 < · · ·< µn and λ1 < · · ·< λn, and assume that g(t)> 0
for all t ≥ 0. As f and g are the sums of finitely many negative real exponential functions, they have
finitely many local extrema. Hence there exists a t̄ > 0 such that all the extrema of f and g lie to the
left of t̄, both f and g are monotonic on the interval t ≥ t̄, and f (t)→ 0 and g(t)→ 0 as t → ∞. Hence
we can find a δ1 > 0 such that

1
δ1

> sup
{
| f (t)|
g(t)

: 0 ≤ t ≤ t̄
}

(19)

Then δ1| f (t)| < g(t) for all 0 ≤ t ≤ t̄, and we have 0 < g(t)+ δ1 f (t). Next we seek δ2 > 0 such that
0 < g(t)+δ2 f (t) for all t > t̄. If f (t̄)> 0 then we may simply choose δ2 = 1. Next assume f (t̄)< 0;
noting that αneµnt is the dominant term of f for large t, we define sets S1

def
= {i ∈ {1, . . . ,n} : αiαn > 0}

and S2
def
= {i ∈ {1, . . . ,n} : αiαn < 0}. We introduce functions f1 and f2 comprising those exponential

components of f whose coefficients αi are of the same sign as αn, and opposite sign to αn, respectively:

f1(t) = ∑
i∈S1

αieµit , f2(t) = ∑
i∈S2

αieµit , (20)

Then f (t) = f1(t)+ f2(t), and, since f (t)→αneµnt as t → 0, we conclude that αn < 0 because f (t)< 0
for t ≥ t̄. Hence f1(t)< 0, and f2(t)> 0, yielding | f1(t)|> | f2(t)|. We have, for all t > t̄,

| f (t)|≤ | f1(t)|≤ | f1(t̄)|eµn(t−t̄) (21)

Noting that βneλnt is the dominant term of g for large t, we introduce sets T1 and T2 with T1
def
= {i ∈

{1, . . . ,n} : βiβn > 0} and T2
def
= {i ∈ {1, . . . ,n} : βiβn < 0}, and introduce functions g1 and g2 compris-

ing those exponential terms of g whose coefficients βi are of the same sign as βn, and opposite sign to
βn, respectively:

g1(t) = ∑
i∈T1

βieλit , g2(t) = ∑
i∈T2

βieλit , (22)

Then g(t) = g1(t)+ g2(t), and since g(t) → βneλnt as t → 0, then βn > 0 because g(t) > 0. Hence
g1(t)> 0, and g2(t) < 0, yielding g1(t)> |g2(t)|, and |g2(t)|

g1(t)
→ 0 as t → 0. Hence if we introduce the

function γ(t) such that g(t) = γ(t)g1(t), we have that 0 < γ(t)< 1 for all t ≥ t̄, and γ(t)→ 1 as t → ∞.
So let γ = inf{γ(t) : t ≥ t̄}; we then have for all t ≥ t̄

g(t)≥ γg1(t)≥ γg1(t̄)eλ1(t−t̄) (23)

Hence from (21) and (23), we obtain
| f (t)|
g(t)

≤ | f1(t̄)|
γg1(t̄)

(24)

as µn < λ1 < 0. Defining δ2
def
= γg1(t̄)

| f1(t̄)| and δ = min{δ1,δ2}, we have g(t)+ δ f (t) > 0 for all t ≥ 0. A
similar argument can be used if g(t)< 0 for all t ≥ 0.

Theorem 3.2 Let (x0,w0) be any initial condition for Σe in (2). Assume that (A.1)-(A.3) hold and that
Π and Γ satisfy (6)-(7). Assume there exists F such that

(i) The eigenvalues of A+BF are real and asymptotically stable, and

9



(ii) ũ(t) = F x̃(t) yields nonovershooting exact output feedback regulation for Σhom from initial con-
dition x̃0 = x0 −Πw0.

Let KA and KS be chosen such that the matrix

Acc
def
=

[
A+KACy Ew +KADyw

KSCy S+KSDyw

]
(25)

has real stable eigenvalues all lying to the left of all the eigenvalues of A+BF, i.e., for any λ ∈ σ(A+

BF) and µ ∈ σ(Acc), we have µ < λ . Then (11), with this same F, KA and KS, yields nonovershooting
exact output feedback regulation for system Σe from the initial condition (x0,w0), provided the initial
estimation error

[
x̂(0)−x0

ŵ(0)−w0

]
is sufficiently small.

Proof: Our first task is to find the form of the closed loop system when controller Σc in (11) is applied
to Σe. Let us denote the estimation error as

ε(t) def
=

[
ε1(t)
ε2(t)

]
def
=

[
x̂(t)− x(t)
ŵ(t)−w(t)

]

so that

ε̇(t) =

[
A Ew

0 S

] [
x̂(t)
ŵ(t)

]
−
[

A Ew

0 S

] [
x(t)
w(t)

]

−
[

K1

K2

]([
Cy Dyw

] [ x(t)
w(t)

]
−
[

Cy Dyw

] [ x̂(t)
ŵ(t)

])

=

[
A Ew

0 S

]
ε(t)+

[
K1

K2

][
Cy Dyw

]
ε(t)

=

[
A+K1Cy Ew +K1 Dyw

K2Cy S+K2 Dyw

]
ε(t)

Now,
[

ẋ(t)
ẇ(t)

]
=

[
A Ew

0 S

] [
x(t)
w(t)

]
+

[
B
0

]
u(t)

=

[
A Ew

0 S

] [
x(t)
w(t)

]
+

[
B
0

]
(F x̂(t)+B(Γ−FΠ) ŵ(t))

=

[
A+BF Ew +B(Γ−FΠ)

0 S

] [
x(t)
w(t)

]
+

[
BF B(Γ−FΠ)

0 0

] [
ε1(t)
ε2(t)

]

and the closed-loop system is









ẋ(t)
ẇ(t)
ε̇1(t)
ε̇2(t)




=





A+BF Ew +B(Γ−FΠ) BF B(Γ−FΠ)

0 S 0 0
0 0 A+KACy Ew +KA Dyw

0 0 KS Cy S+KS Dyw









x(t)
w(t)
ε1(t)
ε2(t)





e(t) =
[

Ce +DeuF Deu[Γ−FΠ]+Dew DeuF De(Γ−FΠ)
]





x(t)
w(t)
ε1(t)
ε2(t)




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Introducing the change of coordinates ξ (t) = x(t)−Πw(t), and recalling that ẇ = Sw, we obtain

ξ̇ (t) = ẋ(t)−ΠSw(t)

= (A+BF)x(t)+(Ew +B(Γ−FΠ)−ΠS)w(t)+BFε1(t)+B(Γ−FΠ)ε2(t)

= (A+BF)x(t)− (A+BF)w(t)+BFε1(t)+B(Γ−FΠ)ε2(t), using (6)

= (A+BF)ξ (t)+BFε1(t)+B(Γ−FΠ)ε2(t). (26)

Also

(Ce +DeuF)x(t)+(Deu(Γ−FΠ)+Dew)w(t) = (Ce +DeuF)x(t)+(DeuΓ−DeuFΠ+Dew)w(t)

= Cex(t)+DeuF(x(t)−Πw(t))+DeuΓ+Dew)w(t)

= Ceξ (t)+DeuFξ (t)+(CeΠ+DeuΓ+Dew)w(t)

= (Ce +DeuF)ξ (t) (27)

by (7). Hence we may write the closed loop system as





ξ̇ (t) = (A+BF)ξ (t)+ [BF B(Γ−FΠ)]ε(t), ξ (0) = ξ0,

ε̇(t) = Accε(t), ε(0) = ε0

e(t) = (Ce +Deu F)ξ (t)+ [DeuF De(Γ−FΠ)]ε(t)
(28)

Let

Ā def
=

[
A+BF [BF B(Γ−FΠ)]

0 Acc

]
(29)

and σ(A+BF)
def
= {λi : 1≤ i≤ n} and σ(Acc)

def
= {µi : 1≤ i≤ n}. Then σ(Ā)=σ(A+BF)∪σ(Acc), due

to the diagonal structure of Ā. Let {(λi,vi) : 1 ≤ i ≤ n} be the eigenpairs of A+BF , let V = [v1| . . . |vn]

and introduce α(x̃0)
def
=V−1x̃0. Then the output ẽ of the nominal plant arising from ũ = Fx̃ is

ẽ(t) = (C+DF)[v1eλ1t | . . . |vneλnt ]diag(α(x̃0)). (30)

In each component we have ēi(t) (= 0 for all t ≥ 0, because by assumption Σnom is nonovershooting
from x̃0. If we denote {w1, . . . ,w2n} as the eigenvectors of Ā, then the eigenpairs of Ā are (λi,wi)

for 1 ≤ i ≤ n, and (µi−n,wn) for n+ 1 ≤ i ≤ 2n. Recalling that (λi,vi) are eigenpairs of A+BF for
1 ≤ i ≤ n, we note that wi =

[ vi

0n

]
, because

(Ā−λiI2n)

[
vi

0n

]
=

[
(A+BF −λiIn)vi

0n

]

= 02n. (31)

Let W def
= [w1| . . . |w2n], and introduce W11

def
= π{[w1| . . . |wn]} = V , W12

def
= π{[wn+1| . . . |w2n]}, W21

def
=

π{[w1| . . . |wn]}= 0, W22
def
= π{[wn+1| . . . |w2n]}. We may then decompose W as

W =

[
W11 W12

0 W22

]
. (32)

Then

W−1

[
ξ0

ε0

]
=

[
W−1

11 ξ0 −W−1
11 W12W−1

22 ε0

W−1
22 ε0

]
(33)
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and after introducing β (ε0)
def
=−W−1

11 W12W−1
22 ε0, γ(ε0)

def
=W−1

22 ε0, the state and estimator trajectories of
the closed loop system (28) are given by

[
ξ (t)
ε(t)

]
=

[
[v1eλ1t | . . . |vneλnt ]diag(α(ξ0)+β (ε0))

π{[wn+1eµ1t | . . . |w2neµnt ]}diag(γ(ε0))

]
, (34)

Hence the output of (28) is

e(t) = (Ce +DeuF)[v1eλ1t | . . . |vneλnt ]diag(α(ξ0)+β (ε0))

+[DeuF De(Γ−FΠ)]π{[wn+1eµ1t | . . . |w2neµnt ]}diag(γ(ε0))
def
= (1+δ (ε0))ẽ(t)+N(t,ε0), (35)

where ẽ(t) is defined in (30), and δ (ε0)ẽ(t) and N(t,ε0) are the terms depending upon β (ε0) and
γ(ε0) respectively. From (30) we know that ẽi(t) (= 0 for all t ≥ 0 in all output components, and
hence for sufficiently small ‖ε0‖, we can ensure that (1+ δ (ε0))ẽ(t) (= 0 in all components. Since
‖γ(ε0)‖ ≤ ‖W−1

22 ‖‖ε0‖, we see that ‖N(t,ε0)‖ → 0 for all t ≥ 0 as ‖ε0‖ → 0. We may then apply
Lemma 3.1 with fi(t) = Ni(t,ε0) and gi(t) = (1+ δ (ε0))ẽi(t), noting that the eigenvalues in σ(Acc)

and σ(A+BF) satisfy the assumptions of Lemma 3.1 for f and g, respectively. Hence there exists a
sufficiently small ‖ε0‖ that ensures (1+δ (ε0))ẽi(t)+Ni(t,ε0) (= 0 for all t ≥ 0. We conclude that for
sufficiently small ‖ε0‖, e(t) will not change sign for all t ≥ 0 in any component and hence Σe subject
to the control Σc in (11) has a nonovershooting response from the initial condition (x0,w0,ε0).

4 Example
Example 4.1 Consider the system Σe in (2) with n = 5 and m = p = 3 whose matrices are

A =





−3 −8 2 6 0
2 0 0 0 9
−3 −7 0 0 0
0 −1 2 0 0
0 0 0 0 3




B =





0 0 0
3 −8 0
0 0 3
1 −1 0
2 0 0




Ew =





1 2
0 1
0 1
3 0
0 1





Ce =




−9 −10 3 0 0
0 −3 −1 −8 −4
−4 2 0 0 −7



 Deu =




0 0 0
0 −7 0
−9 0 0



 .

The disturbance d(t) ∈ R2 and the reference signal r(t) ∈ R3 are generated by two exosystems whose
matrices are

S1 =

[
0 −14
14 0

]
L1 =

[
1 0
0 1

]

S2 =

[
0 −3
3 0

]
L2 =




1 2
0 1
1 1



 .
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The pair (A,B) is reachable, and therefore also stabilisable. Our first task is to find a non-overshooting
stabilising static state feedback matrix for the nominal system Σnom in (3) given by the quadruple
(A,B,Ce,Deu). Firstly we note that invariant zeros of Σnom are all real, and equal to z1 = −5.8946,
z2 =−0.2271, z3 = 5.1790 and z4 = 14.4348. Thus, the system is nonminimum phase, invertible and
has n− p = 2 minimum-phase zeros. Thus (13) holds with l = 1 and we may use the design method
of Theorem 3.1 of [7]; we will obtain a globally nonovershooting control law of the form ũ = Fx̃
for Σnom. We choose a set of desired closed-loop poles L = {−5.8946, −0.2271,−1, −2, −3}, to
include the two minimum phase zeros; the remaining three poles may be chosen to be any three real
and distinct stable poles. Following (9) of [7], we choose target vector s1 = 0, s2 = 0, s3 = e1, s4 = e2

and s5 = e3, where 0, e1, e2 and e3 are respectively the zero vector and the canonical basis vectors of
the output space R3. For each i ∈ {1, . . . ,5}, we then solve the matrix equation [7, eq. (6)]:

[
A−λiI B

C D

][
vi

wi

]
=

[
0
si

]
(36)

and obtain solutions sets V = {v1, . . . ,v5}⊂ R5 and W = {w1, . . . ,w5}⊂ R3. We construct matrices
V = [v1 v2 v3 v4 v5 ] and W = [w1 w2 w3 w4 w5 ]. Since V is non-singular, we can compute the
non-overshooting stabilising static state feedback matrix F as

F = W V−1

=




−2.2051 −10.0062 3.6242 7.1567 −4.6382
−1.3220 −6.7630 2.6339 5.0909 −1.3492
5.6227 22.2055 −9.6653 −15.3973 6.5325



 . (37)

By Theorem 3.1 of [7], the control law ũ = Fx̃ yields a globally nonovershooting response for Σnom.
The closed-loop eigenstructure is such that the closed-loop poles λ1, λ2 associated with the minimum
phase zeros are invisible at the outputs. The poles λ3, λ4 and λ5 contribute only to the first, second and
third outputs, respectively. Thus each error component is governed by a single negative exponential,
and hence vanishes without overshoot.

We now turn our attention to the feedforward part of the control law. Solution of the regulator
equations (6)-(7) is given by the matrices

Π=





−0.2060 0.0496 −0.1979 −0.1042
−0.0757 −0.1318 0.0560 −0.0847
−0.8704 −0.2906 −0.0738 0.0719
0.0352 0.0933 −0.0518 −0.0900
−0.0645 0.0040 0.0481 0.0160




, Γ=




0.1249 −0.0545 −0.0481 −0.0961
0.1534 −0.0110 0.0183 −0.0231
−1.7387 3.4705 0.0045 −0.2280



.

Then G = Γ−FΠ, and we may apply the state feedback law u in (4) to Σe. In Figure 2 we show the
system response in the case where the initial condition for Σ is x0 = [1 1 1 1 1 ],, and the initial
states of the exosystems are η0 = [1 1 ], and ζ0 = [1 1 ],. Figure 2(a) shows the tracking error term
in each of the three output components. We see that each of these vanish without changing sign in all
components, at exponential rates eλ t for λ =−1, −2 and −3, respectively. In Figure 2(b) the reference
signal r(t) and the output z(t) are shown, and it is clear that the reference is tracked asymptotically
without overshoot in all components.
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(a) tracking error ε(t) (b) reference r(t) and regulated output z(t)

Figure 2: System responses using state feedback.

Next we consider the problem of output regulation via measurement feedback. We will implement
the controller (11) on Σe; this requires us to obtain gain matrices KA and KS such that Acc in (25) has
poles to the left of all the poles of A+BF . Acc has dimension n+ n1 + n2 = 9, so we choose poles
at {−11, −12, −13, −14, −15,16, −17, −18, −19}. Using MATLAB R©’s place command on the

pair




[

A Ew

0 S

],

,
[

Cy Dyw

],


, we obtain the matrices

KA =





48.0035 64.8235 521.3166
−23.8073 −39.2259 −221.5731
−25.6893 −46.7218 −322.1780
−34.4213 −43.3481 −137.2139
−10.3497 −21.9117 −110.2701




, Ks =





−5.2539 1.6886 82.2003
29.4410 15.7723 −26.4926
0.0046 −0.0264 −73.9012
0.0012 −0.0050 −30.5597




. (38)

Figure 3 shows the system response from Σe under the measurement feedback law (8) with initial
conditions of x0 = [1 1 1 1 1 ],, η0 = [1 1 ], and ζ0 = [1 1 ], and initial estimator error ε(0) =
δ [x,0 η,

0 ζ,
0 ],, with δ = 0.05.

We observe from Figure 3(a) that the tracking errors converge to zero without changing sign in all
components, although the convergence is no longer monotonic, as was the case with state feedback.
Similarly in Figure 3(b) we have z(t) converging to r(t) in all three outputs, without overshoot. We
note that if we apply the measurement feedback control with initial estimator error given by δ =

0.06, the error signal changes sign in the second output component, confirming our expectation that
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Figure 3: System responses using measurement feedback.

the nonovershooting response of the state feedback controller is only preserved under measurement
feedback if the initial estimator error is sufficiently small.

5 Conclusion
We have revisited the design method for a linear state feedback tracking controllers given in [7]-[9]
and used the Internal Model Principle to extend it to accommodate the nonovershooting and nonun-
dershooting tracking of time-varying signals in the presence of known time varying disturbances. To
the best of the authors’ knowledge, this paper presents the first multivariable linear control scheme for
the tracking of time-varying signals without overshoot or undershoot.
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